Conservation Laws and Finite Volume Methods

AMath 586
Spring Quarter, 2015

Notation and Derivation

Randall J. LeVeque
Applied Mathematics
University of Washington
For more about these methods...

- AMath 574, Winter 2017
- Clawpack Software (Conservation Laws Package)
 www.clawpack.org
 www.clawpack.org/gallery
Note different notation...

Solution = $q(x, t)$,

Advection velocity = u,

Advection equation: $q_t + u q_x = 0$,

Linear hyperbolic system: $q_t + A q_x = 0$

Nonlinear hyperbolic system: $q_t + f(q)_x = 0$
Derivation of Conservation Laws

\(q(x, t) \) = density function for some conserved quantity.

Integral form:

\[
\frac{d}{dt} \int_{x_1}^{x_2} q(x, t) \, dx = F_1(t) - F_2(t)
\]

where

\[F_j = f(q(x_j, t)), \quad f(q) = \text{flux function.} \]
Derivation of Conservation Laws

If q is smooth enough, we can rewrite

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x, t) \, dx = f(q(x_1, t)) - f(q(x_2, t))$$

as

$$\int_{x_1}^{x_2} q_t \, dx = - \int_{x_1}^{x_2} f(q)_x \, dx$$

or

$$\int_{x_1}^{x_2} (q_t + f(q)_x) \, dx = 0$$

True for all x_1, x_2 \implies differential form:

$$q_t + f(q)_x = 0.$$
Finite differences vs. finite volumes

Finite difference Methods

- Pointwise values \(Q^n_i \approx q(x_i, t_n) \)
- Approximate derivatives by finite differences
- Assumes smoothness

Finite volume Methods

- Approximate cell averages: \(Q^n_i \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x, t_n) \, dx \)
- Integral form of conservation law,

\[
\frac{\partial}{\partial t} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x, t) \, dx = f(q(x_{i-1/2}, t)) - f(q(x_{i+1/2}, t))
\]

leads to conservation law \(q_t + f_x = 0 \) but also directly to numerical method.

R. J. LeVeque
AMath 586
Shallow water equations

\[h(x, t) = \text{depth} \]
\[u(x, t) = \text{velocity (depth averaged, varies only with } x) \]

Conservation of mass and momentum \(hu \) gives system of two equations.

mass flux = \(hu \),
momentum flux = \((hu)u + p \) where \(p = \text{hydrostatic pressure} \)

\[
\begin{align*}
ht + (hu)_x &= 0 \\
(hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x &= 0
\end{align*}
\]

Jacobian matrix:

\[
f'(q) = \begin{bmatrix} 0 & 1 \\ gh - u^2 & 2u \end{bmatrix}, \quad \lambda = u \pm \sqrt{gh}.
\]
Linearized shallow water equations

\[h(x, t) = h_0 + \tilde{h}(x, t) \quad \text{(with } |\tilde{h}| \ll h_0) \]
\[u(x, t) = 0 + \tilde{u}(x, t) \quad \text{(linearized about ocean at rest)} \]

Insert into the nonlinear equations

\[h_t + (hu)_x = 0 \]
\[(hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x = 0 \]
Linearized shallow water equations

\begin{align*}
 h(x, t) &= h_0 + \tilde{h}(x, t) \quad \text{(with } |\tilde{h}| \ll h_0) \\
 u(x, t) &= 0 + \tilde{u}(x, t) \quad \text{(linearized about ocean at rest)}
\end{align*}

Insert into the nonlinear equations

\begin{align*}
 h_t + (hu)_x &= 0 \\
 (hu)_t + (hu^2 + \frac{1}{2}gh^2)_x &= 0
\end{align*}

Then ignore quadratic terms like \(\tilde{u}\tilde{h}_x \) to obtain:

\begin{align*}
 \tilde{h}_t + h_0 \tilde{u}_x &= 0 \\
 h_0 \tilde{u}_t + g h_0 \tilde{h}_x &= 0
\end{align*}

\[\Rightarrow \begin{bmatrix} \tilde{h} \\ \tilde{u} \end{bmatrix}_t + \begin{bmatrix} 0 & h_0 \\ g & 0 \end{bmatrix} \begin{bmatrix} \tilde{h} \\ \tilde{u} \end{bmatrix}_x = 0. \quad \text{Eigenvalues: } \pm \sqrt{gh_0} \]

Same structure as linear acoustics.
Compressible gas dynamics

Conservation laws:

\[\rho_t + (\rho u)_x = 0 \]
\[(\rho u)_t + (\rho u^2 + p)_x = 0 \]

Equation of state:

\[p = P(\rho). \]

Same as shallow water if \(P(\rho) = \frac{1}{2} g \rho^2 \) (with \(\rho \equiv h \)).

