First-order predicate logic with identity: syntax and semantics

Syntax

Vocabulary

Individual variables:	$u, v, w, x, y, z, u_1,, z_1, u_2,$									
Logical constants:	-	^	\vee	\rightarrow	\leftrightarrow	()	Э	\forall	=
Variants:	~	&		\supset	≡					
Non-logical constants:										
Individual constants:	a, b, c, d,, t, a_1 , b_1 , t_1 , a_2 ,									
Predicate letters:	Capital letters with numerical superscripts and with or without numerical subscripts. The <i>superscript</i> indicates the <i>degree</i> of the predicate; the subscripts guarantee an infinite supply of predicate letters.									
	$A^{0}, B^{0},, Z^{0}, A^{0}_{1}, B^{0}_{1},, Z^{0}_{1}, A^{0}_{2}, B^{0}_{2},, Z^{0}_{2},,$									
	$A^{1}, B^{1},, Z^{1}, A^{1}_{1}, B^{1}_{1},, Z^{1}_{1}, A^{1}_{2}, B^{1}_{2},, Z^{1}_{2},,$									
	Α ² ,	Β ² ,	, Z ²	, A ₁ ² , E	$B_1^2,$	Z_1^2	A_{2}^{2} ,	B ² ₂ ,	Z ² ₂ ,	,

A predicate of degree *n* is a predicate whose numerical superscript is *n*.

A sentential letter is a predicate of degree 0.

An individual symbol is either an individual variable or an individual constant.

Syntactic Rules

Atomic formulas: an atomic formula is either a sentential letter standing alone, or a predicate letter of degree *n* followed by a string of *n* individual symbols, or a string of the form $\alpha = \beta$, where α and β are both individual symbols.

Formulas: A formula is either an atomic formula or else is built up out of atomic formulas by one or more of the following rules:

1. Molecular formulas: If ϕ and ψ are formulas, then:

 $\neg \phi \qquad (\phi \land \psi) \qquad (\phi \lor \psi) \qquad (\phi \to \psi) \qquad (\phi \leftrightarrow \psi)$

are all formulas.

2. General formulas: If ϕ is a formula and α is a variable, then $\forall \alpha \phi$ and $\exists \alpha \phi$ are both formulas.

Bound and free occurrences of variables: an occurrence of a variable α in a formula φ is **bound** if it is within an occurrence in φ of a formula of the form $\forall \alpha \psi$ or of the form $\exists \alpha \psi$. An occurrence that is not bound is **free**.

Sentences: a sentence is a formula in which no variable occurs free.

Terminology. Where ϕ and ψ are formulas and α is a variable:

 $\neg \phi$ is the **negation** of ϕ .

 $(\phi \land \psi)$ is a **conjunction**. ϕ and ψ are the **conjuncts**.

 $(\phi \lor \psi)$ is a **disjunction**. ϕ and ψ are the **disjuncts**.

 $(\phi \rightarrow \psi)$ is a conditional. ϕ is the antecedent and ψ is the consequent.

 $(\phi \leftrightarrow \psi)$ is a **biconditional**. ϕ and ψ are its components.

Where β and δ are individual symbols, $\beta = \delta$ is an **identity formula**. Where β and δ are individual constants, $\beta = \delta$ is an **identity sentence**.

An expression of the form $\forall \alpha$ is a **universal quantifier**. $\forall \alpha \phi$ is the **universal generalization** of ϕ with respect to α .

An expression of the form $\exists \alpha$ is an **existential quantifier**. $\exists \alpha \phi$ is the **existential generalization** of ϕ with respect to α .

For any formula φ , variable α , and individual symbol β , $\varphi \alpha / \beta$ is the result of replacing all free occurrences of α in φ with occurrences of β .

Variant terminology:

What we are calling a formula is sometimes called a *well-formed formula*, or *wff* (pronounced 'woof'). Also:

We say:	sentence	formula	formula that is not a sentence
Variant label:	closed sentence	sentence	open sentence

Semantics

Interpretations

An interpretation, \Im , of the formal language we have just described consists of:

- 1. A non-empty **domain**, **S**.
- 2. A **mapping** from constants of the language to elements (or other set-theoretic constructs out of elements) of **S**.

