
AMath 586
Sample Homework
Spring, 2007

Format for homework solutions and a sample write-up

Many of the homework problems in this course will have a large computational component. I hope that
these problems will achieve several goals, allowing you to obtain

1. Hands on experience in using various algorithms by writing your own programs and/or using software.
This should increase your understanding of the advantages, limitations, and proper use of various
algorithms.

2. Practice in designing numerical experiments and interpreting the results, both as a computational
scientist using a method to study some physical problem and as a numerical analyst attempting to
understand the behavior of an algorithm.

3. Practice in writing up your results and analysis in a manner that it can be understood and appreciated
by others.

In particular, it is not enough to simply get your program running and hand in a bunch of output.
Typically you will be required to make some creative choices in deciding what to run and do some analysis
of your results in order to understand what is going on, or at least to check that the method is working as
expected. You should also write up your analysis and conclusions clearly and concisely.

I suggest that you consider using a format along the following lines, as modified to fit the particular
problem.

1. A brief description of the problem.

2. A description of the method you have used to solve it, with documentation of what choices you have
made for any parameters, stepsizes, error tolerances, etc.

3. Results obtained, presented in a suitable format. If the solution is a function then a graph is typically
easier to interpret than a long list of numbers. If the exact solution is available then a comparison
of the two on the same graph is useful. Comparision of results with different parameter choices (e.g.,
with different step sizes to show convergence) can often be done on a single graph with good labeling
so that it can be clearly read. If the error is so small that it is hard to distinguish one graph from
another, a separate graph of the errors (suitably scaled) may be best.

Tables of errors are appropriate for checking the convergence rate, but tables with more than a dozen
numbers or so become unwieldy. In particular, if the error is a function, then you should print out some
appropriate norm of the error, not the error at every point. A graph of the error vs. some parameter
(step size, iteration number) may also be useful. Often a log-log plot is best for this.

Part of the problem is to choose what output to present. If you have to run 100 cases in order to
understand what is going on, please don’t give me the output of all 100! Once you understand things
clearly, you should be able to select a small set of cases that illustrate the main points, different types
of behavior, critical cases, or whatever. Present results that illustrate and complement your analysis
and conclusions.

4. Analysis of results, e.g., computation of convergence rates from the computed results. Also compare
your results with the theory, explain any strange behavior observed, make comparisons of different
methods if relevant, etc.

1

5. Computer code. Please attach your code, or at least a sample of it. If you have several different
versions with minor modifications, then one representative version would be enough. Please provide
some documentation in the program so that it is possible to figure it out.

Typesetting. Although not required, I suggest that you use latex to type up your solutions. This is
the standard math typesetting system used by most researchers and journals in applied mathematics so it’s
good to get proficient at using it. I will try to make it easy for you to learn it as we go along if you’re not
already familiar with it, by providing some examples of how the sorts of expressions we use in this course
are typeset.

The latex source for all the homework assignments will be available from the webpage so you don’t have
to retype the exercises, just copy these into your latex file if you want to include the questions along with
your solutions.

To get started, there are many latex tutorials on the web and many books. You might also want to take
a look at the latex source for this handout, available from the class webpage.

Note: the figures were made using matlab to first display the figure on the screen and the

>> print err1.eps

for example, dumps the current screen to an encapsulated postscript file that is read into the latex document
using epsfig.

Example. As an example of a reasonable write-up, here is a sample problem and solution. The matlab
m-files can be obtained from the class web page.

Problem

Compute approximations to u′(x̄) for x̄ = 1 using the approximations

D+u(x̄) =
1

h
[u(x̄ + h) − u(x̄)]

D0u(x̄) =
1

2h
[u(x̄ + h) − u(x̄ − h)]

D3u(x̄) =
1

6h
[2u(x̄ + h) + 3u(x̄) − 6u(x̄ − h) + u(x̄ − 2h)]

for each of the following functions:

u1(x) = sin(10x),

u2(x) = 4x3 − 12x2 + 14x − 4,

u3(x) = |x − 1.001|3/2.

In each case use several different values of h to approximate the derivative and discuss the behavior of the
errors as h is decreased.

Solution

Taylor series expansion of the three methods shows that:

D+u(x̄) − u′(x̄) =
1

2
hu′′(x̄) +

1

6
h2u′′′(x̄) + O(h3)

D0u(x̄) − u′(x̄) =
1

6
h2u′′′(x̄) + O(h4)

D3u(x̄) − u′(x̄) =
1

12
h3u′′′′(x̄) + O(h4).

We expect the methods to be first-order, second-order, and third-order accurate respectively.

2

First test function: For the function u1(x) we have u′

1(1) = 10 cos(10) ≈ −8.3907. Applying each
difference approximation to u1(x) gives the errors shown in the Table below and plotted in Figure 1. Here
the values h = 10−j for j = 1, 2, . . . , 7 are used. For larger values of h the errors behave exactly as
expected. Note that reducing h by a factor of 10 reduces the error in D+ by a factor of roughly 10, in D0

by roughly 100, and in D3 by roughly 1000.

h D+ error D_0 error D_3 error

1.0000e-01 3.8310e+00 1.3302e+00 -1.3495e-01

1.0000e-02 2.8576e-01 1.3978e-02 -4.2466e-04

1.0000e-03 2.7341e-02 1.3984e-04 -4.5055e-07

1.0000e-04 2.7215e-03 1.3985e-06 -4.4782e-10

1.0000e-05 2.7202e-04 1.4007e-08 2.4212e-11

1.0000e-06 2.7201e-05 4.1279e-10 2.4625e-10

1.0000e-07 2.7116e-06 -6.9743e-10 4.2986e-09

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

errors vs. h for function u_1

Figure 1: Log-log plot of errors vs. h for first test function u1. + = D+, o = D0, × = D3.