Isothermal: \(P(\rho) = a^2 \rho \) (since \(T \) proportional to \(p/\rho \)).

Jacobian matrix:

\[f'(q) = \begin{bmatrix} 0 & 1 \\ P'(\rho) - u^2 & 2u \end{bmatrix}, \quad \lambda = u \pm \sqrt{P'(\rho)}. \]
Linear acoustics

Example: Linear acoustics in a 1d gas tube

\[q = \begin{bmatrix} p \\ u \end{bmatrix} \quad p(x, t) = \text{pressure perturbation} \]
\[u(x, t) = \text{velocity} \]

Equations:

\[p_t + \kappa u_x = 0 \quad \text{Change in pressure due to compression} \]
\[\rho u_t + p_x = 0 \quad \text{Newton’s second law, } F = ma \]

where \(\kappa = \text{bulk modulus} \), and \(\rho = \text{unperturbed density of gas} \).

Hyperbolic system:

\[\begin{bmatrix} p \\ u \end{bmatrix}_t + \begin{bmatrix} 0 & \kappa \\ 1/\rho & 0 \end{bmatrix} \begin{bmatrix} p \\ u \end{bmatrix}_x = 0. \]
Linear system of \(m \) equations: \(q(x, t) \in \mathbb{R}^m \) for each \((x, t)\) and

\[
q_t + Aq_x = 0, \quad -\infty < x, \infty, \ t \geq 0.
\]

\(A \) is \(m \times m \) with eigenvalues \(\lambda^p \) and eigenvectors \(r^p \), for \(p = 1, 2, \ldots, m \):

\[
Ar^p = \lambda^p r^p.
\]

Combining these for \(p = 1, 2, \ldots, m \) gives

\[
AR = R\Lambda
\]

where

\[
R = [r^1 \ r^2 \ \ldots \ r^m], \quad \Lambda = \text{diag}(\lambda^1, \lambda^2, \ldots, \lambda^m).
\]

The system is hyperbolic if the eigenvalues are real and \(R \) is invertible. Then \(A \) can be diagonalized:

\[
R^{-1}AR = \Lambda
\]
Let R be matrix of right eigenvectors and $v(x, t) = R^{-1}q(x, t)$. Multiply system $q_t + Aq_x = 0$ by R^{-1} on left to obtain

$$R^{-1}q_t + R^{-1}AR^{-1}q_x = 0$$

Since $R^{-1}AR = \Lambda$, this diagonalizes the system:

$$w_t + \Lambda w_x = 0.$$

This is a system of m decoupled advection equations

$$w^p_t + \lambda^p w^p_x = 0.$$

So

$$w^p(x, t) = w^p(x - \lambda^p t, 0)$$

where $w(x, 0) = R^{-1}q(x, 0) = R^{-1}\eta(x)$.
\[
\begin{bmatrix}
 p \\
 u
\end{bmatrix}_t + \begin{bmatrix}
 0 & \kappa \\
 1/\rho & 0
\end{bmatrix} \begin{bmatrix}
 p \\
 u
\end{bmatrix}_x = 0.
\]

This has the form \(q_t + A q_x = 0 \) with

\[
\text{eigenvalues: } \lambda^1 = -c, \quad \lambda^2 = +c,
\]

where \(c = \sqrt{\kappa/\rho} = \text{speed of sound} \).

\[
\text{eigenvectors: } \quad r^1 = \begin{bmatrix}
 -Z \\
 1
\end{bmatrix}, \quad r^2 = \begin{bmatrix}
 Z \\
 1
\end{bmatrix}
\]

where \(Z = \rho c = \sqrt{\rho \kappa} = \text{impedance} \).

\[
R = \begin{bmatrix}
 -Z & Z \\
 1 & 1
\end{bmatrix}, \quad R^{-1} = \frac{1}{2Z} \begin{bmatrix}
 -1 & Z \\
 1 & Z
\end{bmatrix}.
\]
Linear acoustics

\[p_t + \kappa u_x = 0 \] \hspace{1cm} \text{Change in pressure due to compression}
\[\rho u_t + p_x = 0 \] \hspace{1cm} \text{Newton’s second law, } F = ma

This is a first-order hyperbolic system \(q_t + Aq_x = 0 \).