(Terminology: 'Element' means the same as 'member'. The converse of 'mapping' is 'assignment': we **map** a constant of the language **onto** an object in the domain; we **assign** that object **to** the constant that is mapped onto it. A mapping is a **function** in the mathematical sense; that is, a mapping gives each constant a **unique** value.)

- 1. Each individual constant is mapped onto exactly one element of **S**.
- 2. Each predicate of degree *n* is mapped onto exactly one set of ordered *n*-tuples of elements of \mathfrak{D} .

Explanation: each predicate of degree 2 is mapped onto a set of ordered pairs of elements of \mathfrak{D} , each predicate of degree 3 is mapped onto a set of ordered triples of elements of \mathfrak{D} , etc. We consider an ordered 1-tuple of elements of \mathfrak{D} to be simply an element of \mathfrak{D} . Thus, each predicate of degree 1 is mapped onto a set of elements of \mathfrak{D} . Finally, we arbitrarily define 'set of ordered 0-tuples of elements of \mathfrak{D} ' to be one or the other of the two **truth-values**, **T** or **F**. Thus, each sentential letter (predicate of degree 0) is mapped onto one of these two truth-values.

Truth under an interpretation

We will define ' ϕ is true under \Im ', where ϕ is a sentence and \Im is an interpretation. To deal with general sentences, we will need one additional definition — of the notion of the " β –variant" of an interpretation:

Where \Im and \Im' are interpretations and β is an individual constant, \Im is a β -variant of \Im' iff \Im and \Im' differ at most in what they assign to β .

Our definition of truth is **recursive**: it will state the conditions under which the simplest sentences are true, and then state how the truth-values of more complex sentences depend upon those of simpler ones.

- 1. If ϕ is a sentential letter, then ϕ is true under \Im iff \Im assigns **T** to ϕ .
- 2. If ϕ is an identity sentence, $\beta = \delta$, then ϕ is true under \Im iff \Im assigns the same object to both β and δ .

- 3. If φ is atomic and not a sentential letter and not an identity sentence, then φ contains a predicate of degree *n* (for $n \ge 1$). Then φ is true under \Im iff the ordered *n*-tuple of objects that \Im assigns to the individual constants of φ (taken in the order in which their corresponding constants occur in φ) is an element of the set of ordered *n*-tuples that \Im assigns to the predicate occurring in φ .
- 4. If $\varphi = \neg \psi$, then φ is true under \Im iff ψ is not true under \Im .
- 5. If $\phi = (\psi \lor \chi)$, then ϕ is true under \Im iff either ψ is true under \Im or χ is true under \Im , or both.
- 6. If $\varphi = (\psi \land \chi)$, then φ is true under \Im iff both ψ is true under \Im and χ is true under \Im .
- 7. If $\phi = (\psi \rightarrow \chi)$, then ϕ is true under \Im iff either ψ is not true under \Im or χ is true under \Im , or both.
- 8. If $\varphi = (\psi \leftrightarrow \chi)$, then φ is true under \Im iff either ψ and χ are both true under \Im or ψ and χ are both not true under \Im .

Let β be the (alphabetically) first individual constant not occurring in φ . Then:

- 9. If $\varphi = \forall \alpha \psi$, then φ is true under \Im iff $\psi \alpha / \beta$ is true under every β -variant of \Im .
- 10. If $\varphi = \exists \alpha \psi$, then φ is true under \Im iff $\psi \alpha / \beta$ is true under at least one β -variant of \Im .

 ϕ is false under \Im iff ϕ is not true under \Im .

Logical Truth

A sentence φ is a **logical truth** iff φ is true under every interpretation.

A sentence ϕ is **logically false** iff ϕ is false under every interpretation.

A set of sentences Γ is **consistent** iff there is at least one interpretation under which every member of Γ is true.

A sentence φ is a **logical consequence** of a set of sentences Γ iff there is no interpretation under which all the members of Γ are true and φ is false.

A pair of sentences are **logically equivalent** iff there is no interpretation under which they differ in truth-value.