
Routing with Swarm Intelligence

Tony White

SCE Technical Report SCE-97-15

Abstract

This technical report describes how biologically inspired
agents can be used to solve control and management
problems in Telecommunications. These agents, inspired by
the foraging behavior of ants, exhibit the desirable
characteristics of simplicity of action and interaction. The
collection of agents, or swarm system, deals only with local
knowledge and exhibits a form of distributed control with
agent communication effected through the environment. In
the technical report we explore the application of ant-like
agents to the problem of routing in circuit switched
telecommunication networks.

1. Introduction

Routing in telecommunication networks has mainly been static to date. With the advent
of new technologies and, in particular, high capacity networks, much more flexibility will
be required. Distance learning, video on demand, world wide information services such
as WWW servers and many other services will create dynamic network load which
should be taken care of by new algorithms. This is a totally new area of research with
many economic and technical implications. The purpose of this report is to explore what
swarm intelligence might offer to solve these dynamic and fundamentally distributed
optimization problems.

Swarm intelligence research originates from the work on the emergence of collective
behaviours of real ants. Ants have a small amount of cognitive capability, limited
individual capabilities, and react instinctively in a probabilistic way to their perception of
their immediate environment. They can, for example, find the shortest path between the
nest and a food source by laying down on their way back from the food source a trail of
an attracting substance, called pheromone. Ants wandering randomly around the nest can
then be attracted by this trail and this will rapidly lead them to the food source. By laying
down a pheromone trail of different density depending on the quality of the food source
the have found, the colony becomes able to discriminate between food sources of
different kinds and qualities.

The idea of using swarm intelligence as a new computational paradigm for solving
engineering problems is quite recent. Marco Dorigo and colleagues were the first ones to
propose adapting these ideas to the Travelling Salesman Problem [Dorigo et al. 92].
Many other applications since then have been proposed: graph partitioning [Kuntz et al.
94], data clustering [Faieta et al. 94], job shop scheduling [Colorni et al. 94], robotics
[Beni 91], etc. See [Bonabeau et al. 94] for an overview.

The advantages of swarm intelligence are twofold. Firstly, it offers intrinsically
distributed algorithms that can use parallel computation quite easily. Secondly, these
algorithms show a high level of robustness to change by allowing the solution to
dynamically adapt itself to global changes by letting the agents (the ants) self-adapt to the
associated local changes.

2. Swarm Intelligence: Background

This section brings together information regarding the main sources of research in Swarm
Intelligence. The most complete set of work has been done by Marco Dorigo, and this has
influenced our work considerably. In addition, work undertaken at the Santa Fe Institute
and Télécom Bretagne is briefly presented.

The Ant System

The Ant System is a general-purpose heuristic algorithm, which can be used to solve
diverse combinatorial optimization problems. This work has been lead by Marco Dorigo
at the Politecnico di Milano, Italy. For an in-depth technical description of the algorithm,
the reader is referred to [Dorigo et al. 92].

Motivations for the Ant System

The Ant System (AS) has the following desirable characteristics:

1. It is versatile, in that it can be applied to similar versions of the same problem. For
example, there is a straightforward extension from the travelling salesman problem
(TSP) to the asymmetric travelling salesman problem (ATSP).

2. It is robust and general purpose. With minimal modifications, it can be applied to
other combinatorial optimization problems such as the job shop scheduling problem
(JSP) and the quadratic assignment problem (QAP).

3. It is a population-based heuristic. As such, it allows the exploitation of positive
feedback as a search mechanism, as described in a later section. Consequently, it
makes the system amenable to parallel implementations.

These desirable properties are mitigated by the fact that, for some applications, the Ant
System can be outperformed by more specialized, domain specific algorithms. Many
heuristics share this problem, examples being the much-researched problem solving
techniques of simulated annealing (SA), and tabu search (TS). Nevertheless, as is the case
with SA and TS, the AS represents a heuristic that can be applied to problems which are
similar to a classical problem, such as TSP, but are sufficiently different as to make the
application of a domain specific algorithm impossible. The ATSP is an example of such a
problem.

The AS is an example of a distributed search technique. Search activities are distributed
over ant-like agents, i.e. entities with very simple basic capabilities. These agents, in a
metaphorical and highly stylized way, mimic the behaviour of real ants. In fact, research
on the behaviour of real ants has greatly inspired the AS. The research inspiration for the
AS arises from the work of ethologists, who attempted to understand how almost blind
animals like ants could manage to establish shortest route paths from their colony to
feeding sources and back.

Research found that the mechanism used for the communication of information among
individuals regarding paths, and used to make routing decisions, consists of the sensing
of pheromone trails. A moving ant lays some varying quantities pheromone on the
ground, thus marking the path by a continuous trail of the substance. While an isolated
ant apparently moves at random, an ant encountering a trail laid by an ant of its own
species can sense it and decide to follow it with high probability. In this way, the trail is
further reinforced with more pheromone. The collective behaviour of many ants
attempting to find a path that emerges is in the form of an autocatalytic process where,
the more the ants follow a trail, the more attractive that trail becomes for being followed.
The process forms a positive feedback loop, where the probability with which an ant
chooses a path will increase with the number of ants that previously chose the same path.

The following paragraphs are a modified explanation of path-emergence as provided by
[Dorigo et al. 96].

"Consider, for example, the scenario shown in Figure 1. Ants are walking
along a path, for example from food source A to the nest E, and vice versa,
see Figure 1a. Suddenly an obstacle appears and the path is cut off.
Therefore, at position B the ants walking from A to E (or at position D
those walking in the opposite direction) have to decide whether to turn
right or left (Figure 1b). The choice is influenced by the intensity of the
pheromone trails left by preceding ants. A higher level of pheromone on
the right path gives an ant a stronger stimulus and thus a higher probability
to turn right. The first ant that reaches point B (or D) has no preference for
left or right branches of the path because there is no pheromone on either
path. Because path BCD is shorter than BHD, the first ant following it will
reach D before the first ant following path BHD (Figure 1c).

