
10

B
u
ll
e
ti
n

of
th

e
A

m
er

ic
an

S
oc

ie
ty

fo
r

In
fo

rm
at

io
n

S
ci

en
ce

an
d

Te
ch

no
lo

gy
–

D
ec

em
be

r/
Ja

nu
ar

y
20

09
–

Vo
lu

m
e

35
,N

um
be

r
2

Special Section

Explaining Free and Open Source Software
by Scot Colford

Scot Colford is web services manager at the Boston Public Library. He can be reached
by email at scolford<at>bpl.org

C ommunicating the benefits and limitations of free and open source
software to the less technically experienced can be (to say the least)
challenging, so before attempting to do so, the smart professional

will prepare himself or herself with three things:
� A thorough (but concise) description
� The ability to correct misconceptions
� A list of open source applications an organization can (and may

already) benefit from.

What It Is
In the introductory technology course I teach for graduate LIS students

at Simmons College, students usually grasp the concept of compiled
software (vs. scripting) fairly easily, so I often approach the topic of open
source as a metaphor.

Imagine that it’s your job to buy a cake for a co-worker’s birthday.
You go to the bakery to see what they’ve got on display and you find
a lovely white cake with a beautiful yellow icing with “Happy
Birthday!” flowing across it. It’s even kosher. But there’s a problem.
The frosting is pink and the birthday person just can’t stand that
color. There are other pre-made cakes available but they have even
more things wrong with them, like the chocolate cake with “Sto Lat!”
written on it. (That’s Polish.) You can order a custom cake, of course,
but it’s more expensive, takes a week and you have your doubts that
the bakery can meet your specific demands. What do you do?

Why don’t you bake your own cake? It would be pretty hard if you
had to guess at the ingredients and just experiment with various ratios
of flour, butter and sugar. You might be better off with the pink cake
from the bakery. But that’s why Betty Crocker invented new recipes.
It’s a proven way to create a cake. (And a list of ingredients is freely
redistributable [1] by the way.) You can fiddle with the recipe to your
heart’s content to make the exact cake you need. And when you’re
done, you can give the list of ingredients to anyone else facing a
similar situation.

Once the penny drops, I go on to explain that free and open source
software is a lot like the cake that you made from the recipe. It’s a creation
that owes a lot to the person or people who created the original recipe, but
since you were given the building blocks to create this end result, you had
the opportunity to alter them to suit your needs. Ultimately, your modifications
should help others who have needs similar to yours, and often, they might
even be the people from whom you got the recipe in the first place. It’s an
evolutionary process that feeds back into itself.

Often, a student will then ask where open source software may be
purchased. God bless him. I have heard colleagues ask the same thing. While
the concept of direct access to application source code can be described in
metaphor, the topic of licensing involves taking a look at licenses, those things
we all like to click past in our rush to install software. It is necessary to broach
the topic, however, since the license is truly what makes free software “free”
and open source software “open.” It is also useful to understand the difference
between free software, as defined by the Free Software Foundation (FSF),
and open source software, as defined by the Open Source Initiative (OSI).

The free software definition was published in 1986 by Richard Stallman,

C O N T E N T S N E X T PA G E > N E X T A R T I C L E >< P R E V I O U S PA G E

Open Source Software in Libraries

mailto:scolford<at>bpl.org
carlabadaracco
Rectangle

carlabadaracco
Rectangle

carlabadaracco
Rectangle



11

B
u
ll
e
ti
n

of
th

e
A

m
er

ic
an

S
oc

ie
ty

fo
r

In
fo

rm
at

io
n

S
ci

en
ce

an
d

Te
ch

no
lo

gy
–

D
ec

em
be

r/
Ja

nu
ar

y
20

09
–

Vo
lu

m
e

35
,N

um
be

r
2

Special Section

president then and now of the FSF. The definition codifies four essential
freedoms that computer software users should be entitled to:

� The freedom to run the program for any purpose.
� The freedom to study how the program works and adapt it to your

needs.
� The freedom to redistribute copies so you can help your neighbor.
� The freedom to improve the program and release your improvements to

the public, so that the whole community benefits [2].