For smaller values of h the error does not continue to decrease in the expected manner. This is due to
the phenomenon of cancellation. Consider D0 for example, with h = 10−7. Then we expect the error to be
roughly

1

6
· 10−14 · 1000 cos(10) = −1.4 × 10−12.

However, since u(x̄ + h) and u(x̄ − h) agree to roughly 6 places, in the subtraction we lose 6 significant
figures. Since these results were computed in matlab which uses double precision with about 15 significant
figures, this introduces an error in about the 9’th figure which means we cannot expect an error that is
smaller than about 10−9, as observed. The asymptotic error analysis is no longer valid when the rounding
errors dominate.

NOTE: In solving differential equations, rounding errors are rarely a problem since we do not typically
use such small values of h.

3

Second test function: With this function we obtain the results shown in Figure 2. For very small
h the results are again contaminated by roundoff. For larger h we see some unexpected behavior. The
approximations D+ and D0 produce essentially the same results while D3 looks to be nearly exact. Looking
carefully at the truncation errors shows that this is correct, however. The function u2 satisfies u′′

2(1) = 0
so that the leading term in the error for D+ drops out. Also, since u2 is a polynomial of degree 3, its 4’th
derivative and all higher derivatives are zero everywhere, so the error in D3 should be zero. The fact that it
isn’t exactly zero is again a result of the rounding errors that arise in computing D3u2(1).

h D+ error D_0 error D_3 error

1.0000e-01 4.0000e-02 4.0000e-02 7.5495e-15

1.0000e-02 4.0000e-04 4.0000e-04 -1.2879e-14

1.0000e-03 4.0000e-06 4.0000e-06 9.6412e-13

1.0000e-04 3.9999e-08 4.0008e-08 1.3102e-11

1.0000e-05 4.5719e-10 5.0160e-10 1.4633e-10

1.0000e-06 -1.4968e-09 -6.0862e-10 -1.6504e-11

1.0000e-07 5.6086e-09 -3.2732e-09 -1.2155e-08

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−15

10
−10

10
−5

10
0

errors vs. h for function u_2

Figure 2: Log-log plot of errors vs. h for test function u2. + = D+, o = D0, × = D3.

4

Third test function: This function shows the expected asymptotic behavior for sufficiently small values
of h (until cancellation contaminates D3, at least), but does not show the expected rates for larger values
of h. The reason is because the function u3(x) is not smooth at the point x = 1.001. The first derivative
looks like a square root while the second and higher derivatives blow up at this point. If we difference across
a point of nonsmoothness, we cannot expect the convergence rates based on Taylor series expansions to
be valid. For h < 10−3, however, all of the points in the difference formulas are on the same side of the
singularity, the solution is now smooth and we see the expected rates.

h D+ error D_0 error D_3 error

1.0000e-01 3.5861e-01 4.2691e-02 -1.9368e-02

1.0000e-02 1.2965e-01 3.2440e-02 1.2827e-02

1.0000e-03 1.5811e-02 2.7128e-03 1.1890e-03

1.0000e-04 1.2064e-03 1.9801e-05 1.3533e-06

1.0000e-05 1.1878e-04 1.9765e-07 1.4678e-09

1.0000e-06 1.1861e-05 1.9777e-09 9.9724e-13

1.0000e-07 1.1858e-06 1.8403e-11 1.6190e-11

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

errors vs. h for function u_3

Figure 3: Log-log plot of errors vs. h for test function u3. + = D+, o = D0, × = D3.

5

A sample matlab m-file is appended that was used to obtain the results above. The function is called
with specific functions u and uprime to specify the test function and its derivative. The matlab command

>> hw0(’u1’, ’u1prime’)

produces the first set of plots and table.

function hw0(u,uprime)

x = 1;

nh = 7;

errors = ones(nh,4);

ux = feval(u,x);

disp(’ ’)

disp(’ h D+ error D_0 error D_3 error’)

disp(’ ’)

for i=1:nh

h = 10^(-i);

up = feval(u,x+h);

um = feval(u,x-h);

umm = feval(u,x-2*h);

dp = (up - ux)/h;

d0 = (up - um)/ (2*h);

d3 = (2*up + 3*ux - 6*um + umm) / (6*h);

dtrue = feval(uprime,x);

errp = dp-dtrue;

err0 = d0-dtrue;

err3 = d3-dtrue;

errors(i,:) = [h,errp,err0,err3];

disp(sprintf(’ %12.4e %12.4e %12.4e %12.4e’,h,errp,err0,err3))

end

% plot errors:

loglog(errors(:,1),abs(errors(:,2)))

hold on

loglog(errors(:,1),abs(errors(:,2)),’+’)

loglog(errors(:,1),abs(errors(:,3)))

loglog(errors(:,1),abs(errors(:,3)),’o’)

loglog(errors(:,1),abs(errors(:,4)))

loglog(errors(:,1),abs(errors(:,4)),’x’)

hold off

%------------------------------

function u=u1(x)

u = sin(10*x);

%------------------------------

function up=u1prime(x)

up = 10*cos(10*x);

6

