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Abstract

A Cartesian Grid Method for Solving
the Streamfunction Vorticity Equations in Irregular Geometries

by Donna Calhoun

Chair of Supervisory Committee

Professor Randall J. LeVeque
Applied Mathematics

I present a new algorithm for solving the streamfunction-vorticity equations in ir-
regular, multiply connected regions. To avoid mesh generation difficulties associated
with unstructured, body fitted grids, I embed the irregular domain in a uniform Carte-
sian mesh. The governing partial differential equations are discretized using standard
finite volume and finite difference methods away from the irregular boundary. Near
the irregular boundary, special discretizations are used to impose boundary condi-
tions. I solve the vorticity transport equation using the high-resolution algorithms
in the CLAWPACK package and capacity form differencing to handle the irregular ge-
ometry. By modifying the capacity function for small cells cut by the boundary, I
can avoid the small cell instability problem associated with explicit Cartesian grid
methods and achieve stability for Courant numbers close to 1. To solve for the
streamfunction, I use the Immersed Interface Method, a second order finite difference
method developed by LeVeque and Li for solving PDEs in irregular regions. Velocities
at cell edges, including those cut by the boundary, are obtained by differencing the
streamfunction. I compute the flow around a circular cylinder at Reynolds number
20, 40, 50 and 100 and show that I get very good agreement with both experimental
and computational results. Flow in other geometries is also shown.
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Chapter 1
INTRODUCTION

Many interesting and challenging physical problems involve viscous, incompress-
ible fluid flow in geometrically complex regions. In this thesis, we describe a new algo-
rithm for numerically computing such flows in irregular, multiply-connected domains.
A typical example of domains we consider is shown in Figure 1.1. Our algorithm,
which is based on standard finite difference and finite volume methods on a uniform
Cartesian grid, solves the streamfunction-vorticity equations, a non-primitive variable
formulation of the incompressible Navier-Stokes equations. If we assume that the flow
is two-dimensional, the fluid density and viscosity are constant, the boundaries are
fixed, and any source terms can be neglected, these equations can be written

wi + (- Vw = vVw
Vi) = —w (1.1)
U = %, v = _wy

where 1)(x, y,t) is the streamfunction, the components of @ = (u(z,y,t),v(z,y,t)) are
the horizontal and vertical velocities, respectively, of the flow field, and w(z,y,t) =
vy (2, y,t) —uy(z,y,t) is the scalar vorticity. The constant v is the kinematic viscosity.
On the boundary of rigid bodies, the streamfunction ¢ must satisfy two boundary
conditions: one of Dirichlet type corresponding to a no normal-flow condition and
one of Neumann type corresponding to a no-slip condition. No boundary conditions
are explicitly given for w. Two attractive features of these equations are that they
automatically satisfy the incompressibility condition V - 4@ = u, + v, = 0 and that
streamlines of the flow are given by level curves of the function ¢. A third feature
which we exploit in our numerical scheme is the fact that in two dimensions, the
vorticity is a conserved quantity. These equations are easily derived by taking the
curl of the Navier-Stokes equations in primitive (velocity-pressure) formulation and
eliminating any dependence in the third (2) component.

1.1 A new algorithm for solving the incompressible Navier-Stokes equa-
tions

To solve the equations given in (1.1), we first embed the irregular region in a uniform
Cartesian grid, as shown in Figure 1.1. The general numerical method is based on



Figure 1.1: Sketch of typical domain in which streamfunction-vorticity equations are
solved. The flow domain is the multiply-connected region exterior to all rigid bodies,
shown here by shaded regions. At the boundaries of these embedded objects, we
must impose no normal-flow and no-slip boundary conditions. The irregular domain
is embedded in a uniform Cartesian grid.

standard finite volume and finite difference techniques away from the rigid boundaries
of the domain. At all rigid boundaries, we must impose no normal-flow and no-slip
boundary conditions. Since the geometry of the irregular domain does not generally
align with the underlying grid, a key component of our work is to describe in detail
how we accurately impose these boundary conditions along the no-slip boundary,
which we approximate a by a single linear boundary segment in each partial grid cell,
as seen in Figure 1.2.

The equations in (1.1) are discretized according to the diagram in Figure 1.2. The
vorticity is defined at cell centers, the streamfunction at cell nodes and the vorticity
at cell edges. We assume that the vorticity is a cell-averaged quantity, where the
average is taken only over that portion of the cell which lies in the flow-domain.
The velocity values are the average velocities over the entire cell edge. To solve the
vorticity transport equation

wi + (i V)w = vV3w (1.2)

we split the advection term from the diffusion term using a fractional step Godunov
splitting. The advection equation arising from this splitting is then solved using the
high resolution algorithms in CLAWPACK [33]. To minimize numerical oscillations
associated with second order advection schemes, we apply flux limiters supplied by



wi,j+1 ¢i+1,j+1

@ = @
\iun

u Uij Wij [ ]

Vi Vi Yig1 i

1] 1j t+1,7

@ = L

wij

Figure 1.2: Discretization used in present algorithm for solving the streamfunction-
vorticity equations.

CLAWPACK, and to handle the irregular geometry, we use capacity form differencing,
also built into cLAWPACK. By modifying the capacity function in small triangular
cells cut by the Cartesian grid, we avoid the small cell instability problem associated
with explicit Cartesian grid methods and achieve stability for Courant numbers close
to 1. This algorithm is described in Chapter 2. During the advection step, we impose a
no-flux boundary condition on solid objects and appropriate inflow-outflow conditions
on the computational domain.

The diffusion term in the transport equation is treated implicitly, also using a
conservative finite volume update. In each partial cell, diffusive fluxes at partial
cell edges are computed accurately using bilinear interpolation. Vorticity is diffused
into the domain from solid boundaries and a no-flux condition is imposed on the
computational domain. To determine the appropriate flux of vorticity needed to
satisfy the no-slip boundary condition, we solve a Stokes flow problem at each time
step. This problem is described by the coupled parabolic-elliptic system

&, = vV>30, w
VZJ:_&}, g—n:gonaQ
U, =0, on 0N ) = constant on 0f2

(1.3)

where both the streamfunction v and the vorticity & are discretized at grid nodes, as
shown in Figure 1.1. The boundary 02 is the boundary of our irregular domain 2. To
obtain the right hand side for the discrete parabolic equation for &, we average values
of the cell averaged w, obtained from the advection step, onto grid nodes. The coupled



parabolic-elliptic equations are discretized using the Immersed Interface Method, a
second order finite difference method developed by LeVeque and Li [37,38]. Once
discretized, these equations can be set up as a linear system for the unknown flux g.
This linear system, which depends on the time step At, is formed whenever the time
step changes, and stored in factored form. The size of this matrix is quite small, and
so storage is not a critical factor in deciding how best to solve the linear system. The
linear system is solved with right hand sides computed at each time step. We use
the flux ¢ as the flux imposed during the diffusion step of the conservative fractional
step scheme, and difference the streamfunction to obtain velocities at cell edges. The
solution & is discarded. In this manner, we satisfy the no-slip boundary condition at
each time step. See Chapter 3 for details.

In summary, our method for solving the streamfunction-vorticity equations differs
from other methods we are familiar with in a number of significant ways.

e Our irregular flow domain is embedded in a uniform Cartesian grid and the
equations are then solved on that grid, using standard finite difference and
finite volume methods, at least away from the boundary.

e The vorticity is represented as a cell-averaged conserved quantity, advected
using a conservative high resolution algorithm. Flux limiters are applied to
avoid numerical oscillations.

e We impose a flux condition on the vorticity at solid boundaries

The first item is significant because, with the exception of finite element methods,
traditional methods for solving the streamfunction-vorticity equations require that
the boundary be aligned with the computational grid. Most of these traditional
methods impose Dirichlet conditions on vorticity at no-slip boundaries. However, such
conditions do not adequately model the physical phenomenon of vorticity generation
at solid boundaries, and so we have chosen instead to use a flux boundary condition
on the vorticity. As we will see, this choice also fits conveniently into our finite
volume algorithm. Finally, standard first order upwind methods for advection can
lead to severe numerical diffusion and standard second order advection schemes lead to
unphysical oscillations in the solution near discontinuities. Our use of high-resolution
algorithms in CLAWPACK minimizes the effect of both of these undesirable behaviors
of traditional finite difference advection schemes. This is especially important for
solving the streamfunction-vorticity equations because of the singular nature of the
vorticity distribution near rigid boundaries.

Other ways in which our algorithm differs from other more general Cartesian grid
approaches to solving the Navier-Stokes equations is that we have overcome the small
cell instability problem by modifying the capacity function. Also, we have adapted
the Immersed Interface Method for use in solving the coupled Stokes flow problem,
given in (1.3).



A Cartesian grid method that is most closely related to our approach for solv-
ing the viscous, incompressible Navier-Stokes equations is the Immersed Boundary
Method now in popular use by researchers in computational biology [42]. Other finite
difference and finite element methods on Cartesian grids with embedded boundaries
have been developed for many different PDEs, for example [23], [25], [26], [39], [37],
(36], [40], [41], [42], [48], [56], [58].

In the next section, we briefly describe some of the techniques that are in common
use for solving viscous, incompressible flow in complex regions.

1.2 Other computational methods for solving viscous incompressible
flow in geometrically complex regions

Cartesian grid methods for solving PDEs in irregular regions are a fairly recent de-
velopment. Other methods with a longer history include the finite element method,
boundary integral approaches, curvilinear grid transformations and vortex methods.
Another more recent method is the lattice Boltzmann method. Below, we summarize
the relative strengths and weaknesses of these methods as well as describe a few Carte-
sian grid methods commonly used in crystal growth applications and computational
biology.

1.2.1 The Finite Element Method for engineering applications

In more traditional applications, such those that arise in solid mechanics and aero-
nautics, finite element methods (FEMs) on unstructured meshes are used almost
exclusively. Because discrete spatial elements are aligned with the irregular bound-
ary, important boundary effects can be well resolved. Moreover, if one is using an
unstructured finite element mesh, the mesh can be easily refined in areas where de-
tails of the solution needs to be resolved. The accuracy of the finite element method
can be improved by using higher order interpolating polynomials over the finite ele-
ment, and in fact spectral accuracy can be achieved when one uses spectrally accurate
Chebychev polynomials as the interpolating function over each element.

However, generating the meshes required by the FEM is as much an art as a
science, and in fact has spawned an entire industry. Automatic grid generation is
the topic of many books, journal articles and conferences, and while the automobile
and aerospace industries are heavily invested in codes which use the FEM to solve
complicated three dimensional flows around detailed computer models of vehicles,
these codes are often proprietary and not generally available. Furthermore, to solve
problems in moving domains, one must remesh every time the boundary moves. This
can be computationally very expensive.



1.2.2  Simulating crystal growth

In the crystal growth community, researchers are interested in tracking the evolution
of interfaces separating the liquid and solid phase of a pure substance or binary alloy.
When the liquid is undercooled relative to the melting temperature of the solid, the
interface grows unstably and dendritic shapes form, delineating a complicated region
in which the PDEs governing the motion of the interface must be solved.

A common approach taken for solving these governing elliptic PDEs in the region
exterior to the crystal is to use boundary integral or boundary element methods.
These reduce the PDE for the field variable, usually temperature, to one involving
data on the boundary of the crystal only. Typically, the velocity of the moving
interface is related to the temperature gradient on the interface, and so one uses
the boundary integral equation to obtain Neumann data, given Dirichlet data on the
crystal surface. The advantage of the boundary integral approach is that arbitrarily
complicated boundaries can be handled. Moreover, fast solvers, such as the fast
Multipole method [28] can be used to dramatically improve computational costs of
solving these PDEs. By reducing the PDE to the boundary, one never needs to worry
about imposing boundary conditions on a fictitious computational domain. Exterior
problems are solved as easily as interior problems.

The main drawback, however, is that boundary integral methods are typically
used only in situations where a quasi-steady-state approximation applies [3, 10, 53]
and are rarely used to solve a fully time-dependent problem. The mathematical
theory behind boundary integral methods and related methods, known as boundary
element methods, relies on sophisticated ideas from linear and functional analysis,
and so applying the method to problems other than problems in potential theory
requires some understanding of these areas of pure mathematics. Even in potential
theory, standard techniques for handling the singular kernel are based on complex
mathematical theory and must be implemented carefully.

Using boundary integral techniques, it is not straightforward to obtain the solution
off of the interface, nor is it possible to use variable coefficients. It is interesting to
note, however, that the first problem was recognized by Mayo [40]. Her approach to
obtaining solutions off of the boundary is very similar to those ideas described by
LeVeque and Li in their work on the Immersed Interface Method, which we describe
in detail in Chapter 3. Also, the Immersed Interface Method can handle variable and
discontinuous coefficients quite easily.

Researchers interested in handling fully time dependent problems have relied on
phase field models. These models use what is called an order parameter ¢ to distin-
guish between the two phases of the material. The evolution of the order parameter
is governed by an advection-diffusion equation, which must be solved along with the
equation for the field variables. The phase field equations are usually solved on a uni-
form Cartesian mesh, and have been used quite successfully to model the evolution
of crystals in both two and three spatial dimensions. However, in order to resolve



the interface accurately and obtain the sharp interface limit, one must use a very fine
mesh or adaptive mesh refinement near the interface [55].

1.2.3  Computational methods in biology : The Immersed Boundary Method

In biological applications, one method that is quite popular is the Immersed Boundary
Method (IBM), developed by Charles Peskin [42]. This method, originally developed
to model the flow of blood in the human heart, is particularly well suited for flows
generated by the movement of flexible boundaries. In the case of the beating heart,
the heart muscle relaxes and contracts, forcing the blood to flow through the heart.
In another example, the IBM is used to model filament-like cilia distributed along the
bodies of certain micro-organisms and which propel the micro-organism through the
surrounding liquid. The Immersed Boundary Method has also been used to model
bacterial swimming [21], biofilm in a porous medium [20] and the cochlea in the inner
ear [7]. Recently, the IBM has been used as the basis for a software package called
IBIS, which can be used to model a variety of biological phenomena similar to those
just mentioned [22].

The flow in these applications is typically incompressible, viscous flow and so is
governed by the full Navier-Stokes equations. Because these equations are challenging
to solve in the simplest of geometries, the Immersed Boundary Method is especially
attractive because one only needs to include the boundary effects as a source term.
No special discretizations are needed near the interface, and in particular, one need
not have detailed information about the geometry of the interface. The Navier-Stokes
equations are discretized on a uniform Cartesian mesh and discretized delta functions
whose strength is given by the force exerted by the flexible boundary, is included in
the equations as a source term. These forces are then advected with the fluid and
their location updated at each time step. Because the term only appears as a source
term, the equations can be discretized on the uniform mesh using standard methods.
Originally, the projection method was used to treat the incompressibility condition,
although recently, other more direct methods have been adopted.

Because the Immersed Boundary Method relies on discrete delta functions, the
accuracy of the method is limited to the accuracy of the approximations of these
functions and their spacing along the boundary. Typically, this accuracy is only first
order. LeVeque and Beyer [8] showed that in 1d, special delta functions could be
used to obtain second order accuracy, although these results do not extend to 2d.
An attempt to develop a second order Immersed Boundary Method was the basis for
what is now known as the Immersed Interface Method [37].

Another drawback to the Immersed Boundary Method is that there is nothing
to prevent fluid from passing between these singular forces, and hence through the
irregular boundaries. This can be a problem in models in which the boundaries should
be impermeable. Peskin and Printz, in [43], have developed methods for remedying
this situation.



1.2.4  Curvilinear coordinate transformations

One technique that is often employed to handle geometry other than rectangular ge-
ometry is coordinate transformations and body fitted grids. Common transformations
include cylindrical (in 2d) and spherical (in 3d). In aerodynamics, a popular trans-
formation is the conformal map used to determine flow past a Joukowski aerofoil. To
calculate flow past a circular cylinder and simulate the vortex shedding that leads to
the well known von Karman street, researchers most often use the cylindrical coor-
dinates with a logarithmic bunching of radial values near the surface of the cylinder.
Variants of these methods include elliptic transformations, used to model flow around
ellipses, and bipolar transformations, used to model flow past a pair of cylinders.

Such transformations have the obvious advantage that the grids conform to the
irregular boundary. This is especially important when modeling thin boundary lay-
ers. Another advantage is that these curvilinear meshes are topologically equivalent
to a Cartesian mesh, and so the equations of interest can be solved on the Cartesian
mesh, taking into account additional geometrical terms, and then the solution trans-
formed back to the curvilinear grid. The obvious disadvantage to these methods is
that analytic transformations only exist for a limited number of geometries. To han-
dle more complicated geometries, such as multiply-connected domains and irregular
objects, one must resort to numerically computing the appropriate transformation,
a task that may be quite challenging. Furthermore, the task of solving the PDE is
made considerably more difficult by the presence of geometric terms appearing as a
result of applying the transformation to the PDE.

1.2.5 Vortex methods

One popular class of methods for solving the incompressible Navier-Stokes equations
in velocity-vorticity formulation is the class of vortex methods, popularized by the
work of Chorin [14,15]. See Gresho [29] for a review of work by other researchers in
this field. The essential feature of a vortex method is the introduction of vorticity into
the domain at solid boundaries in the form of vortex sheets or blobs. This vorticity
serves to cancel out any slip velocity at the boundary. These sheets or blobs are
then tracked in a Lagrangian manner as they follow the fluid flow. A Biot-Savart
law is used to invert the relation V x @ = w to get the velocity field in terms of the
vorticity, and the vortex sheets or blobs participate in a random walk to simulate
diffusion. From a physical point of view, they methods are appealing because they
make explicit the intuitive idea that vorticity is generated at the boundary [15].
From a numerical point of view, these methods have the attractive feature that
they are essentially explicit. No coupled system of equations is solved in order to
determine the correct amount of vorticity to introduce at boundaries. Furthermore,
they naturally handle complex geometry since there is no underlying grid. On the
downside, the explicit nature of the scheme limits its usefulness to high Reynolds



number flows. Diffusion dominated flows lead to a stiff system of equations which
are better handled by implicit methods, such as the coupled streamfunction-vorticity
equations we discuss in detail in Chapter 4 [6].

1.2.6 Lattice Boltzmann Method

A radically different approach to solving the fluid flow equations in complex geome-
tries is taken by researchers using the lattice Boltzmann method (LBM). The lattice
Boltzmann equations, based on microscopic models and mesoscopic kinetic equations,
depart from the usual finite difference schemes in that they model macroscopic pro-
cesses as the aggregate behavior of individual particles moving with velocities given
by the lattice Boltzmann equations. The motion is determined so that at the macro-
scopic level, the particles model the desired behavior (advection,diffusion, etc). What
makes the lattice Boltzmann method attractive for solving problems in complicated
geometries is that non-reflecting (no-slip) boundary conditions are simple to apply.
Particles simply bounce off of solid boundaries.

When tested on standard model problems in incompressible fluid dynamics, such
as the driven cavity problem, or flow around a cylinder, the lattice Boltzmann method
gives results that are in excellent agreement with numerical and experimental results
found in the literature [12]. They are also applied to problems in porous media and
shown to be quite robust [5]. For a detailed review of this method, see [12].

1.3 Outline of this thesis

As researchers using phase field models for crystal growth and the Immersed Bound-
ary Method in biological applications have recognized, there are several advantages to
using an underlying Cartesian grid on which to discretize the governing PDEs. First,
since the underlying mesh is uniform, one can avoid the mesh generation difficulties as-
sociated with body-fitted finite difference grids or unstructured finite element meshes.
Second, one can use a standard finite difference type discretization of the PDE away
from the boundary of the irregular region. This may be especially important when
including fluid flow in the problem.

The drawback to embedding the irregular flow domain into a Cartesian grid is that
in general, the boundary of the complicated region or interface will not align with grid
lines and so one must use special discretizations of the PDE near the interface in order
to obtain algorithms which are both accurate and stable. In the following chapters,
we demonstrate, in both the finite volume and finite difference setting, methods for
handling these irregular cells cut by the grid. The main theme throughout this work
will be solving the streamfunction-vorticity equations in complex regions.

In Chapter 2, we describe an algorithm for solving the advection-diffusion equa-
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tion, given by
kg +V - (ig) =V - (DVq) (1.4)

where ¢ is a density or concentration, #(z,y) is the specified velocity field, D(z,y)
is the diffusion coefficient, and k(z,y) is a capacity function. We obtain the velocity
field by differencing a streamfunction, provided as data for the problem and show
that even near irregular boundaries, this form of streamfunction differencing gives us
an appropriate velocity. We also demonstrate how capacity form differencing, which
is implemented in the CLAWPACK package, can be used to treat partial finite volume
cells. We describe a stable algorithm for handling the small cells that are cut by the
irregular boundary and a conservative scheme for handling the diffusion term. Several
examples are given which show that the accuracy of the method is between 1.2 and
2, depending on the geometry and Peclet number. This chapter is excerpted from the
article by Calhoun and LeVeque [11].

In Chapter 3, we describe in detail a method for solving constant coefficient elliptic
and parabolic boundary value problems in embedded domains. We base our algorithm
on LeVeque and Li’s Immersed Interface Method, and on Yang’s work in extending
these ideas to boundary values problems [58]. Our approach differs in some minor
ways from the approach taken by Yang, and is more similar to the Explicit Jump
Immersed Interface Method, developed by Wiegmann [56,57]. Like Wiegmann, we
add jumps explicitly to the discretized PDE, but have introduced a general notation
that works equally well in one, two and three dimensions. We outline our derivation
which leads to general formulas for the discretization of the PDE and then verify the
Immersed Interface Method on a variety of problems which result from simplifying
the streamfunction-vorticity equations. In particular, we look at the potential flow
problems for steady, irrotational flow

V3 =0 (1.5)

in singly and multiplied-connected domains and verify our results with known solu-
tions. In Chapter 3, we also look at solving the constant coefficient parabolic equation

uy = vV2u (1.6)

subject to flux boundary conditions on an irregular boundary. For both the elliptic
and parabolic problems, we confirm that the Immersed Interface Method gives us
second order accuracy. Finally, we look at solving the Stoke’s flow problem given in
1.3. To solve this problem, we must solve a coupled elliptic-parabolic problem. We
compare our results for this problem with results found in the literature.

In Chapter 4, we describe in detail how we can couple the work of the first two
chapters to solve the full streamfunction vorticity equations, given in (1.1). After
surveying the wide variety of literature on the subject of how best to implement the
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no-slip boundary condition, we describe our method based on the Immersed Interface
Method. In our method, the only additional work that is required to create vorticity
at solid boundaries is the inversion of a matrix whose size depends on the number of
boundary points used to represent the interface. We test our results on Reynolds num-
bers 20, 40, 50 and 100 and show that our results compare quite favorably with other
results published in the literature. In particular, we demonstrate that for Reynolds
number Re < 40, the wake behind the cylinder remains closed and stable, and that
around Re = 50 we begin to see the vertical asymmetries in the vortex wake behind
the cylinder and in the streamlines. At Re = 100, we demonstrate well developed
vortex shedding and the von Karman vortex street. These results are consistent with
other published results on this problem. For the subcritical Reynolds numbers, we
compare the geometry of our wake with experimental results and show that the re-
sults are in good agreement. For the supercritical Reynolds numbers, we compare the
frequency of shedding with those reported and also find that we are simulating the
appropriate behavior.

As further verification of our code, we solve the streamfunction vorticity equations
in spatially periodic, multiply connected-domains and compare our results computed
on different grids. From this comparison, we conclude that even on the coarsest grids,
our scheme is capturing the basic behavior of the flow. In one case, we are able to
compare our results with those found in the literature, and show that we get good
agreement.
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Chapter 2

A CARTESIAN GRID FINITE-VOLUME METHOD FOR
THE ADVECTION-DIFFUSION EQUATION IN
IRREGULAR GEOMETRIES

The ultimate goal of this thesis is to describe a complete algorithm for solving the
streamfunction-vorticity equations in irregular regions. We can split these equations
up into three natural types of linear PDEs: a hyperbolic equation which governs the
transport, of vorticity, a parabolic equation which models the diffusion of vorticity,
and an elliptic equation whose solution gives us the stream-lines of the flow. The goal
of this chapter is to describe in detail how we solve the PDE governing the transport
of vorticity. This equation, which is given by the advection-diffusion equation, is

wi + (- V)w = vV3w. (2.1)

In 2d, the vorticity is a conserved quantity, and a conservative finite volume method
is an appropriate scheme for this equation. In this chapter, we concentrate on solving
advection-diffusion equations of this type and in particular, show how capacity form
differencing, built into the high resolution algorithms in CLAWPACK, can be used to
solve this equation in irregular boundaries.

This chapter is based on the paper by LeVeque and Calhoun [11].

2.1 Introduction

We consider the advection-diffusion equation
kg +V - (ig) =V - (DVq) (2.2)

in two space dimensions, where ¢(z,y,t) is a density or concentration, @(z,y,t) is the
specified velocity field, D(z,y) is the diffusion coefficient, and «(z,y) is a capacity
function. This function could represent, for example, heat capacity if ¢ is the tem-
perature, or porosity in a porous medium if ¢ is the concentration of a transported
solute. A fundamental feature of the numerical method developed here is the use of
a discrete version of x which also incorporates information about the fraction of a
computational grid cell which lies in the physical domain. This is used in order to
apply the method on Cartesian grids with embedded boundaries. Our goal is to solve
(2.2) in geometrically complex regions with impermeable boundaries where the fluid
flow must be tangent to the physical domain and the flux of ¢ is specified (e.g. , no



13

flux). Rather than attempting to determine a grid which conforms to the boundaries,
we wish to use a uniform Cartesian grid in which the physical domain is embedded.
The main advantages to using a Cartesian grid are that all difficulties associated with
unstructured grid generation can be avoided, and standard finite volume or finite
difference discretizations of the PDE on a uniform grid can be used, away from the
boundaries at least.

Here we develop a finite volume method which is essentially second order accurate
for smooth ¢ in very general geometries and which can also handle steep gradients in ¢
(even discontinuities in ¢ if D = 0). This is accomplished by using the high-resolution
shock-capturing methods of cLAWPACK for the advection portion of the method,
coupled with an implicit finite-volume discretization of the diffusion equation.

The principle contribution of this chapter is an algorithm with the following char-
acteristics:

e Arbitrary geometry can be handled on a Cartesian grid, though we assume that
the geometry is well resolved by a piecewise linear function on the underlying
grid.

e After some preprocessing required to handle the irregular geometry, small irreg-
ular cells which are cut off by the boundary are updated by exactly the same
formulas as regular cells away from the boundary.

e The advection portion of the algorithm is explicit and the time step is deter-
mined by the size of the regular grid cells, with no restriction caused by the
small irregular cells.

e The accuracy and resolution in the irregular cells adjacent to the boundaries
matches that obtained in the regular cells, and is essentially as good as would
be obtained on similar problems with a grid conforming to the boundary.

e The algorithm is implemented using the CLAWPACK software and is freely avail-
able on the web, see
http://www.amath.washington.edu/“rjl/clawpack/cartesian

By assuming that the geometry is well resolved on the grid, we assume in particular
that each finite volume cell is a standard Cartesian grid cell which is possibly sliced
by a linear approximation to the boundary, as shown in Figure 2.5, for example.
Hence every cell is a simple polygon with at most five sides and the standard (i, j)
labeling of grid cells can continue to be used. For geometry with more complications,
for example a thin trailing edge which cuts a cell into two distinct pieces, a more
complicated data structure would be required. The methods proposed here could still
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be used but could not be implemented as directly in CLAWPACK. See [18] for one
discussion of such geometries in the context of elliptic equations.

The diffusion and advection algorithms will first be described and tested sepa-
rately, and are then combined using a standard fractional step approach. The methods
are described in two space dimensions, but all of the essential ideas can be extended
directly to three space dimensions.