With the emphasis on these four freedoms, free software is software that
end users have freedom to alter, run and redistribute as they see fit. The label
“free software” often causes confusion. “Free,” of course, also carries the
connotation of “without cost,” when in reality, cost is not a criterion for free
software. To address the ambiguity between “free as in free speech” versus
“free as in free beer” mentioned in the free software definition, over the years
a number of alternative terms have been suggested, mostly using non-English
words that have unequivocal definitions. Software libre, for example, uses the
Spanish and French adjective meaning “free” in the same sense as “liberty.”
Similarly, software licensed free of charge is sometimes labeled software
gratis. While these (and similar) terms have been adopted in non-English
speaking countries – and while the FSF officially supports any term
conveying the concept of liberty – software gratis and software libre have
not been widely adopted in the United States. Instead, cost-free software is
generally labeled “freeware” and the main FSF-approved label for liberty-
infused software in use is “free software.”

This confusion, along with the confrontational activist stance of the FSF
in defending these freedoms, led to the formation of the Open Source
Initiative in 1998 and the open source definition [3]. Ten criteria must be
met in order for a software distribution to be considered open source:

1. Free redistribution – The license must allow end users to redistribute
the software, even as part of a larger software package and may not
charge royalties for this right.

2. Source code – The distribution must make the source code freely
available to developers.

3. Derived works – The license must permit modifications to be made
to the software for redistribution under the same license.

4. Integrity of the author’s source code – The license may require that
modified distributions be renamed, or that modifications be made via
patch files rather than modifying the source code.

5. No discrimination against persons or groups
6. No discrimination against fields of endeavor – This includes

commercial or controversial endeavors.
7. Distribution of license – The same license must be passed on to others

when the program is redistributed.
8. License must not be specific to a product – A program may be

extracted from a larger distribution and used under the same license.
9. License must not restrict other software – The license cannot

prescribe the terms of other software with which it is distributed.
10.License must be technology-neutral – The license cannot restrict the

use of the program to any individual interface or platform [4].

While the Open Source Initiative has approved over 50 different licenses
as meeting the criteria of the organization, a list of the nine most widely
used licenses is a sufficient sample to get an overview of the different
restrictions and freedoms they provide:

� Apache Software License 2.0 (www.apache.org/licenses/LICENSE-
2.0.html)

� New BSD License (www.opensource.org/licenses/bsd-license.php)
� GNU General Public License (GPL) (www.gnu.org/licenses/gpl.html)
� GNU Lesser General Public License (LGPL)

(www.gnu.org/licenses/lgpl.html)
� MIT License (www.opensource.org/licenses/mit-license.php)
� Mozilla Public License 1.1 (MPL) (www.mozilla.org/MPL/MPL-1.1.html)
� Common Development and Distribution License

(www.sun.com/cddl/cddl.html)
� Common Public License 1.0

(www.ibm.com/developerworks/library/os-cpl.html)
� Eclipse Public License (www.eclipse.org/legal/epl-v10.html) [5].

C O L F O R D , c o n t i n u e d

T O P O F A R T I C L EC O N T E N T S N E X T PA G E > N E X T A R T I C L E >< P R E V I O U S PA G E

Open Source Software in Libraries

www.eclipse.org/legal/epl-v10.html
www.ibm.com/developerworks/library/os-cpl.html
www.sun.com/cddl/cddl.html
www.mozilla.org/MPL/MPL-1.1.html
www.opensource.org/licenses/mit-license.php
www.gnu.org/licenses/lgpl.html
www.gnu.org/licenses/gpl.html
www.opensource.org/licenses/bsd-license.php
www.apache.org/licenses/LICENSE-2.0.html
www.apache.org/licenses/LICENSE-2.0.html
carlabadaracco
Rectangle

carlabadaracco
Rectangle



12

B
u
ll
e
ti
n

of
th

e
A

m
er

ic
an

S
oc

ie
ty

fo
r

In
fo

rm
at

io
n

S
ci

en
ce

an
d

Te
ch

no
lo

gy
–

D
ec

em
be

r/
Ja

nu
ar

y
20

09
–

Vo
lu

m
e

35
,N

um
be

r
2

Special Section

Despite the few ideological differences between open source and free
software, for practical purposes they provide the same basic advantages
(and challenges) in a library or information science setting. For this reason,
they are often referred to under a collective term such as “free and open
source software,” FOSS, F/OSS or other terms.