Figure 1: Shortest Path Emergence

How ants find shortest paths
a) Ants follow a path between points A and E.
b) An obstacle is interposed; ants can choose to go around i t following one
of the two different paths with equal probability.
c) On the shorter path more pheromone is laid down.

The result is that an ant returning from E to D will find a stronger trail on
path DCB, caused by the half of all the ants, by chance, deciding to
approach the obstacle via DCBA and by the already arrived ones coming
via BCD. Therefore, they will prefer path DCB to path DHB.
Consequently, the number of ants following path BCD per unit of time
will be greater than the number of ants following BHD. Hence, the
quantity of pheromone on the shorter path will grow more quickly than on
the longer one. Therefore, the probability with which any single ant
chooses a particular path is quickly biased towards the shorter one. The
result is that, very quickly, all ants will choose the shorter path.

The algorithms that we are going to define in the following sections are
models derived from the study of artificial ant colonies. Therefore, we call
the system the Ant System (AS) and the algorithms we introduce, ant
algorithms. As we are not interested in simulation of ant colonies, but in
the use of artificial ant colonies as an optimization tool, our system will
have some major differences with a real (natural) one:

• Artificial ants have some memory.

• They are not completely blind.

• They live in an environment where time is discrete.

Nevertheless, we believe that the ant colony metaphor can be useful to
explain our model. Consider the graph of Figure 2a, which is a possible
AS interpretation of the situation of Figure 1b. In order to fix the AS ideas
more concrete, suppose that the distances between D and H, between B
and H, and between B and D—via C—are equal to unity. Let C be

Figure 2: Pheromone trails

D

E

H C

A

B

d=0.5

d=0.5

d=1.0

d=1.0

E

H

E

D

H C

A

B

30 ants

D

C

A

B

30 ants

15
ants 15

ants

15
ants

15
ants

30
ants

10
ants

20
ants

20
ants

10
ants

30
ants

T =0 T =1

(a) (b) (c)

positioned half the way between D and B (see Figure 2a). Now let us
consider what happens at regular discrete points in time: t= 0, 1, 2, … and
so on. Suppose that 30 new ants come to B from A, and 30 to D from E at
each time unit, that each ant walks at a speed of one per time unit. Further,
suppose that, while walking, an ant lays down at time t a pheromone trail
of intensity one, which, to make the example simpler, evaporates
completely and instantaneously in the middle of the successive time
interval (t+1, t+2).

At t=0 there is no trail yet, but 30 ants are in B and 30 in D. Their choice
about which way to go is completely random. Therefore, on average, 15
ants from each node will go towards H and 15 towards C (Figure 2b).

At t=1 the 30 new ants that come to B from A find a trail of intensity 15
on the path that leads to H, laid by the 15 ants that went that way from B
and a trail of intensity 30 on the path to C. This trail has developed as the
sum of the trail laid by the 15 ants that went that way from B and by the
15 ants that reached B coming from D via C (Figure 2c). The probability
of choosing a path is now biased, so that the expected number of ants
going toward C will be the double of those going toward H: 20 versus 10
respectively. The same is true for the new 30 ants in D that came from E.

This process continues until all of the ants will eventually choose the
shortest path.

The idea is that, if at a given point an ant has to choose among different
paths, those which were heavily chosen by preceding ants (that is, those
with a high pheromone level) are chosen with higher probability.
Furthermore, high pheromone levels are synonymous with short paths."

Applications of the Ant System

Most work on the Ant System has been applied to the Travelling Salesman Problem1.
This is a classical problem and is often used for the assessment of heuristics as it is NP-
Complete. Dorigo shows that the Ant System can be applied to the TSP, and other
problems, which can be expressed in graph-partitioning terms. Much more detail on this
work is presented in [Dorigo et al. 92, Dorigo et al. 96].

Dorigo’s conclusions on the results of the Ant System on the TSP are:

1. Within the range of parameter optimality, the algorithm always finds very good
solutions for all of the tested problems.

2. The algorithm quickly finds good solutions, while not exhibiting stagnation behaviour
- the ants continue to search for new, possibly better tours.

1 This, however, is changing and several potential applications are being researched.

3. With increasing problem size, the sensitivity of the parameter values to the problem
dimension has been found acceptable2.

The work on the TSP is directly transferable to the asymmetric TSP. This problem is
significantly more difficult than the TSP. Typically the TSP can be solved for graphs
with several thousand nodes, while the ATSP is only solved optimally in cases where
there are several dozen nodes.

Application to the ATSP required no modifications to the basic AS algorithm. The results
of applying the algorithm to this problem were very close to (within 3.3%) the known
optimal tour, and were found within acceptable time.

The Ant System has also been applied to the Quadratic Assignment Problem (QAP)
[Maniezzo et al. 94] and the Job Shop Scheduling Problem (JSP) [Colorni et al. 94].
These applications required very few changes to the algorithm, as long as the problem
could be stated in an appropriate graph notation.

Ant System Conclusions

The Ant System is a new search methodology based on a distributed autocatalytic process
and its application to the solution of a classical optimization problem. The general idea
underlying the Ant System search paradigm is that of a population of agents each guided
by an autocatalytic process directed by a greedy force. If an agent were to search alone,
the autocatalytic process and the greedy force would tend to make the agent converge to a
sub-optimal solution with exponential speed. When agents interact it appears that the
greedy force can give the right suggestions to the autocatalytic process and facilitate
rapid convergence to very good, often optimal, solutions without getting stuck in local
optima. We speculate that this behaviour arises because information gained by agents
during the search process is used to modify the problem representation. In some sense,
the region of the space considered by the search process is reduced. Even if no tour is
completely excluded, bad tours become highly improbable, and the agents search only in
the neighbourhood of good solutions.

The main contributions of the Ant System are the following:

3. Positive feedback is employed as a search and optimization tool. The idea is that, if at
a given point an agent (ant) has to choose between different options, and the one
actually chosen results to be good, then in the future that choice will appear more
desirable than it was before.

3. Synergy can arise and be useful in distributed systems. In AS, the effectiveness of the
search carried out by a given number of cooperative ants is greater than that of the
search carried out by the same number of ants, each one acting independently from
the others.