2.2 Notation and the use of a capacity function

We consider finite volume methods for the general conservation law

&z, y)q(z, y, t) + f(z,y,t,¢)e + 9(@,y,t,¢)y =0 (2.3)

where f and ¢ are the flux functions and « is the capacity. In particular, we consider
variable-coefficient linear equations including the diffusion equation in which

f = —D(ZL’,y) 4z, g = _D(Iay) dy (24)

and the advection equation in which

f=ulx,y.t)q, g=v(x,y,1)q (2.5)

and finally the advection diffusion equation which includes both advective and diffu-
sive fluxes,

f:U(I,y,t)q—D(I,y) dx, g:U(ZL’,y,t)q—D(ZL’,y)Qy. (26)

Such equations arise from the integral form of the conservation law over an arbitrary
region )

%/ k(x,y) q(z,y,t) do dy+/ i fds =0 (2.7)
Q

where 7 is the outward pointing normal at the boundary 9Q and f = (f,g) is the
flux vector. The integral of xq is conserved up to fluxes through the boundary. The
function k represents the capacity of the medium as illustrated in the following two
examples :

1. In heat conduction, if ¢ is the temperature then (2.4) gives Fourier’s Law of
heat conduction for the flux of heat energy. The energy stored in the region €2
is fQ kq dx dy where £ is the heat capacity of the material and (2.7) arises from
conservation of energy.
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2. If ¢ represents the concentration of a tracer in some fluid saturating a porous
medium, and if x(z,y) is the porosity of the medium so that [, x(z,y) dx dy
is the volume of {2 which is available to the fluid, then fQ kq dx dy is the total
mass of the tracer in the region 2. If the fluid is flowing through the porous
medium with the Darcy velocity (u,v) (defined below) then the conservation
law (2.7) arises with fluxes (2.5). If the tracer also diffuses in the fluid then

diffusive fluxes are also present.

Note that the integral fQ kqdzx dy can also be interpreted as an integral of ¢ over
Q2 with respect to the measure dy = kdx dy. This interpretation may be useful in

understanding our Cartesian grid finite volume integrals.

2.2.1 Incorporating the capacity function into finite volume methods on reqular grids

A finite volume method is based on dividing the physical region into finite volumes
(i.e. grid cells) and representing the numerical approximation by cell averages over
those cells. The cell average is updated in each time step by approximations to the
flux through each edge of the cell. We are concerned here with a Cartesian grid of
the form shown in Figure 2.1. We start by considering a uniform grid with spacing
Az and Ay on a rectangular region, with no irregular geometry to handle.

Yjt+1/2
Ci; Ay
N Yj—1/2
i—1/2 i+1/2

Figure 2.1: Cartesian grid with cell Cj; shown in enlargement

The grid is indexed by (7, j) and Q7 represents the approximation to the average
values of ¢ on cell (7, ) at time ¢,, with respect to the measure k dx dy :

n ~

Jo, K@, y) a(@,y, 1) de dy

iy~ fCij k(x,y) dx dy

Using the fact that the area of cell Cj; is Az Ay, we define the average value of &

over cell Cj; as
1

ij — ’ dxd
H] AIAy/C”H(wy) T ay

(2.8)

(2.9)
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Then we can write (2.8) as

1

R dx d 2.10
vy /fijAI Ay /Cij kq ar ay ( )

Note that if x = 1, then x;; = 1 and (2.10) reduces to the standard cell average.

Let Fi_1/2,; and G;j_y /2 represent the numerical fluxes at the left edge and bottom
edge of the cell, respectively. These fluxes will be measured in units of ¢ flowing normal
to the edge per unit time per unit length. Hence the total flux through the left edge
over the time step At, for example, is given by At Ay F_;,5 ;. In porous media
problems these fluxes are computed using the Darcy velocity and in heat transfer
problems, they are computed using an effective conductivity. We explain both of
these briefly now.

Figure 2.2 shows a cartoon of flow in a porous medium where the shaded regions
represent rock or sand. The fluid velocity may be large in the regions where fluid
is flowing, but it is zero in solid regions where there is no fluid. Hence the average
horizontal velocity across a vertical line segment such as the one sketched in the figure
is less than the fluid velocity at any particular point in the fluid. The u-component
of the Darcy velocity at a point is this average velocity taken over an “infinitesimal”
vertical segment centered at the point, which is short relative to the scale at which
this average fluid velocity varies, but still long relative to the structure of the porous
medium. Hence the Darcy velocity is roughly equal to the average fluid velocity
multiplied by the fraction of the infinitesimal vertical line which lies within the fluid.

At the edge of a finite volume grid cell (which is assumed to be large relative to
the scale of the porous medium), it is clearly the Darcy velocity and corresponding
flux which determines the flux into the grid cell.

Figure 2.2: Example of porous medium. Quantities such as velocity are averaged over
an infinitesimal line segment, such as the one shown.

The porosity of a porous medium at a point is defined analogously as the fraction
of an “infinitesimal” region 2 about the point which is occupied by the fluid, where
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(2 is again large relative to the porous structure. Our approach to handling Cartesian
grids in complex geometries, which is described below, can be viewed as an extension
of these ideas to the case where the solid is concentrated on some portion of the grid
cell lying outside the fluid domain, rather than being distributed throughout the grid
cell. As we show later, we can also define appropriate fluxes across edges which are
only partially in the physical domain of interest.

In heat flow in composite materials, one can analogously define an effective con-
ductivity as the average of the conductivity over an “infinitesmal” line segment which
is short relative to the length over which the average conductivity varies, but long
relative to any inhomogeneities in the composite material.

Using numerical fluxes based on Darcy velocities and effective conductivities, an
explicit discretization of the conservation law (2.7) is given by

KijAz Ay Q?j“ — kijAz Ay QF N
At (2.11)
Ay [Fliijny = Flippg] +82 [Glyinys — Giyipp] =0

Rearranging terms, we can write an explicit formula for updating Q?j“ as

At At
n+l _ n n n n n
Qij = Wij T Koy Az [Fi—l—l/Z,j - Fz’_1/2,j] - m [ Gj+1/2 i,j—1/2] (2.12)

Note that (2.12) is in conservation form in the sense that

Ax Ay Z Kij Qi (2.13)
ij

will be conserved up to fluxes through the boundary of the computational domain.
This type of “capacity form” differencing is discussed in more detail in the context
of hyperbolic conservation laws in [35]. In many problems x(z,y) = 1. However,
even for these problems the idea of introducing a capacity function becomes useful in
handling complex geometries, as described in the next section.

2.2.2  Using the capacity function to represent irregular regions

In addition to physical interpretations of heat capacity and porosity, we can use the
capacity function « to embed an irreqular flow domain, such as the one shown in
Figure 2.3, into a Cartesian computational domain. The natural extension of the
interpretation of x given in the preceding section is to define x to be identically 0
everywhere outside of the irregular flow domain. This extension preserves the notion
that the values of x determine the capacity of the medium to hold the advected or
diffused quantity ¢. Outside of the physical domain of interest, the medium has no
capacity to hold q.
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Figure 2.3: Irregular flow domain (unshaded region) embedded in a larger compu-
tational domain. Enlargement shows an irregular grid cell cut by a piecewise linear
boundary. The capacity of the irregular cell is the unshaded fraction of the cell in the
irregular flow domain.

We now view the computational domain as the full rectangular region in Figure 2.3,
and refer to the original physical domain as the flow domain and to the portion which
lies outside the original domain (the shaded region in Figure 2.3) as the no-flow
domain.

With this extended interpretation in mind, we now consider an irregular grid cell
such as the one magnified in Figure 2.3. We define &;; for this cell as in (2.9), after
extending x(x,y) to be 0 in the no-flow domain. Note that x;;AzAy gives the total
capacity of the grid cell. In particular, in the simplest case where k(z,y) = 1 in the
flow domain, x;;AzAy is simply the area of the portion of this grid cell which lies in
the flow domain (the unshaded portion).

To obtain a definition of the numerical fluxes Fj_/p; and G ;_1/» which is con-
sistent with our previous use of these quantities in update formula (2.12), we first let
E 1/2,; and G” 1/2 denote the average flux across that portion of each edge which
is in the flow domain, as indicated in Figure 2.4. Then we let h;_y/5; and h;;_1/5
be the lengths of these edge portions to the left and below the cell Cj; respectively.
One or more of these may be zero. The total flux across each edge is then given by
hi— 1/2,j Fz 1/2,j and hzg 1/2 G i,j—1/2-

If we now define the fluxes

hi
E—1/2aj A1;2,J'F; 1/27_7
(2.14)
hii_1/2 A
Gij_1/2 = iT;/QGi,jfl/Z

we see that Ay Fj_1/5; and Az G, j_1/, are the total fluxes across the left edge and
bottom edge, respectively, of cell Cj;. Hence, this definition of the fluxes on irregular
cells is consistent with our definition on the regular cells.
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hij—1/2

Figure 2.4: Fluxes at edges of irregular cells

To develop a general updating formula for irregular cells, we also introduce a flux
H;j across the boundary segment, as indicated in Figure 2.4. Let the length of this
boundary segment be denoted by /;;. Then the general updating formula is

At
T Ay (Giji1j2 — Gigorja)

Y (2.15)
[Cij Higl .

At
n+l _ n
Qij — Wiy IiijA:E [E-H/Q,j - i—1/2,j]
At
HijA,I' Ay

For many problems H;; = 0. This is the correct boundary condition for tracer
concentration in a flow bounded by a wall and also for heat conduction if the wall
is insulated. If H;; = 0, the update formula (2.15) reduces to exactly that given by
(2.12).

For cells completely outside of the flow domain, we have x;; = 0 and the updating
formula (2.12) appears to be invalid. However, if we note that fluxes Fii1/25, Fi—1/2,,
G172 and Gy j_1 /2 will always be zero for such cells, the earlier formula (2.11) will
always be valid. For computational convenience, however, we want to apply the
formula (2.12) or (2.15) everywhere. To do this, we can set x;; to some arbitrary but
non-zero value for cells entirely in the no-flow region, since the fact that the fluxes in
this region will be zero will ensure that the value of ()}, remains zero.

A key feature of our approach is that we have eliminated irregular grid cells from
the geometric structure of our problem, and instead take the viewpoint that some
cells may have small capacity. This simplifies the structure of the computer programs
and allows software packages such as CLAWPACK to be applied directly.

As we will later see, by shifting the small cell problem from one of cells with small
volume to one of cells with small capacity, we also provide ourselves with a natural
way to overcome the instability problems typically associated with the small cells.
Although our capacity «;; is the same as the quantity A;; introduced by Chern and
Colella [13] in the context of front tracking, we use a different modification to the
fluxes which is based more directly on wave propagation and which we believe gives
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better accuracy.

2.3 The diffusion equation

We now develop a finite volume method for the diffusion equation in the flow domain.
The problem we wish to solve numerically is given by

kg =V - (D(z,y) Vq) in Q (2.16)

subject to Neumann boundary conditions on the boundary of 2 which we use to
define flux values H;; used in equation (2.15). As described in the previous section,
we define x to be identically 0 for (z,y) in the no-flow domain. The fluxes are given
by equations (2.4).

As suggested in the previous discussion, it will be convenient to define numerical
fluxes Fj_y/2; and Gj ;1,2 so that the total flux across an edge of length Az or Ay
is given by Ay Fj_1/5; or AxGj;_1/. With this in mind, we approximate quanti-
ties ¢, and ¢, on regular cell edges by differencing across the edge and use these to
approximate the fluxes as

Fi_1p05 = _Di—1/2,j7Qij _chi_l’j (2.17)
and
Qij — Qij—1
Gi i — - _Di,'— _— 2]_8
J—1/2 j—1/2 Ay ( )

As before, these values are in units of ¢ flowing normal to a cell edge per unit time
per unit length.

On irregular cell edges, we approximate quantities ¢, and ¢, at the center of
that portion of the edge which is in the flow domain by interpolating between values
Qr, k =1,...41in four neighboring cells. We interpret these values Q); as being located
at centers of mass of the regular and irregular cells. After we have located the centers
of four cells surrounding the partial edge at which we wish to compute the flux, and
we use the coordinates (&, n),k = 1,...4 of these four centers and corresponding
values () to determine the coefficients a, b, ¢, d of the bilinear function

G(z,y) = ax + by + cxy + d. (2.19)

We then use these coefficients to approximate ¢, or ¢, at the center (., y.) of a partial
edge. For example, we have

Gz (Tes Ye) R O+ CYe. (2.20)
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Cell centroids

Cell centroids /

Point at which ¢, is approximated

Point at which ¢, is approximated

Figure 2.5: Typical set of points, located at center of mass of irregular cells, used to
approximate ¢, at edge x;_1/2 and ¢, at y;,1/2. The fluxes E 1/2,; and G”H/g are
computed using these approximations.

In Figure 2.5, the values Q;j, Qi—1,;, Qi—1,;4+1 and ;11 are used to approximate
values ¢, at x;_1/2 and ¢y, at y;41/2.
Other researchers have proposed methods for approximating diffusive fluxes at partial
cell edges to second order accuracy [32]. Although our method is only formally first
order at the cell edges, we have found that we obtain results which are still globally
second order.

We use the approximations given by (2.19) to compute values Fi,l/g,j and GAi7j+1/2
using

Fovins = — Di v
i—1/2,5 i—1/2,5 4 (221)

Gij+1/2 == Diji1/2 4y

The numerical fluxes F;_y/o; and G} j41/2 are then defined as in (2.14).
To discretize the heat equation given by (2.16), we use a standard Crank-Nicolson
method at all grid points. First, we define an approximation to the integral

—/ f-itds. (2.22)
aC;;

n (2.7) as

Wij = {Ay ( i+1/2,5 Fin—1/2,j) + Az (G2j+1/2 — Zj_l/g)} (2.23)
Then an implicit discretization of (2.7) is given by

n+l n

ffijA]) Ay ”7” =

AL (Wi +with) (2.24)

l\')li—‘



22

which, upon rearrangement, is
At

At
nHl T Wt = — W 2.25
Y 2k Ax Ay Y Y 2k Ar Ay Y (2.25)
In the above, we assumed that there was no incoming flux from the boundary. If we
assume that this flux, given again by H;;, is non-zero and possibly time dependent,
then our update formula looks like
At At l;;

n+l At n+l __ n 4 n
= @y

bl _ 2t gy HHY? 2.26
Y 2k Az Ay Y ( )

2kij Az Ay ut Kij Az Ay Y
where again ¢;; is the length of that portion of the boundary of the irregular flow
domain which is in cell Cj;.

Because r;; varies from grid cell to grid cell, the matrix corresponding to the above
system of linear equation is not symmetric. However, these equations are still easily
solved using iterative method designed for such systems. The one which was chosen
here and which seems to give quite good results is the stabilized bi-conjugate gradient
method (BicGSTAB) developed by Van der Vorst [19].

As for the stability of the numerical scheme described above, we have observed
that in practice, the presence of small cells near the boundary does not place any
unreasonable restrictions on the size of the time step we can take to maintain stability.
This to be expected, since Crank-Nicolson is an unconditionally stable scheme.

2.4 The advection equation

The advection portion of the algorithm is implemented using the CLAWPACK software,
based on the high-resolution wave-propagation algorithm described in [35]. The spe-
cial case of advection is discussed in detail in [34] and will be described briefly below.
On the grid cell (4, j) we require the average normal velocity U;_1/2; along the left
edge of the cell and V; ;_;/» along the bottom edge. For simplicity in two dimensions
we assume that an incompressible velocity field is specified by means of a stream
function ¢(z,y). This is not necessary for our algorithm and would not be appropriate
in three dimensions, where a different approach would be needed to determine the
proper Darcy velocities. The velocity is determined from the stream function by

u(ajay) = T/Jy(ﬁ,y), U(ajay) = —%(ﬂfay)-

Then the average velocity along each edge is easily computed by differencing the
stream function at the corners:

1 Yi+1/2
Ui—1/2,j :A—/ l/)y(xay) dy
Yi—1/2 (2.27)
LY YRS
_Ay Ti—1/2,Yj+1/2 Ti-1/2,Yj-1/2
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at the left edge, and

1 Tiy1/2
V;,j—l/2 - - E/ %(% y) dy
Ti-1/2 2.28
1 (228)

= - E[w(xi-i-l/% yj—1/2) - ??(%—1/2, yj—1/2)]

at the bottom edge. Note that this will automatically satisfy the discrete divergence-
free condition

(Ui+1/2,j - i—1/2,j)/AI + (Vi,j+1/2 - Vi,j—l/Q)/Ay =0.

In the case of an irregular flow domain, i) must be constant along any physical
boundary and we assume that 1) is defined over the entire computational domain
in such a way that ¢ is identically constant in no-flow regions. Then the above
formulas give zero average velocity along any cell edge that lies entirely in the no-flow
domain. Moreover, the average velocity is computed correctly in cases where the edge
is cut by the physical boundary, e.g. , at the left and bottom edges of the cell shown
in Figure 2.3. This average velocity can be interpreted as analogous to the Darcy
velocity described in Section 2.4. It is an effective velocity over the entire cell edge,
rather than a pointwise approximation to the actual fluid velocity.

Using an upwind method, we can use these velocities to obtain the fluxes at
cell edges. The discrete equations for the advection are then given by (2.12). The
presence of k;; in the denominator suggests that a direct application of this set of
explicit equations could lead to instability problems if x;; is very small. However,
in [11], it is shown that it is possible to modify x in such as way as to prevent such
stability problems. We describe this modification here, although we refer the reader
to our paper for complete details.

The change is accomplished by defining the capacity in all cells by a modified
version of (2.9):

rij

Ai': , dx d 2.2
KJ] AIAy/CU/{(x y) T ay ( 9)

in which we define

Az Az Ay Ay > (2.30)

h = <hi—1/2,j’ hivija;  hij—1y2’ hijiiye
Note that 7;; > 1 and that r;; = 1 if at least one of the cell edges is entirely in the flow
domain, in which case &;; reduces to the usual definition of x;;. In the troublesome
case of a small triangular cell, r;; > 1 and the capacity is increased. This is equivalent
to redefining the area of such cells based on a thin sliver rather than a small triangle,
the sliver obtained by replacing the larger of the two lengths (h;_1/2; or h; ji1/2, say)
by the full size mesh width (Ay or Az respectively). However, we do not actually
modify the geometry of the grid at all; we simply increase the capacity of the small
cell.
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2.5 Fractional Step Methods for the Advection-Diffusion
Equation

In the previous two sections, we have described in detail our algorithms for handling
the advection and diffusion terms separately. These can be combined using standard
fractional step methods to solve the coupled advection-diffusion equation. The ad-
vantage of using a fractional step approach is that we can still essentially treat the
advection and diffusion operators separately. We only need to justify that the time
accuracy of the solution obtained is acceptable.

In the fractional step approach, we first advect the tracer quantity Q" to obtain
an intermediate value Q*. We then diffuse (J* to obtain our approximate solution
Q""!. The semi-discrete equations that we solve have the basic form

Qn+1 _ Q* N Q* + Qn+1 (2-31)
A PV < 2 )

where the right hand side of each discrete equation is discretized as described in
the previous sections. This is sometimes called the Godunov splitting, and while it
is formally only first order accurate, we have found in practice that we can obtain
much better than first order accuracy. To see why this might be so, we compare the
Godunov splitting to the Strang splitting method, a method which is formally second
order accurate. We write down the Strang splitting, using the notation from above,
as

Q —-Q"

Tagp C Ve

= =DV? (T) (2.32)
Qn—l—l _ Q** B . o
Az (@-V)Q

In the Strang splitting, the half time step of advection is followed immediately (in the
next time step) by another half time step using the same operator. These two half
steps can be combined into a single step of length At and in fact it is better to do so
to reduce numerical diffusion and computational cost. Once this is done, the Strang
splitting over many time steps is identical to the Godunov splitting except in the first
and last time step, where a half step of advection is used rather than taking a full
step only at the beginning. This change is typically negligible relative to other errors.
Even though this error is formally first-order, it has a very small constant relative to
the overall error. For this reason we use the simpler Godunov splitting, but this could
easily be changed in the implementation.
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2.6 Numerical Results

In the following numerical examples, we demonstrate the performance of our proposed
algorithm. We seek to demonstrate that using our capacity form differencing, we can
obtain results that have the right physical behavior near irregular boundaries and
that converge to the correct solution as the computational grid is refined. In the first
set of examples, we look at advection and diffusion of a plane wave in a channel and
compare the results to the exact solution. In the second set of examples, we test
the diffusion and solid body rotation in an annulus and compare our finite volume
solution to a reference solution computed in polar coordinates. In the final set of
examples, we look at flow through a field of irregular objects and compute washout
curves for the advection of a passive tracer through the field.

In all sets of examples, we test the advection algorithm using velocities computed
from a stream function ¢ (x,y) which has been determined either analytically or nu-
merically. Before the actual computations using CLAWPACK are done, the stream
function is computed at all grid nodes and the values are then differenced to compute
values of u and v at all cell edges. These velocities then remain fixed for all time steps
of the calculation.

To determine the numerical convergence rate of our solutions obtained in the
following test problems, we compare our results to values of a reference solution,
obtained either analytically or numerically. We assume that computed values );; are
located at the center of mass of regular and irregular cells. We then use this reference
solution to compute the error e;; in each cell. The weighted norm of this error over
the entire computational grid is computed using

1/p
1
| ell,= Area(Q) lz]: lei; [P KijAx Ay)

1/p
AzAy
= €4 b Kij (233)
AxAyszz];| J| J)

1/p
1
= ﬁzkiﬂp /ﬁ}m’) , 1<p<oo.
T iy

2V
The oco-norm is defined in the standard way as

e lloo= maxles;|. (2.34)

In all of the following mesh and contour plots, we only plot solution values in cells
which are either completely or partially in the flow domain. Cells that lie completely
in the no-flow domain are masked in all plots (using the NaN value in MATLAB).
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2.6.1 Advection and diffusion of a plane wave in a channel

For this set of examples, we look at the basic behavior of our solution in the presence
of a planar boundary which is not aligned with the computational grid. The physical
domain is a channel with parallel sides, as shown in Figure 2.6. The channel is
oriented at an arbitrary angle (approximately 0.0754 radians) to the grid and the
flow is advected at speed Uy, with 0 < Uy < 1 in a direction parallel to the walls. We
impose no-normal-flow boundary conditions on the channel walls.

The computational grid used here is N x M, where N is the number of cells in the
horizontal direction and M is the number of cells in the vertical direction. For the

channel problem, we have chosen N = 2M. Convergence rates are reported in terms
of N.

Computational grid: 50x25

X

Figure 2.6: Coarse grid (50 x 25) used for flow in channel. The channel makes an
angle of ~ 0.0754 radians with bottom of computational domain and is ~ 1.71 units
wide.

The basic plane wave shape that we use to initialize the flow is given by

w(€) =05 {erf (%) 4 erf (%) } (2.35)

where D = 0.01 is the diffusion coefficient and ¢ is the streamwise distance from the
center of the channel. For problems involving advection, we initialize our flow with
this wave shifted towards the inflow end of the channel. For a given velocity U,, we
have that the solution for the pure advection equation is

Quin(&,1) = w(E — Up(t — 3)). (2.36)
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The pure diffusion solution is

B 0.75—-¢ or 0.75+¢
Qdiﬁ(g, t) =0.5 {erf <—4D(1 n t)) + erf (—\/W> } . (237)

The general advection-diffusion solution is

qadu.diﬁ(ga t) = Qdiﬁ(g — Uy (t — 3), t)- (238)

In Figure 2.7 we plot the function ¢,.,..4(&,t) at four different times for Uy = 1 and
D = 0.01.

0.6 -

Figure 2.7: Plot of exact solution ¢,g..z(§,t) to plane wave advection-diffusion in
channel. The velocity is set to Uy = 1 and the diffusion coefficient is set to D = 0.01.
The Peclet number is 100.

Advection of a plane wave in the channel

To see how the advection portion of the algorithm behaves as the grid is refined, we
computed the solution on three different grids. In Figure 2.8, we show the results
of this series of computations. As expected, the contours in each plot in Figure 2.8
remain essentially normal to the wall.

The glitches in the plots are typically caused by inaccurate values in one or two
very small cells cut by the boundary. To some extent this nonsmooth behavior is
due to the use of MATLAB to plot contour lines. MATLAB takes the data as being at
uniformly spaced points, which is really not correct in the small cells, where it is more
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Figure 2.8: Advection and diffusion of plane wave in channel, computed on three
different grids. The plots on the left show the results of pure advection and the plots
on the right show the results of advection-diffusion. All plots are shown at time ¢ = 6.
From top to bottom the grid sizes are 50 x 25, 100 x 50 and 200 x 100.

properly viewed as located at centroids. Another reason may lie in the fact that small
cells at the upper edge increase in size in the direction of the flow, whereas at the
lower edge they decrease in size. We have not investigated this anomalous behavior
in any detail, but do wish to point out that our scheme can produce slightly different
results, depending on the orientation of the grid to the boundary, and on the order
in which small cells appear as the flow passes through them.

While the algorithm is not perfect in these cells, it is notable that:

e The method remains stable and the incorrect values typically remain within the
range of the nearby states.

e Such values only occur when a sharp front is passing by. Once it has passed the
values rapidly settle down to the correct post-front state.

e These inaccuracies in the tiny cut cells typically have no impact on the solution
in full cells nearby. (This is tested in a later example, see Figure 2.15.)

e As observed below, when this advection algorithm is coupled with our diffusion
algorithm for advection-diffusion equation, this anomalous behavior almost com-
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Figure 2.9: The solution in the first plot was computed without using a capacity
function (i.e. x;; = 1). In the second plot, the capacity function was used to take
into account areas of small cells. The computational grid is 200 x 100.

pletely disappears as the implicit diffusion operator smooths out these spikes in
the data.

Is the capacity function really necessary? As a final test of the advection
in a channel, we demonstrate that by using “capacity form differencing” as described
in the previous section, we can essentially eliminate smearing that would occur near
the boundary if the numerical scheme did not take into account areas of small cells.
For this test, we compute two solutions, one using the capacity function, modified as
necessary to ensure stability, and the second without using the capacity function (i.e.
setting k = 1 in all cells). In Figure 2.9, we see that when the capacity function is
not used, the results are smeared out considerably. Using the Darcy velocities at the
cell interfaces gives a stable method, but the velocity is smaller at edges of the cut
cells than elsewhere leading to slower advection along the walls. The smaller velocity
is offset by the small area of the cells when our capacity algorithm is used.

Diffusion in the channel

To test the diffusion portion of the code, we considered the diffusion of the initial pulse
given in (2.35) and compare the results of our algorithm to the exact solution given in
(2.37). While we don’t show any plots of the diffusion alone, we can see in Figure 2.8
that when a diffusion term is present, there is no noticeable difference between the
solution in small cells and that in neighboring full cells. In fact, the diffusion term
tends to smooth out any spikes in the data produced by the advection algorithm.
Figure 2.12 shows second order convergence in both the 1-norms and max-norms for
the pure diffusion algorithm, and that the errors decrease quite smoothly as we refine
the grid. As we note in our discussion of the convergence results in Section 2.6.1, this
is not necessarily true when we include advection.
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Performance of BicGsTABin the finite volume diffusion algorithm. To
solve the non-symmetric linear system of equations arising from the implicit dis-
cretization of the diffusion equation, we used the linear iterative method BiCGSTAB.
This iterative method has several advantages over other methods for non-symmetric
systems, and we have found its performance to be quite acceptable. Unlike GMRES,
BiCGSTAB does not require additional storage for orthogonal vectors, and unlike the
original BiCGSTAB, does not require a matrix transpose vector multiply. Further-
more, BICGSTAB is straightforward to implement. One very clear presentation of the
algorithm is given in [27].

In Figure 2.10, we show how BiCGSTAB performs as a function of grid size and of
diffusion coefficient. In both cases, we measure the performance by looking at number
of iterations BiCGSTAB needs to reduce the residual of the linear system to the desired
level (107®, in this test case). In the first test case, we look at how varying the size
of the linear system affects the number of iterations BiCGSTAB requires. In this test,
we varied the grid size and held the diffusion coefficient constant at D = 0.01. We
then determined the average number of iterations required for BiCGSTAB to advance
the solution from ¢ to ¢t + At, for At = 0.025. This average was computed over the
20 time steps needed to advance the solution to ¢ = 0.5.

For the second test case, we held the number of grid points (and hence the order of
the linear system) fixed at N = 200 and varied the diffusion coefficient between 1073
and 0.5. Again, we held the time step fixed at At = 0.025 and computed the average
number of iterations over the first 20 times steps. In both test cases, we solved only
the diffusion problem.

What is interesting to note from the two plots is that increasing the diffusion
coefficient has a much greater impact on the number of iterations BiCGSTAB requires
than does increasing the grid size. A grid of 400 x 200 at D = 0.01 required about
7 iterations, whereas, a grid of half that size, for a diffusion coefficient of D = 0.05
required 25 iterations. One explanation for this may lie in the fact that the underlying
matrix that BiCGSTAB is inverting differs from a symmetric matrix in only O(N)
rows. As the matrix increases in size, the ratio of the number of rows perturbing the
symmetry of the matrix versus the total number of rows behaves like O(N™'). As
the grid size is increased, for fixed diffusion coefficient, the matrix behaves more like
a symmetric matrix.