What It Is Not
A more difficult task than defining free and open source software for

novices is combating the inevitable assumptions and misinformation that
materialize. The most common misconception, alluded to above, is that since
the source code is freely distributed without royalty or licensing fee, open
source applications are free of cost. While it is possible for a library or other
organization to avoid buying a proprietary software package, open source may
carry a plethora of hidden costs in development and maintenances, particularly
if any customization is to be made to the software. These costs may translate
into salaries for additional technical staff or possibly external support,
development and/or hosting services such as the consulting service LibLime.

In my experience, the staff most susceptible to the “free lunch” myth are
overeager novice technicians or new librarians hoping to stretch dwindling
budgets as far as possible. Veteran administrators, on the other hand, seem
to regard free and open source solutions with suspicion. While some of their
caution is of the “you get what you pay for” variety, the absence of an
accountable vendor causes distress to some of the old library guard. Without a
contract to point to, non-technical administrators seem to feel that development
of library services is in the hands of an unknown middle-aged, unemployed
social misfit coding in his parents’ basement at three a.m. between reruns of
Stargate and Star Trek: Deep Space Nine. It is an image closely associated
with hacker culture and all the bugaboos associated with it, such as Bill
Gates’ attempt to frame FOSS advocates as “modern day Communists.” [6].
It is a valid point – not the image of the basement coder, but rather that the
people currently working on any given open source application are not
doing so to win customers; they are attempting to solve specific problems.

Richard Stallman clearly illustrates this clever problem-solving ability of
developers in his 2002 article “On Hacking.” [7]. “Playfully doing something

difficult” is hacking, according to Stallman, as opposed to the criminal
connotation sometimes associated with the word. A hacker enjoys puzzles
and finding efficient solutions to seemingly insurmountable problems,
something that libraries and information centers seem to have no lack of. An
organization must hire either staff or consultants with this special ability to
contribute to the larger problem-solving community if its unique concerns
are to be addressed in an open source application. It is an entirely new and
exciting paradigm to invite these creative people into our space, rather than
knowing they are sequestered out of reach behind a vendor’s competitive gate.

Along the same lines, non-technical staff are often concerned about the
perceived absence of technical support available for open source projects.
Library vendors charge an incredible amount of money to support the software
they license, typically in the form of yearly maintenance fees. A significant
portion of a technology operating budget can be spent this way in exchange
for the privilege of calling the vendor when the software fails (one hopes 24/7,
but sometimes only 9-5 weekdays), when a bug is identified (that perhaps
the vendor has already documented but about which has not thought to
inform customers) or when documentation proves incorrect or inadequate
(sometimes referred to as a “training issue” by vendors). On occasion, the
maintenance fee even entitles customers to conversations such as this one.

Me: ... So, the end result is that the online catalog informs all our
patrons that they will be notified by phone when their holds arrive.

Vendor Representative: Okay.

Me: Even if the individual patron will actually be notified by email or
snail mail.

Vendor Rep: I see. But the default notification method for the
location is “phone.”

Me: I know, but the patron’s choice overrides this when the notice is
sent.

Vendor Rep: Yes. But this is the way it was designed to work.

Me: Incorrectly?

Vendor Rep: Well, you’re certainly welcome to fill out an
enhancement request...

C O L F O R D , c o n t i n u e d

T O P O F A R T I C L EC O N T E N T S N E X T PA G E > N E X T A R T I C L E >< P R E V I O U S PA G E

Open Source Software in Libraries

carlabadaracco
Rectangle

carlabadaracco
Rectangle



13

B
u
ll
e
ti
n

of
th

e
A

m
er

ic
an

S
oc

ie
ty

fo
r

In
fo

rm
at

io
n

S
ci

en
ce

an
d

Te
ch

no
lo

gy
–

D
ec

em
be

r/
Ja

nu
ar

y
20

09
–

Vo
lu

m
e

35
,N

um
be

r
2

Special Section

While not all vendor support experiences are as fruitless as the tongue-
in-cheek examples above, technical staff will recognize that the promise of
support from a proprietary software vendor rarely matches value – monetary
or quality – attributed to it by the vendor or non-technical library staff.
Support from a hardware vendor can be exemplary without much effort. If
a component breaks, swap it out with a working piece. Software packages,
however, are complex systems that usually do not function in such a
modular fashion. Well, not in proprietary applications, at any rate.