Second-order form:
Can combine equations to obtain wave equation:

\[p_{tt} = c^2 p_{xx} \]

since

\[p_{tt} = -\kappa u_{xt}, \]
\[u_{tx} = -1/\rho \ p_{xx} \]

and so

\[p_{tt} = -\kappa (-1/\rho) p_{xx} = c^2 p_{xx}. \]
Acoustic waves

\[q(x, 0) = \begin{bmatrix} p_0(x) \\ 0 \end{bmatrix} = -\frac{p_0(x)}{2Z} \begin{bmatrix} -Z \\ 1 \end{bmatrix} + \frac{p_0(x)}{2Z} \begin{bmatrix} Z \\ 1 \end{bmatrix} = w^1(x, 0)r^1 + w^2(x, 0)r^2 = \begin{bmatrix} p_0(x)/2 \\ -p_0(x)/(2Z) \end{bmatrix} + \begin{bmatrix} p_0(x)/2 \\ p_0(x)/(2Z) \end{bmatrix}. \]
Acoustic waves

\[q(x, 0) = \begin{bmatrix} p_0(x) \\ 0 \end{bmatrix} = -\frac{p_0(x)}{2Z} \begin{bmatrix} -Z \\ 1 \end{bmatrix} + \frac{p_0(x)}{2Z} \begin{bmatrix} Z \\ 1 \end{bmatrix} \]

\[= w^1(x, 0)r^1 + w^2(x, 0)r^2 \]

\[= \begin{bmatrix} p_0(x)/2 \\ -p_0(x)/(2Z) \end{bmatrix} + \begin{bmatrix} p_0(x)/2 \\ p_0(x)/(2Z) \end{bmatrix}. \]
Acoustic waves

\[q(x, 0) = \begin{bmatrix} p_0(x) \\ 0 \end{bmatrix} = -\frac{p_0(x)}{2Z} \begin{bmatrix} -Z \\ 1 \end{bmatrix} + \frac{p_0(x)}{2Z} \begin{bmatrix} Z \\ 1 \end{bmatrix} \]

\[= w^1(x, 0)r^1 + w^2(x, 0)r^2 \]

\[= \begin{bmatrix} \frac{p_0(x)}{2} \\ -\frac{p_0(x)}{2Z} \end{bmatrix} + \begin{bmatrix} \frac{p_0(x)}{2} \\ \frac{p_0(x)}{2Z} \end{bmatrix}. \]
Acoustic waves

\[q(x, 0) = \begin{bmatrix} p_0(x) \\ 0 \end{bmatrix} = -\frac{p_0(x)}{2Z} \begin{bmatrix} -Z \\ 1 \end{bmatrix} + \frac{p_0(x)}{2Z} \begin{bmatrix} Z \\ 1 \end{bmatrix} = w^1(x, 0) r^1 + w^2(x, 0) r^2 = \begin{bmatrix} p_0(x)/2 \\ -p_0(x)/(2Z) \end{bmatrix} + \begin{bmatrix} p_0(x)/2 \\ p_0(x)/(2Z) \end{bmatrix}. \]
Acoustic waves

\[q(x, 0) = \begin{bmatrix} p_0(x) \\ 0 \end{bmatrix} = -\frac{p_0(x)}{2Z} \begin{bmatrix} -Z \\ 1 \end{bmatrix} + \frac{p_0(x)}{2Z} \begin{bmatrix} Z \\ 1 \end{bmatrix} \]

\[= w^1(x, 0)r^1 + w^2(x, 0)r^2 \]

\[= \begin{bmatrix} p_0(x)/2 \\ -p_0(x)/(2Z) \end{bmatrix} + \begin{bmatrix} p_0(x)/2 \\ p_0(x)/(2Z) \end{bmatrix} \]
Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
\implies even smooth data can lead to discontinuous solutions.
Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks$$
\Longrightarrow \text{ even smooth data can lead to discontinuous solutions.}
$$
For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
\implies even smooth data can lead to discontinuous solutions.
Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks \implies even smooth data can lead to discontinuous solutions.
For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
\implies even smooth data can lead to discontinuous solutions.
Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
\implies even smooth data can lead to discontinuous solutions.

Computational challenges!

Need to capture sharp discontinuities.

PDE breaks down, standard finite difference approximation to
$q_t + f(q)_x = 0$ can fail badly: nonphysical oscillations,
convergence to wrong weak solution.