On the other hand, increasing the diffusion coefficient affects the diagonal domi-
nance of the underlying matrix, since at least away from the interface, the operator
we are inverting is (1 + At DV?). As we increase D, the matrix looks more like the
discrete Laplacian, which requires many more iterations to invert than its parabolic
counterpart.

These results are characteristic of the behavior of BicGSTAB for all problem ge-
ometries investigated, and so are not reported for other test problems.
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Figure 2.10: Performance of BiCGSTAB, as measured by the average number of itera-
tions required to advance the solution from ¢ to t + At, for At = 0.025. (a) Number
of iterations versus grid size, for fixed diffusion coefficient, D = 0.01 (b) Number of
iterations versus diffusion coefficient, for fixed grid of size 200 x 100. In both plots,
the time step was fixed at At = 0.025.

Advection and diffusion in the channel

Finally, we combine the advection and diffusion schemes using the fractional step
approach described in Section 2.5. Contour plots showing the results for this test
problem are shown on the right side of Figure 2.8. Note that the contour lines are now
perpendicular to both sides of the channel. The implicit diffusion algorithm smooths
out the incorrect values in very small cells and corrects the anomalous behavior seen
at the boundary in the pure advection case. Figure 2.11 shows a mesh plot of the
results on the coarsest grid.

Convergence results for the channel for different Peclet numbers

In Figure 2.12, we show the convergence rate for the solution of the advection-diffusion
equation in the channel for different values of the non-dimensional parameter Pe =
Upl/D, known as the Peclet number. Here, ¢ is the length scale of the problem, and
for our purposes, is taken to be exactly 1. For 0 < Pe < oo, we varied Pe by varying
the velocity and holding the diffusion coefficient fixed at D = 0.01. For Pe = 0, we
carry out only the diffusion step of the fractional step scheme,using D = 0.01 and for
Pe = oo, we carry out only the advection step of the splitting scheme, using Uy = 1.

For a given Peclet number, we compute a single convergence rate r for our al-
gorithm by assuming that the truncation error in our discretization has the form
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Figure 2.11: Advection-diffusion of a plane wave down the channel. Mesh plots of the
initial data and solution at time ¢ = 6 on the coarse grid, 50 x 25.
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Figure 2.12: (a) 1-norm convergence rates and (b) co-norm convergence rates for
advection-diffusion in channel, for varying Peclet numbers. Solid line is the best-fit
line used to compute convergence rate for each case.
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€(h) = Ch" for some constant C. By computing the error on several grids, we can
then approximate the convergence rate by fitting a line through the log of the com-
puted errors.

To compute the errors, we use as a reference solution the exact solution given in
(2.38). The errors were all computed at time ¢ = 6, roughly the time it takes for
the wave moving at the largest velocity tested (Uy = 1) to traverse the length of the
channel. For problems computed at slower velocities, the wave did not travel as far,
but in all cases which involved diffusion (Pe < o0), the total effect of diffusion was
the same. The errors, computed using the 1-norm and oo-norm, along with the rates
of convergence are shown in the log — log plots in Figure 2.12.

We use so many different grid spacings because the exact manner in which the
geometry intersects the Cartesian grid naturally has an impact on the accuracy on
any particular grid. As a consequence, the error may not be smoothly varying as the
grid spacing is decreased. From the plots, though, it is clear that the error (at least
in the 1-norm) fluctuates about lines with slopes indicating second-order accuracy.
The 1-norm errors are dominated by errors in the full cells, and so do in fact vary
smoothly. The max-norm errors, however, are dominated by the errors in small cells
and so show less smooth behavior.

Because the diffusion tends to smooth out any errors produced in small cells by
the advection scheme, we expect that the lower the Peclet number (and, hence, the
more dominant the diffusion term), the smaller the magnitude of the computed errors.
We see in Figure 2.12 that this is in fact that case. The largest errors are produced
by the pure advection (Pe = oo) case, and the smallest errors are produced by the
pure diffusion case. In the max-norm, we see that the pure advection may not even
converge, but with even just a small amount of diffusion, we get convergence rates
that approach second order as we decrease the Peclet number. In the second plot of
Figure 2.12, we have plotted max-norm errors for 3 of the 5 Peclet numbers (Pe = oo,
Pe =100, and Pe = 0. The convergence rates for the remaining two cases were 0.90
(Pe = 10) and 1.47 (Pe = 1). The magnitude of the errors were very close to those
cases plotted and so to avoid cluttering the graph, these errors are not shown.

2.6.2 Advection and diffusion in an annulus

For this set of problems, we look at diffusion and solid body rotation inside an annulus
composed of two concentric circles embedded in a square computational grid. The
goal here is to test how well our advection-diffusion scheme works in more complicated
geometry. The annulus is a convenient choice because we can compare our finite
volume solution to a reference solution computed in polar coordinates.

Figure 2.13 illustrates, on a 30 x 30 grid, the geometry used for this test case. The
radius of the inner circle of the annulus is R; = 0.25. The outer radius is 2y = 1.25.
The center of each circle is at ~ (1.509,1.521). The initial profile of our solution is
a function of € only and is given in terms of the wave profile similar to that used for
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the channel. This wave profile is

w(®) = 0.5 {erf (”%% + erf (”%0) } . (2.39)

In the interior of the annulus, the solution was initialized using

q00(0) = w0 —7/2). (2.40)
We imposed no-flow boundary conditions at the two boundaries of the annulus.

Computational grid: 30x30

y

Figure 2.13: Geometry for annulus test problem solver. The inner radius of the annu-
lus is Ry = 0.25. The outer radius is Ry = 1.25 and the center is at ~ (1.509, 1.521).

Solid body rotation in an annulus

To test our proposed numerical scheme for the advection solver, we considered ad-
vection under solid body rotation. The velocities for solid body rotation can be
determined from the stream function

0 r > Ry
(r,y) =9 027 (R3—1°) Ri<r <R (2.41)
0.2 (R% — R%) r < Ry

where 7 = ((z —1.509)% + (y — 1.521)?)1/2 is the distance of a particular point (z,y) to
the center of the annulus. For this particular choice of ), the flow makes one complete
revolution in 5 time units.
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Figure 2.14 shows contour plots of the computed solution as it rotates around the
annulus. The solution is shown at a sequence of times on two different grids. As in
the channel flow case, the flow remains essentially parallel to both boundaries of the
annulus, although there is evidence of numerical diffusion in the coarse grid solution.

As a second validation of the solid body rotation, we looked at the computed
solution as a function of @ at different values of r, after one and two full rotations, and
compared these values with the initial conditions. These comparisons are presented
in Figure 2.15 for a 60 x 60 grid. In Figure 2.15(a), we plot the value of the solution
in the partial cells cut by the outer boundary of the annulus versus #. The solution
stays bounded and stable in these cells, but some inaccuracy in the smallest cells is
observed as the front propagates past. However, this loss of accuracy in the cut cells
does not appear to affect the solution away from the boundary. In Figure 2.15(b),
we show the solution a small distance inside the boundary, as interpolated from the
full cell values to points (R, ,6;), where R, = Ry — +/2Ax is a radial value slightly
inside the outer edge of the annulus, and the #; values are equally spaced values of 6
in [—m, 7]. Here the solution agrees quite well with the expected behavior.

Figure 2.15(c) shows the solution near the middle of the annulus, at r = (Ry +
Ry)/2. Figure 2.15(d) shows the solution just inside the inner boundary, at R =
R, +V2Ax, again interpolated from the full grid cells. Finally, Figure 2.15(e) shows
the values in the partial cells cut by the inner boundary. Note that near the inner
boundary the solution is poorly resolved because there are very few grid cells around
this circle (see Figure 2.13). In all cases there is very little degradation of the solution
between the first and second revolution.

Diffusion in an annulus

To test diffusion in the annulus, we allowed the initial data to diffuse over time (with
no advection). The results we obtained agreed well with a reference solution computed
by solving the diffusion equation in polar coordinates:

8(]_18(8(]) 1 0%q

o ar) 2092 Srs —r<f<m 9.42
ot ror rar +T2802’ Ry <r < Ry, T<O0<nm ( )

We obtained a spectrally accurate solution to (2.42) using a Fourier expansion in the
azimuthal direction and a pseudospectral method based on Chebyshev polynomials in
the radial direction. We used 256 points in 6 and 32 points in the r-direction (where
the solution varies more smoothly). This gives a highly accurate reference solution,
which was then interpolated to the Cartesian grid using Fourier and Chebyshev in-
terpolation.

Figure 2.16 shows contour plots comparing the computed and reference solution
at four different times. Even near the boundaries of the annulus it is evident that the
no-flux boundary condition is satisfied. To show how our computed solution behaves
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as the grid is refined, a fine grid solution and corresponding reference solution are
also plotted in Figure 2.16.

Solid body rotation coupled with diffusion in an annulus

Contour plots showing the results of combining the diffusion and advection in an
annulus are shown in Figure 2.17. Even the coarse grid solution agrees reasonably
well with the reference solution. In Figure 2.18 we show a mesh plot of the same set
of results at two different times.

Convergence results for the annulus for different Peclet numbers

In Figure 2.19, we show 1-norm and max-norm convergence results for the annulus
test problem. As we did for the channel, we investigated how the convergence rates
varied with Peclet number. For this test, however, we held the velocity fixed (except
in the Pe = 0 case, where there is no rotation), and varied the diffusion coefficient.
The Peclet numbers tested were Pe = 0,20,100,500,00. For 0 < Pe < oo, we
computed the diffusion coefficient for a given Peclet number as D = Uyl/Pe, where
for this problem, ¢/ = 1 and U, was taken to be the tangential velocity on the outer
boundary of the annulus. For the stream-function used, this velocity is given by
Uy = 2w Ry/5 = 0.5m. For Pe = 0, the diffusion coefficient was set to D = 0.01. For
Pe = oo, we used a diffusion coefficient of D = 0.01 only to initialize the flow, using
(2.40).

Our choice of Peclet numbers differs from the channel case in that here, the total
effect of the advection was kept fixed over the range of Peclet numbers chosen, whereas
before, we held the effects of diffusion fixed. All errors were computed at ¢t = 5, after
the initial wave had made one complete revolution in the cases with advection. The
errors vary more smoothly with decreasing grid size in this case than was observed in
the channel. This may be because the annulus cuts through cells in a wider variety of
random ways regardless of where it is located, while the channel leads to a periodically
repeating pattern of cut cells, and hence may be more sensitive to its location, or the
grid spacing. As seen in Figure 2.19, the errors for the annulus all lie very close to
the best-fit line for both the 1-norm and the max-norm.

The rates of convergence for this test problem were not as close to second order as
they were in the channel case, but we do see that the rates generally improve as the
Peclet number decreases. We consider this to be a challenging test case because of
the poor resolution of the rapidly-varying solution near the inner boundary, as seen
in Figure 2.15(e), for example. Even on the finest grids there are relatively few grid
points around the inner boundary.
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2.6.3 Advection through a field of irregular objects

In this set of examples, we constructed a field of irregularly shaped inclusions and
simulated the advection of a passive tracer through this field. One can imagine that
this field represents, for example, rocks in a porous medium or the cross section of
pipes in a heat exchanger. The purpose of this set of examples is threefold. First,
we illustrate that our reliance on the stream-function for obtaining our velocity field
does not limit us to objects for which we know a stream function analytically. Second,
we show that our proposed advection-diffusion algorithm is not particularly sensitive
to geometry chosen. And third, we demonstrate that our capacity-form differencing
with the modified capacity function is effective at reducing smearing even when the
stream-function is only known approximately. Figure 2.20 shows the field of irregular
objects, embedded in the coarsest grid used for this example.

To compute the stream function in the multiply-connected domain, we solved an
elliptic equation in the domain using the Immersed Interface Method [37] as the basis
for an approach loosely based on the work of Yang [58]. This Cartesian grid method
produces second-order accurate values of the streamfunction at all grid points, which
were chosen to be the corners of our finite volume cells. We discuss this method in
detail and show exactly how we obtain these streamlines in Chapter 3. Differencing
these values gives the required Darcy velocities at cell edges. Figure 2.22 shows a
contour plot of the stream-function used for this set of test problems, computed on a
very fine grid.

We use initial data ¢(z,y,0) = 0 and a boundary condition ¢(0,y,t) = 1 up to
time 20 (and zero thereafter), which corresponds to the injection of a tracer at the
left (inflow) boundary over this time interval. Figure 2.22 shows plots of the solution
at different times.

In order to compare the results more quantitatively as the grid is refined, we also
computed “washout” curves w(t) which measure the total mass passing through the
right edge of the domain as a function of time. This is computed by

5
w(tn) = > QM,jAy%/O q(10,y,1) dy (2.43)

j=1,N

which sums the values of () along the rightmost row of grid cells on an M x N grid.
This gives the curves shown in Figure 2.23. The general behavior of flow through the
field of irregular objects is preserved as the grid is refined. Even with the coarsest
grid, where the fine-scale structure of the flow is poorly resolved in Figure 2.22, the
washout curve shows quite good agreement. For many applications, e.g., groundwater
flow simulations, this is of great importance.
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2.6.4 Advection and diffusion through a field of irregular objects

In this test, we simulated a tracer advecting and diffusing through the same field of
irregular objects. Figure 2.25 shows the results of this simulation at 3 different times.
To see that the normal derivative of ¢ is close to zero near the boundaries, as expected
from the Neumann boundary conditions with diffusion, we also show a contour plot
of this solution in Figure 2.24.

Washout curves are again shown in Figure 2.23. When diffusion is added, there is
virtually no difference in the washout curves at different grid resolutions. Even the
under-resolved grid of Figure 2.20 gives excellent results.



39

Figure 2.14: Contour plots on the coarse (30 x 30) and fine (150 x 150) grid showing
results of solid body rotation at various times during one full rotation. Contour levels
shown are (0.1,0.2,...,0.9.)
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Solution in partial cells near outer boundary
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Figure 2.15: Computed solution to the pure advection equation in the annulus, shown
as a function of # for four different values of . The numerical solution was computed
on a 60 x 60 grid and is shown at two different times ¢t = 5 (after one revolution)
and ¢ = 10 after two revolutions). The true solution is shown as a solid line. (a) At
r = Ry, along the outer boundary. (b) At r = R;, just inside the outer boundary. (c)
At r = R, just inside the inner boundary. (d) At r = Ry, along the inner boundary.
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Figure 2.16: Contour plots on the coarse (30 x 30) and fine (150 x 150) grid showing
results of diffusion in the annulus at various times. The solid lines represent results
of the finite volume scheme, and dashed lines are the reference solution, interpolated
to appropriate grid. Contour levels shown are (0.01,0.05,0.1,0.15,...,1.0.)
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Figure 2.17: Contour plots on the coarse (30 x 30) and fine (150 x 150) grid showing
results of solid body rotation coupled with diffusion at Pe = 100 in the annulus
at various times over one full rotation. The solid lines represent the results of the

finite volume scheme, and dashed lines are the reference solution, interpolated to the
Cartesian grid. Contour levels shown are (0.01,0.05,0.1,0.15,...,1.0.)
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Figure 2.18: Mesh plots on coarse grid (30 x 30) for advection and diffusion in the
annulus with Pe = 100. (a) Initial data. (b) Computed solution after one complete
revolution.
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Figure 2.19: (a) 1-norm convergence rates and (b) oo-norm convergence rates for
advection-diffusion in the annulus, for varying Peclet numbers. Solid line is the best-
fit line used to compute convergence rate for each case.
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/
4 {

Figure 2.20: Coarse grid (50 x 25) with embedded objects.

Stream function ¥

Figure 2.21: Stream function used for flow through irregular objects
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Figure 2.22: Advection of passive tracer through field of irregularly shaped objects.
Coarse grid (left side) is 50 x 25 and fine grid (right side) is 200 x 100.
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Washout curves for advection through irregular objects
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Figure 2.23: Washout curves computed on three different grids. The upper plot is for
advection only. The lower plot is for the advection-diffusion equation.
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Figure 2.24: Contour plot of advection-diffusion results through field of irregular
objects for the fine grid calculation at time ¢ = 50. Note that the contour line are
roughly perpendicular to the boundary of each object.
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0

Figure 2.25: Advection and diffusion of passive tracer through field of irregularly
shaped objects. Coarse grid (left side) is 50 x 25 and fine grid (right side) is 200 x 100.
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Chapter 3

SOLVING ELLIPTIC AND PARABOLIC EQUATIONS IN
IRREGULAR REGIONS

The first goal of this chapter is to describe in detail how we use the Immersed
Interface method, developed by LeVeque and Li [36,37] to solve constant coefficient
elliptic and parabolic boundary value problems given by

Viu = f, (z,y) € Q (3.1)
subject to Dirichlet conditions on 0f2, and
u, = vViu, (z,y) € Q (3.2)

subject to Neumann conditions on 0f2. For this Chapter, our irregular multiply-
connected flow domain is the region €2, show in Figure 3.1. The flow domain €2 is the
region exterior to all embedded objects.

The second goal is to combine the above equations to solve the equations describing
Stokes flow in a multiply-connected domain. These equations in the exterior domain
Q = R\ UY, Q; for a rectangular computational domain R are given by

C/Jt:VVZ&Ba (x,y) € 0w =g, (xay) € 00

N on
Vi =0, (z,y) €
o (:9) b=v (ny)eon  (33)
M os=0, =1 My, 0
o, On T ST 8—2{220, (2,y) € 00

where &(z, y, t) is the vorticity of the flow and ¢ (z, y, t) the streamfunction whose level
sets describe the streamlines of the flow. The conditions on the right are boundary
conditions which hold only on the boundary of solid objects in the flow domain. Both
the set of constants v;, j = 1, = hdotsMy,gies and g are unknowns and must be solved
for as part of the solution process. We use & instead of w to distinguish the parabolic
equation we solve here using the finite difference Immersed Interface Method from the
parabolic equation we solve using the conservative finite volume method described in
Chapter 2. As we will see in Chapter 4, we solve the above Stokes flow problem just to
get the flux g needed to impose the no-slip boundary condition. This flux is imposed
during the diffusion step of the finite-volume update.

To solve the elliptic, parabolic and Stokes flow equations, we use the Immersed
Interface Method (IIM), a second order finite difference Cartesian grid method devel-
oped by LeVeque and Li [36,37]. The original IIM was developed to solve PDEs with
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Figure 3.1: Typical domain in which elliptic and parabolic problems are solved.
Shaded inclusions 2; are solid objects. Fluid domain is region €2 exterior to these
objects.

singular source terms that arise physically in situations where, for example, forces
are distributed only along a thin elastic membrane, latent heat is released from the
solidifying interface separating the solid and liquid phases of a pure substance, or
discontinuities in material properties exist along an interface. In the original method,
these sources are expressed as jumps in the function or derivative at the interface,
which in turn are incorporated into the finite difference discretization of the PDE.

In the original formulation, the jumps needed to correct finite difference stencils
were assumed to be known from the physical problem. In the present situation, we
don’t have singular sources along an interface, per se, and moreover, are not given
enough jump information at the boundary to make direct use of the IIM as it was
originally formulated. In this chapter, we present an adaptation, loosely based on
the work of Yang [58] and Wiegmann [56], of the IIM for use in solving boundary
value problems. We show that one can approximate the elliptic or parabolic PDEs at
Cartesian grid points near the boundary by including jump conditions into the finite
difference stencils near these points. Some of the jump information is obtained by
using given boundary value information but the remainder of the jump information
must be computed as part of an auxiliary step in the solution process.

In the process of showing how we can use jump information to discretize elliptic
and parabolic PDEs, we re-derive the IIM and introduce a notation which we believe
should make the implementation details of the IIM much more straightforward and
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less error prone than previous descriptions. The reason that we take the trouble to re-
derive the IIM is that despite its obvious applicability to a wide class of problems, the
I[IM has not been widely adopted. Part of this, of course, is due to the fact that the
[IM, having first appeared in 1994, is still relatively new, and researchers with time
and effort invested into one numerical methodology are reluctant to switch to another
method. But another reason may be that at first glance, the Immersed Interface
Method appears quite complicated. The original derivation of the necessary formulas
involved tedious algebra and resulted in lengthy formulas which had to be translated
into computer code. Fortunately, one can reformulate the problem so that most of the
algebra is taken care of by inverting appropriate matrices rather than solving linear
systems by hand. In this chapter we re-derive the ITM using this matrix formulation
and present formulas which we believe are much more compact than those presented
in [38,58] and which will hopefully encourage a more widespread use of the ITM.

The first part of this chapter will be devoted to deriving the Immersed Interface
Method for constant coefficient problems. Our discussion in this section applies to a
wide variety of constant coefficient PDEs of the form

Viu+ = f (3.4)

although we will use as our model problem Poisson’s equation V2u = f. Later in this
chapter, we describe specific modifications to solve parabolic equations, which we also
put in the form given above.

In the last part of this chapter, we provide numerical results which show that
the ITM is second order accurate and is quite robust for a variety of problems and
irregular domains, including multiply-connected domains. In this section, we choose
examples that arise in the context of solving the streamfunction vorticity equations. In
particular, we solve the potential flow equations for the streamlines of incompressible,
inviscid flow, the diffusion equation for vorticity, and finally, the Stokes flow equations,
given in (3.3), for unsteady, viscous, incompressible flow.

3.1 Imposing boundary conditions using singular source terms

We begin our discussion with some observations about solving elliptic equations on a
rectangular region. We suppose that we are given a two dimensional square region R
on which we wish to solve the problem

Viu = f, r€R (3.5)

subject to Dirichlet boundary conditions u = ¢g on the boundary dR of the region
R. We establish a uniform Cartesian mesh on IR with nodes corresponding to z;; =
(%i,y,),1,7 =1,...N +1 where z; = ({ — 1)Az and y; = (j — 1)Ay for mesh widths
Az and Ay respectively. For convenience, we may make the assumption that Ax =
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Ay = h. At each grid point, we wish to solve for the function value w;; ~ u(z;,y;).
To do this, we discretize the Poisson problem given in (3.5) at a grid point x;; as

Uio1,j + Yi1,g + i1 + i1 — 4y
h2

where the value of u;; in these equations that correspond to grid points on the bound-
ary of R (7,7 = 1 or N 4 1) have been set to 0, and their inhomogenous counterpart
supplied through the value B;;. For example, the equation for the point z, ; relies on
the boundary value u; ;. We set this value to g; ; and move it to the other side. In
this case, By; = —g1,;/h?. Setting u;; = 0 is just a convenient way to use a general
formula for all points, whether they are near a boundary or not. In Figure 3.2(a), the
grid points corresponding to non-zero entries in the vector B are shown.

(a) t (b)

Figure 3.2: (a) Grid points corresponding to non-zero entries in the vector B, used to
impose boundary conditions in rectangular problem. (b) Grid points corresponding
to non-zero entries in the vector €, used to impose boundary conditions at irregular
boundary.

These equations can be written as a linear system involving the matrix A €
2 2 2
RW-D*XN=D" and vectors U, F and B all in RY~Y". This system is

AU=F+B (3.7)

where the matrix A corresponds to the discrete Laplacian, the vector F' has entries
corresponding to the known right hand side values f;; and vector B involves the non-
homogeneous terms B;;. This system is easily solved using a Fast Poisson Solver, and
the desired solution u;; satisfying the given boundary conditions is obtained at each
internal grid node z;;,%,7 = 2,... N.

To motivate the Immersed Interface Method, we now make a few observations
about the vector B used above:
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e Only those entries in B corresponding to grid points near the boundary are
non-zero.

e For the Dirichlet problem, these non-zero entries are O(1/h?).

e If g =0, the vector B is identically zero.

What these observations suggest is that B acts like a singular source term with support
only near the boundary of our domain. The fact that for the Dirichlet problem, the
entries are order O(1/h?) suggests that this boundary term is behaving like a dipole
source. The third observation serves to point out that if our boundary conditions are
homogenous, the strength of this dipole is zero.

The inhomogenous boundary term B is not commonly viewed as a singular source
term. However, if we consider solving Poisson’s equation using boundary integral
techniques on an irregular domain, then the first step in solving the problem consists
of determining the strengths of singular sources distributed along the boundary of
this domain so that the boundary conditions are satisfied. After this singular source
term is determined, the solution can be obtained at arbitrary points by evaluating
the integral representation, which now involves a known source term, of the original
Poisson problem.

The main idea behind the Immersed Interface Method as it is applied to boundary
value problems is to determine a vector C', which will play the role of B used in the
rectangular case and which can be used to impose boundary conditions on irregular
regions. In a manner resembling what we did in the rectangular case described above,
this vector C' becomes an additional term on the right hand side of a linear system.
An analog to the system of equations in (3.6) is the system

Uim1,j + Uig1,j + Uij—1 + Ui 1 — duyy

h?

where now Cj; is an approximation to a singular source term on a the irregular
boundary and is only non-zero at the irregular grid points, shown in Figure 3.2(b).
The corresponding linear system is given by AU = F' — C + B, where B is still used
to impose boundary conditions on the computational domain. The remainder of this
chapter is devoted to deriving this vector C' and verifying that numerically, we obtain
second order accurate solutions to the PDE.

= fij — Cij, 0,j=2,...N (3.8)

3.2 Accurate approximation to derivatives along a curved boundary or
interface

In this section, we derive finite difference formulas for values and derivatives of a
function u(z,y) evaluated at an arbitrary point (o, y). We begin by deriving such
formulas for derivatives in Cartesian directions, and later generalize these results to
formulas for derivatives in directions normal and tangent to a given curve.
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We begin by deriving finite difference stencils for approximations to derivatives
in the vector U.(zij) = [u(@ij), ue(ij), ty(Tif)s Uza(2if), Uy (Tij), Uay(xi;)]". For this
discussion, and throughout the remainder of this thesis, we will use the following
general definitions of our grid. First, the grid is assumed to be uniform Cartesian
grid with mesh width spacing Az = Ay = h. Grid values (z;,y;) = ;; are given by
z; = (1 —1)Az and y; = (j — 1) Ay. A discretization of the function u(x,y) is given
by wi; = u(z;, y;) = u(wij).

Typically, we obtain finite difference formulas by expanding a set of values located
at different grid points about the point at which the approximation is desired. We then
obtain a linear system, which we invert to obtain stencil weights for the approximation.
To illustrate this, we consider the problem of approximating V2u(z;;). To obtain
second order accuracy, we expect to require six points in the neighborhood of the
point z;;. These six points make up a stencil, which we define by the set

Sy ={i+k,j+0):(k () €S},
where the set S is a subset of the set S defined by
S={(k,0):k,0e{-1,0,1}}.
A typical example of the set S will be

S = {(Oa 1)’ (_1’0)5 (O’O)a (1’0)5 (0’ _1)’ (L 1)} (3'9)

which correspond to the anchor point offsets for five points of the standard five point
stencil plus an extra sixth point in the upper right corner of the stencil box. In
Figure 3.3, we show this stencil and label each point with its corresponding offset
value. The anchor point corresponds to offset (0,0). Also in Figure 3.3, we show
the three canonical stencils arrangements that lead to non-singular matrix systems.
An additional nine stencils are obtained by rotating these three. A more detailed
discussion of why these are the only three possible arrangements is given in [56].

For what follows, it will be convenient to impose an ordering on the elements of
the stencil S;; (or, equivalently, on the set S of offsets). We will call a stencil with
such an ordering an ordered stencil. To identify the entries of the ordered stencil,
we use the subscript (or where necessary, a superscript) p, where p = 1,...6. For
example, we have that the p™ entry of S is s, = (k,, {,).

This ordering will automatically be inherited by all vectors and matrices based on
the ordered stencil. For example, we can define a vector u;; by evaluating a function
u(x,y) at each grid point in an ordered stencil. The p entry of this vector is then
Up = U(Tit,, Yjte,). Presently, we will see that rows of matrices used to derive finite
difference approximations will also be defined in terms of an ordered stencil.