Free and open source software application users, on the other hand, must
rely on development communities for support. Users and developers produce
documentation, write installation guides and answer specific support
questions in forums, not because they are bound by contract, but because they
can learn more about the software that they, too, are using. One can see this
type of activity in proprietary library software user groups as well. Indeed,
many systems librarians around the world find user group listservs much
more illuminating about how an application works than vendor-supplied
documentation or training. Many systems librarians also spend a large amount
of time writing scripts, developing external applications or finding unintended
creative uses for application features. Vendors sometimes even celebrate these
accomplishments at annual user group conferences. That recognition is nice,
but the upshot of this type of grassroots support of proprietary software is
summarized most succinctly by a meme I hear frequently repeated by my
colleague Michael Klein: “The workaround has become the work.” When
practical issues with open system software are addressed by those using the
software, however, the solutions can be immediately returned to the user
community as a new release. A user’s contribution is not just a workaround.
It is the essential work. No vendors are needed and it will not matter if you
missed the user group conference.

Misconceptions such as those mentioned above can transform into terrifying
specters sure to doom the success of any open source project at an organization.
Nevertheless, a well-prepared technical staff member at a library or information-
centric organization can circumvent misunderstandings and turn stakeholder
anxiety into excitement, provided that an open source alternative is truly the
best option. A full cost benefit analysis should be performed taking in account

all of the factors mentioned above for both proprietary and open source
alternatives, including the following:

� Licensing
� Recurring fees, such as maintenance
� Personnel costs for development and maintenance cycles
� Amount and time of additional development required for missing features
� Amount and time of workarounds required for missing features
� The benefit of contributing to the support community
� The “lock in” aspect of committing to a proprietary model
� The ease with which one can (or can’t) migrate to a new platform, if

necessary.

If after this analysis, free or open source software seems to offer
significantly more benefits, developing a quick fact sheet for administrators
comparing a specific FOSS application to a known proprietary equivalent
can quickly impress. Above all, a functional prototype created in the FOSS
application will dispel concerns that the software is somehow rudimentary
or experimental. Another oft-repeated meme among my colleagues is
“working code works,” and it is true. Nothing illustrates your point better
than illustrating your point.

Youʼre Soaking In It
If conversations with non-technical staff veer off into the uncomfortable

realm of doubt and uncertainty, they may start asking questions like “Are we
sure that we are ready to invest in open source software?” or “Do you think
we have investigated enough to commit to open source?” This moment is an
excellent opportunity to pull out your best Madge, the Palmolive manicurist
impression, and quip, “Commit to open source? Why, you’re soaking in it!”

The pervasiveness of the World Wide Web guarantees that nearly every
information organization is using free or open source software to perform
some function. For example, 43.7% of web browsing is being done with
Firefox, an open source application, and Internet Explorer is steadily losing
its lead. It only has 50.5% of the market currently [8]. Similarly, 49.82% of
web servers are running Apache, which has retained its first-place spot over
Microsoft IIS for 12 years [9]. It seems that every month, another visible

C O L F O R D , c o n t i n u e d

T O P O F A R T I C L EC O N T E N T S N E X T PA G E > N E X T A R T I C L E >< P R E V I O U S PA G E

Open Source Software in Libraries

carlabadaracco
Rectangle

carlabadaracco
Rectangle



library announces its
website redesign in
Drupal. And if an
organization hosts a blog
or a wiki, the chances
that it is an open source
package are pretty good.
In fact, the chance that
your organization’s
hosted blog is powered
by WordPress is pretty
good simply because it is
supported by one of the
most active open source communities in cyberspace.

Realizing that your organization is already a hybrid environment helps
administrators and staff realize that a relationship with open source can be
more like a respectful, close friendship than a toxic, codependent marriage.
Open source will let you develop relationships with other software packages,
open or proprietary. It is true that there are some great philosophical
justifications for using FOSS. Just as many of us cannot ride a bicycle to
every destination and instead opt to buy a hybrid car as a compromise, one
can consider those noble justifications while being “as open as possible.”
(“AOAP” is the meme, as Mr. Klein reminds me.)