2 It is our experience that an AS can be improved by allowing control parameters to self-adapt during the
search process. This is described in a later section.

3. The Ant System can be applied to different combinatorial optimization problems.
Namely, AS provides a general search heuristic that can be applied to problems that
can be represented as search on a graph. After introducing the AS by an application to
the TSP, Dorigo and others have demonstrated how to apply it to the ATSP, the QAP,
and the JSP.

Dorigo believes the approach to be a very promising, one because of its generality, and
because of its effectiveness in finding very good solutions to difficult problems.

As already pointed out, the research on behaviour of social animals is to be considered as
a source of inspiration and as a useful metaphor to explain our ideas. We believe that,
especially if we are interested in designing inherently parallel algorithms, observation of
natural systems can be an invaluable source of inspiration. Neural networks, genetic
algorithms, evolution strategies, immune networks, simulated annealing are only some
examples of models with a “natural flavour”. The main characteristics, which are at least
partially shared by members of this class of algorithms, are the use of a natural metaphor,
inherent parallelism, stochastic nature, self-adaptation, and the use of positive feedback.
Our algorithm can be considered as a new member of this class. All this work in “natural
optimization” fits within the more general research area of stochastic optimization, in
which the quest for optimality is traded away for computational efficiency.

Télécom Bretagne

Dominique Snyers and Pascale Kuntz, [Kuntz et al. 94], have been working on graph
partitioning using Swarm Intelligence. The basic principles of the approach are similar to
those adopted by Marco Dorigo.

The classical optimization problem of graph partitioning is transformed into a problem of
dynamical co-adaptation of species. An artificial society of autonomous animats from
different species is created, and the co-adaptation of the species leads to a territorial
colonization. The colonization behaviour emerges by self-organization without any a
priori fitness function computation: the model represents an example of intrinsic
adaptation. The emergent grouping of the animat society coincides with the solution to
the graph partitioning problem.

Kuntz and Snyers have verified experimentally that this model is minimal for the set of
rules controlling the society for the graph partitioning problem. Simulation results have
also shown that this distributed algorithm is robust. See [Kuntz et al. 94] for further
details.

Santa Fe Institute

Work at the Santa Fe Institute is mostly focused on Artificial Life. The SWARM project
is concerned with the modelling of multi-agent systems. The SWARM group is building
a toolkit for experimenting with swarm based systems. The goal of the Swarm Project is
to produce a fast, flexible, easy to use toolkit for experimenting with and researching
systems where large numbers of agents explore the environment following very simple

rules. This work was originally lead by Nelson Minar, and is heavily supported by the
“father of a-life” Chris Langton. This toolkit is being used by researchers in the field and
free for academic use.

The environment may be a grid, rather like a cellular automaton, or be more constrained,
such as a map. In addition, it is possible to model graph like systems such as
telecommunications networks and have agents roam around these.

For more information, see the WWW page at URL:
http://www.santafe.edu/projects/swarm. The SWARM project pages contain comparisons
of several other multi-agent simulation systems and provide useful links to other, related
research in the area.

3. Ant System Initial Studies

The purpose of this study was to assess the feasibility of applying swarm intelligence to
telecommunication network dynamic routing. We expected to develop an algorithm in the
context of ATM networks and a software demonstrator in order to show the importance
of pursuing the research in this direction. In this respect, the goal has been achieved.

We shall first present the simplified routing problem covered by the three phases of this
study. Detailed algorithms will then be presented and experimental results given.
Following this, conclusions are then made and the potential for the further work explored.

Problem Description

Routing is the problem of finding paths between nodes in a telecommunication network.
In Figure 3 below, a telephone call is to be set up between two points by finding a route
that connects the source and the destination. Links are able to carry traffic of a certain
bandwidth up to the total capacity of the link. For this study, it is assumed that bandwidth
is used through simple aggregation. Nodes are assumed to be capable of satisfying the
switching demands placed up them. Links have an associated cost function. This is
typically based on distance (e.g. traffic delay), and/or on error rates.

A connection request is characterized by the kind of traffic (voice, data, and video) which
is required. This implies bandwidth requirements and potentially other constraints such as
maximum error rate, maximum number of hops, or maximum delay. Different kinds of
traffic can tolerate different delays and error rates, and these can be used as parameters in
a cost function, along with the link’s actual costs.

Point to multi-point routing is required in applications such as distance learning. In this
case, a single source node transmits and receives information from a number of
destination nodes, as in the case of a teacher giving a lecture to a number of students in a
distance learning application.

The telecommunications network will be idealized here as a weighted graph where the
vertices correspond to switching nodes, the arcs to the physical links, and the associated
weights to the cost value associated to every link. Both point to point and point to multi-
point routing amount to finding a minimum spanning tree in a graph.

Figure 3: A Telephone Connection

 Description of the Algorithm

The swarm algorithm solution to this routing problem relies on the movements of
artificial ants on the associated graph designed to make the global shortest path emerge.
When a connection request is made, a new colony of ants is created and associated nests
are positioned on the source and destination nodes. These artificial ants correspond to a
special class of automata called reactive agents that react to their local perception of the
environment by stochastically adopting predefined behaviours. The shortest path then
emerges from the movement of all these ants. This corresponds to the first phase of the
study that focuses only on establishing a single point-to-point connection.

There are three classes of ant. These are:

1. Explorer ants: these ants search for a path from a source to a destination.

2. Allocator ants: these ants allocate resources on the links used in a path from a source
to a destination.

3. Deallocator ants: these ants deallocate resources on the links used in a path from a
source to a destination.

As soon as we wish to establish multiple point-to-point connections, the problem
becomes more constrained since the connections consume bandwidth and that after a
while, some links might run out of available bandwidth. The extension is quite
straightforward, the graph arcs have an associated available bandwidth and a condition is
added for the ants to use a given arc: it should have enough bandwidth. Every time a path
has emerged and a connection has been established the amount of available bandwidth is
decreased on every arc of the path thereby adding additional bandwidth constraints to the
graph.

Let us now define the local rules of the artificial ant automata.