To obtain approximations to derivatives of u at points z;;, we expand each of the
values in U;; in h about the value u(z;;). This is just a Taylor series expansion and
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(0,1) (1,1)
® 4
1 / 1,0
T ! /\'
® (0’_1) ® L 4

Figure 3.3: Possible six point stencils used to obtain second order approximations to
function values and their derivatives. The values in parenthesis are the index offsets
for each element of the stencil. The anchor point is labeled with the offset (0, 0).

is given by
i) = i) 1) (R 1y () ER) + e ) (R)? (3.10)
+ %uyy(xij)(éh’)2 + “wy(ij)(kh) (éh,) + O(h3)

for each (k,¢) € S. This leads to six equations which we can write as the following
linear system:

Uz'j = Ah Uc(xij) + 7'1 (h) (311)
where the p'* row of A" is given by

eg(Ah):<1 kyh Cyh %(kph)Q %(@,h)? (k,,h)(@,h)). (3.12)

The vector U, is given by

Ue(wij) (3.13)
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and the quantity 7'(h) in (3.11) is the 6 x 1 vector of truncation errors associated
with each expansion. From the truncated Taylor series expansion, we know that each
entry in 7!(h) is O(h?*). We use the vector of truncation errors merely to indicate the
order of the error and do not specify the coefficients of the truncation errors. We could
have, for a particular expansion, that 71(h) = 0. Also, we have, for different instances
of this vector, only 7' (h) ~ 7'(h), where we apply the ~ operator in an element-wise
fashion. In general, also, we have that 7'(h) & 7'(h) ~ 7'(h), not 7'(h) — 7' (h) = 0
or 7' (h) + 7'(h) = 27'(h).

By solving the above linear system, we obtain discretizations of each of the six
derivatives in the vector U.(z;;) and can write

U (wy) = (AU + (A1 (R). (3.14)

Using Maple, we can determine the order of magnitude for the entries in the vector
72(h) = (A")"tr(h). These are

O(h?)
O(h?)

7*(h) = %(&)) : (3.15)
O(h)
O(h)

For example, the Laplacian is approximated by
Vzu(xij) = (64 + 65)T(Ah)_1Uij + (64 + 65)T(Ah)_17'1 (h) (316)

where e, is the p™ column of the 6 x 6 identity matrix. As expected, the formulas for
V?2u is the usual five point stencil; some of the weights computed from the inversion
of A" are zero. Moreover, the coefficients of the 4" and 5 entries of the truncation
error vector 72(h) are also zero in this case. Because of this fortuitous cancellation,
which is due to the fact that our approximation is at the center of the stencil, we
actually have

(es +e5)T (A") 171 (h) ~ O(R?). (3.17)

and our approximation to the Laplacian is actually second order accurate.

Had we chosen an expansion point other than the grid point z;;, we would obtain
six non-zero stencil weights and find that the approximations to the higher derivatives
are only O(h). To interpolate values in the vector U, at arbitrary points (c, o) near
the point z;;, we expand each of the entries in the vector U.(z;;) about the point
u(ow, ay) to get the matrix system

Uc(l‘i]‘) = A® UC(Oé) + 7'2 (h) (318)
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where the matrix A® is given by

1 (zi—a) (Y5 — ) %(Iz — ag)? %(yy —ay)? (= )y — o)
0 1 0 (@i — o) 0 (y; — ay)
Ao = 0 0 1 0 (y; — ay) (@ — o)
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(3.19)

We can obtain this system directly by differentiating the Taylor series expansion for
u(z;;) expanded about a point (o, ). When we derive the expressions for the entries
in Uc in this manner, we can also easily see that the resulting truncation error is given
by 72(h).

Using this definition of U.(«), we can derive expressions for derivatives in Cartesian
directions at point (o, ) by first writing

Uiy = N"Ue(ij) + 7' (h)

3.20
= A"A“U,(a) + A"72(h) + 7' (h) (3.20)

To obtain approximations to the entries of U,(«), we write
Ud(a) = (A"A®) ™ Uy + (A"A®) ™ (AP2(B) + 7 (R)) @21)

= (A"A®) U + 72 (h).

We will justify shortly that the truncation error vector for this expression for U,(+) is
in fact 72(h).

One consequence of choosing a general point at which to approximate our deriva-
tives is that we no longer get a second order accurate approximation to the higher
derivatives. For example, we have that

VZU(&QE, &y) = (64 + 65)T (AhAa)_l Uij + O(h) (322)

since (eg + e5)"72(h) ~ O(h). If (ag, ay) = x;;, the A® is the identity matrix, the
coefficients in the truncation error vector 72(h) are identically 0 and (3.21) reduces
to (3.14).

We can generalize this formula even further by not restricting ourselves to the
(x,y) coordinate directions, but rather by considering derivatives in directions normal
and tangential to some curve parameterized as o(x) = (z(s),y(s)). What we will be
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interested in are formulas for wu,, u,, uss and (u,)s. We can obtain these in terms of
elements of the array U. by applying the chain rule and getting, for example

Us = TsUy + YsUy
(3.23)

u, =Vu-n= ;(ysux — Tsly)

where r = /22 4+ y2. Note that if s is an arc-length parameterization of the curve o
then r = 1, but in general r # 1. Two more equations derived in this manner are

2 2
Uss = TsslUyg + YssUy + LUz + YsUyy + 2$sysuwy

3.24
(un)s = % (yssu:v — TssUy + TsYsUgpgy — TsYsUyy + (yz - Ii)uxy) ( )
Our goal is to express all the derivatives tangent and normal to the curve in terms
of the six Cartesian derivatives u, uy, Uy, Uz, Uyy, Uzy. 1t may not be immediately
obvious why we need to do this, but later, we will see that jumps normal and tangent
to an irregular boundary are more readily available from given boundary conditions
than are their Cartesian counterparts. With that in mind, we now seek two more
equations (in addition to the four given above) so that we can form a system of
equations expressing derivatives ug, u,, etc. in terms of the six Cartesian derivatives.
One equation we haven’t written down is just the identity u(z,y) = u(z(s), y(s)). A
logical choice for the sixth equation is an expression for (u,),. With a bit of work,
we can write down a linearized expression for (u,), by assuming that our interface
is actually parameterized in two directions and is given by Z(s,7) = z(s) + ysT,
y(s,7) = y(s) — zs7. If we consider u as a function of (Z(s, 7),7y(s, 7)), then we could
derive the linearized expression

(un)n = (UT)T = u:v:v(ys)z + 225y stUsy + Uyy(l’s)Q (325)

We now need to obtain an independent expressions for each of the quantities u, u,,
Us, Ugs, and (uy,)s; otherwise the equations derived above are only identities, and don’t
lead to meaningful expressions. To obtain these independent expressions for u and wu,,
at the boundary, we will use boundary conditions supplementing the PDE we wish to
solve. The tangential derivatives of these quantities can be interpolated from these
values. To get an independent expression for (uy,),, we need to involve the PDE itself.
In general, the PDEs we will be interested in solving have the form:

Viu+ \u = f (3.26)

Using the five equations we have plus the expression for (u,), given in (3.25), it is
possible to solve for all five Cartesian derivatives in terms of derivatives normal and
tangent to the curve. We can then substitute the resulting expressions for each of the
five Cartesian derivatives into the PDE in (3.26) and solve for (uy),. The resulting
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expression would be a linear combination of the normal and tangential derivatives
and would involve the coefficients ¢; from the PDE and f. This expression could
then serve as our independent expression for (u,),. However, this expression is no
doubt quite complicated (we haven’t actually computed it, but have verified that
such an expression can be obtained), and so we take a much more direct approach.
Since we don’t actually need the approximation (uy,),, but only need the second order
information from the PDE it would provide, we opt to use the PDE directly as our
sixth equation.

With the four equations given in (3.23)-(3.24), the identity u(z,y) = u(z(s), y(s))
and the PDE, we now have six equations involving the six Cartesian derivatives in
the vector Uc. In matrix form, we write down these six equations as

u(-) 1 0 0 0 0 0
Un (+) 0 ys/r —xg/r 0 0 0
us(+) I Ys 0 0 0
uss(') N 0 Tss Yss x? ys 2Isys umﬂ( )
(un)s() 0 yss/T _xss/r xsys/r xsys/r ( _IQ)/T uyy( )
f) A 0 0 1 1 0 umy( )
(3.27)
which we write as
U, = XU, (3.28)

where the vector U, defined as
Us = [U, una Us, uss; (un)87 f]T (329)

and ¥ is the matrix in (3.27). This equation is actually an identity, since there is no
truncation error associated with any of the six equations and furthermore, it holds
regardless of where U, and U, are evaluated, as long as they are evaluated at the same
point (a,, o) along the curve o(s) = (x(s),y(s)).

With this formulation, we can now write down approximations to the entries in
Us. These are given by

Us(@) = SU(a) = X (A"A®) ™ Uy + 72(h) (3.30)

where we have made use of the sparsity pattern in X and the fact all non-zero entries
of ¥ are O(1) to conclude that

S72(h) ~ 7%(h). (3.31)
Using (3.30), we now have, for example, that
u( ) =€ E (Ah/\a) Uij + O(h?’)

(3.32)
’LLn( ) = 62 Z (AhAa) Uij + O(hZ)
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As we describe shortly, these formulas could be used to discretize boundary conditions

on an irregular boundary described by o(s) = (z(s), y(s))-

Before continuing on to solve PDEs in irregular regions, we briefly justify why the
truncation error in (3.21) is 72(h). What we wish to show is that for p =1,...6, we

have
(A"A™) T AP (R) + 7 (R)] ~ T3(R)

where, just to remind the reader,

(h) ~ [00%) 0 o) o) on) om]
and each entry in 7' (h) is O(h®). We rewrite (3.33) as

(APAS) T (AR (B) + 7 ()] = (A%) 7 72 (h) + (A"A) ™ 7' (h)

Using the symbolic package Maple, we have shown that for each p, p=1,...6

el (A"A%) e, ~O(1)

es (AhAO‘)f1 e, ~O(h™")
el (AhAO‘)_1 e, ~O(h™1)
el (A"A%) e, ~ O(h7?)
el (AhAO‘)_1 e, ~ O(h™?)
el (A"A™) e, ~ O(h72).

From this, we have that
(A"A%) 7t () ~ T2(h).

Furthermore, by symmetry, we expect the two equations given by

Ud(xij) = AN*Ue(a) +7°(h)
and

Ue(@) = (A) ™" Uelary) — (A" 7°(h)
to have the same truncation error. So we conclude that
(A% 72 (h) ~ 7 (h).

We can then write

(A 72(h) 4+ (A"A®) ' 71 (h) ~ 72(h).

(3.33)
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This justifies the truncation errors given above.

We remind the reader that our final goal of this chapter is to explain a method
which has been come to be known as the Immersed Interface Method, (IIM) and to
show how it can be used to solve a variety of linear PDEs. But instead of progressing
directly to the details of the IIM, we now take a slight detour and describe a more
naive approach to solving boundary value problems in irregular regions. While we
don’t necessarily advocate this approach, and certainly view the IIM as superior to
it, we nonetheless feel that because it is an obvious generalization of what we do in
rectangular regions to solve BVPs, it should be described in some detail. Also, it
makes nice use of the formulas derived thus far.

3.2.1  Simple approach to solving boundary value problems on irreqular regions

With the above stencil formulas for derivatives along curves in two space, we can
formulate a method for solving boundary value problems in an irregular region using
an underlying Cartesian grid. Once again, the motivation for this approach will
come from our understanding of how we solve BVPs problems on rectangular regions.
For this discussion, then, we will assume that our physical region is given by the
rectangular domain R, which, without loss of generality, is assumed to be square.
Grid points in R are labeled z;;,7,7 = 1,... N +1. As our canonical example, we will
use Poisson’s equation subject to mixed boundary conditions:

Viu=f, onR

3.34
au + bu, =¢, ondR ( )

where, we assume that a, b and ¢ are constant, and both a and b are non-zero. We
use the slightly more complicated boundary conditions to illustrate in a compact way
the manner in which both Dirichlet and Neumann conditions are handled.

In the rectangular region, which now includes the boundary points corresponding
tot=1,N+1orj=1,N+1, we discretize the Laplacian using our usual five point
stencil. We obtain (N + 1)? equations of the form

Uim1,j + Uig1,j + Uij—1 + Ui 1 — duy;
h? ’

This system by itself is underdetermined, as some of the equations involve values
outside of R. Therefore, we introduce 4N additional equations by discretizing the
boundary conditions at points along the boundary. These discrete equations each
have the general form

ij=1,...N+1 (3.35)

Uer — Uin
aupg + b———— = ¢ 3.36
DU (3.36)
where u,q is the value at a grid point on the boundary, u;, is a value at a point

just inside the domain and u,, is the value at a point just outside of the domain. A
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typical arrangement is shown in Figure 3.4. To approximate u,,, we just use the usual
second order accurate two point stencil. With these equations, we can now close the
system in (3.35) and solve for the unknown values w;;,4,j = 1,... N + 1. While one
could accomplish this by solving the extended system involving all (N + 1)? 4+ 4N
equations, what is usually done at this point is to solve for u., in the discretization of
the boundary condition (3.36) and substitute this value back into (3.35). Doing this
reduces the system to one involving only the (N + 1)? unknowns in R.

Upg Uin

Figure 3.4: Stencil used to approximate boundary conditions in rectangular case.

To illustrate this, we choose a boundary point on the left edge, and let u., = uy ;,
Uin, = Uz j and upg = uy;. Solving for ug ; in (3.36), we get

2h
Upj = Ug,; + 7(0 — auy ;) (3.37)

Substituting this expression into (3.35) gives us a modified equation for the grid point
T1,j

QUo i + Ui ioq1 + w1 — (44+2ha/b)uq ; 2¢
2, T ULj+1 LJth ( [b)ury :f_z (3.38)

Doing this with each boundary point gives us 4N modified equations, which with the
remaining equations in the interior of our grid, gives us a total (N + 1)? equations.

While solving BVPs on rectangular regions is considered quite standard, the rect-
angular case is in fact a very special case for the following reasons:

e Boundary conditions are imposed only at grid points x;; of the computational
domain.
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e [t is trivial to discretize the boundary conditions; the normal derivative u,, is
discretized using the usual two point stencil, and u,q requires no special grid
discretization, since it is a value at a grid point.

e The discretized equations for the boundary conditions are uncoupled from each
other and so it is easy to solve for the unknown values ;.

Furthermore, in the rectangular region, we have the additional advantage that we can
use a fast Poisson solver to solve the resulting (N + 1)? equations.

We now proceed to take advantage of the formulas derived in the earlier section
to generalize the above approach to irregular regions. As we will see, however, most
of the advantages listed above are lost in the irregular case.

Our physical domain is now assumed to be an irregular region {2 embedded into a
rectangular computational domain R. For present purposes, we assume that 2 is the
region exterior to a single embedded object. We still use Poisson’s equation, subject
to the same boundary conditions, as our model problem. Just as in the rectangular
case, we discretize Poisson’s equation at points inside of our physical domain and get
the system of equations

Uim1,j + Uig1,j + Uit + Ui 1 — duyy

h?

Again, there will be values of u;; used in the above equations that are not in our
physical domain, and so we will need to introduce boundary conditions to close the
system. If we assume that there are P values u;; used in equations(3.39), but that
correspond to grid points z;; that lie outside of €2, then we will need P additional
discretized boundary equations. To obtain these P equations, we first locate P points
ot = (o, a4), p=1,... P on the boundary. Then to discretize the boundary condi-
tions at these points, we use the formulas derived in the previous section. Using the
formulas for boundary conditions given in (3.32), our discretization of the boundary
conditions in (3.34) at P expansion points a* are

(ael +bel)S (A"A®) UL =¢, p=1,...P. (3.40)

Here, the stencils Si”j for the vectors Ui‘; are chosen so that the only points which lie
outside the domain are those which appear in (3.39).

Equations in (3.39)-(3.40) can now be solved for the unknowns u;; in Q. Solving
this system, however, is considerably more complicated in the irregular case than it
was in the rectangular case. The reasons for this are that

e The discretized equations for the boundary conditions are no longer uncoupled.
In order to obtain the boundary values needed by equations in (3.39), we need
to solve a P x P linear system.
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e It is no longer straightforward to obtain the modified equations analogous to
those in (3.38).

In general, we are not going to be able to write down this linear system explicitly.
Instead, we need formulate a linear objective function of the form C,,U,, + C;, = c,
where U, is a vector in R” of unknown values u;; corresponding to grid points outside
of the domain €2, and F' involves the right hand side. This linear system can be written
down in the form of a subroutine which describes how to apply C,, to the vector U,,.
This subroutine is shown in Figure 3.5

Function Cex(Uex)

1. Solve the system of equations

Uim1,j + Uig1,j + Uij—1 + Ui 1 — duyy

h?

= fz'j Ty € Q

for u;;, the solution at points z;; in . Use values in the vector
Ue. as guesses to the boundary values u;; corresponding to points
outside of €.

2. The u!* row of C,,U,, + F is then given by
Row,(CoyUer + F) = (ael + bed )T (AhAO‘)f1 Uj;

where U;; is a  x 1 vector of values u;; in the stencil S;; needed
to approximate the boundary conditions au + bu,, = ¢ at point
., on the boundary.

END Function Cex

Figure 3.5: Subroutine used to determine boundary conditions on irregular region.

We can then use the subroutine as an objective function in an iterative method
designed to solve the system C,,U,, + F = c. In practice, one should rearrange the
terms in this equation to get a linear system of the form C,,U., = ¢ — F and then
solve the system using a linear iterative method for the boundary values U,,. These
boundary values are then used one more time to solve the system of equations in
(3.39).
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This approach was implemented and tested and shown to converge at a second
order rate. We solve the linear system of equations using the linear iterative method
BICGSTAB, and found that the matrix C,, was fairly well conditioned for Dirichlet
data, but poorly conditioned for Neumann problems. The code for this problem was
implemented as part of a project for a seminar on the zZPL parallel programming
language, and has now become part of suite of test programs that the ZPL group is
using to develop a sparse array data type.

One potential advantage of the above scheme is that at most, the only interface
information that we need is the normal vector at an arbitrary point along the interface.
While the above formulas seem to rely on all the information in ¥, defined in (3.27),
we could have easily derived an approximation to u, by writing u, = Vu - n, where
n is a normal to the interface. Of course, if we only have Dirichlet data, then we
don’t even need the normal vector. The advantage of only requiring this information
is that we can easily extend this naive approach to 3d. Another advantage, although
not as significant, is that we only solve the equations on the region we are interested
in. There is no need to even solve for u;; outside the domain. As a result, the linear
system we solve will actually have fewer than (N + 1)? equations. Of course, the
significance of this advantage will depend on how (2 is embedded in R.

The main drawbacks to the above approach is that (1), the size of the system
Cey is of order 1/h and so increases as we refine the grid. Second, the linear system
given in Step 1 of the algorithm for computing the linear objective function is not
symmetric and cannot be solved using a fast Poisson solver. Since solving a Poisson
equation is often just a piece of a much larger computation, it is critical that this
computation be as efficient as possible. Therefore, we now seek an approach which
will allow us take advantage of fast solvers.

In what follows, we show that by incorporating jumps into the discretization of
our PDE, we can obtain an linear system whose size is not directly related to the size
of the underlying grid, and which can take advantage of a fast Poisson solver. The
remainder of this chapter is devoted to the details of this approach, now known as
the Immersed Interface Method.

3.3 The Immersed Interface Method

To arrive at the method for solving PDEs in irregular regions described above, we
generalized the idea of solving for unknown boundary values and incorporating them
into a discretization of the Laplacian. As we saw, in the irregular case, this meant
that we needed to solve a non-trivial linear system to obtain these boundary values
and then incorporate them into the equations involving the Laplacian. But this led
to a system of modified equations that could not be solved using fast solvers.

As an alternative, we now describe how we can use jump information on the
interface to impose boundary conditions. Recall that in the rectangular case, we
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obtain system of modified equations that takes the form
AU=f+B (3.41)

were A is the discrete Laplacian, modified near boundary points, and B involves
the inhomogeneous terms in the boundary conditions. To generalize this formulation
of the BVP to irregular regions, we propose searching for a matrix B that gives us
second order accuracy in the irregular case. Unlike in our naive approach, we make the
additional assumption that our model equation, Poisson’s equation, holds everywhere,
not just inside of the domain of interest. We propose adding a correction term Cj; to
the discrete equations to get

Uj—1,5 + Wip1,j + Ujj—1 T Wij41
J J J J
hZ

— 4ui; -
i —f—Cij:fij—i-Bij, Z,]:l,...N+1 (342)

where now, Cj; is determined in such a way that the left hand side of the above
discretization is a second order approximation to the Laplacian, even if values u;;
extend beyond our irregular physical domain. Just as in the rectangular case, where
we only obtained modified equations near the interface, the Cj;’s will only take on
non-zero values near the interface. The main advantage to this formulation is that
once we have the values C;;, we include them as source terms (analogous to the B in
the rectangular case) on the right hand side of the above discretization, and so can
use fast solvers to solve the resulting linear system of equations.

As we will show, the Cj;’s are approximations to a linear combination of the jumps
in the solution and its derivatives at the interface. That is,

Cij = bilu] + bafug] + ba[uy] + baftis] + bs[uyy] + bs [ty

3.43
= 5[] 8
where the b,’s are constants which depend upon the grid point z;;, B, is the vector
(b1, by, ...bg]" and U, is defined as in (3.13). Later, we will see that it will be convenient
to describe C;; in terms of [Ug] = [[u], [un], [us], [tss], [(un)s], f] rather than [U.], and
so will also write C; as

Cij = balu] + ba[un] + bs[us] + ba[uss] + bs[(un)s] + bs[f] + O(R?)

= B! [U,] + O(h®) (3.44)
The entries of B, and B, are what we now need to determine.

The idea of using jump conditions to modify stencils near boundaries of irregular
regions was first described by Mayo [40] and formalized by LeVeque and Li [36, 37].
In their work, they focused mainly on problems involving discontinuous coefficients.
Later, Yang, in her PhD thesis described how these ideas could be used to solve
boundary value problems in irregular regions [58]. Wiegmann, in his PhD thesis,
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improved on the stability of the method and developed the Explicit Jump Immersed
Interface Method (EJIIM) [56,57]. Also in a PhD thesis, Zhang applied the Immersed
Interface Method to the problem of solving the acoustic wave equations in heteroge-
nous materials [59]. In the discontinuous coefficient case, the underlying matrix is
no longer symmetric. Adams, in [1], developed a multigrid algorithm for solving the
resulting non-symmetric system. The work described here is based loosely on the
work of Yang and Wiegmann.

While the Immersed Interface Method was derived in detail in the above cited
references, we re-derive the method here in a manner which we hope leads to a fairly
algorithmic approach using the IIM. The minor differences between our approach and
that taken by Li, and others are

e We do not rely on an arclength parameterization of the interface or boundary
curve, but rather allow for general parameterizations. This makes it especially
convenient to use high order methods to obtain interface information such as
curvature and normals.

e We obtain formulas which make it obvious the role that various elements (jumps,
proximity of a grid point to the interface, choice of stencils) play in the con-
struction of the correction term Cj;,

e The formulas presented lead to a straightforward approach to computer imple-
mentation,

e The resulting formulas make it clear how to extend the IIM methods to PDEs
other than those described by Yang, Li, Wiegmann, etc.

Here, we only derive the formulas for boundary value problems with constant coeffi-
cients; however, we our derivation can be extended to case of variable, even discon-
tinuous coefficients in a very straightforward manner.

We now proceed in three sections. First, we define the function C(z,y), the
correction term needed when differencing functions across boundaries. Then we use
this corrected function to derive interpolation formulas for the derivatives in the vector
U used in the last section. Finally, we use these interpolation formulas to discretize
boundary conditions at irregular boundaries and illustrate how we can solve elliptic,
parabolic and coupled systems of boundary value problems.

3.8.1 The correction term

We begin by supposing that we have two smooth functions u™ and u~ each defined on
the entire rectangular region R. For our purposes, it will be convenient to assume that
these functions are in C'°°. However, in practice, infinite smoothness isn’t required.
Embedded in R is a subdomain Q. The region R\Q" is defined as Q~. The boundary
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between Q1 and Q™ is I'. For the remainder of this chapter, we will assume Q = Q~,
the irregular region exterior to the single embedded object 2, = QF.
Given functions u™ and v~ defined over all of R, we define a function u as

u(z,y) if (z,y) € Q7

u(z,y) if (z,y) € Q (3.45)

o=
In general, we expect that the function u(z,y) will have discontinuities in its value
and derivatives at the boundary I'. We call these discontinuities jumps in u(zx,y) and
define a few of them at a point o = (e, v) on the interface as

[u] = u' (g, ay) — u™ (0, )
[ug] = uy (g, o) — ug (g, o)
[uy) = uy (@, ) — uy, (aa, o) (3.46)
[tae] = gy (0, ) — ugy (s, ay)
[ugy] = u;“y(am, ay) — ,u’g;y(ax’ ay)
[Uay] = u;—y(al'? ay) — ux_y(aCU? ay)

Since each of the functions u* and «~ are smooth (in C'*, for our purposes), we can
expand each of them in a Taylor series about a point o = (v, @) on the interface.
Assuming that these series converge for all (z,y) € Q !, for any choice of expansion
point «, we can subtract the expansion for v~ from that for «* and define C'(z,y),
the difference between these two functions as

C(Iay) = u+(x,y)—u_(x,y)

= [u] + [ua](r — az) + [uy](y — o) + %[um] (x—0x)’+  (347)

%[uyy](y - ay)2 + [ny] (:L’ — ax)(y — ay) + O(h3)

We use this definition of the correction term C(x,y) to write down the following
identities for «™ and v~ in terms of u(x,y) and C(z,y).

+ _J ulz,y)+Cz,y) (z,y) €Q”
u't(z,y) —{ w(z. 1) (1.y) € Q* (3.48)

!The requirement that the Taylor series converge independent of « for all (z,y) € Q is really only
made for the sake of the present discussion; in practice we only retain a few of the terms in C(z, y)
and choose expansion points close enough to (z,y) to ensure convergence of the truncated series.
This truncated approximation will of course depend on the choice of a and only approximates the
difference ut — u~.
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Similarly, we have that

- _ [ u(z,y) (z,y) €
uley) = { u(z,y) — Clz,y) (z,y) € QF (3.49)

The reason for writing these explicitly is that in practice, we only have the discon-
tinuous function wu(z,y) and its jumps along I'. However, we will want to be able
to differentiate u at points near the interface using finite differences. Since we can’t
use finite differences across the interface on the discontinuous function v and hope to
obtain any accuracy, we will want to recover the smooth function u™ or u~ from u
and differentiate that function instead. This function that we recover is given by

u(z,y; €,n) = { ut(x+&y+n) (r,y) € QF

w o4yt () €0 (350

and can be thought of simply as a smooth extension of the discontinuous function
u(z,y).
Using the definition for u* and w~, we now have, for z;; € QF, that

uxz+&y+n)+Ca+&y+n), (@+&y+n) eQ

u(x+ €y + 1), (@+&yrnear BB

ulr,y; §,m) = {
and for (z,y) € Q as

1 . _ u(x +&,y+n), (x+&y+n) €
u(x,y,g,n)_{ we+&y+n)—-ClE+&y+n), (@+&y+n)eQr (3:52)

In Figure 3.6, we show a 1d illustration of the function u as an extension of a discon-
tinuous function wu.

We can now use u to obtain the correction term Cj; for the discrete Laplacian.
Since @ is a smooth function and equal to either u* or u~, depending on whether
z;; € QF or Q7, we can difference it using the standard five point stencil and obtain
an approximation to the Laplacian that will now involve a correction term made up
of corrected points in the stencil.

So far, we have assumed that C'(x,y) is exactly u™ —u~ and that w is exactly u™ or
u~. No discrete approximations have been made. In practice, however, we only have
jumps up to second derivatives, and so we will want to consider a truncated version
of the correction term C(z,y). In general, we define Ci(z,y) = C(z,y) + O(h'™).
For + =0, 1,2, we have for example,

Co(, y) = [u]
Ci(z,y) = [u] + [ua](z = az) + [uy](y — ay)
1
(

Co(w,y) = [u] + [ua (@ — az) + [uy)(y — ay) + 5wz (@ = ap)? + (3.53)

[ty (y — O‘y)z + [ty ) (2 — ) (y — o)

DO | —
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QU E) = ule +&) + Clr +§)

N

N

0O~ OF

()

/ x+& a x

Figure 3.6: Diagram of 1d function u(z; &) shown as a smooth extension of the dis-
continuous function u(-). The correction term C(z) is defined so that u(z;; —¢§) =
u(z 4+ &)+ C(z +§).

