Common Quantificational Forms

ENGLISH	FOL
All F 's are G 's.Every F is a G .Each F is a G .Anything that is an F is a G .If anything is an F , it's a G .Whatever is an F is (also) a G .Nothing is an F unless it's (also) a G .Only G 's are F 's.Something is an F only if it's a G .If something is an F , it is a G .An F is a G . [Some sentences only] F 's are all G 's.A thing is a G if it's an F .	$\forall x(F(x) \rightarrow G(x))$
Some F 's are G 's. Something is both F and G . There are GF 's. GF's exist. An F is a G . [Some sentences only]	∃x(F(x) ∧ G(x))
No F 's are G 's. Nothing which is an F is a G . Nothing is both F and G . No F is a G . Not even one F is a G .	$\forall x(F(x) \rightarrow \neg G(x))$ $\neg \exists x(F(x) \land G(x))$ [these are equivalent]
Some F 's are not G 's. Some things that are F are not G . There are F 's that aren't G . F's exist that are not G .	∃x(F(x) ∧ ¬G(x))
All and only <i>F</i> 's are <i>G</i> 's. Each thing is an <i>F</i> if, and only if, it's <i>G</i> . A thing is <i>F</i> if, and only if, it's <i>G</i> . Something is <i>F</i> just in case it's <i>G</i> .	$\forall x(F(x) \leftrightarrow G(x))$
All things except <i>F</i> 's are <i>G</i> 's. All things except <i>G</i> 's are <i>F</i> 's. A thing is an <i>F</i> just in case it's not a <i>G</i> .	$\forall x(F(x) \leftrightarrow \neg G(x))$