Point to Point Routing

For this phase of the study, the algorithm is quite straightforward. Both source and
destination nodes of the connection are considered as nests. The explorer ants leave the
nest and explore the network following their local rules:

1. On each node, they choose a path with a probability proportional to the heuristic
value (function of the cost and the pheromone level) associated with the link.

2. The ants cannot visit a node twice (they keep a tabu list of their visited nodes) and
cannot use a link if there is insufficient bandwidth available.

3. Once the destination is reached, the ants return from whence they came by popping
their tabu list. On their way back, they lay down a pheromone trail.

When the source node judges that a unique path has emerged, it sends a special kind of
ant, the allocator, in order to allocate the bandwidth on all links used between the source
and the destination.

Pheromone laid on a link will evaporate over time. This is controlled by a constant
evaporation rate, r.

Multiple Point to Point Routing

This phase is similar to the previous one except that we have now several connections at
the same time. Each connection corresponds to a different species and these species do
not interact except by allocating bandwidth, and therefore, by imposing constraints on the
other species by changing the environment.

Point to Multi-point Routing

Point to multi-point connection can be regarded as a multiple point to point connection
starting from the same source node. The only modification to the phase two algorithm
therefore, will concern the allocator. Rather than sending three allocators, one for each
associated species, three identical allocators are sent from the source toward the
destinations. Only the first allocator passing on the link will allocate the bandwidth, and
fan out points (also known as multi-cast nodes) are created on bifurcation nodes.

This phase of the study considered both synchronous and asynchronous control
mechanisms although we will only implemented a synchronous scheme. We believe that
the fundamental underlying algorithm is well suited to asynchronous control and
distribution.

Detailed explorer ant rules of behaviours

There are two phases to the movement of an explorer ant: an outward exploring mode
and a backward trail-laying mode. The algorithm used by an explorer ant is shown below:

1. Initialize the route finding simulation
 Set t:= 0
 For every edge (i,j) set Tijk(t) := 0

 Place m ants on the source node.
 Explorers agents are created at frequency ef }

2. Set s:= 1 { tabu list index }
 For k:= 1 to m do
 Place starting node of the kth ant in Tabuk[s].

3. Repeat until destination reached:
 Set s := s + 1
 For k:=1 to m do

 Choose node j to move to with prob. pij
k (t)

 Move the kth ant to node j.
 Update explorer route cost: rk = rk + C(i,j)

 If (rk > rmax) then

 Kill explorerk
 Insert node j in Tabuk[s].

 At destination go to 4.
4. While s > 1
 Traverse edge Tabuk[s].

 Tijk(t) = Tijk(t) + phk(rk)

 s := s - 1
5. At source node do:
 If the path in Tabuk is the same as p% of

 paths in PathBuffer then Create and send an
 allocator agent
 If t > Tmax then
 Create and send an allocator agent

In the above algorithm, the following symbols are used:
• Tij(t) is the quantity of pheromone present on the link between the ith and jth nodes,

• C(i,j) is the cost associated with the link between the ith and jth nodes.
• rk is the cost of the route for the kth explorer agent.

• Tabuk is the list of edges traversed.

• Tmax is the maximum time that is allowed for a path to emerge.
• PathBuffer is the array of paths obtained by the (up to m) explorer agents.
• rmax is the maximum allowed cost of a route.

• phk(rk) is the quantity of pheromone laid by the kth explorer agent.

• pij
k (t) is the probability that the kth agent will choose the edge from the ith to the jth

node as its next hop.

The probability with which an explorer agent (k) chooses a node j to move to when
currently at the ith node at time t is given by:

pij
k (t) = [Tijk(t)]α[C(i,j)]-ß

/ Nk

Nk = Σj in (S(i)- Tabuk) [Tijk (t)]α[C(i,j)] -ß

where α and β are control constants and determine the sensitivity of the search to
pheromone concentration and link cost respectively. Nk

is simply a normalization factor

that makes pij
k (t) a true probability. S(i) is the set of integers, {l} such that there exists a

link between the ith and lth nodes.

The ant has two modes of behaviour. If travelling towards its destination, it find links at
each node which the ant has not yet traversed, and have enough bandwidth available for

this connection and selects a link from this set based on the probability function pij
k (t).

Having selected a link, the selected link is added to the tabu list. The cost of the journey
so far updated and then the link to the next node is traversed. An explorer ant that stays
without being able to move for more than a given number of iterations simply dies.
Similarly, an ant whose journey cost exceeds a given threshold also dies.

At the destination, the explorer ant switches to trail-laying mode. When travelling back to
nest the ant pops the tabu list and moves over the link just popped dropping pheromone at
a constant rate.

The source node maintains a set of statistics relating to the set of routes that have been
found so far in both point-to-point and point to multi-point connections. This is achieved
by querying the returning ants (and ants which are sent from the destination node to this
node) about the path which they took. This information is maintained by their tabu list.
The node records the frequency of ants following a particular route over a given time
period (a moving window). It also records details such as the total cost of the route. A
good route is one for which a proportion of ants in the current time window exceeds a
specified limit, e.g. 95%. When the limit is exceeded, the node sends out an allocator ant
that creates the connection by allocating resources in the network. If it does not succeed
establishing the connection because, for example, another connection used all the
available bandwidth, it simply backtracks. In the meantime, explorer ants continue to
explore the problem space. The source node may send out an allocator ant again when the
path emergence criteria are satisfied, or may choose to delay sending the allocator out
again while the problem space settles to a steady state.

Short Study Experimental Results

Limited experiments have taken place. The section reproduces and discusses the results
of a small investigation into the effects of the sensitivity parameters: α and β. It is
prudent to question the validity of the results based on such a small sample size.
However, observations over many runs show that the analysis of the results represents a
reasonable picture of what happens on different graphs and connections. Our experiences
using the simulation software suggest that the important parameters for the algorithm
were the sensitivity to pheromone, α, and the sensitivity to cost, β. In order to investigate
these, we decided to fix the other parameters. The values used are presented in Table 1:

Table 1: Simulation Parameters

Parameter Value
Agent creation frequency Every 10 cycles
Quantity of pheromone dropped 10 units
Emergence criterion 90% follow a path
Number of agents created 15
Path buffer size 40 agents
Pheromone evaporation rate 1.0 units/cycle
Maximum search time 300 cycles

The graph we used and its associated weights are shown in the Figure 4 below.