From the jump information that we can readily obtain from the PDE and boundary
conditions, we have enough information to use the truncated function Cy(x,y). It
will also be convenient to introduce a functions C’(x y; €, m) and Ci (x,y;&,m), which
we define as

Clz,y;&,m) = Clz + &y +n)

- (3.54)
Ci(w,y;6,m) = Ci(x + &,y +n)

Ezxample

We are now ready to illustrate how these correction terms C(z,y) or Cy(z,y) can
be incorporated into finite difference stencils to accurately approximate derivatives
across interfaces. For this example, we choose a stencil S for the point z;; as

S = {(0,0), (0,1), (—1,0), (1,0), (0, ~1), (1, —1)} (3.55)

We assume that for p=1,2,3, 2, € Q" and for p = 4,5,6, z, € Q. This stencil is
shown in Figure 3.7. We also define u;; = u(x;,y;) and u(z;qk, yj1¢; kh, €h). Assume
we are given a function u(x,y). Assuming that u;; = u(z;,y;) exactly (no discrete
approximations), we can approximate VZ*u(z;;) = u(zy), 21 € Q to second order
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Figure 3.7: Stencil used in example illustrating how correction terms arise. Function
values at stencil points in {2~ will be corrected so that resulting function is smooth.

using
Uig1 + Wi 1+ Wi 1+ Ui i1 — 4
VQU(ZEZ']') — +1,j 1,5 h,; 1 J+1 J + O(h2)
= 12
Ui i— 5 TiyYis 0, —h Uj 5 — 4Uz
i1+ C(zi,y, ) + Ui I O(h?)
h2
Uity + Uim1,j + Uij1 + U1 — duy;

h?
1 ~
+ = (Claisysi 1,0) + Claiy s 0, —h) ) + O(?)

Uit + Uit + Uijrr + Ui -1 — duyy

h2
1 — —
+ ﬁ (CQ(l'i, yj; h, 0) + Og(l‘i, yj; 0, —h)) + O(h)
(3.56)

The correction term Cj; for this particular approximation located at the anchor point
51 1s

1 —_—
Cij = =5 (Calis s 1, 0) + Calas, 530, —h)) (3.57)
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It is easy to verify that

1 /~ —
Cij = 7w (Cz(%yj; h,0) + Ca(z;,y;; 0, —h))
2 1 1 1 1
= ﬁ[u] + E[UI] - E[uy] + 5[“:5:5] + §[uyy] (3.58)

2 1 -111 \7
_<ﬁa Ea 77 57 §7O> [Uc]

From this, we can easily see that the vector B, introduced in (3.43) is given by
2 1 -1 11
BC - <_ 70 1 0 o oo 0) (359)

In the above example, we showed how we could derive an expression for Cj; for a
particular grid point near an interface. Now, we want to set up some notation and
derive general formulas for this correction term. We still make the assumption that
we have all the jump information we need. Later, we will describe how to set up a
linear system to obtain jump information that is missing when we solve boundary
value problems.

To compute general formulas for the correction term, we first need several defini-
tions, which we list now.

Definition 1. The region €);; is defined as

o Qt Tij € Qt
Q= { O ayeQ (3.60)

Definition 2. . The variable afj’é, which gives us the sign on the correction term, is
defined by
1 if Tk e € Q2 and x5 € QF

0 if Titpjre € Qi

where (ky, £,) is the p* entry of the siz point stencil S used at point x;;. Using this
sign quantity, we could define t(x,y;&,n) in (3.51) and (3.52) at the p™* point in the
stencil S;; as

u(z;, Yjs kph, Zph) = u(xiJrkp’ ijrfp) + Ufjp’épa;(xi’ Yjs kp, Zp) + O(hg) (3.62)
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Definition 3. The vector P(z,y;&,n) is defined in terms of the function Cy(z, y; €,1)
from (3.54) so that
Ch(s,j3 €)= Plai,y: &) [Ue(a)
where
1
(i + € — 4"
P, y55€,m) = = Of(:j))
(@i + & —at"”)?/2
(4 +n— )22
(i + & — ) (y; +n — 7).

(3.63)

The vector [Ug(c)] is the vector of jumps [U.(«)] = UF () — U, (), where, as defined
in (8.13), Ud(+) = [u(-), uz (), uy(+), Uz (), tyy (+), gy ()T . In the following discussion,
we may drop the explicit dependence on a and just write [U.| instead of [U.(a)]; how-
ever, it is always assumed that the entries of the jump vector [U.| are to be evaluated

at a point o on the interface.

Definition 4. The matriz ®;; € R®*® is defined as

ey (Di) = 017" Py, y;1 kyh, 1) (3.64)

p

The sign quantity o is used to get the correct sign on the correction term that appears
in equations (3.51) and (3.52). Note that this sign will be zero for those rows corre-
sponding to grid points in the stencil which lie on the same side of the interface as
the anchor point.

Definition 5. The vector ﬁij € R*! is defined so that
€§ﬁw = ﬂ(xz, Yj; k'ph, Eph) (365)
where (ky, £,) is the p™* entry in an ordered stencil S;;.

With the definitions above, we can now write out the six equations corresponding
to (3.62) as

Uz'j = Uz'j —+ (I)l][Uc] + 7'1 (h) (366)
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where, as before, the entries of 7' (h) are each O(h?).

We now derive the correction term Cj; used to correct the Laplacian. Since
u(xi, yj;€,m) is smooth, and has continuous first and second derivatives, we can ex-
pand it about a grid point x;; not exactly on the boundary, and write, for example

(i, yj; kph, bph) = u(wi, y5) + ug (i, y5) (kph) + uy (i, y5) (bph) +
1 1
Qum(% y;j) (kph)? + §Uyy(ﬂfi, y;)(Lh)? + (3.67)
Uay (i, ;) (kph) (Lph) + O(R®)

We can use the derivatives of u(x,y) here since we assume that z;; is not exactly on
the interface and so these derivatives are well defined. All six equations of the above
can be written out as a linear system using A", defined in (3.12). This system is

Uy = AU, (2i5) + 7(h) (3.68)
Using (3.66), we can then write

Up(i) = (AT + (AN 7' ()
= (A" [Uyj + @45[U) + 7' (h)] + 7' (R) (3.69)
= (A" U + (A" 710y (U] + 7 ()

where, recalling that 72(h) ~ [O(h?), O(h?), O(h?), O(h), O(h), O(h)], we make use
of the fact that

(AM)=ErY(R) + 7 (h) ~ 72(h) + 7' (h)

3.70
~ 72(h). (3:70)

As before, we can write down an approximation to the Laplacian as
V2u(zi,y;) = (ea +e5)" [(A) 71Uy + (AM) 7' 04[U]] + O(h) (3.71)

= (64 + 65)T(Ah)_1 Uij + (64 + 65)T(Ah)_1q)ij[Uc] + O(h)
This is just the usual five point stencil plus a correction term and can be written

Ui,y + Wit + U1 + W1 — 4wy

h2

Viu(zi, y) = + Cij + O(h) (3.72)

where now, the general formula for Cj; used is given by

Cij = (64 —+ 65)T(Ah)71q)ij[Uc] (373)
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It is easy to verify that for the particular example given in 3.3.1, this general formula
gives us

_ _ T
= (ailj’OP(xi, yj; h,0) + U?j’ilp(:l?i, (THIR —h)T) U]
(3.74)

1 1 1 1
5[“%] + 5[“?;2/]

as we verified in (3.58). The advantage of these formulas is that given a six point
stencil near an interface, a nearby expansion point (a,,,) on the interface, and
information about which points in the stencil are in Q% and which are in Q, one can
easily automate the computation of the coefficients (es + e5)T (A")"'®;; of the jump

vector [U.]. First, one computes o;; = for each pomt (k, ) in the stencil S;;. Then one

forms the rows in the matrix ®;; by multiplying a by row vectors P(Il, yj; kph, £ph).
Finally, the matrix A" is formed and inverted and multiplied by ®;;. The coefficients
of [U.] are given by the sum of the 4 and 5" rows of the product (A")~'®;;.

If we want to correct the general linear operator

L(u) = V?u + \u (3.75)
we use the general formula
Cii = (Ner + ea +e5)" (AN 7' @,[U, (3.76)
Again, the coefficients of the jump vector [U,] are just linear combinations of the rows
of the matrix (A")~'®;;.
To summarize, we now discretize the PDE V?u = f in the domain Q = Q~. Using
(3.72), we have
Ui41 J + u; 1,5 + uz,]+1 + uzy 1= 4“2]
+
52
where B;; is used to impose boundary conditions on the boundary of the computa-
tional domain. Because of the way in which Cj; is constructed, it is automatically
zero away from the interface (at regular points). If the point x;; at which we discretize
the PDE is more than a few mesh widths away from the interface, then the matrix
®;; is the zero matrix, since in this situation x; x, j1e, € €;; for p=1,...6 and, from
(3.61), o kp’el’ = 0,p = 1,...6. There is no contribution from the jumps [U.] at the
mterface
At this point, the equations given in (3.77) cannot be solved to get values u;; in
R, since we don’t have all the jumps needed to form [U.]|, and hence the correction
term Cj;. To obtain these unknown jumps, we need additional equations, which we
obtain by discretizing the boundary conditions.

Cij = fij + Bij, i,j=2,...N (3.77)
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3.3.2  Duiscretizing boundary conditions using jumps

In the last section, we derived a formula for Cj;, the term needed to correct the usual
five point stencil approximation to the Laplacian near a discontinuity. This term,
which we showed is a linear combination of jumps in the vector [U.(«)], is included
as a source term in the discretization of the PDE at all irregular points.

As we pointed out, the set of equations given in, for example (3.77) is incomplete;
we don’t have all the jump information needed to form the vector [U.]. We close this
system of equations by discretizing the boundary conditions using the same jump
information. The manner in which we do this is the topic of this section.

For the present discussion, we assume that the boundary conditions are of either
Neumann or Dirichlet type and have the form

(Dirichlet) u(a) = c(a) (3.78)

(Neumann) un (@) = ¢(a)
where « is a point along the interface. We can easily handle more complicated mixed
boundary conditions of the form a(a)u(a) + b(a)u,(a) = c(a), but to keep the dis-
cussion simple, we don’t consider this case here.

We now discuss briefly how we use jump information to obtain accurate discretiza-
tions of these boundary conditions at a point « on the interface. In a manner analo-
gous to what was done in (3.68), we use equation (3.21) to expand the entries of Uj;
in a Taylor series about the point «. In vector form, this equation is essentially that
given in (3.20) and is

Uj = (A"A%) U () + 7%(h) (3.79)

where now we have used the superscript £+ to indicate that we are interpolating
the function u*(z,y) if z;; € QF or the function v~ (x,y) if z;; € Q. Solving the
above system for UF () and using the definition of [Z—j given in (3.66), we can derive
interpolation formulas for the entries of U (). These are

UF(a) = (A"A%) Uy + 72(h)
= (A"A) 71 Uy + @45[U:] + 7' (h)] + 72(h) (3.80)
= (A"A) 7 U + (A"A*) ™' @y5[U] + 7°(h)
To get derivatives in the normal and tangential directions so that we can discretize
boundary conditions, we use the fact that Uy = XU, (see (3.28)) and multiply both

sides of the above expression for U. by ¥. We also make the substitution [U.] =
Y HU,] and get

U (a) = S(A"AY) U, + S(A"AY) 1,5 U] + 7% (h) (3.81)
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Approximations to u(«) and u, (), the quantities needed to approximate the Dirichlet
and Neumann boundary conditions given in (3.78), are then

G{E(Ah/\a)_l Uij + Q{E(AhAa)_l(I)ijE_l[Us] + O(h3)
eZTE(AhAa)’I UZJ —+ eZTE(AhAa)’lq)ijE*l[Us] + O(hQ)

B 3.82
o) 352
These expressions differ from those in (3.32) only in that they involve non-zero jumps;
if the function u(z,y) and its derivatives are continuous across the interface, these
two sets of interpolation formulas are identical.

When we discretized the Laplacian in (3.71), we assumed that we wanted to
approximate VZu at a grid point z;;. To form the correction term Cj;, we had to
choose an expansion point « close to x;; and form ®;; using this expansion point. We
form this correction term at all irregular points, whether or not they are in our domain
of interest. When we discretize boundary conditions, the situation is slightly different.
Here, we assume that we have chosen M points ay, k = 1, M along the interface at
which we wish to impose boundary conditions. To discretize the boundary condition
at ay, we need to find a grid point z;; near oy which is in the domain QO or Q™ in
which we want to solve the PDE. With this grid point z;; and a4, we can then form
the matrices ®;;, ¥, A" and A® needed to form the coefficients of the vectors U;; and
[Us].

3.3.3 A simplified notation

The formulas for the approximation to our model problem, Poisson’s equation, and
the two types of boundary conditions we are considering are

V2u(wi, y;) = (eq + es)T (A") 1 Uiy + (es + e5) " (A") 19,5 U] + O(h)
uF(a) = el S(A"AY) LU + el S(A"AY) 10,5 U] + O(h?)
uE (o) = ey S(A"AY) T U + e3 S(A"AY) 1o, 57 U] + O(h?)

n

where we have replaced [U,] in (3.72) by ¥7!'[U,]. Our motivation for doing this will
be evident shortly.

These formulas get rather unwieldy so we now introduce several definitions to
simplify the notation.

Definition 6. The three vectors w, v and r all in R® are defined as

[[u], 0, [uy], [us], 0, 0"
[0, [un], 0, 0, [(un)s], 0]
[0, 0, 0, 0, 0, [f]]"

W
\4

r

so that [Us] =w + v +r.
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Definition 7. The coefficient vectors A, DW D;j and DH are given by

= (ea +e5)"(A")

b, 0, bs, bs, 0, 0]
[0, by, 0, 0, bs, O]
[0, 0, 0, 0, 0, bg]

‘mu

where b, is the p™ entry of B, given by
B = (64 + 65)T(Ah)_1q)ij2_1

This is exactly the vector Bs introduced in (3.44). From now on, however, we drop
the subscript s and assume that all jumps are in the normal and tangential directions.

Definition 8. The vectors I, and I, , both in R® are defined as

-1

T = e; & (A"A%)
Tok = €5 5 (A"A%)

)

-1

Definition 9. Vectors Z;7, I}, and I,{, all in R® are given by

IIEU = [blla 07 bga bilv 0? 0]
v =10, b, 0, 0, b, 0]
f

where B' € R® is given by
B =elS(N"AY) 10,51

Vectors IV

n,k?

VA and T' nk ore defined analogously, using B" in place of B, where
B" = el S(A"AY) T2t

Using these definitions, we can now write the approximation to the Laplacian as

VPu(xi,y;) = AUij + Djywij + Dijvi; + Djiry; + O(h). (3.83)

Similarly, the discretization of the two types of boundary conditions at the k** bound-
ary point «y can be written as

uE(ay) = LUy + TPwy + Iy, + Ty, + O(h?)
u(ag) = LopUsj + T pwi + T2 Vi + I1 1 + O(R?)

n

(3.84)
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The three terms in the discretization of the PDE can be viewed as the three
singular terms

Dy [ 0ot
Dijv ~ / c(s)0(xij — o(s)) ds (3.85)
Dijr ~ [~ + [f]Xa+ (zi)

where §'() is the dipole function, ¢() is the Dirac delta function and Yo+ + xo+
is a smoothed version of the characteristic function yg+. The function o(s) is a
parameterization of the interface I' and the functions ¢(s) and ¢(s) are the strengths
of the dipole and delta functions respectively. The jump [f] in the third equation is
the jump in the right hand side of Poisson’s equation, the model problem we have
been using throughout this discussion.

While we do not attempt to verify rigorously that the approximations in (3.85)
hold, we can argue that the terms on the left hand side capture the correct singular
behavior suggested by these approximations. First, dipole singularities in the source
term will lead to non-zero jumps in the solution of the PDE; similarly, delta function
singularities lead to jumps in the derivative of the solution, and discontinuities in
the right hand side f lead to a jump in the second derivative. So if the strengths of
the singular functions on the right hand side of these approximations are non-zero,
we expect non-zero values in the corresponding terms on the left hand side. Second,
these discrete approximations are only non-zero at irregular grid points. From their
definition, these irregular grid points are no more than one mesh width away from
the interface and so as the mesh is refined, the region in which these approximations
are non-zero goes to zero. This behavior models in a discrete sense the notion that
the singular functions have support only on the boundary. Finally, our discrete ap-
proximations have the right singular behavior. We have that the Dj;w ~ O(1/h?),
D;;jv ~ O(1/h) and DJfr ~ O(1). This singular behavior is consistent with the fact
that the dipole is a higher order singularity than the delta function, which is more
singular than the characteristic function.

3.3.4  Determining unknown jumps

With the notation introduced in the previous section, we are now ready to describe
very generally how we can solve our model problem. We postpone a discussion of the
numerical details until later. We assume that we want to solve the problem in the
exterior region {2 = 27, subject to Dirichlet conditions. The model problem is

VZ=f, (z,y) € Q7

u=g, (z.y) el (3.86)
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Using jumps [U.(ax)] at points along the interface, and defining f;; = 0 for z;; € QF,
we write down the discrete equations as

AUsj + Diywij + Digvij + Dijrig = fij, w5 € R

3.87
Ikaj—i-I;j’wk—l—Ika%—I,{rk:gk, kZl,...M. ( )

To form the correction terms needed for each set of equations, we must have all the
jump information necessary to form the vectors w, v and r. Some of this information
can be obtained from the data for the given problem. If we assume that outside of
our domain of interest, the solution is exactly 0, then we have that [u] = ut —u™ =
0 —u~ = —g. From this information, we can form the vector w, using interpolation
to obtain necessary tangential derivatives. We also know the right hand side of the
PDE we are solving and so we have [f] = fT— f~ = 0— f~ needed to form the vector
r. What we don’t have is the jump in the normal derivative [u,] for the vector v.

To obtain this unknown jump information, we must solve the system of equations
given in (3.87). This system is linear and can be written in the general form CV +F =
g, where V is a vector in R™ of jumps [u,]. The vector F involves known jumps [u] and
[f] and boundary conditions on the computational domain. To see how we formulate
this system, we provide a pseudo-code for a subroutine we could use to compute
CV + F. For the following subroutine, we assume that we have a fast Poisson solver
which for notational convenience, we call FPS. This solver takes as input a right hand
side F which is defined on an (N + 1) x (N + 1) grid. Boundary data is supplied on
the boundary of the grid. To obtain the solution, we call this solver using the syntax
U = FPS(F). The algorithm is shown in Figure 3.8.

This system could be solved either directly or using an iterative method, on the system
CV = g — F. In either case, we should modify the above subroutine so that only
homogenous terms are involved. A second subroutine could then be written which
determines the right hand side g— F'. To solve the system directly, we form the matrix
C explicitly apply the modified subroutine C' to columns of the identity matrix. The
resulting matrix is dense and non-symmetric, but is small and so can be solved quite
reasonably using a direct method. Alternatively, we could solve the system using a
linear iterative method, such as GMRES.

Once we have V', we can then use the jumps to form the correction term Cj; at all
irregular grid points and solve the resulting system one more time to get the solution
at all grid points.

Before continuing onto a section where we describe the details of the above, we
first describe how we can solve parabolic equations.
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Function C(V)

1. For each grid point near the interface, form the vector v;; using V'
and the temporary right hand side R™ ¢ RWHDX(VFD - where
the entry corresponding to the irregular grid point z;; is given by

th;np = D;jw,»j + Dijvij + Dgrij
; ; tmp _
For regular grid points, R,;;" = 0.

2. Use the fast poisson solver to get U = FPS(R'™ + B). Use B,
defined on the grid to apply appropriate boundary conditions on
the boundary of the computational domain.

3. The k'™ entry of the vector C'(V) is given by
(C(V))i = UL + Twy + Tivy + Tixy
foreach k =1,... M.

End Function C

Figure 3.8: Subroutine for computing C'V + F' needed to determine unknown jumps
V.
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3.3.5 Solving parabolic equations

In this section, we show how the ideas presented can be used to solve parabolic
boundary value problems. We begin by considering the model problem

uy = vViu, (z,y) €Q (3.88)

subject to Neumann (flux) boundary conditions

ou

o =Y (3.89)
on 0f) and given initial conditions. The parameter v is the diffusion coefficient and
is assumed to be constant and continuous across the boundary. As we pointed out in
the first section of this chapter, the coefficient vectors needed to form the correction
term Cj; depend upon the PDE we are solving. As we have seen in the preceding
sections, this dependence comes about in part through the matrix ¥, first introduced
in (3.27). Here, we show how this matrix is modified for the parabolic problem.

The major differences between the elliptic problem and the parabolic problem are
that (1) we don’t automatically have the equation needed to form the last row in the
matrix ¥, defined in (3.27), and (2) in the parabolic problem the jumps are now time
dependent and must be determined at each time step.

To get the last row of ¥, we must first discretize the equation to get something of
the form

VZu+ u = f. (3.90)
or alternatively, something of the form
u+ AV?u = f. (3.91)

To get these coefficients, we discretize the parabolic equation in time using either
backward Euler or Crank-Nicolson and write down a semi-discrete equation as

(1—Atv B V) u™ ! = (1 + Atv B, V) u™ (3.92)

where we have used the superscript m to indicate the time level ¢,,. The constants
(1 and [, identify the time discretization scheme used. The values (i, f2) = (1,0)
correspond to a Backward Euler scheme, and (0, 32) = (0.5,0.5) correspond to a
Crank-Nicolson scheme.

With the PDE written in this way, we see immediately that for the parabolic case,
Ain (3.91) should be set to A = —Atv ;. Using these coefficients, we form a matrix
we call 3, to distinguish it from the ¥ used for elliptic problems. The right hand side
f is then given by

f=0+Atv B V) u™ (3.93)
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which we will need to evaluate at expansion points at the boundary of our domain
using additional interpolation formulas.

To get the jump information, we again use the boundary conditions, as we did in
the elliptic case. If we assume that outside of the flow domain (the Q~ region), the
solution is identically 0, then we have that the following jump information.

[um—i—l] — _gm+1
n
[ )s] = =g

[fl= (14 Atv B V?) u (3.94)

= [u™] + At v G ([ug] + [uy])

To form the jump [f], we need to form a second set of interpolation coefficients, which
we label here as ZJ™ . Using the fact that [U,] = E_I[Us], the coefficients of this vector
are

-1

TI" = (e1 + Atv By(es +e5)8 (3.95)

and we have
[f] =2 U (3.96)

These coefficients should be stored along with the others, and when the jump vector
r™*! is needed, we can form it using

r"tt =10, 0, 0, 0, 0, Z."[U,]"]. (3.97)

Note that the sixth entry in the vector [Us]™ is ™, the jump [f] from time level m.

Using the jump information given by the problem data, we can form the jump
vectors v and r. The set of scalar equations we need to solve for the unknown vector
w are

HUL = H'U + Dyt + Dy + Dyt
_(ﬁm—m-i-l —|—D —m+1 +DZ]—:;L+1), z;; € R (3.98)
I kUm+1 +I k_m+1 +In k_zH—l +If kuHl = Gk, k= 17 M

where the jumps from time level m and m + 1 are needed. Also, we use the overline
here to distinguish the jumps and jump coefficients here from those used for elliptic
problems. The coefficients H and H' are the usual coefficients used in the parabolic
case and, using our notation, are given by

H = (er — AtvBi(es +es5) (A"

, T 1 (3.99)
H = (e + Atv fBa(eqs +e5))" (A")
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The coefficients D.

i D;; and 55 are given in terms the vector B, given by

B= (1 — Atv(es+es)) (A 10,5 (3.100)

where matrices A" and ®;; are defined exactly as they are for the elliptic problem.
Using the entries b; of B, we have that

Dy; = [by, 0, bs, by, 0, 0]

Dij = [0, bg, 0, 0, b5, 0] (3]_0]_)
D;, =00, 0,0, 0, 0, b

The vector Z,, . is defined exactly as it is for the elliptic case, with X replaced by pOF
T, =el [i (AhAa)’l] (3.102)

The coefficient, vectors Z,, , Z,, and T,]: are defined in terms of the vector B”, given by
B = IS(APAY) 19T (3.103)

Using B” instead of B, these coefficients are defined exactly in (3.101).

Unlike the elliptic case, it may not always be possible to create the jump co-
efficients once as a preprocessing step, since these coefficients depend on the time
step At. In an involved computation, where the time step is determined by stability
considerations of some other part of the problem, one will need to recompute these
coefficients whenever the time step changes. Fortunately, computing these coefficients
does not require much overhead.

The resulting matrix system for the unknowns w;; can be solved for using a fast
Poisson solver. The C' matrix for the unknowns is well conditioned, as it was in the
elliptic case.

Before continuing to numerical examples for the elliptic and parabolic problems,
we discuss the truncation error of the parabolic scheme. Unlike the elliptic case, the
transformation U, = YU, has a truncation error associated with the last row of X.
Assuming that we have [V?u] = [ug,] + [uy,] exactly, we have that

Us = YU, + Tap(Al) (3.104)
for the backward Euler scheme, and

U, = SU, + Ten(At) (3.105)
for the Crank-Nicolson scheme. The vectors 755(At) and 7oy (At) are given by

mss(AL) ~ [0, 0, 0, 0, 0, O(AH)]"

3.106
Tex(At) ~ [0, 0, 0, 0, 0, O(A*)]|" ( )
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When using backward Euler, equations (3.66) become

Uy = Usj + ®5[U) + 7' (h)

< ) (3.107)
= Uy; + ;5 U] + mae (A1)} + 7(R)

The equation for Crank-Nicolson is the same, with 7.y (At) replacing 7s5(At). Using
the symbolic package Maple, we evaluate the approximation error ¥ '755(At) and
Y ren(At). These vectors have form

EilTBE(At) ~ [Oa 0, 0, 0(1)’ 0(1)’ 0(1)]T

-1 T (3.108)
Y ron (At) ~ [0, 0, 0, O(At), O(At), O(At)]

Recalling that the last three columns of ®;;, defined in (3.64), have entries that are

K
all O(h?), we can derive the truncation error expressions for U;; in (3.107) and get
for backward Euler

Uy = Uy + @557 [U,] + O(h?) (3.109)

and for Crank-Nicolson,

Ui = Uij + 05,571 {U,] + O(R*At). (3.110)

The error in these last two equations applies to each element in the vectors in [71]
When we approximated the Laplacian in (3.71), we relied on the fact that we could
approximate ﬁij to O(h?) in order to get an expression for the Laplacian that was
O(h). Using the same line of reasoning, we see that when using backward Euler, we
only can expect an O(1) approximation to the Laplacian. When using Crank-Nicolson,
we still expect an O(h) approximation, assuming that At ~ h. However, we want to
approximate (1 — Z/At&VZ)ﬁi"j”l and (1+ VAt52V2)ﬁiT , which we can do to at least
O(At), regardless of the scheme that we use. This is more than sufficient to ensure
that the backward Euler scheme will be first order accurate. For Crank-Nicolson, it
is also sufficient for second order accuracy, since we only use these approximations
near the boundary.

In the next section, we solve a particular parabolic problem and show some typical
results. We verify that we get at least first order accuracy for backward Euler, and
second order for Crank-Nicolson. In the case of the Neumann problem, we solve for
the unknown value of u at the boundary and show that this also converges at a second
order rate.

3.4 Implementation details of the Immersed Interface Method

We are ready to use the correction formulas derived above to solve a variety of lin-
ear boundary value problems. In particular, we will solve an elliptic and parabolic
equations that arise in potential flow and Stokes flow.
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Before starting with the actual solution process, however, we first discuss the
pre-processing needed to obtain the coefficient vectors Dj;, D;; etc. We begin by dis-
cussing the representation of a general interface using Fourier splines. In the following
discussion, we use the term interface to mean the boundary of a single embedded ob-

ject.

Representing the interface and normal and tangential derivatives

In each of the following problems, we assume that we have chosen M points o, k =
1,... M equally spaced in arclength along the boundary of each embedded object.
These points, called interface points or interface nodes are chosen so that they rep-
resent the interface well, but the number of points M does not need to depend on
the width of the underlying mesh. These M points will be the points at which we
discretize the boundary conditions.

There are at least two advantages to relying on as few points as possible to repre-
sent the interface. First, as we will see, for the following BVPs, we will need to invert
an M x M system to obtain unknown jump conditions at the interface. The fewer
points that are needed to represent the interface and the solution along the interface,
the smaller this linear system will be. This becomes especially important when we
consider domains with several embedded objects.