A commitment need only
be as deep as required by the
organization and exploration
can be done without an
intention to replace proprietary
software currently in place.
Much has been written about
the open source integrated
library systems Koha and
Evergreen, but if an
organization currently has an

14

B
u
ll
e
ti
n

of
th

e
A

m
er

ic
an

S
oc

ie
ty

fo
r

In
fo

rm
at

io
n

S
ci

en
ce

an
d

Te
ch

no
lo

gy
–

D
ec

em
be

r/
Ja

nu
ar

y
20

09
–

Vo
lu

m
e

35
,N

um
be

r
2

Special Section

ILS in place, it may still be worthwhile to install an alternate web OPAC like
Scriblio, SOPAC or VuFind instead. The installation can live alongside the
current system and, if presented as a public beta, can provide useful data
regarding what users prefer from a catalog interface. There are hundreds of
library applications in development, though it is advantageous to choose a
project with an active development community.

Conclusion
Open source software can unnerve staff and administrators who do not

have a full understanding of the concept, the myths and the all-around
usefulness of it. Developers and technical staff who can communicate these
three things will find it much easier to integrate some truly innovative
software into their organization’s technical environment. �

C O L F O R D , c o n t i n u e d

T O P O F A R T I C L EC O N T E N T S N E X T PA G E > N E X T A R T I C L E >< P R E V I O U S PA G E

Open Source Software in Libraries

Resources Cited in the Article
[1] U.S. Copyright Office (2008). Recipes. Retrieved August 24, 2008, from

www.copyright.gov/fls/fl122.html
[2] Free Software Foundation (2007). The free software definition. Retrieved August 24,

2008, from www.fsf.org/licensing/essays/free-sw.html
[3] Tiemann, M. (2006). History of the OSI. Retrieved August 24, 2008 from

www.opensource.org/history/
[4] Coar, K. (2006). The open source definition. Retrieved August 24, 2008, from

www.opensource.org/docs/osd/
[5] Nelson, R. (2006). Open source licenses by category. Retrieved August 24, 2008,

from www.opensource.org/licenses/category/
[6] Brown, A. (2005, January 11). The war on copyright communists: Bill Gates wants

software patents to protect his profit, not the public. The Guardian [London,
England], p.22.

[7] Retrieved August 24, 2008 from www.stallman.org/articles/on-hacking.html
[8] W3Schools. (2008). Browser statistics. Retrieved September 1, 2008, from

www.w3schools.com/browsers/browsers_stats.asp
[9] Netcraft, Ltd. (2008). August 2008 Web server survey. Retrieved September 1, 2008,

from http://news.netcraft.com/archives/2008/08/29/august_2008_web_server_
survey.html

Widely used open source applications

Operating Systems Web and Proxy Servers

GNU/Linux Apache

FreeBSD/OpenBSD Squid cache

Web Browsers Blogs

Firefox WordPress

Lynx Movable Type

Office Software Wikis

OpenOffice.org MediaWiki

PDFCreator TikiWiki

Instant Messengers Content Management Systems

Gaim Drupal

Pidgin Joomia

Open source library applications

ILSs OPACs

Evergreen Blacklight

Koha Fac-Back-OPAC

Repositories MARC Module for Drupal

Digital Asset Factory Scriblio

DSpace SOPAC

Fedora VuFind

Metasearch Resolvers

CUFTS

LibraryFind

http://news.netcraft.com/archives/2008/08/29/august_2008_web_server_ survey.html
http://news.netcraft.com/archives/2008/08/29/august_2008_web_server_ survey.html
www.w3schools.com/browsers/browsers_stats.asp
www.stallman.org/articles/on-hacking.htm
www.opensource.org/licenses/category/
www.opensource.org/docs/osd/
www.opensource.org/history/
www.fsf.org/licensing/essays/free-sw.html
www.copyright.gov/fls/fl122.html
carlabadaracco
Rectangle

carlabadaracco
Rectangle


	Button5: 
	Button6: 