Figure 4: Initial Test Network

The initial test network contained only nine nodes and, in this phase of the study, links
where assumed to have sufficient capacity to form the connection. The integer values
associated with the links in Figure 4 are the cost of using that link in forming the
connection. The connection requested in this study was from node n1 to node n9. One
hundred runs were performed in order to assess the robustness of the algorithm. In all
experiments, the path that emerged was n1-n2-n6-n7-n9. This route has the lowest cost
(19) and shortest path (least number of hops) although the later is an artifact of the graph
selected. Results for a selection of α and β values can be seen in Table 2.

Table 2: Results of Initial Experiments
α,β 2,1 2,2 4,2 8,2
Minimum 75 75 130 130
Maximum 400 220 195 190
Mean 220 175 159 150
Std Dev. 45 25 14 10

When the algorithm starts, the cost part of the probability function is important, and the
greedy heuristic comes into play. The actual value of α is unimportant, as only a small
amount of pheromone (approaching zero) is present on the links, therefore the only factor
influencing choice of links is actual cost on that link. The choice of next hop depends
almost exclusively on link cost.

As routes are found, pheromone is laid on the links that form the path. The amount of
pheromone laid is inversely proportional to the total cost of the route, and acts as a global
measure of its ‘goodness’. This brings the reinforcement part of the probability function

into play. The sensitivity to pheromone, α, influences the choice links, and links with
more pheromone are more likely to be chosen.

The first result set shows a broad spread of times to find solutions, with a very high
standard deviation. The mean is also the highest of the set. The high SD means that
confidence in a path is not high, and the system continues to use the greedy heuristic to
explore other paths. In this particular case, we consider the SD too high. The second and
third set of results show similar results for minimum, maximum and mean, but with
standard deviation being the most different. The system finds results quickly, and
reinforces good solutions, but confidence in the solutions found is at a level such that
other solutions are not rejected, but continue to be explored. These seem to be the best
sets of results. The final set of results show a fast, almost deterministic algorithm. This
makes it undesirable for dynamic routing or as a candidate for a system that reacts to
change quickly.

It is important that other solutions are explored and evaluated, as this is a stochastic
approach. Reducing the standard deviation shows that the algorithm is more
deterministic, which is not desirable. On the other hand, too high a standard deviation is
also undesirable, as good solutions are not sufficiently reinforced.

Observations and analytical analysis show that with high values of α, the system
becomes ‘locked into’ the solution found first, which in this experiment appears to be the
best solution. This leads to problems later when bandwidth is removed from a link on that
path. The system reorganizes, but when the bandwidth is reinstated, the previous solution,
which is typically the best solution, is not found as the high sensitivity to pheromone is
forcing the choice of paths where ants have previously been.

We conclude that suitable values for α and β are:

α=2, β=2
α=4, β=2

These ensure that a solution is found quickly, good solutions are reinforced, and that
better solutions still have a reasonable chance of emerging.

Conclusions from the Short Study

The study has successfully shown point to point routing in a graph representing a
telecommunications network. An algorithm has been developed with solves point to point
and point to multi-point routing problems using a new stochastic heuristic method. This
method is driven by a probability function that chooses between local cost and global
pheromone information in order to determine the ‘best’ link for an ant to traverse.

Demonstration simulation software has been produced which implements the point to
point algorithm. The software was used to generate the results presented in this

document. Results, both formal experiments and observations, show that the algorithm
finds ‘good’ routes quickly, and continues to explore the network for alternatives. When
alternatives arise -- for instance, when some bandwidth is made available -- the algorithm
explores these (potentially) better solutions, and reinforces them if they are better than the
previous best solution.

4. Further Enhancements to the Basic Algorithm

Introduction

This section discusses some of the finer details of the algorithm, and specific
enhancements which improve the behaviour of the algorithm in a wide variety of
circumstances.

There are two kinds of agents: Explorers and Allocators. Explorers explore the graph,
selecting their movement according to probability function below. After some time, large
proportions of the agents are likely to follow the same path. The criterion used to
determine if a solution has emerged is initially quite simple: more than 90% of the agents
have to follow the same path. This path is the solution given by the algorithm. The
connection is then established, by reserving the required amount of bandwidth on each of
the links of the solution. This is done by sending an Allocator send on that path which
grabs the bandwidth for this connection. The connection is deemed to have been
established when the allocator returns.

How agents choose the next link

The previous sections demonstrated that the desired agent behaviour could be achieved
using a probabilistic function to govern the agents’ movement. For a particular explorer
located at a node in the graph, the probability of choosing a link (assuming enough
bandwidth is available on that link) is proportional to the amount of pheromone on it. In
addition, the ‘cost’ of the link is taken into account. For each link, the probability of
selection is proportional to the amount of pheromone raised to the pheromone sensitivity
(α), and multiplied by the cost of that link raised to the cost sensitivity (β).

The sensitivity to cost allows the agents to find better solutions in the early stages of the
search (this is the so-called ‘greedy heuristic’). If used alone, this will quickly lead to
local optima, but due to the fact that there is a population of agents and a feedback
mechanism (the pheromone trail), the search effort is distributed among the agents and
tends to avoid the local optima. The use of both cost and pheromone sensitivity improves
the results of the algorithm.

All the links connected to the current node are first considered. Then, the links already
visited (i.e. in the tabuList) are removed. This tabuList is updated each time the agent
moves: its previous position is added to the tabuList. This way, an agent can not go twice

selectionProbabilityj

Cos tj() β– pheromone j()α

Cos ti() β– pheromone i()α

i
∑
--=

on the same position. We use this to avoid cycles in the exploration. Then, the links
without sufficient available bandwidth for the connection are removed from the search.