Second, and probably the more fundamental reason is that as we will see, it will
be important that the ratio of the average arclength between interface points to the
mesh width be at least a certain minimum critical value. Roughly, this ratio scales
with M, and so as we increase M, we must increase the number of grid points. On the
other hand, if we refine the mesh without increasing the number of interface points, we
show that the conditioning of the resulting linear system remains essentially constant,
assuming the minimum arclength to mesh width ratio has been reached.

In her PhD thesis [58], Yang obtained acceptable results by taking M ~ N,
the number of grid points in, say, the x direction. She did, however, find that the
conditioning of her resulting linear system was quite sensitive to the location of these
interface points (also used as expansion points), and could in fact be so poor as to
render the solution completely unreliable. We have essentially eliminated this problem
by choosing very few points on which to base our linear system. To obtain expansion
points, however, we must interpolate between these points, as we describe next.

One potential drawback to choosing as few interface points as possible is that in
general, interface points will not coincide with the expansion points o needed to form
the correction term C;;. The expansion point for a particular grid point z;; should
be no more than a mesh width away from the grid point, and so we expect to need
many more expansion points than we have interface points. For this reason, we will
need to be able to interpolate between interface points to obtain expansion points
sufficiently close to the grid point of interest. Moreover, we will need normal and
tangential derivative information at expansion points and interface points. To obtain
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all this information, we have found it convenient to use Fourier interpolation for all
closed interfaces. In choosing this representation, however, we are only able to handle
sufficiently smooth interfaces. By representing the interface o(s) = (x(s),y(s)) as

M/2
x(s) = Z &(m)e™s
m=—(M/241)
M2
W= D e

m=—(M/2+1)

(3.111)

using Fourier coefficients #(m) and §(m) obtained from the Fast Fourier Transform,
we get spectrally accurate approximations to the locations of interface and expansion
points, as well as to derivative information z,, vy,, =ss and y,s; needed to form the
matrix ¥ at arbitrary points on the boundary. To obtain the Fourier coefficients
#(m) and g(m), we used the standard FFT package fftpack, available in both scalar
and vector form from Netlib [49]. When using this package, it is convenient to have
s € [0, M]. Interface points then correspond to integral values of s and we have
ak = (af,ak) = (z(k —1),y(k — 1)),k = 1,... M. Arbitrary expansion points are
identified by non-integral values of s in the interval [0, M]. As before, we denote these
points o = (z(s*),y(s")),n = 1,... P, where P > M. To choose these expansion
points, we first create a set of indices {s” 5’:"‘1“” where P, > M. Using these indices,
we form points o = (x(s"), y(s”)) using the Fourier coefficients obtained from the
FFT and the summation formula for (z(s),y(s)) given above. Expansion points o
are then chosen so that y minimizes | o — a* || over all . We then store these
expansion points and associated indices s*. To get derivatives, at the expansion
points, we use the above summation formulas with coefficients imz(m), img(m),
—m?z(m) and —m?g(m).

Because the expansion points have associated indices s# which are in general non-
integral, we must use the above summation formulas explicitly. However, the interface
points correspond to only the integral values of s € [0, M — 1] and so we can use the
inverse FFT on the coefficients Z(s), 7(s) and coefficients for derivatives to get x,
Ys, Tss and yss; at these points. This may be more a convenience than anything,
however, since the computational overhead associated with even doing the Fourier
interpolation explicitly is minimal, since this information need only be determined
once at the beginning of the calculations.

Forming the coefficient vectors

Once we have identified expansion points a#®J) for each irregular grid point m;,
and the derivatives along the interface at these points, we can begin to form the
coefficient vectors at these points. One of the many advantages of the Immersed
Interface Method is that at this point, determining these vectors is a very mechanical
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process. We first identify the set of irregular grid points x,, u =1,... P. Recall that
irregular grid points are the anchor points for which a five points stencil straddles the
interface. For each irregular grid point, we choose a point o on the interface that is
no more than one mesh width away from z#. Then using the Fourier interpolation
described above, we obtain the interface information needed to form matrix > at the
point a”.

To get matrices ® and A", we assume we have an underlying ordered stencil S;;. In
most cases, this can be taken to the usual five point stencil plus an extra sixth point
chosen arbitrarily. We assume the same stencil for all ® and A", unless otherwise
specified. Using this stencil, we can form A" and ®, using definition (3.12),

1 1
AN = (1 bl G 7 SR (hGH )
and definition (3.64)

e, (955) = Uff’épfs(fl?i, yji kyh, Loh)".

The matrix A® is defined using (3.19).

With the matrices ¥, A*, ® and A®, we can construct coefficient vectors D, D

zj? ij?
Dg , Ly, )Y, I} and Z,f using formulas derived earlier. In practice, we make use of the

fact that

and only store B = ng +D;j —i—Dg . We store an equivalent vectors B for the parabolic

coefficients 5%, 52-3- and 55 To remind the reader, this vector B for the elliptic case
is given by

B = (64 + 65)T(Ah)_1q)ij2_1
and for the parabolic problem is given by

E = (61 — At l/(64 + 65))T(Ah)71®ij271.

Vectors 1y, Z,, k, T, Tn,k and associated jump coefficients are formulated in the same
way. We also have

LW+ v+ Tr = (LY + T+ I)) - (w+v +71)

and so we only need to store B' = I} + 7} —i—I,f. Similarly, we store B" = I, + 7 | +

If:,k. Coefficients for the parabolic problem are stored in B and B". The coefficients
for the elliptic problem are given by

B = el S(A"AY) 1,0t
B" = el S(A"AY) TP, 2!
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The coefficients for the parabolic problem are identical, with ¥ replaced by X.
With these coefficients, we can continue on to the details of forming the linear
system C(V).

Forming the modified linear system C(V)

In Figure 3.8, we introduced a linear system C'V 4+ F = g. We suggested that we
could solve this system iteratively for a vector of unknowns V' € R™. In this section,
we show how we can rearrange the terms of this system to get an explicit linear
system of the form C (V') = R,;s which we can solve using either a direct solver or a
linear iterative method. We refer to the Poisson equation (3.86) subject to Dirichlet
conditions as the model problem.
The discretization of the model and associated boundary conditions given in (3.87)
is
AUij + D;jwi]’ + Di]’VZ’j + Dgrij = fija Ti; € Q

3.112
Ikaj—i-I;j’Wk—l—I,gvk%—I,frk:gk, kZl,...M ( )

We have vectors w and r from the boundary information and the PDE, but need to
compute v. We now go through this steps in this algorithm in more detail and then
we show how we can rearrange the terms to get a linear system which we can solve
either directly, or using linear iterative methods.

First, we describe briefly how we form the vectors w;;, v;; and r;; given the M
values (either known or unknown) w = [u], v = [u,]| and r = [f] along the boundary.
The algorithm requires that we be able to form these vectors at each of our expansion
points a*, u=1,...P. To do so, we use the data wy, vy and ry, k =1,... M to get
Fourier coefficients w(m), 0(m) and 7(m) for the summations

M/2
w(s) = Z w(m)e™*
m=—(M/2+1)
M/2
v(s) = Z o(m)e™ (3.113)
m=—(M/2+1)
M/2
r(s) = Z 7(m)e™s

m=—(M/2+1)

We can then evaluate these summations at points s* corresponding to a point o*.
To get the derivatives ws, wy,, and v, we use the coefficients imw(m), —m?w(m)
and imo(m) instead of the original Fourier coefficients. We note that the Fourier
transform is linear, and so the map which takes, for example, the vector W € R¥ to
the vector w;; is also linear.
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The subroutine described in Figure 3.8 is not in a very useful form. Because it is
in the form C'V + F = g, it cannot be immediately used in a linear iterative method.
We now want to show how we can rearrange the terms in the linear iteration described
above to form a system C(V') = F,,s(W, R). For this subroutine, we assume that we
have a Poisson solver U = FPS(F).

Function C(V) :

1. Form the temporary right hand side R (V) ¢ RVT*N D) “where the
entry corresponding to irregular grid point x;; is given by

R™(V) = —Dyvy;

For regular grid points, R = 0.

2. Use a fast Poisson solver to get U = FPS(R"?). Use homogenous bound-
ary data on the boundary of the computational domain.

3. The k™ entry of the vector C(V) € R™ is then given by

End Function C(V)

Figure 3.9: Subroutine describing linear system C'V for unknown vector V.

To get the right hand side vector F,,s, we use a similar algorithm, given in Figure
3.10.

We now have two general approaches we can take to solving the system C(V') = F,;
for V. One, we can form the matrix C explicitly. The columns of C are given by
C(&),j =1,... M, where & is the k' column of the M x M identity matrix, and so
forming C will require M fast Poisson solves. For small M, this is probably the most
reasonable approach.

For larger M. we want to consider using linear iterative methods designed to
solve linear systems C(V) = F,;,. In the context of linear iterative methods, the
function evaluation C(V') is typically referred to as a matriz-vector multiply. One
advantage of using an iterative method is that it can in principle require fewer than
M matrix multiplies, especially if one does not need a high degree of accuracy in
the resulting solution. Since our matrix vector multiply is expensive (requiring a fast
Poisson solve), we will want to use an iterative method that is likely to converge in
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Function F,,,(G, R, W) :
1. Form the temporary right hand side R (W, R) € RN DX+ where
the entry corresponding to irregular grid point x;; is given by

Rij" (W, R) = fij — Djywi; — Dy

2. Use a fast Poisson solver to get U = FPS(R"” + B). Use B to impose in-
homogenous boundary conditions on the boundary of the computational
domain.

3. The k' entry of the vector F,,, € R is then

(Fons)i(G, R,W) = g(a*) — TUE — TPwy, — Ty,

ij

End Function R, (G, R, W)

Figure 3.10: Right hand side of linear system g — F'.

as few iteration as possible. Ideally, it should require far fewer than M iterations,
or the iterative method is not competitive with forming the matrix directly. We also
need a method which can handle the fact that our matrix is non-symmetric. Probably
the method most ideally suited to our problem is the Generalized Minimum Residual
Algorithm, or GMRES, developed by Saad [47].

Once we have solved for V', we can then solve the full equations to get a complete
solution to the PDE. We solve for the PDE with the subroutine in Figure 3.11.
The solution U obtained by this procedure is the solution to the PDE in the irregular
domain.

In the following, we apply the above general framework to specific linear PDEs
that we will use in the following chapters. As we will see, very little needs to be done
to modify the above to these particular systems.

3.5 Numerical results

Because our final goal is to solve the full streamfunction-vorticity equations, we now
consider numerical examples related to these equations, given in Chapter 1. In par-
ticular, we want to solve Laplace’s equation for potential flow, a diffusion equation
for the diffusion of vorticity and finally Stokes flow equations.
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Function solvePDE(F,W,V,R) :

1. Form the temporary right hand side R™ ¢ RWHDXN+D where the
entry corresponding to irregular grid point x;; is given by

tmp _ ! . . H .,
Rij —E]—Dijw”—D”V—Dijr”

2. Use a fast Poisson solver to get U = FPS(R" + B). Use B to impose in-
homogenous boundary conditions on the boundary of the computational
domain.

End solvePDE(F,W,V ,R)

Figure 3.11: Subroutine used to solve PDE once all jumps are known.

3.5.1 Solving potential flow problems

A convenient representation of two dimensional, incompressible flow assumes that we
have a stream-function 1 for which

U=1y, V=—1, (3.114)

where u and v are fluid velocities in the x and y directions respectively. By represent-
ing (u,v) = @ in this manner, we automatically satisfy the incompressibility condition
V - i, since

Vot =ug + vy =y — gy =0 (3.115)

Moreover, ¢ has the property that (Vi) -4 = (4 - V)Y = 0. This means that ¢
is constant along stream-lines of the flow and level sets of v are particle paths. In
general, V2 = ., + 1, = —v, + 1y, = —w, the vorticity in the flow. In the present
case, however, we consider only irrotational flow, and so assume that V21 = 0.

Potential flow around a cylinder

One classic problem in potential theory is that of potential flow around a circular
cylinder. For this problem, we assume that we are given an infinite domain and a
mean flow in the positive = direction. A circular cylinder is embedded in the flow field.
The problem is to determine the flow field around the cylinder so that the surface of
the cylinder is a streamline, but that at infinity, the streamlines are parallel to the
direction of the mean flow.
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From potential theory, we have a closed form expression for the streamfunction
satisfying this set of conditions. In Cartesian coordinates, this streamfunction is given
by

2
Y(z,y) = Upy (1 - ﬁay?> ) (3.116)
As y — oo, we have that 1}3 — Upy, or u — Uy, v — 0. On the cylinder itself, we have
that ©» = 0, and the surface of the cylinder is a streamline, as required.

To test how well the Immersed Interface Method solves this exterior Dirichlet
problem, we solve the above problem in a finite computational domain R = [—2, 2] x
[—2,2]. At the origin, we embed a cylinder of radius r, = 0.5. The problem will be
somewhat contrived in that we are going to use boundary data from the exact solution
1, but this will enable us to compare our computed results to the exact solution. The
problem that we wish to solve is given by

V2 =0, r>r,
Y= ON r=rq (3.117)
Y =1, on OR

where r = y/x? 4+ y2. Although not strictly part of the problem definition, we make
the additional assumption that ¢» = 0 for r < a. This additional assumption, along
with our original boundary conditions, gives us the jump w = [¢)] = 0. Also, since
our right hand side is identically zero, it too is continuous at the interface, and so
r = [f] = 0. From this we then have that w =r = 0.

To obtain the unknown jump v = [¢,| at M points along the interface, we solve
the system given in (3.87). In the present situation, these equations are given by

.A@/)ij + Dijvij =0, Tij € R

For a single interface, we solved the system C(V') = R, directly for V', the M x 1 vec-
tor of unknown jumps [u,]. With a known V| we then solved for the streamfunction,
using solvePDE, given in the previous section.

We solved for the stream-function using the method outlined above, and plotted
the results on a 100 x 100 grid in Figure 3.12. The interface was represented using
16 interface points. This figure shows quite well that even close to the surface of the
cylinder, the contours remain quite smooth.

Using (3.116) as a reference solution, we can compute the error e;; of our computed
solution at each grid point z;; and confirm that the errors are O(h?). We compute
the norms of the errors using the definition of the norm given by

(3.118)

1 N+1 1/p
lelp=|— ) lesPAzAy) , 1<p<oo (3.119)
area(2)

ij=1
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Grid = (100 x 100)

o

0
X

Figure 3.12: Computed solution to potential flow problem using Immersed Interface
Method. Computational grid is 100 x 100

The max norm definition is the standard definition given by

e lloo= max e (3.120)

The norm of the error e(s) on the curve T is defined as

1 M 1/p
| e ||£ = (m Z le;[” dS)

1 M 1/p
:<M2|ej|p) : 1<p<oo

i=1

(3.121)

where we have used the definition ds = length(I") /M. Also, we have assume that I is
a single curve. The max-norm for functions defined on the curve I is given by

lell,= max |e;| (3.122)

where |e;| is the error of the j interface point.

In Figure 3.13, we plot the 1 norm and max-norm errors of our computed solution
versus mesh width. In this plot we also show the convergence rate for the derivative
computed from the solution to the linear system. We again use the reference solution
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Figure 3.13: (a) 1-norm and (b) max-norm convergence rates for errors of computed
stream function for potential problem. The solid line is the best-fit line used to
compute the convergence rates shown in the legend.

to derive the exact solution ¢, (6) = 2U, sin(f). The convergence for both the solution
and the derivative is clearly second order in both norms, although the solution is more
accurate than the derivative calculation.

Error
*
Ox *
Oox *
Ox %
X0 *

M= 8; Rate= 2.00
M= 32; Rate= 228
M =128; Rate = 2.86

M= 8; Rate= 1.84
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(a) N (b) N

Figure 3.14: (a) 1-norm and (b) max-norm in errors in derivative for different values
of M. Solid lines are the best-fit lines used to compute the convergence rates.

To see the effect that the number of interface points M has on the computed
derivative, we computed the solution and derivative on several different grids for
several different values of M. In Figure 3.14, we show the error in the derivative for
three different values of M, M =8, M = 32, and M = 64. In the 1-norm, we see that
as we increase the number of interface points, we get more accurate approximations
to the derivative, whereas in the max-norm this situation is reversed. Since the exact
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derivative, Jn(ﬁ) = 2U, sin(#) is represented exactly by as few as four interface points,
we wouldn’t expect to increase the accuracy by adding more points. The fact that
in the one-norm, the accuracy does increase is probably due to the fact that we are
imposing the boundary conditions at more points, thereby placing more constraints
on the computed solution. In the max-norm, we observe that the accuracy decreases
as we increase the number of points. We attribute this to the fact that increasing the
number of points increases the size and condition number (a fact we verify shortly) of
the linear system we must solve to obtain the derivative, thereby increasing the role
that numerical roundoff error plays in solving that system. However, the convergence
rates in the max-norm favor the solutions with more points, and so we expect that
for large enough N, we will obtain more accurate solutions with more points.

The fact that we can use the same value of M on all grids and still get convergence
is only due to the fact the exact derivative, v,(0) = 2Uysin(f) can be represented
using as few as four points. In general, we would expect to need to increase the number
of interface points as we refine the grid in order to see convergence. After we have
discussed the issue of conditioning the linear system we must solve to get unknown
jump information, and described how to handle the multiply connected domain, we
return to a more general boundary problem.

Conditioning of the linear system

To see how the condition number of the matrix C is affected by grid size and M, we
plotted the condition number versus grid size for five different value of M in Figure
3.15. We also show the best-fit curve through the points (Npin, k) where Ny, is
approximately the smallest value of N for which the condition number k takes on its
constant value ;.

From this plot, we draw two main conclusions from this investigation of condition
number and its relation to mesh size and number of interface points. The first con-
clusion is that one must take some care to choose a mesh width that is fine enough
for the particular choice of M. If the mesh is too coarse, then the matrix C' could
be quite poorly conditioned, and the resulting solution and derivative along the in-
terface unreliable. The second and more interesting conclusion is that once we have
reached this minimum ratio, the condition number of C' remains essentially constant
as we refine the grid further. From this investigation, this constant seems to scale as
Kk ~ O(M). We hope to confirm this result in other examples.

Finally, using the observation that for this problem, x ~ M and xkp; ~ v/ Npin,
we might conclude that to obtain a reliable solution V', we should require that the
number of grid points N for the underlying mesh be approximately M?. This value
is probably too large in practice, and for this particular problem, increasing M to
256 should only require an N of about 1700, a number based on the trend of the
dashed curve shown in Figure 3.15. Nonetheless, increasing the number of interface
points beyond a certain number may require a grid that is so fine that the problem
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Condition number k versus grid size and M
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Figure 3.15: Condition number as a function of grid size N for various M. The dashed
line is condition number as function of smallest N allowable for particular M.

can become computationally quite expensive, and judging from the plot of the errors
in the derivatives given in Figure 3.14, there may be little gain in terms of accuracy.

Handling multiply-connected domains

Before continuing on to more realistic examples, we first want to solve this problem
again, this time also solving for the value of the stream-function on the boundary of
the cylinder. The reason for this is that in general, particularly in the multibody case,
we don’t know this value, and must impose instead the condition that no circulation
be generated around the object. This latter condition ensures that the velocity field
remain single valued, and is imposed by requiring that

/ﬁ-Tds:/@/)n ds =0, (3.123)
r r

where 7 is the unit tangent vector at the surface of the cylinder, and ,, is the normal
derivative of 1 at the cylinder surface.
The modified system of equations that we now solve are given by

V2 =0, r>r,

T/JZE, r="Ta
b=7d.  ondR (3.124)

/Fwn(s) ds =0
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where 1) is the unknown value of the streamfunction on r = r,. To satisfy the last
constraint, we must add an extra row and column to the matrix C'. We call this new
matrix ', where now ¢’ € RM+D*X(M+D " [f we require that for Y =1 for r < 1y, as
we did in the previous problem, the jump conditions for this problem are the same as
those used in the first example. Our system of equations for this modified problem is
given by

A@/)ij + DUV“ =0, mx;e€ R

Except for the right hand side in the second equation, these equations are exactly
those given in (3.118).

We first observe that the condition number of the matrix C' is O(M?), but after a
minimum level of refinement is reached, this condition remains constant for successive
levels of refinement. We point this out only because it was a surprise to see that adding
just a single row and column could have such a dramatic affect on the condition
number. But when we consider the form of the modified matrix, which looks like

01 ... 1
c’ ! (3.126)
= . . ,

(3.125)

-1
we can reasonably argue that the O(M?) behavior of the condition number in this
situation is due mainly to the fact that the scaling of the extra row and column added
to C' is orders of magnitude greater than that for C.

We solved the modified potential flow problem, this time looking at the errors in
the value 1), as well as the errors in the solution and the normal derivative on the
object. These errors and convergence rates are plotted in Figure 3.16 for M = 16. We
observe that the errors in the solution and the derivative are essentially the same as the
errors we got when we imposed a known value of the stream-function on the surface of
the cylinder. As in the first case, these errors are converging at a second order rate.
The fact that the convergence of 1) appears to be O(h*) is somewhat misleading.
While the interpolation formula for the Dirichlet boundary condition in (3.125) is
O(h?), our approximation to ), which is used in this interpolation formula, is only
O(h?), and so we do not expect to be able to approximate the boundary conditions
to third order. Moreover, from Figure 3.16, we can see that the convergence to 1) is
quite erratic, and so it is difficult to say anything more than the convergence is at
least second order, which is all we expect.

Convergence on a more general boundary

As we mentioned earlier, we don’t necessarily expect convergence of our solution or
derivative if we hold M fixed as we refine the grid. The only reason we were only able
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1-norm convergence rates
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Figure 3.16: 1-norm convergence rates for potential flow problem in which value of
stream-function on the boundary is unknown. The solid lines are the best-fit lines
used to determine the convergence rates shown in the legend.

to get convergence in the examples we considered earlier was that the exact derivative
could be represented exactly for all M > 4. Now, we consider a situation in which
this is not the case.

The problem we consider now is to determine the potential flow field around an ellipse
in a spatially periodic domain. We choose an ellipse, rather than some more general
shape so that that for each value of M, we represent the same boundary.? For this
problem, we set the average velocity at the left edge equal to 1, rather than requiring
that the the velocity all along this edge be 1, as we did earlier. In Figure 3.17, we
show the potential flow field computed for this problem.

To see how the value of the derivative changes as we refine the grid and refine the
number of interface points, we computed to solution for pairs (N, M) set to (100, 8),
(200, 16), (400,32) and (800,64). In Figure 3.18, we plot the the normal derivative
1, along the boundary of the ellipse obtained for each pair. The first plot shows
that the derivative is clearly converging as the grid is refined. In the second plot,
we show the difference between the derivative computed on the three coarsest grids
(N =100, N =200 and N = 400) and that computed on the finest grid (N = 800).
Again we see quite clearly that the solution is converging as the grid is refined. We

2One important change we need to make to the code is to be able to represent the interface using
a different number of points that what we use to represent the unknown jumps.
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Figure 3.17: Solution to potential flow around single cylinder in spatially periodic
domain. Computational grid is 200 x 200 and M = 16.

note that for this particular problem, the derivative on the coarsest grid, with M =8
interface points is not very accurate, although the matrix for the unknown jumps was
well conditioned. We conclude that for problems with irregular boundaries, it may
be especially important to do grid refinement studies in order to be sure that the
solution has an acceptable accuracy.

Solving for stream-lines in a general multiply-connected domain

In this next example, we solve for stream-lines around several embedded irregular
objects. The objects were designed using a Matlab drawing package we have written
for such purposes and are placed arbitrarily in the square computational domain.
Each object is represented by 16 interface points. As with all objects presented so
far, we compute normal and tangential interface derivative information using Fourier
interpolation. We impose the no-circulation condition on the flow around each object
and require that the surface of each object be a stream-line. On the computational
domain, we impose periodic boundary conditions in both x and y. We compute the
streamfunction on a 240 x 240 grid, about the minimum size allowable for the given
shapes.

The computed streamfunction for these objects is shown in Figure 3.19. We see
that the Immersed Interface Method apparently has no difficulty handling the more
complicated geometry. In Figure 3.20, we show a close up of closely packed contours
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Figure 3.18: (a) Normal derivatives along boundary of single ellipse shown in Figure
3.17. Derivative computed on four different grids are shown. (b) Difference between
solution on three coarsest grids (N = 100, N = 200 and N = 400 and finest grid
N = 800. Horizontal axis value 6 is the angle from the lower tip of the ellipse,
measured in a counter clockwise direction.
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Figure 3.19: Solution to multi-body flow problem with several embedded objects.
Computational grid is 240 x 240.

around the object located centered at approximately (2.5,0.8). We also show the same
object embedded in the 240 x 240 computational grid with interface points marked.

3.5.2  Solving parabolic equations

In this example, we used the approach described in 3.3.5 to solve the parabolic equa-
tion given by

uy = vV, (z,y) € Q (3.127)

subject to the flux boundary conditions dw/0n = g a the boundary of 2. The general
parabolic equation is used to model heat and mass transfer by diffusive processes and
arises in a number of physical contexts. We are particularly interested in solving the
parabolic equation so that we can solve Stokes flow problem, which we model as a
coupled parabolic-elliptic system to obtain an appropriate flux of vorticity needed to
satisfy the no-slip boundary condition on rigid boundaries.
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Figure 3.20: (a) Close-up of streamlines around object in multiply-connected domain.
(b) Close-up with 240 x 240 computational grid. Interface points are marked by *’s.

We tested our parabolic solver for both Euler and Crank-Nicolson discretization
schemes and determined the order of convergence by comparing our computed results
to a reference solution. Our computational domain is the square domain [0, 1] x [0, 1]
minus a circle of radius 0.25 centered at the point (0.5,0.5. For our reference solution
Uref(x,y, 1), we use

Upep (2, y, 1) = e~ B cos(mhax) cos(mhyy) (3.128)

where (ky, k,) are integer wave numbers, both set to 2 in the present example. Using
Ures, We initialize the solution at time ¢ = 0 using

ug; = cos(mkyx;) cos(mhyy;) (3.129)
We also use the reference solution to determine flux boundary conditions on the
boundary of the computational domain and on the circle. On the computational
domain, we impose a no-flux condition, and on the boundary of the circle, we impose
the condition

0

U~ Vu -1

on o (3.130)

= —dre W EERD (ko sin(kyma) (@ — 0.5) + ky sin(k,my) (y — 0.5))

At the 8 interface points, we initialize the jumps in the solution and its derivatives at
time level t = 0, again using the reference solution. The jumps are

wy = — cos(mkyak) cos(ﬁkya’;)
v = ky 7 sin(mhyak) cos(tk,af) nk + k, 7 cos(rkyak) sin(rk,ak) n]; (3.131)
re = (1+Atvpr® (k2 + k;)) W
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where (nk, n’;) is the normal to the circle at the interface point o, k =1,...8.
Using these initial conditions, we solved the parabolic problem for time steps
t=0,0.5,...5. In Figure 3.21, we show a mesh plot of our computed solution at time
level ¢ = 5. In interior of the circle (outside of the domain ) the solution should be
identically zero, since this is the condition implicitly imposed by our choice of jump
conditions. Figure 3.21 shows that we resolve the discontinuity in w at the boundary
r = /(x—05)2+ (y—0.5)2 = 0.25 quite well. The agreement with the reference

t=25
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Figure 3.21: Solution at ¢ = 2.5. to parabolic problem using the Immersed Interface
Method. Solution is zero in inner circle. Computational grid is 80 x 80.

solution is seen even better in Figure 3.22, where we show a slice through the solution
at times t = 0,1,...5. Here, the reference solution, also taken to be zero outside of
the problem domain, is plotted on top of the computed solution.

To test the convergence of the scheme, we computed the solution on several differ-
ent grids and plot the errors in Figure 3.23 for Backward Euler and Crank-Nicolson.
Backward Euler for this problem actually converges at a super-linear rate, while
Crank-Nicolson is very nearly second order. Also, the results using Crank-Nicolson
are more accurate than those obtained using Backward Euler. One unsettling discov-
ery we made was that Crank-Nicolson did not converge on all grids, and in the plots,
we only show results for those grids that converged. We are not entirely sure whether
the problem lies with some particular alignment of the irregular boundary with the
grid, or whether there is something more subtle occurring with the Crank-Nicolson
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Figure 3.22: Slices of reference and computed solution along the diagonal line segment,
y =x at times t = 0, 1,...5. Computational grid is 120 x 120. The reference solution
is shown only at 30 points.

scheme when used with the Immersed Interface Method in the manner we have de-
scribed. Crank-Nicolson is not an L-stable scheme, whereas Backward Euler is, and
so Crank-Nicolson may be quite sensitive to small oscillations in the data. Because
of the unpredictable behavior of Crank-Nicolson for this problem, we use Backward
Euler for all of our calculations involving the streamfunction vorticity equations.

