Glossary of Z notation

Based on appendix A in The Way of Z.

Links to more Z examples.

This page looks best when this \power and this X are about the same size: \power X. See these viewing tips.


Names
Definitions
Logic
Sets and expressions
Relations
Functions
Numbers
Sequences
Axiomatic definition
Schema
Generic Definition
Schema Calculus
Conventions

Other Z pages
Acknowledgements


Names

a,bidentifiers
d,edeclarations (e.g., a: A; b, ...: B ...)
f,gfunctions
m,nnumbers
p,qpredicates
s,tsequences
x,yexpressions
A,Bsets
C,Dbags
Q,Rrelations
S,Tschemas
Xschema text (e.g., d, d | p, or S)

Definitions

a == x Abbreviation definition
a ::= b | ...Free type definition
[a]Introduction of a given set (or [a,...])
a _Prefix operator
_ aPostfix operator
_ a _Infix operator

Logic

trueLogical true constant
falseLogical false constant
\lnot pLogical negation, not
p \land qLogical conjunction, and
p \lor qLogical disjunction, or
p \implies qLogical implication
p \iff qLogical equivalence
\forall X @ qUniversal quantification
\exists X @ qExistential quantification
(let a == x; ... @ p)Local definition

Sets and expressions

x = yEquality
x \neq yInequality
x \in ASet membership
x \notin ANon-membership
\emptysetEmpty set
A \subseteq BSet inclusion
A \subset BStrict set inclusion
{ x, y, ... }Set display
{  X @ x  }Set comprehension
(\lambda X @ x)Lambda expression
(let a == x; ... @ y)Local definition
if p then x else yConditional expression
(x,y, ...)Tuple
(x,y)Pair
A \cross B \cross ...Cartesian product
\power APower set
A \cap BSet intersection
A \cup BSet union
A \ BSet difference
first xFirst element of an ordered pair
second xSecond element of an ordered pair
# ANumber of elements in a set

Relations

A \rel BBinary relation (\power (A \cross B))
a \mapsto bMaplet ((a,b))
dom RDomain of a relation
ran RRange of a relation
Q \comp RForward relational composition
Q \circ RBackward relational composition (R \comp Q)
A \dres RDomain restriction
A \ndres RDomain anti-restriction
A \rres RRange restriction
A \nrres RRange anti-restriction
R \limg A \rimgRelational image
R ~Inverse of relation
R +Transitive closure
Q \oplus RRelational overriding
a R bInfix relation

Functions

A \pfun BPartial functions
A \fun BTotal functions
A \pinj BPartial injections
A \inj BTotal injections
A \bij BBijections
f xFunction application (or f(x))

Numbers

\numSet of integers
\natSet of natural numbers { 0, 1, 2, ... }
\nat1Set of strictly positive numbers { 1, 2, ... }
m+nAddition
m-nSubtraction
m*nMultiplication
m div nDivision
m mod nRemainder (modulus)
m \leq nLess than or equal
m < nLess than
m \geq nGreater than or equal
m > nGreater than
m .. nNumber range
min AMinimum of a set of numbers
max AMaximum of a set of numbers

Sequences

seq ASet of finite sequences
seq1 ASet of non-empty finite sequences
iseq ASet of finite injective sequences
\langle \rangleEmpty sequence
\langle x, y, ... \rangleSequence display
s \cat tSequence concatenation
head sFirst element of a sequence
tail sAll but the head element of a sequence
last sLast element of a sequence
front sAll but the last element of a sequence
s in tSequence segment relation

Axiomatic definition

\begin{axdef}
d
\where
p
\end{axdef}

Schema

\begin{schema}{ S }

d
\where
p
\end{schema}

Generic Definition

\begin{gendef} [a, ...]

d
\where
p
\end{gendef}

Schema Calculus

S \defs [  X  ]Horizontal schema
[  T; ... | ...  ] Schema inclusion
z.aComponent selection (given z:S)
\theta SBinding
\lnot SSchema negation
S \land TSchema conjunction
S \lor TSchema disjunction
S \semi TSchema composition
S >> TSchema piping

Conventions

a?Input to an operation
a!Output from an operation
aState component before an operation
a'State component after an operation
SState schema before an operation
S'State schema after an operation
\Delta SChange of state
\Xi SNo change of state

Other Z pages

Z mathematical tool-kit defines the operators shown in this glossary.

Z examples in web pages.

Z2HTML tool for translating LaTeX documents with Z markup to HTML web pages.

Z home page with FAQ and links to publications, tools, and meetings.

Back to top


Acknowledgements

This page is based on the more complete PostScript glossary by Jonathan Bowen at the Z home page.
Jonathan Jacky / Department of Radiation Oncology Box 356043
University of Washington / Seattle, Washington 98195-6043 / USA
Tel (206) 598-4117 / Fax (206) 598-6218

E-mail: jon@u.washington.edu