In the implementation of the algorithm, a selection value is computed for each possible
next link. Its formula is the same as the one of the selection probability, but not
normalized:

Each selection value is multiplied by a different random number, and the line with the
biggest result is selected as the next position. This, in effect, performs the normalization
and probabilistic selection.

Pheromone

The way the pheromone is dropped on a graph is different than in nature with real ants.
There are two modes for the explorers: forward mode and backward mode. In forward
mode, the agents are attempting to find their way from their source to their destination.
The path they have followed is stored in the tabuList variable. When they eventually
arrive at the destination node, they switch to backward mode. In backward mode, they
backtrack, retracing the path stored in tabuList. Agents only drop pheromone on their
way back to the nest, in backward mode.

Contrary to the real ants, the aim is now to find the path with the lowest cost and not the
shortest path. The amount of pheromone depends on the cost of the way they have found,
and is inversely proportional to the cost of the path. In this way, a cheaper path will
receive a larger amount of pheromone and will hence attract more agents. This is in effect
a positive feedback loop.

Search using positive feedback would lead to run-away situations unless there were some
other control mechanism. The mechanism used in this approach is pheromone
evaporation. This way, previous solutions that have become out of date can be
‘forgotten’. If this were not the case, the algorithm would become locked onto an early
solution (local optimum). Imagine that one path was discovered at an early stage but that,
now, fewer and fewer agents use it. The evaporation process will ensure that the
pheromone disappears if pheromone is not dropped quickly enough, and the new
emergent ways will be favoured over it.

Source and Destination Nodes

For the implemented algorithm, half the agent population begin at the source node and
search for the destination node; for the other half, the opposite is the case. Therefore,
agents search from both source and destination nodes. This way, local optima due to the
structure of the graph is minimized.

selectionV alue Cost
CostSensitivi ty() pheromone

PheromoneSensitivity()
⋅=

When explorer agents are created, they start at their source node. They look at all the
links connected to that node, and chose the next based on the probability function
described earlier. The agent moves from the current position to the next position, if there
is one, or else commits suicide (as there is nowhere else for it to go). If it moves, the
running total cost of the path is updated.

This repeats this until the explorer agent reaches it destination node. At that node, it
switches to backward mode, and returns to the source node on the same path. It drops an
amount of pheromone on each link. When it arrives at its source node, the connection
monitor is updated with the values given by the agent. Then the agent is destroyed. This
process continues until the connection monitor decides that a path has emerged.

When the connection monitor detects the emergence of a path, this path is allocated by
sending an allocator agent on that path. The allocator follows the path, grabbing the
required bandwidth for the connection. When it reaches the destination, it switches to the
backward mode and returns to the source node, and informs the connection monitor that
the path has been allocated.

Point to Multi-point Connections

Such connections have to be created when you want to send the same message from the
same source point to many destination nodes. If you create n point to point connections
between the source node and the destination nodes, in some lines you will have a high
redundancy: you can repeat up to n times the same message and you will use n times the
same amount of bandwidth. To avoid such a redundancy, you can allocate once the
amount of bandwidth for one message on the common part of the path, and then duplicate
the message when the different paths diverge. This provides an economy of bandwidth.
The form of routing is equivalent to finding a minimum spanning tree of a graph.

In order to achieve this, each connection needs to know its associated connections (i.e.
the other limbs of the point to multi-point connection). This is very important for the
Allocator, which must ensure that the allocator agents created by the other connections do
not grab bandwidth if others in that spanning tree have already done so.

Agent Species

In order to reuse what the previous connections have done, a species id was given to each
connection. This species id was determined by the source and destination node and the
bandwidth. Therefore, two connections between the same points (in whatever order)
having the same bandwidth receive the same species id. The quantity of dropped
pheromone is the same as before, but the quality is different.

Before, the pheromone was tagged with the identification number of the connection.
Now, it is tagged with the identification number of the agent species. In that way,

connections with the same species id will use the same pheromone. For new connections,
there may already be pheromone between the source and destination in the graph. The
agents do not have to search from the beginning, as at least one solution to the search is
already present. This modification can save considerable search time.

Load Balancing

The aim of load balancing is to find a route between the source and the destination, while
trying to have a homogenous partition of the traffic. The aim is to avoid having empty
links while others are full. The problem is then to favour a path with low occupancy. The
first thing is to drop more pheromone on empty lines than on full ones. We modified the
algorithm by multiplying the real cost of a link by a Cost Function. This function is based
on the occupancy of the link (used bandwidth / total bandwidth).

Four cost functions were mainly used during all of these experiments. The first of them
is the defaultCostFunction. This is a constant function and it is shown in Figure 5a. This
function represents the cost of a simple routing algorithm without a special weight given
to the occupancy of the link. This cost function is equivalent to the standard behaviour of
the algorithm described previously.

The cost functions we investigated as
shown in figures 5a, 5b and 5c share
two characteristics. They return one if x
equals zero and they return 10 if x
equals one.

This normalization seems to compare
the effects of each cost function for the
same conditions. We have only chosen
continuous functions.

The mathematical functions used for
Figures 5a, 5b and 5c are given by the
equations in Figure 6. The results of
using this modification are presented in
a later section. The mathematical form
of Figure 6c requires some comment in
that it closely resembles the response
time characteristic associated with the
closed form M/M/1 queuing result.
Hereafter, we will refer to the functions
in Figures 5a, 5b and 5c as linear, non-
linear and quartic respectively.

10

10

1

10

10

1

10

10

1

10

10

1

(a) (b)

(c) (d)

Figure 5: Cost Functions

x∀ 0 1[,] f x() 9x 1+=,∈

0.25 x 0.75 f x() 18x
14
4

------–
 =,< <

x∀ 0 1[,]∈ f x() x
3

x 8+() 1+=,
Figure 6: Mathematical Cost Functions

The Genetic Algorithm-like approach

In certain cases, the absolute best path (we call it path #1) is not available due to very
heavy traffic allocation on it. The algorithm therefore finds another path (path #2).
During the time needed to find path #2, the agents have dropped a large amount of
pheromone on the trail. Due to the pheromone sensitivity of the agents, this path is more
likely to be followed. Sometimes, the agents can be attracted by that trail in such a way
that they will not explore other links any more. The problem is that, if certain changes
happen in the graph, for instance path #1 becoming available, the algorithm will not be
aware of them because its agents will not explore new links.