Finally, we give an example in which we use the parabolic solver in a multiply-
connected domain. The domain we use consists of several ellipses embedded in an
insulated box. At the boundary of each ellipse, tracer material is allowed to diffuse
into the domain at a rate of one unit per second. No-flux boundary conditions are
imposed on the boundary of the computational domain. In Figure 3.24, we show the
contours of the tracer material at time level 5.

3.5.3 Solving the Stoke’s flow equations

In our first example, we solved the potential flow equations which are the solution
to steady, incompressible, inviscid flow. As a step towards solving the full Navier-
Stokes equations in stream-function vorticity formulation, we now solve the steady
and unsteady Stokes flow equations. Like the potential flow equations, Stokes flow
governs incompressible flow. But unlike the potential flow equations, where we only
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Figure 3.23: One-norm convergence rates for (a) Backward Euler and (b) Crank-
Nicolson time discretization schemes. Errors for both global solution and solution on
the boundary are shown. Solid line is best-fit line used to compute convergence rates.

required that a no normal-flow condition on each object be satisfied, we we now
require that a no-slip condition be satisfied as well.

In the Stokes flow approximation, we assume that advection term (- V)w < 1
in (1.1) is negligible, and so we drop this term to get the equations

O, =vV?0, (z,y) €Q a—wzg, (z,y) € 00

2 — _ 35 ¢ on
aAV p=-w, (z,y)€ V=1, (1,y) €00 (3.132)
W
— ds = =1, M odies
Q; on 5 07 J  bod g:%: = Oa (xay) € 00

for W(x,y,t) and ¢(x,y,t). Here, we use & instead of w in (1.1) to distinguish between
the solution &@ we obtain using the Immersed Interface Method, and the solution w
we obtain using the finite volume method described in 2. Also, in the following
discussion, we assume that we only have a single embedded object defined by the
region QT = R\Q. This assumption is made for notational convenience only; the
method naturally generalized to multiple objects.

The Stoke’s flow equations describe what is sometimes called “creeping flow” and
models flow in regimes for which the Reynolds number, the non-dimensional param-
eter characterizing the ratio of the inertial terms to diffusive terms, is small. We are
primarily interested in solving these equations to obtain the unknown flux condition
g, which we will use as the diffusive flux in our finite volume scheme, although the
Stokes flow equations are of interest in their own right.

)
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Figure 3.24: Contours at time ¢ = 5 of tracer material diffused into domain through
boundary of each embedded ellipse. Flux of material is set to 1 at each boundary.
Flux on the boundary of the computational domain is set to 0. Computational grid
was 200 x 200.

LeVeque and Li, in [36], describe how one can solve a similar set of equations
in primitive variable formulation for solving Stoke’s flow induced by movement of a
deformed elastic interface as it returns to its equilibrium shape. They solved an elliptic
equation for pressure and used a quasi-Newton iteration to determine the location of
the elastic interface. There were no solid boundaries involved in the flow, however, and
so they were not concerned with imposing no-slip boundary conditions. Also, they
had dropped the inertial terms in the equation and so the only time dependent term
in their equations was the forcing term due to the elastic membrane. The problem
we solve is simpler than their problem in the sense that our boundaries are fixed;
however, we solve the unsteady Stoke’s flow in the presence of solid boundaries and
so must impose the no-slip condition.

One difficulty in solving these equations is that the physical problem explicitly
gives us two boundary conditions for ¢ but no conditions on &. The two conditions
on 1 correspond to the physical requirement that on all solid boundaries, we must have



107

no normal-flow (¢) = constant) and no-slip (¢, = 0). There is no such clearly defined
boundary conditions on &, and in fact the existence of such conditions would lead to
an overdetermined system. There is, however, the physical notion that vorticity is
generated at solid boundaries in response to forces imposed by the solid boundary on
the fluid which act to keep the solid body at rest. We model this notion of vorticity
generation by imposing flux boundary conditions on solid boundaries. This condition
is given by dw/dn = g, given in (3.132), for some unknown flux g at solid boundaries.
This unknown value of g must be obtained by solving the coupled system given in
(3.132). This type of boundary condition is different than that used by traditional
approaches, most of which impose a Dirichlet condition on the vorticity.

Since both the jumps [@] and [&,] are unknown, we do not discretize any bound-
ary conditions for @; instead we set up a linear system for which both jumps for &
are unknowns. The only boundary conditions we explicitly impose are those on .
Discretizing the parabolic and elliptic equations for & and v, we get

HAm+1 4 D m+1 4 DUVm+1 4 Dl]_:';+1 —

HOP + D)W + DV + Dy, ay;€ R (3.133)

ij i
./477/)” + D iTij = — (.UT?JFI, Ti; € R
The unknowns in this equation are &;;, 15, and the jump vectors W, ¥. Jump vectors
w and v are known and equal to zero, since we have that ¢» = ¢, = 0 on the irregular
boundary. To close the system with respect to the unknown jumps in &, we discretize
the two boundary conditions for ¢). The conditions, ¢ = Ej and v, = 0 are discretized
using the Immersed Interface Method as

Lok + Ty =9y, k=1,...M

(3.134)
n,k@/)ij —i—In’krk =0, k=1,...M
These expressions are the 2M equations we need to close the system with respect to
the unknown jumps w and V.

Finally, in the general multiply-connected domain case, the value of the stream-
function on the boundaries is unknown. Only now, unlike in the potential flow case,
we have already prescribed the circulation around each object by specifying the value
of ¢, as part of the problem data. We no longer have this degree of freedom, as we
did in the potential flow case. However, in the viscous flow case, the pressure enters
into the problem, and is given as a function of position on the boundary of a single
inclusion 0€); as

¥ Ow
P = — 1
(s)+ Py = pv . on ds (3.135)
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where P, is a known pressure at some point on the boundary and p is the density of
the fluid. This will be a single valued function only if

/ L s — 0 (3.136)
a

Qan

This equation replaces the no-circulation condition given earlier and closes the system
with respect to the unknown values of the streamfunction on the embedded objects.

To solve the equations, we set up an iteration on the unknown vectors W and V/,
the entries of which are the jumps wy and vy, the 20 interface points. With guesses to
these vectors, we could solve the parabolic equation for & (skipping the step involving
solving for unknown jumps, all jumps are given by W and V). This gives us the right
hand side for the elliptic equation for ¢ as well as the jump r = —w. Other jumps
w and v needed for the elliptic solve are known and identically zero, as we explained
above. Formulating the above procedure as a matrix-vector multiply for the unknown
vectors W and V, we can solve for these unknowns.

Since each matrix-vector multiply in this iteration requires two fast Poisson solves
(one for the parabolic equation, and one for the elliptic equation), we want to form the
matrix as infrequently as possible. At each time step, only the right hand side changes,
and so we have found it to be worthwhile to form the resulting matrix explicitly, factor
it once and then backsolve the system at each time step. Of course, as soon as the
time step At changes, the matrix C must be reformed, since its coefficients depend
on this time step. However, even when we include the advection, we have found that
one can use the factored matrix for quite a few time steps, and usually only needs to
form and re-factor the matrix very infrequently.

We implemented and tested the above scheme and used it to solve the Stoke’s
flow equations given in 3.132. The domain we use is the square domain [0, 4] x
[0, 4] embedded with two circular cylinders of radius 0.5, one centered in the upper
right quadrant of the domain and one centered in the lower left quadrant of the
square domain. On the boundaries of the computational domain, we impose biperiodic
boundary conditions given by

w(4a y) :7/)(0? y)

W(x,4) =(z,0) + A,
where A1) is the desired shift in ¢) from the bottom of the domain to the top. Imposing
this condition on the given domain is equivalent to solving the problem for Ay = 0
and then adding Avy/4 the resulting solution.

The equations for Stoke’s flow were solved to steady state (reached at about t
= 20). The vorticity and streamline contours are plotted in Figure 3.25 and are in
excellent agreement with those plots given in [50] and reproduced in Appendix A.

As we will see in Chapter 4, the above scheme for solving the Stoke’s equations is
used to determine the flux of vorticity g needed in the full stream-function vorticity
equations.

(3.137)
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Stoke’s flow in biperiodic domain

Figure 3.25: Contours of (a) vorticity and (b) the streamfunction for Stokes flow
problem in biperiodic domain. The computational grid is 160 x 160.
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Chapter 4

SOLVING THE STREAMFUNCTION-VORTICITY
EQUATIONS IN IRREGULAR REGIONS

In Chapter 2 where we described our advection-diffusion algorithm for complex
geometries, we assumed that our underlying velocity field was a steady state veloc-
ity field. Furthermore, we only imposed no-normal flow boundary conditions on the
boundaries of the irregular obstacles. In this Chapter, we describe how we can solve
the full Navier-Stokes equations in streamfunction-vorticity formulation. In partic-
ular, we discuss how we satisfy the no-slip boundary condition on the boundary of
irregular objects.

The streamfunction-vorticity equations, introduced in Chapter 1, are given by

wi + (- Vw =vViw, (z,y) €Q
V3% =—w, (x,y)€0Q
U = 1y, v = —1, (4.1)
(0 :wj’ (x,y) € 00
Yn =0, (z,y) € 09

The boundary values for the streamfunction are chosen to enforce the no-normal
flow and no-slip boundary conditions. A no-normal flow condition is satisfied when
#+-n = 0, or equivalently when ¢ is a constant along contiguous segments of the
boundary. In a channel flow, for example, one usually sets the value of ¢ to be
one constant at the lower wall and a second constant on the upper wall. The mean
velocity, or average velocity across the channel is then the difference of these two
boundary values. In the channel flow setup, we can also impose a no-slip condition
by requiring that the tangential velocity, or equivalently, the normal derivative of v
be equal to the wall speed. In many physical situations, the wall speed is 0 and so
imposing 1, = 0 at both the upper and lower boundaries is the appropriate boundary
condition. However, a few classic test problems involve a moving wall. In the driven
cavity problem, for example, 1, is set to the velocity of the moving lid. As was
discussed in Section 3.5.3, we do not have explicit conditions on w, and so in order to
solve the transport equation numerically, we must first solve for an unknown flux of
vorticity.
This formulation of the Navier-Stokes equations is used extensively for two-dimensional

flows because of the fact that the divergence-free condition V - u = 0 is automati-
cally satisfied. For our purposes, the equations are especially convenient because they
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naturally decouple into an advection-diffusion equation
wi + (- V)w = vV?w (4.2)
governing the transport of vorticity and an elliptic equation
Vi = —w (4.3)

for the streamfunction. As we showed in Chapter 2, the velocities (u(z,y,t), v(z,y,t))
are computed by differencing the streamfunction. Since vorticity is a conserved quan-
tity in two dimensions, we can use the finite volume methods developed in the Chap-
ter 2 to solve the vorticity transport equation. To solve the elliptic equation for
the streamfunction, we use the Immersed Interface Methods developed in Chapter 3.
The main challenge in solving these equations will be imposing the no-slip boundary
condition.

In what follows, we describe in detail how we combine the finite volume meth-
ods described in Chapter 2 with the finite difference methods described in Chapter
3 to solve the full streamfunction-vorticity equations. First, we use our hybrid fi-
nite volume/finite difference scheme to solve a simplified set of equations which do
not satisfy the no-slip boundary condition. The method described for these inviscid
equations turns out to be a straightforward application of the advection-diffusion al-
gorithm described in the previous chapter. With the basic algorithm laid out, we can
then discuss how we use the solution to a Stoke’s flow problem to impose the no-slip
boundary conditions. To handle multiply-connected domains, we impose condition
(3.136) requiring no net flux of vorticity across embedded objects.

Throughout the early part of this chapter, we always have in the back of our
mind that we wish to solve these equations in irregular, multiply-connected domains.
Initially, however, we omit some of the details associated with the proper treatment
of the such domains in order to provide an overview of our approach. However, all
of the details necessary to evaluate our algorithm and implement it will be provided,
either in a later section of this chapter, or in appendices, where they are described in
full.

4.1 Survey of methods

Methods for solving the streamfunction vorticity equations has a long history, dating
at least back to 1933 when Thom proposed his now well-known “Thom’s Formula”
[51]. At the center of most of these discussions is the treatment of the two boundary
conditions on 1) and the absence of conditions on w.

Most of the early methods for solving the viscous streamfunction vorticity equa-
tions employed what have been termed “boundary vorticity formulas” [44]. These
formulas are usually obtained by manipulating finite difference discretizations of the
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elliptic equation coupling ¢ and w, and the extra boundary condition on v to obtain
a formula for w on the boundary of the domain. But because these formulas usually
involve both w and ) at the same time level, one must iterate in order to obtain the
desired value of the vorticity at the boundary.

To illustrate these ideas more concretely, we derive Thom’s formula for a value of
vorticity wy ; at the left edge of a rectangular domain. We assume that we have node
based values w;; and 9, 4,5 = 1,...N. At the boundary of that domain, we have
the elliptic equation V?¢ = —w linking ¢ and w, and the extra boundary condition
¥, = 0 on . These two equations can be discretized using finite differences as

Yo+ %o+ o+ — by
0 T
V25 — Yo

2B LY
2Ax

Substituting the value for ¢ ; obtained from the second equation into the first equa-
tion and using the Dirichlet conditions ¢» = 0 on ), we get that

292,
Ax?
which is Thom’s formula for vorticity. These formula is only first order accurate,

however, and so researchers have derived more accurate formulas. One classic formula,
derived by Briley in 1971 is given by

(4.4)

(Thom’s Formula) wyj = (4.5)

(Briley’s Formula) — w;; = 108ty j — 2T1)5 ; + 414 ;). (4.6)

18Az2 (

Briley’s formulas is fourth order accurate. E in [54] gives a table of these formulas
shown above, as well as several others. Such formulas have been commonly called
“local formulas” in the literature, because they depend only on values of 1) near the
boundary.

These formulas by themselves, however, do not provide the necessary boundary
conditions on w. They must be incorporated into the coupled w — v equations,
which must be solved to obtain the boundary values of vorticity. Using a explicit
discretization of the advection term and an implicit discretization of the diffusion
term in (4.1), we arrive at the discretized set of equations given as

wn+1 — " " " " wn+1 + w"
—Qx; " (u"D, + v"D,)w"™ + vV, <f)
viwn—l—l — wn—i—l
un+1 — DywnJrl, ,Un+1 — _merﬂ»l (47)

¢:¢j7 (xay) EaR
n+1 __ 277/)?n+1

b 9p2
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Here, we have used Thom'’s formula as the representative boundary vorticity formula.
The value 1, is a value of ¢ on any of the four boundaries in the rectangular flow
domain, and D, and D, represent the appropriate approximations to first derivatives
in the z and y directions, respectively. The mesh width is given by Az = Ay = h.
The boundary value wg‘“ is required by the diffusion term, and so the equations are

coupled through their dependence on w}f“. For this reason, we are led to a linear

system of equations which we must solve for w}f“.

Although the system for """ is linear, attempts to solve this using simple iter-

ation schemes have evidently only met with limited success. In general the iteration
typically used has been found to diverge unless some sort of relaxation parameter is
used [44], [54]. In fact, several early papers in this field were devoted to determining
optimal values for this relaxation parameter [31]. Surprisingly, few researchers, to
our knowledge, have considered formulating this set of equations as a linear system
of the form Aw,?“ = R, and solving the system directly. Gresho, in [29], hints at a
formulation of this type, but then later discounts the approach as impractical.

To perhaps avoid the problems associated with solving the above system itera-
tively, E and colleagues [54] have argued that it is not necessary to discretize the
diffusion equation implicitly. Instead, they discretize the diffusion term explicitly,
and eliminate the need for boundary conditions on w, at time level n + 1. Local
formulas are still used to obtain w}f“ in terms of boundary values of ¢!, but only
wy is needed in the first equation. The chief advantage of this approach is that the
equations are decoupled and so it is no longer necessary to solve a linear system to

obtain w,’f“ at each time step.

An issue not addressed by many of the early approaches to solving the boundary
vorticity formulas is that the vorticity is singular at the corners, and so boundary for-
mulas at the corner can run into numerical problems. Huang, in [30] uses a variant of
the local formula approach to devise a scheme which doesn’t require boundary values
of vorticity at the corner (or for that matter, anywhere along the boundary). Instead,
he manipulates the formulas to obtain conditions in the interior of the domain, thus
avoiding the corner singularity problem. Huang and his co-author do not solve the
above linear system of equations for w™*! and " *! at each time step, but rather solve
a non-linear system to obtain a steady state solution only. Additionally, they provide
a convergence proof of their non-linear iteration.

In light of the fact that one must solve a linear system (either iteratively, or di-
rectly) to obtain the boundary values of vorticity, it seems somewhat misleading to
call these formulas local formulas. Through the iteration procedure, the boundary
value of vorticity is coupled to all values of v, not just those on the boundary. This
notion that the boundary values of vorticity are really coupled globally to the stream-
function ¢ is made explicit in another set of approaches, commonly called “global
formulas”. The main proponent of these formulas is Quartapelle, who derived an
integral condition for vorticity that decouples the vorticity equation from the stream-
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function equation. This vorticity integral condition, proposed by Quartapelle in [45],
is based on the following theorem, proved by Quartapelle.

Theorem 1 (Quartapelle and Valz-Griz, 1981). A function w defined in Q is
such that V2 = —w, with ¢ = a and 1, = b on the boundary of Q if and only if

/wn dxdy :/ (a@ — bn) ds. (4.8)
Q a0 \ On

for any function n harmonic in S, i.e. any function n such that V?n = 0.
n n n

This leads to the following “split” formulation of the vorticity equations

w; + (IVw) = vV3w, / wn dady = / <a@ - bn) ds
Q s \ On (4.9)

Vi) = —w, 1 = a on 02

The advantage of this formulation is that is doesn’t involve ¢, and so again the
equations in (4.1) can be solved independently. One can solve the advection-diffusion
equation for w using the vorticity integral condition, and then solve the equation for
1) using the Dirichlet (or “natural”) condition. Another advantage to this approach,
and one that is relevant to this thesis, is that the vorticity integral condition applies
to irregular regions as well as regular regions. Unlike the local formulas derived
above, it is valid in general regions, not just rectangular regions. The drawback most
often cited in the literature to the implementation of this condition is, however, that
harmonic functions 7 must be computed and stored before the computations can
begin. These makes this approach of limited usefulness in, for example, a 3d setting,
although a variant of this method, the Glowinski-Pironneau method eliminates the
need for these harmonic functions. It is curious that this approach is also criticized
for being complicated to implement [54], in part because the implementation requires
the solution to a system A\ = (3 that must be solved at each time step.

Another representative “global method” for determining the correct boundary
conditions on vorticity is given by Anderson [2]. Here, Anderson derives a constraint
equation that the flux of vorticity (Ow/0n) must satisfy. This flux constraint is given
by

ow 0 oG 10

— (o, s)w(s, t) ds =

— 4+ — i : 4.1
o + n ), Bn /QG(CY, s) [iVw(x,t)];dV (4.10)

von
where o € R? is the point on the boundary, and G(z,s) is the free space Green'’s
function satisfying V2G(z,s) = §(x — s). Because he is computing a flux condition
on vorticity, Anderson emphasizes that his method exhibits vorticity creation at the
boundary, and so is similar to vortex sheet methods proposed by Chorin. In fact,
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Anderson demonstrates that at least in one case, his formula for the flux of vorticity
is exactly that required by Chorin’s method, described in Section 1.2.5.

Other methods involve solving the fully coupled equations, or eliminating the
vorticity term altogether and solving a biharmonic equation for . An excellent
survey of these different methods can be found in [44]

4.2 A Hybrid Immersed Interface/Finite-volume Method

To introduce our approach to solving the above system of equations in a finite volume
setting, we first discuss a simpler set of equations, the inviscid streamfunction vorticity
equations.

4.2.1 Solving the inviscid equations (v =10)

Using methods from the previous chapters, it is fairly straightforward to solve the
inwviscid streamfunction vorticity equations, given by

w+i-Vw =0, (z,y)€
VQT/):—CU, (l‘,y)GQ
u:¢y7 _¢x

Y — (4.11)
7/) :7/), (,I', y) € 00

in an irregular region 2. The difference between these equations and the full equations
given above is that here we only impose a no-normal flow condition on the velocity
field at solid boundaries. The tangential component of the velocity v, is not specified
in the problem, and in general, the velocity at solid boundaries will not match the
wall velocity.

In the finite volume setting, we treat the vorticity as a volume averaged quantity
located at cell centers, and the streamfunction as a node-based quantity located at
the corners of cells. Velocities are the edge averaged velocities described in Chapter
2. See Figure 4.1, for a diagram of this discretization.

Specifically, we use the discrete capacity function x;; to define w;; as

1

n_—__ - t,) dzdy. 4.12
= Ry S ) dedy (4.12)

The streamfunction values v;; are defined as

Vij = Y(Tiz1/2,Yj—1/2), (4.13)
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Figure 4.1: Discretization used in present algorithm for solving the streamfunction-
vorticity equations.

and from 2.27 and 2.28, we have that

% L ) d (4.14)
i—-1/2,7 = T~ xT,Yy)ay .
’ Ay Yj—1/2 !
1
= A—y[@/)(xiq/myjﬂ/z) - @/2(%71/2,%71/2)] (4.15)
and
1 Tit1/2
Vig-12 = — 1 bu(z,y) dy (4.16)
Ti-1/2
1
= _A—x[w(xiJrl/Zayjfl/Q) — P(Ti1/2, Yj—1/2)]- (4.17)

Using discretizations of the advection-diffusion equation given in Chapter 2, and
the elliptic solver described in Chapter 3, we can outline the algorithm for solving
the above set of inviscid equations in an irregular, multiply-connected region 2. This
algorithm is given in Figure 4.2. The multiply-connected domain is handled using the
techniques described in Section 3.5.1.

The no-flow boundary conditions used in the advection step are imposed through

our choice of U, /2, and V[, /2 obtained by differencing the streamfunction. By

requiring that 1) be equal to a constant Ej along the boundary of each embedded object
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Solving the inviscid streamfunction-vorticity equations

Given cell-averaged values w®, obtain &° by averaging w° onto grid nodes. Solve
V2 = —&° subject to Dirichlet boundary conditions 1 = 1) on each irregular
boundary. The exact value of the Dirichlet condition is to be determined as part
of the solution process. Impose a no-circulation condition around each object, as
described in Chapter 3, and free-stream conditions on ¢! on the boundary of the
computational domain. Define velocities U;_y/2,; and V; ;_; /5 using 0.

Forn=20,1,...
1. Advect the vorticity using the finite volume advection scheme and capacity form
differencing in CLAWPACK to get w"™!. Impose no-flow conditions on all solid
boundaries.

2. Average w"*! onto grid nodes to get @™t

3. Use the Immersed Interface Method to solve V?y"t! = —&"*! subject to
Dirichlet conditions ¢ = E?H on the boundary of object €2;. A no-circulation
condition is imposed to obtain unknown values Ej.

4. Compute Uz.”fl}Qj and VZ’;JQII/Z using "+,

Figure 4.2: Algorithm for solving the inviscid streamfunction vorticity equations

€2;, we obtain velocities satisfying the no-flow condition. At the boundaries of the
computational domain, which for our purposes here, we assume do not coincide with
physical boundaries, we impose a no-inflow boundary condition and an appropriate
inflow and out-flow conditions. If our flow is exactly parallel to some boundary of our
computational domain, then it doesn’t matter what values we choose to put in ghost
cells — no vorticity will flow across that computational boundary.

Only two items need to be described in more detail. These are the averaging
process we allude to above, and the manner in which we obtain the jumps [w]*!
needed by the Immersed Interface Method at the irregular boundaries.

The averaging process we use is designed so that the value &;; is roughly the
average value of w;; in neighboring cells. In particular, we didn’t want to introduce
any unnecessary oscillations in the data.

Away from the interface, we determine &;; using

~ o Winly T Wis1,j-1 Wi+ Wiy
Wij = 1 .

(4.18)
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Near the interface, the averaging must take into account partial cells. For each cell,
we determine the number of corners n;; of the cell that are in the flow-domain. For
cells completely in the no flow-domain, n;; = 0 and for cells completely in the flow
domain, n;; = 4. For partial cells, 0 < n;; < 4. Using this number, the vorticity in
each cell is distributed to nodes using the formula

1 Kitk,j
J+e
> o ﬁwi+k,j+é- (4.19)
ke{=1,0} MiHRIHE 1oy gy TR

wij =

These formulas preserve constant functions, a desirable feature which prevents the
introduction of unnecessary oscillations.

Second, in order to solve the elliptic equation for 1, we need jumps in w at the
boundary in order to form the vector r = [0,0,0,0,0,—[w]]" required by the Im-
mersed Interface Method. We obtain the necessary jumps by using a second order
accurate one-sided approximation to w at a point on the boundary. Assuming that
in the no-flow domain, w;; = 0, the jump in the w at the boundary is equal to this
approximation, with a possible sign change. Obtaining the stencil for the one-sided
formula requires some care, because not just any choice of six points can be used in
the stencil. In Section 3.3, we describe which stencils can be used.

To illustrate this algorithm, we investigate vortex dynamics in an enclosed square
region embedded with two circular cylinders. In this simulation, we place a circular
cylinder in the upper left and lower right quadrants of a square domain. In the
other two quadrants, we place two circular patches of vorticity of equal strength. We
impose no-flow conditions on all solid boundaries. The initial vorticity patches induce
a velocity field in the domain which then advects the vorticity further. Eventually,
the two smaller vortex patches coalesce into a single bigger patch of vorticity. The
results of this simulation at four different times are shown in Figure 4.3.

The algorithm described in Figure 4.2 provides the framework for the algorithm
we will use to solve the fully viscous equations. Aside from the addition of a diffusion
term in the viscous case, the main difference between the inviscid algorithm presented
in Figure 4.2 and its viscous counterpart is that in the latter case, we must impose
an inhomogenous boundary condition on the vorticity in order to satisfy the no-slip
condition at solid boundaries.

4.2.2 Solving the viscous equations (v > 0)

Our goal now is to modify Algorithm 4.2 so that we can handle no-slip boundary
conditions. In particular, what we seek is a flux g of vorticity which we can introduce
in the diffusion step of our algorithm and which will cancel out the slip velocity on
the boundary of each object at each time step. Unlike the vortex method described
in Section 1.2.5, our method solves an implicit system to obtain this desired flux.

In Chapter 2, we described how we used a Godunov splitting to split the advection
term from the diffusion term in the vorticity transport equation. In Algorithm 4.2,
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Figure 4.3: Inviscid calculation of two vortex patches coalescing into a single vortex in
the presence of two obstacles. Initially, two circular patches of constant vorticity are
positioned in the lower left and upper right corners of the domain. No-flow boundary
conditions are imposed on all domain boundaries. The computational grid is 160 x 160.

we made use of the splitting to solve the transport equation. Now, we view this
fractional step method as not only splitting the diffusion term from the advection
term, but as splitting the transport equation into a convection-dominated, inviscid
step and a diffusion-dominated, Stoke’s flow step. In the Stoke’s flow step, we solve
the equations given in Section 3.5.3 for the flux of vorticity g needed to ensure that
the no-slip condition ¢, = 0 is satisfied.

In Figure 4.4 we give viscous counterpart to the inviscid algorithm presented in
Figure 4.2. Note that instead of imposing the no-circulation condition, as we did in
the inviscid case, we now impose no net-flux condition

Oow
—ds = 4.2
/Q s =0 (4.20)

described in Section 3.5.3 on the flux of vorticity across solid boundaries.
In Algorithm 4.4, we determine the unknown vorticity flux ¢"*! after we have
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Solving the viscous streamfunction-vorticity equations

Given cell-averaged values w®, obtain & by averaging w° onto grid nodes. Solve
V2? = —&° subject to Dirichlet boundary conditions 1 = 1) on each irregular
boundary. Dirichlet conditions to be determined as part of the solution process.
Impose a no net-flux condition (4.20) on the vorticity. Impose appropriate conditions
on ¢"*! on the boundary of the computational domain.
Define UiO—I/Q,j and 1/;?]._1/2 using °.
Forn=0,1,...

1. Advect the vorticity using the finite volume advection scheme and capacity

form differencing in CLAWPACK to get w*. Impose no-flow conditions on all

solid boundaries.

2. Solve the Stoke’s flow problem in Section 3.5.3 to obtain the unknown flux of
vorticity ¢"™" needed to ensure ¢! = 0. Use node based solution &"*' to
solve V2¢"+! = —5"*! subject to Dirichlet boundary conditions ¢ = ;.

3. Diffuse w* using the finite volume scheme presented in Chapter 2. Impose flux

g™t at physical boundaries.
4. Compute Uffll/lj and Vl”]tll /o using P,

Figure 4.4: Algorithm for solving the viscous streamfunction vorticity equations

completed the advection step of our splitting scheme, but before we have carried out
the diffusion step. When we solve the Stoke’s flow equations, therefore, we are solving

the system
@TH»I — o @TH»I + o*
e v A3 e
At Y < 2 )
v?w — _ &}n+1 (421)
wn =0
for g"*!. subject to boundary conditions
3&5"—"1 :gn—l—l
on 7 (4.22)
Y =1

The value & is the value of w averaged onto grid nodes. This is the same coupled
system we described for Stoke’s flow in (3.132).
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There is one additional detail we must include in order to ensure the stability of
the Algorithm 4.4. As we recall, the Stoke’s flow equations described in Chapter 3
required jumps at time level n. These were required to form the right hand side for
the parabolic solve. In the present situation, we have introduced an advection step
between diffusion steps, and so jumps computed from the previous solution w™ of
the parabolic equation are no longer consistent with jumps in the quantity w*. We
must therefore recompute appropriate jumps w*, v*. This is done using one-sided
approximations described in the inviscid case. Using jumps w", v™ and r" leads to an

algorithm which is stable only for very small Reynolds numbers (Re < 1).

4.3 Numerical results

4.3.1 Flow past a cylinder

One classic, non-trivial two dimensional problem for which there is a large pool of
numerical and experimental results is the problem of calculating the flow around a
circular cylinder. We now compare the results of our algorithm applied to this problem
with those results published in the literature.

In this problem, we have a circular cylinder embedded in a rectangular domain. As
suggested by Behr et. al. in [4], we use a computational mesh that extends 8 cylinder
units (1 unit = diameter of the cylinder) to the left and in the cross-flow directions
from the center of the cylinder. In the downstream direction, the domain extends
18.5 cylinder units. The grid used is 530 x 320. See Figure 4.5 for a sketch of the
computational domain.

To represent the circular cylinder, we use either M = 8 or M = 16 interface points,
depending on the Reynolds number. For this value of M, we can explicitly form and
solve the linear systems for the flux of vorticity directly. The size of the time step
was restricted by the stability requirements of the advection scheme. See Figure 4.5
for a plot of how the cylinder and interface points are embedded in the mesh used for
these calculations.

On the boundaries of the computational domain, we impose no-flux conditions (0w /dn =
0) on all four boundaries. For the streamfunction, we impose free-stream conditions
given by
w:Uoo(y_g) at z =0,
O
on
v =—-2U,, aty=0, and
Y =2Uy, aty=16.
These conditions are actually considered quite crude and if highly accurate values of

vorticity and pressure on the wall are desired, then one should impose more sophisti-
cated far field conditions [24], [46]. However, according to Behr et. al. [4], even using

= = 26.
0 atzx 6.9, (4.23)
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Figure 4.5: (a) Computational domain for flow past cylinder test case. (b) Cylinder
embedded in 530 x 320 grid used for this problem. The 8 interface points used for
Re = 20 this problem are marked with the “*”. For Re = 40 and Re = 100, we used
16 interface points, also equally spaced on the cylinder.

these crude conditions on the smaller domain we are considering, we should be able
to get values of the drag coefficient that are within 5% of the value we would get on
a larger domain.

There is a wealth of papers on the subject of flow around a cylinder. We found a
handful of these papers particular useful. The first, by Fornberg [24] is a numerical
study of steady flow past a cylinder. In his work, he determines the cylinder wake for
steady flow at Reynolds numbers from 2 to 300. These results are fairly detailed and
so provide a good primary source for numerical results. The second paper by Braza
et. al. [9] also did a numerical study and in the early section of their paper, make
many useful comparisons between their work and others reported in the literature.

In addition to numerical work, there have also been some detailed experimental
work done for the flow around a cylinder. One very early and often cited work is
that of Tritton [52]. Tritton carried out the most extensive set of calculations for
the drag coefficient and his results are still cited even in the most recent papers.
One particularly comprehensive set of experiments was carried out by Coutanceau
and Bouard ( [16], [17]). In their series of papers, they report detailed information
regarding several geometrical parameters such as wake length and separation angle.
Since these are values which we can easily determine from our results, we refer often
to these values to see that our results are agreeing with experimental work.

The difficulty with comparing our results to those cited above is that very rarely
were numeric values for the various quantities of interest given. We usually had to
resort to reading values from graphs presented in these papers and so as a result could
only get very crude estimates for some of these values. In some cases, we were able to
cite secondary sources for numeric values that apparently the authors of those sources



123

were able to obtain from the primarily authors. While we tried to go to the primary
sources whenever possible, we often could not get the exact numbers quoted. In some
cases, we only compare our plots visually with those published plots, and so to aid
the reader in making these comparisons, we reproduce a selection of these plots in
Appendix A.

Our numerical results are divided into the three sections, one for each Reynolds
number. While this is not the standard way to group the results, we wanted to look
at three different regimes: the clearly steady regime (Re = 20), a regime in transition
(Re = 40) and the clearly unsteady regime (Re = 100). Each of these regimes show
different features of our algorithm.

Steady flow : Re = 20

Vorticity contours; Re = 20; t = 40

(a) 7 8 9 10 11 12 13

Vorticity contours; Re = 20;t = 40

8

(b) 7 8 9

Figure 4.6: Contours of nondimensional vorticity wr,/U,, for Re = 20.

To see that we are getting the right general behavior, we plot in Figure 4.7 the
streamlines and vorticity contours computed for Re = 20. In order to compare our
results with those found in Fornberg’s study of steady wakes behind a cylinder [24],
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Figure 4.7: Contours of non-dimensional streamfunction ¢/r,Us, for Re = 20. The
dotted line delineates the boundary of the closed wake.

we plot the non-dimensional quantities ¢/(r,Uy and wr,/Us and show the same
contour levels as are cited in that paper. In these plots and all subsequent plots, we
have masked out (using the Matlab NaN value) the vorticity values corresponding to
k = 0 and the streamfunction values corresponding to nodes strictly inside of the
no-flow domain. The contour levels that cross the cylinder boundary are a result of
the fact that Matlab assumes that all values are cell centered, which is not true for
those values in partial cells.

In both sets of plots, we see very good agreement with Fornberg’s plots, which we
have reproduced in Appendix A. Only the zero level contour for both plots seems to
deviate noticeably from that shown by Fornberg. In both plots, this contour is not
symmetric with respect to the = axis. Also, in the zero level streamline is separated
from the surface of the front (left) edge of the cylinder and doesn’t delineate perfectly
a boundary of the closed wake. We attribute this slight lack of symmetry to the fact
that the six point stencils that we use to approximate the boundary conditions are
not symmetric with respect to the horizontal centerline dividing the domain. Also,
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the one-sided stencils we use to approximate the jumps in vorticity after the advection
step are also not symmetric with respect to this line. We expect, however, that on a
finer grid, our results would exhibit more symmetry.

The contour that seems to follow the wake boundary most closely is shown in
Figure 4.7 by the dotted line. The value of this contour is quite small (10~*) and close
to the truncation error of our numerical scheme. We use this contour to establish the
length of the wake boundary, as measured from the downstream edge of the cylinder.
Using Matlab, we estimate this length to be 0.85, a value that falls well within the
range of experimental values (0.6 to 1) reported by Coutanceau and Bouard [16].

17 EEmm

I

I

NANN

(TR
N

i

(b) 2

Figure 4.8: Close-up of vorticity contours for non-dimensional vorticity at Re = 20.
The two sets of contour levels used for each plot are —4.6 : 0.2 : 4.6 and —0.5 : 0.025 :
0.5.

To see that the solution is very sensitive to the value in a few grid cells near the
back (right) edge of the cylinder, we show in Figure 4.8 a close up of the vorticity
contours, this time for closely packed contour levels. In both plots, we show the same
contour levels, but in the second plot we overlay the plot with Cartesian mesh on
which the solution was computed to show that the deviation from symmetry occurs
only in about four cells near the right edge of cylinder.

We now look at quantities on the surface of the cylinder and see how those compare
to the results reported in the literature. In Figure 4.9, we plot the vorticity along
the surface of the cylinder. The maximum value of vorticity that we report is higher
than those reported by either Fornberg or Braza et. al. [9], but by no more than those
two reported values deviate from each other. We attribute our larger value to the
fact that we are applying the freestream boundary conditions on a relatively small
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computational domain. Fornberg shows that this maximum value in particular is
very sensitive to the boundary conditions chosen and the domain size, and generally
increases as the domain size is decreased when using these free stream conditions.
Extrapolating from his data, we are well within the error bounds that he reports.

From this plot of the wall vorticity, we can get a good estimate of the separation
angle for the cylinder wake. The location of the separation point is determined by
the point on either the upper or lower half of the cylinder where the vorticity changes
sign. We have estimated this separation angle for our case to be about 45.2 degrees,
where we measure the angle in a counter-clockwise direction from the back (right)
edge of the cylinder. This agrees quite well with those results reported by Fornberg
(at least as far as we could read on the graph). When compared with the summary
experimental values reported by Coutanceau and Bouard [16], our value is somewhat
high. The more recently reported values, cited in this paper are in the range 43 to
43.8 degrees.

Braza et. al. (1986)

Fornberg (1980)

Separation angle = 45.2

Figure 4.9: Vorticity on the surface of the cylinder for Re = 20. The angle 6 is mea-
sured from the back (right) of the cylinder counter-clockwise. The dotted horizontal
lines indicate maximum values reported by the authors cited.

Finally, we compute the pressure on the surface of the cylinder, using the formula

9 Ow
PO = P, — — df 4.24
0) =Py =pra [ 52 (4.24)

where now, we have taken 6 to be the angle from the stagnation point at the front
edge of the cylinder, as measured in a clockwise direction. In all of our computations,
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u] Braza et. al. (1980) ‘

Figure 4.10: Pressure coefficient C, calculated on the surface of the cylinder for
Re = 20. Angle 6 is measured from the stagnation point on the front of the cylinder
in a clockwise direction. Values reported by Braza et. al. are shown.

p, the density of the liquid, is taken to be 1. In Figure 4.10, we plot the non-
dimensional pressure coefficient, defined as C, = (P — Py + 3pU2)/(3UZ%p), where
Py is the stagnation pressure. We do not have exact measurements against which to
evaluate our data, but along with our results, we plot our best estimates of those values
reported by Braza et. al. [9] for Reynolds number 20. Qualitatively, our calculations
of pressure are in good agreement with those in Braza et. al. However, our actual
numeric values for the pressure are quite a bit lower in absolute value than those
reported in that paper. We would like to be able to argue convincingly that again,
the discrepancies are due to the fact that our domain is much smaller than it should
be to get good agreement. However, we have found nothing in the literature that
supports this hypothesis. We can only conclude that future efforts should be directed
towards uncovering the source of this discrepancy.

In Figure 4.15, we plot the time history of this coefficient as computed using our
algorithm. We see that the value is low. While we don’t have a good explanation
for this discrepancy from that value reported by Fornberg, we believe that because
both the pressure coefficient C}, and now the drag coefficient depend on the integral
of Ow/0On, the fact that both of these values are low suggests that our computation
of the flux of vorticity is low. We again will consider it a priority to determine the
source of this discrepancy in future work.
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Transition Regime : Re = 40

Experimentally, the transition to an unstable wake occurs at around Re = 40 [16]. To
see how our code behaves around this Reynolds number, we computed the vorticity
and streamlines for Reynolds numbers 40 and 50 to see if we can detect the beginnings
of an instability. Our numerical results for Re = 40 exhibit slight asymmetries in the
eddy structure in the wake, but the wake remains closed and the perturbations in the
flow are damped. For Re = 50, these asymmetries in the flow are more pronounced.
In Figure 4.11, we plot the streamlines for the two flows and in Figure 4.12,we plot
the vorticity for the two cases. The contour levels shown in all plots are the same as
those shown for the corresponding Re = 20 cases.

Figure 4.11: Streamlines for (top) Re = 40 and (bottom) Re = 50 at ¢ = 100.
Two sets of contours levels shown are in both plots. These are —10 : 0.1 : 10 and
—0.1:0.01:0.1, the same levels used for the Re = 20 case.

To establish the wake boundary for Re = 40, the highest Reynolds for which
Coutanceau and Bouard [16] report data, we locate the point along the centerline
behind the cylinder at which the velocity changes sign. In Figure 4.13, we plot these
velocities at three different time levels. First, we confirm that the velocities along this
centerline have essentially reached a steady state by time level 100. We then compare
these results with the those in [16] and see that we have excellent agreement. We
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Figure 4.12: Vorticity contours for (top) Re = 40 and (bottom) Re = 50 at t = 100.
The contour levels shown are the same levels used for the Re = 20 case.
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0.2

1 Distance from center o? cylinder
Figure 4.13: Horizontal velocities for Re = 40 along centerline as function of distance
from center of cylinder. Markers on curve for ¢ = 100 are values at individual cell

edges. Markers on other times are not shown. The three time levels plotted are :
=805 7t =90; “.—7", t = 100.

have reproduced this plot in Appendix A. Even the location of the velocity minimum
is well within their experimental results. Finally, we determine the length of the wake
at time level £ = 100 by locating the point at which the velocity at that time level
changes sign. From our results, we determine that the wake length is about 2.05,
which well within the results reported in [16].

One signature of the birth of an instability in flow past a cylinder is the onset of a
difference in lengths separating the two vortex cores from the vertical plane through
the stagnation point [16]. In Figure 4.11, we observe that the vortex cores are about
the same distance from the stagnation point, but that by Re = 50, the top vortex is
closer than the bottom vortex to this point. Furthermore, we see that the streamlines
have become warped with respect to the y axis. We would need to run the code for
a much longer time to determine if we actually get vortex shedding at Re = 50, but
more likely this is a regime in which the wake merely oscillates, but doesn’t actually
separate from the cylinder.

From this numerical study of this transition regime, we conclude that somewhere
between Reynolds number 40 and Reynolds number 50, perturbations in the flow
behind the cylinder are no longer damped by the flow and as a result affect the
downstream wake. This behavior is in good agreement with other results reported.

Results on the drag coefficients for these two cases are reported in 4.3.1.
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Unsteady Vortexr Shedding : Re = 100

In this regime, we clearly have vortex shedding past the cylinder. These unsteady
flows are more complicated to analyze, since most quantities are now time dependent,
and all that one can really hope to assess is the basic behavior of the time dependent
quantity; establishing time accuracy of the results is quite difficult, given that the
onset of the instability depends on the manner in which the solution was perturbed
from symmetry. In our case, there is no need to perturb the solution at all; the
slight asymmetry in our numerical scheme, due to the asymmetric choice of six point
stencils, was enough to initiate the unsteady behavior.

Despite the fact that the higher Reynolds number flows are known to be more
difficult to compute, we were able to get good agreement with most quantities that
we computed.

— 7  ———

Figure 4.14: Contours of vorticity and streamlines for Re =100. Time corresponds to
crest of lift coefficient.

To see that we are simulating basic behavior of the vortex wake behind the cylin-
der, we show in Figure 4.14 plots of the shedding vortices and streamlines at a time
corresponding to a crest in the lift coefficient. The general behavior agrees with re-
sults found, for example, in [4] for the size grid we are working on. We also note that
we see very little diffusion in the vortices as they travel downstream. This may be
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due in part to the fact that the high resolution algorithms in CLAWPACK minimizes
the diffusion normally seen in first order upwind advection algorithms. Also, we note
that our results exhibit virtually no dispersive oscillations associated with second or-
der finite difference schemes. Again, the flux limiters of CLAWPACK minimize these
oscillations. The outflow boundary conditions that we use in CLAWPACK also seem to
be doing a very good job of allowing the detached vortices to cleanly exit the domain;
no noise propagates back into the domain at the outflow boundary.

To compute the Strouhal number, the non-dimensional frequency given by Str =
f2r,/Us, we tracked the time history of vorticity at the point (xogs, y148) =
(14.375,7.375) corresponding to the center of the lower left most detached vortex
in Figure 4.14. Using this time history, we could estimate an average frequency f
based on several periods of the shedding. The Strouhal number corresponding to this
shedding was about Str = 0.17 , which is in good agreement with other results in for
example [52].

Other values such as the pressure coefficient, vorticity on the wall and drag and
lift coefficients could in principle be computed as well, but because these values are
all time dependent, one should compute these quantities for several hundreds of times
steps to be sure that the desired periodic pattern has been established. Moreover, one
should compute these values more frequently than we do to get results that compare
favorably with those published. We did compute the lift coefficient as a function of
time and do see the beginnings of a periodic pattern, but this really only appeared
to establish itself near ¢ = 100, our final time step for this time step. The periodic
behavior in the drag coefficient is much less pronounced,and so our results didn’t show
any behavior that we could clearly identify as periodic. Again, we assume that we
hadn’t run the simulation long enough to establish the pattern.

The drag coefficient that we did compute was within the range of results published
by Tritton [52], Braza et. al. [9], and Fornberg [24]. Our value drifted a bit from a low
value of 1.03, computed at ¢ = 28 to a higher value of 1.17 at £ = 100. Tritton reports
a value of about 1.25, whereas Fornberg reports a much lower value of about 1.058.
Our results, along with drag coefficient results for other Reynolds numbers that we
have computed are reported in Section 4.3.1.

Drag coefficients

In this section, we briefly discuss the drag coefficient calculations for each of the
Reynolds numbers discussed above. We compare our results to those found in the
experimental work of Tritton [52] and the computational results of Fornberg [24].

The coefficient of drag C, is computed as the sum of a viscous and pressure drag
terms and is given by

v 2 Ow
i 4.25
Ch =1 i (ra - +w) sm(9) df ( )
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Figure 4.15: Time history of the drag coefficients for Re = 20, 40 and 100. The largest
drag coefficient is associated with Re = 20 and the smallest with Re = 100.

where # is the angle measured from the front stagnation point in a clockwise direction.

Generally, we found that we got reasonable agreement with the results reported by
these researchers. We plot the time histories of these coefficients in Figure 4.15, along
with the values reported by Tritton [52] and Fornberg [24]. The results quoted for
Tritton were taken from graphs, whereas the Fornberg published the numeric values.
Our general observations are that our results match the published values more closely
for the higher Reynolds number than for the lower one. This is most likely due to
the fact that for these lower Reynolds numbers, the pressure pressure drag is a larger
percentage of the total drag than for the higher values. Since the pressure seems to
be the value that we can approximate with the least degree of accuracy, we are not
surprised at our results for the drag coefficient.

Second, we noticed that we didn’t generally get smooth behavior unless we ar-
ranged the computations of the flux of vorticity in certain ways. The computations
we are referring to are those involved in the solving the coupled parabolic-elliptic
system in Section 3.5.3. For example, if we enforce the condition 1, = 0, by requiring
that the normal derivative of the streamfunction, as approximated using the 1 that
is returned from the elliptic solver be zero, then we get much smoother results than
if we simply require that the jumps v; returned from the elliptic solver be set to
zero. The difference seems to be most dramatic for Re = 20. On the other hand,
the smoothed solutions are not necessarily more accurate than those shown in Figure
4.15. Understanding the effect that the arrangement of the computation of the flux
has on the drag coefficient is clearly worth future investigation.
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4.3.2  Flow past several cylinders

While the single cylinder problem has gained an enormous amount of attention, flow
past several cylinders has received considerably less attention. The reason for this is
in part because it is not longer possible to use the cylindrical transformation used by
most researchers for the single cylinder case. We present here results from computing
flow around three cylinders, embedded in a 20 x 10 grid. The cylinders are each of
radius 0.5 and The computational grid was 400 x 200.

We again see a periodic vortex shedding, but now because the cylinders are not
placed symmetrically with respect to the y axis, the shedding is not vertically sym-
metric. In Figure 4.16, we show the results at Re = 100 of our calculations and show
four different times during the evolution of a single period. We took the starting point
for a single period to be the time at which the largest vortex sheds from the upper
cylinder. In the final frame, this shedding is just about to occur. We measured the
Strouhal number for this shedding and found it to be about 0.14.

4.3.3  Flows in biperiodic domains

The great majority of calculations published in the literature for low around a cylinder
are done using a cylindrical coordinate transformation. While this is the obvious
transformation for this problem, it doesn’t extend to multiple cylinders, nor does it
lend itself very well to computing flows in periodic domains. Boundary conditions
which are naturally imposed at a distance r., of a circular domain are difficult to
impose on a rectangular domain. One advantage of the rectangular domain is that
we can in fact impose periodic boundary conditions quite naturally. Furthermore,
by doing so, we can avoid many of the problems associated with far-field boundary
conditions.

For this test problem, we revisit the biperiodic flow problem used as our example
in the Stoke’s flow case. Only this time, we include the affects of convection. The
setup for this problem is identical to that for the Stoke’s flow problem, so we refer
the reader back to 3.5.3 for the domain configuration. In the present problem, we run
the code at Re = 50, where the Reynolds number is based on the average upstream
velocity. The vorticity and streamfunction contours are shown for several different
time levels in Figures 4.17 and 4.18

In the literature, we found at least one set of results with which we could compare
our computations. This set of results, by Tezduyar and Liou [50] and were reported
for Reynolds number 100, we can see that we get similar flow structures to what they
report, although we see the structures much earlier than they do. This is probably
due to the fact that they start with a Stokes flow solution, whereas we start with a
fluid at rest.
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Figure 4.16: Flow past three cylinders. The last vortex from the upper cylinder was
shed at time 121. In the bottom frame, another vortex is about to shed off of the

upper cylinder.
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0

Figure 4.17: Contours of vorticity for flow at Re = 100 in a biperiodic domain.



domain.
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4.3.4  Flow around irreqular objects in a biperiodic domain

In our previous examples, we have only shown flow around circular cylinders. But
as we saw in Chapters 2 and 3, neither our advection-diffusion algorithm, nor the
Immersed Interface Method is restricted to simple shapes. Moreover, the code is
written to handle any general smooth shapes which can be represented by a Fourier
spline. Our choice of cylinders in the previous examples was motivated mainly by the
fact that these are the shapes that show up most frequently in the literature.

In this set of examples, we show that our code works quite well on arbitrarily
shaped objects. The domain we consider is the same square biperiodic domain as in
the previous set of examples. This time, we embed three irregularly shapes objects in
the domain and consider flow at Reynolds number approximately equal to 20, where
we chose a length scale based on the diameter of the largest circle circumscribing each
of the objects. The average flow at the left edge was equal to 0.1.

In Figure 4.19, we show the results of this investigation as the run approaches a
steady state.

To see that the solution is converging, we ran the code at three different grid reso-
lutions: N = 80, N = 160 and N = 320. Plots of the results of the grid refinement
investigation are shown at time level 30 in Figure 4.20.
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Figure 4.19: Vorticity contours for flow in a biperiodic domain. Computational do-
main is 320 x 320.
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(c)

Figure 4.20: Vorticity contours for flow in a biperiodic domain at time level 50, as
computed on three different grids. Plot (a) was computed on an 80 x 80 grid, plot
(b) on a 160 x 160 grid and plot (c) on a 320 x 320 grid.
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Chapter 5
CONCLUSIONS AND FUTURE WORK

In this thesis, I have described in detail a Cartesian grid method for solving the
streamfunction vorticity equations in irregular geometries. Using the Immersed In-
terface Method (IIM), I solved the elliptic equation for the streamlines of the flow,
and using a finite volume scheme, I solve the advection-diffusion equation modeling
the transport of vorticity. Flux at the boundary of solid objects is generated by solv-
ing a coupled elliptic-parabolic system of equations in which I enforced the no-slip
boundary condition on the surface of solid objects. The code can be used to solve
these equations in complicated domains with multiple embedded inclusions.

The highlighs of this thesis include the following:

e A conservative finite volume algorithm is developed for solving the advection-
diffusion equation in irregular regions. This is later used to solve for the trans-
port of vorticity in the streamfunction vorticity equations. The algorithm has
an order of accuracy between 1.2 and 2, depending on the geometry and the
Peclet number. The stability problem associated with small cells is eliminated
by modifying the capacity of each cell. This allows the code to run stably at
Courant numbers near 1 relative to the uniform grid spacing.

e The Immersed Interface Method is rederived and extended to solve parabolic
boundary value problems and coupled elliptic-parabolic problems in complex,
multiply-connected regions. It was shown that I can use the IIM to solve the
Stokes flow problem in a complicated domain. Also, the new derivation makes
the computer implementation of the IIM quite straightforward.

e The Immersed Interface Method is used to determine the flux of vorticity at
solid boundaries. This vorticity is diffused into the domain during the diffusion
step of the algorithm. Determining how much vorticity to generate requires
very little computational overhead, as the linear system I solve for the flux of
vorticity needs to be formed and factored very infrequently. Moreover, the size
of this system depends only the number of points used to represent the interface,
and not on the number of grid points.

e The code was designed to take advantage of the high resolution algorithms in
CLAWPACK. Using this high resolution algorithm, the results show very little
evidence of numerical oscillations or diffusion.
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The algorithm reproduces several published computational and experimental re-
sults for low Reynolds number flow around a circular cylinder. In Chapter 4 I in-
vestigated the behavior of the code for Reynolds numbers 20, 40, 50 and 100 and
found that at Re = 20 and 40, the flow remained essentially steady and symmetric
and any small perturbations in the wake were damped. At Reynolds number 50, the
streamline wake begins to oscillate, and by Reynolds number 100, vortices are shed
behind the cylinder forming the well known von Karman vortex street. The values
of vorticity and streamfunction for the lower Reynolds numbers were shown to be in
good agreement with published results. At Re = 100, I show that I get the proper
shedding frequency. The drag coefficients and pressure calculations were not as ac-
curate as the other values I report, but still within an acceptable tolerance for many
applications. I also show good agreement with at least one set of published results on
flow in a biperiodic domain.

5.1 Future Work

There are still numerical verifications that [ would like to consider in the future. First
it would be interesting to test the problem of flow around the cylinder on a finer grid
to verify that the results remain essentially unchanged from those computed on the
coarser grid. Second, it would be very interesting to run the code for longer times
and for more Reynolds numbers between 40 and 100 to establish how well the code
can determine critical Reynolds number for the onset of vortex shedding. Another
interesting flow regime is flow past a rotating cylinder. There is small set of published
results on this problem, and it would serve as a good test case for our algorithm.
Finally, I would like to find more results on flow past non-circular blunt bodies so
that I can have something to compare our results in these less well studied problems.

With our code, one can solve may interesting and challenging problems involving
viscous incompressible flow in multiply-connected domains. I hope that such a code,
which I intend to make available, will be useful to researchers in a variety of fields who
need to solve low Reynolds number flow problems in complicated geometries. I include
in this group biologists working in bio-fluid dynamics and material scientists interested
in the role that convection could play in the evolution of a phase change interface.
Also, I expect that mechanical engineers would be interested in our work, particularly
those designing heat exchangers, which in the simplest cases can be modeled as an
array of cylinders.

Eventually, I would like to extend this code to problems in multiphase flow with
moving boundaries. My original motivation for developing the present code was to
model Raleigh-Benard convection in the presence of a melting or solidifying interface.
I plan to return to this problem in the future.
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Appendix A
FIGURES REPRODUCED FROM OTHER SOURCES

Below are the figures cited in previous chapters.

Figure A.1: Vorticity contours (left) and streamlines (right) of the Stoke’s flow prob-
lem with biperiodic boundary conditions. Reproduced from Tezduyar and Liou [50].
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Figure A.2: Vorticity contours (a) and streamlines (b) for flow around cylinder at
Re = 20. Reproduced from Fornberg [24].
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Figure A.3: Experimental results of horizontal velocity along centerline behind cylin-
der moving with speed V. Variable x is the distance from the center of the cylinder,
and D is the diameter of the cylinder. The triangle symbol are the experimental
results reported by authors of paper from which this plot was taken. Other symbols
are from other researchers. Reproduced from Coutanceau and Bouard [16].
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