To avoid to be locked into such a local optimum, the pheromone sensitivity has to be
reduced at that moment. With lower pheromone sensitivity, the agents are more likely to
explore other links. The problem is when to decide that the sensitivity has to be lowered
and what new pheromone sensitivity to give to the agents.

Each explorer agent encodes its α and β sensitivity values that are used in the calculation

of pij
k (t). Initially, these values are selected randomly from a given range. Hence, the

population of m agents initially sent out into the network has a range of sensitivity values.
When these agents return to the source node, having found a route to a given destination,
the route cost, rk, is used to update the fitness value, f(α,β,k), associated with the (α,β)

pair. The equation used to update f(α,β) is given by:

f(α,β,k) := f(α,β,k) + γ(rk - f(α,β,k)),

where 0 < γ < 1.

It can easily be seen that an agent returning with a lower route cost than the current
f(α,β,k) will cause f(α,β,k) to decrease. However, several agents must return with the
same rk value before f(α,β,k) approaches rk. A discrete space for (α,β) was chosen in

order to ensure that updates to f(α,β,k) would occur. A discounted feedback mechanism
as shown above is required in this system because of the stochastic nature of the ant
search. The same (α,β) encoding may result in several different rk values and f(α,β,k)

represents the average over all possible routes found in the network. Obviously, with γ set
to zero it is possible to ignore previous searches with a given encoding.

As stated earlier, the source node retains a path buffer that contains m paths. The source
node also retains m (α,β) pairs and their associated fitness values. When new agents need
to be created and sent out to explore the network, the fitness values are used to create new
(α,β) pairs. First, parent (α,β) encodings are selected based upon their f(α,β,k) values.
The lower the value of f(α,β,k), the more likely the (α,β) encoding is to be chosen. A
new encoding is then created by crossover and mutation operators using a mechanism

well known in Genetic Algorithms (GAs) [Goldberg 89]. Example crossover and
mutation operators are shown in Figures 7 and 8.

Figure 7: An example of crossover

The figure above shows the genotype of two ant parents that encode α and β. A single
crossover point is chosen and two offspring are generated. One offspring is discarded and
the other undergoes mutation as shown below.

Figure 8: An example of mutation

The way we have achieved this is with a Genetic Algorithm-like process. As stated
above, each agent has its own cost and pheromone sensitivity. At the very beginning, all
the agents have random sets of parameters that are defined within a given range. When an
agent returns, its set of parameters is stored along with the cost of the route found. Its
parameters are linked to the cost of the path found. This cost has the same role as the
fitness function of a GA. When creating a new agent, the sets of all of the last returning
agents are considered. An intermediate population of parameters is created: each set has a
probability of being chosen proportional to its fitness (the cost of the associated path).
Some random parameters are automatically added to the population. The range of values
for these random parameters is -0.25 to 3.0 for the pheromone sensitivity, and -0.125 to
1.5 for the cost sensitivity. Given that the encoding is a bit string, the spectrum of
parameter values is discrete, a property which is essential for the use of the updating
equation for f(α,β,k). The negative values allow agents to flee the main trail and therefore
to explore new links. If these values are useful (i.e. they cause better paths to be found)
they will be stored for future ‘breeding’, otherwise they will be forgotten. Then the
genetic operators such as mutation and crossover are carried out. Finally, agents with the
corresponding set of parameters are created and placed on the graph.

These random elements add an extra degree of variability to parameters and this is
needed to avoid the convergence of the parameters.

We have observed that the algorithm is able to adapt to a new situation much more
quickly when using these adaptive parameters. The time needed to discover the new path
was about 2 or 3 seconds instead of half a minute to minutes before, depending of the
value of the fixed pheromone sensitivity. Investigations with the adaptive parameter
algorithm are ongoing and further experimental results will be provided in a future
publication.

This approach differs from a conventional GA in that, in this algorithm, we are trying to
avoid the convergence of the population because it tends to lead to local optima. This is
perhaps closer to work on co-evolving populations because the environment of the agents
(the network and its representation, the graph) is modified by their actions. There is
considerable inter-play between the pheromone laying activities of one agent with the
cost of a path found by another agent and, therefore, the fitness associated with the (α,β)
encoding of pheromone and cost sensitivity values.

5. Experimental Results

In order to carry out reproducible experiments, a special connections manager was
developed. With it, the user can choose the connections within the list of all the
connections created which one he wants to use and in what order. He has to define the
cost functions he wants to compare, and the number of runs. Then, the program will
establish the first connection of its list. When the path is allocated, this connection is
stopped (without removing its agents or its allocation of bandwidth from the network: the
important point is that the modifications due to the former connection still remain in the
graph) and the next connection is launched, and so on, until the list is empty. Then,
results are saved in files. This is repeated for many runs, and then for another set of
parameters. Many runs are necessary because the algorithm is not deterministic.

The criterion used to
measure if the load
balancing of an experiment
is good or not was the
standard deviation of the
occupancy of the links in the
graph. A hypothetically
perfect routing, with all the
links at the same level of
occupancy, will have a
standard deviation in link
utilization of zero. A very
bad routing, with all the line
empty but one having a
utilization close to 100%

will have a very high standard deviation. The criterion for good routing solutions is the
lower the standard deviation, the better the load balancing. Therefore, we used the
standard deviation as a means to measure the results of our experiments.

The use of a species id was not good for those experiments because instead of spreading,
the connections having the same species id tried to follow the pheromone trail of its kind.
This is the reason why we used connections with different bandwidth (even slightly - in
the order of 0.1 difference) in all those experiments.

The first experiment (experiment #1) was on the following graph, Figure 9, with a set of
8 different connections between n1 and n12. In a second experiment (experiment #2),
performed on the graph shown in Figure 10, we used another set of connections that
seemed more realistic for us. In reality, you have a lot of connection using a small
percentage of the total bandwidth. This set was made of:

• one connection whose bandwidth represents 20% of the maximum bandwidth
available,

• 2 connections whose bandwidth represents 10% of the maximum bandwidth
available,

n2

n1

n3 n4

n5

n6

n8

n9

n10

n11

n12

n7

3

4 4

10

10
2

7

3

3 3 1

3

3

34

Figure 9: Network for experiment 1

• 4 connections whose bandwidth represents 5% of the maximum bandwidth
available,

• 12 connections whose bandwidth represents 1% of the maximum bandwidth
available.

For experiment #1, the first thing that was obvious, was that there was a spreading effect
in using a cost function different from the defaultCostFunction. Secondly, it appeared
that there was not one optimal cost function for all occupancy ranges. In fact, for an
initial occupancy of 0%, the linear cost function gave the best results. For an initial
occupancy of 25%, the non-linear cost function gave the best results. Finally, the quartic
cost function provided the best results for the 50% initial occupancy.

We then tried to improve the algorithm. We had seen that multiplying the cost by a cost
function could have a spreading effect, and then we tried to force this spreading effect.
We modified the way the next link was chosen. In the basic algorithm, each possible next
link has a selection value based on the probability function as discussed in previous
sections.

In the enhanced algorithm, this selection value will be multiplied by a factor. This factor
favours a link if it has a lower occupancy than the other possible next links (the factor has
to be greater than 1 in that case). Conversely, it lowers the likelihood of selection if that
link has a higher occupancy (the factor has to be lower than 1 in that case). We use an
exponential function whose exponent is the difference of the occupancy of the current
link with the occupancy of all the other candidates.

n1

n8

n13

n14

n11

n15

n12n2

n7

n5

n4

n10

n9

n3

n6

4

5

4

6

10

3

4 4

4

5

7

4

3

4

3 1

3

3

3
4

17

Figure 10: Network for experiment 2

The forcing factor is given by the equation above. As can be seen from the functional
form, low occupancy links are exponentially favoured over high occupancy links. Figure
11 demonstrates the calculation of the factor for an example node. It can easily be seen
that Line 3 with 20% has the best factor, whereas Line 1 has the worst, as expected.

In the experiments with this factor, the results of all cost functions were improved, but
the ranking was different: for low occupancy, the non-linear cost function was better than
the linear function. The quartic cost function was still the best for higher occupancy
values. As a result of these experiments we were not sure that such an improvement for
the standard deviation was worth if the total cost was too high, or the time needed too
large.

In order to assess the utility of the forcing factor, a number of experiments using the
network in Figure 9 were performed. T was varied in these experiments, so we defined a
total gain, taking into account the gain for the standard deviation, the total cost, and the
time needed for the connection emergence. This is shown in Figure 12.

In the total gain term, the gain for time is
divided by 4 because this parameter
seemed to us less relevant than the cost and
the standard deviation of occupancy.

The choice of the reference is highly
significant for each gain. In order to be able
to compare all four cost functions with
different values for T, we selected the
results of an experiment without factor
effect, using the defaultCostFunction as
cost function for the reference gain

∏
≠

−

=
ji

T

j
linkproportion

i
linkproportion

e

)()(

factor

Incoming Line

Line 1 (70%)

Line 2 (50%)

Line 3 (20%)

Figure 11: Example factor calculation

factor1 e

0.5 0.7–()
T

e

0.2 0.7–()
T

⋅ e

0.7
T

-------–

= =

factor2 e

0.7 0.5–()
T

e

0.2 0.5–()
T

⋅ e

0.1
T

-------–

= =

factor3 e

0.7 0.2–()
T

e

0.5 0.2–()
T

⋅ e

0.8
T

= =

GainSD 1
SD

SDRef
---------------–=

GainTime 1
Time

T imeRef
---------------------–=

GainCost 1
Cost

Cos tRef
-------------------–=

GainTotal GainSD

GainTime

4
----------------------- GainCost+ +=

Figure 12: T-factor gain equations

measure.

From all these experiments, it appeared that there would not be an obvious winner. We
can only choose the best compromise. In reality, the occupancy of network links are
rather high, the best compromise could be using quartic cost function and T=0.5. In order
to confirm that the results were not biased by the choice of the set of connections, we
carried out experiment #2 and it appeared that the same set of parameters would be the
best compromise.

Figure 13 shows the gain of each used cost function with varying values for T. From the
left to the right, there are the results of our experiments with the following initial
occupancy: 50%, 25% and 0%. The total gain is represented for each cost function
(defaultCostFunction, linear, non-linear and quartic). These values are the mean values
computed over 25 runs for each set of parameters.

6. Using this Approach on Real Networks

There are two primary mechanisms for utilizing this approach on a real ATM network or
transmission network: finding routes on the network itself, and finding routes in the
management system. The algorithm appears to work best on networks where connections
are relatively long lived - in the terminology of ATM, permanent virtual circuits rather
than switched virtual circuits.

Ants on the Network

For the algorithm to be able to operate on a real network, several mechanisms must be
available:

• A method of assigning source and destination nodes and informing those nodes of
their status (probably via a management system or embedded communications
channel).

• A method of packaging agents, their execution state and their data so that they can be
transported across a link (c.f. mobile agents in Odyssey or the framework designed
here in the Systems Engineering Department [Susilo et al. 97]).

• On each node, a computing platform and a method for providing information about
connected links to the agents.

• For each link (probably recorded at each end node) a mechanism for recording
pheromone concentrations for each species and evaporating this over time3.

• On the source node, a computing platform to determine whether a route has emerged.

All of the above points can be addressed with the application of Java, a mobile agent
framework and the use of many of the Virtual Managed Component (VMC) ideas found
in [Bieszczad and Pagurek 97, Bieszczad and Pagurek 98, Schramm et al. 98 and Susilo
et al. 98].

Besides these requirements, some consideration must be given to the amount of
bandwidth taken up by these agents. The agents themselves are relatively small, although
there may be a large number of them circulating in the network at any time. In addition,
there may be many connection requests being satisfied concurrently. The amount of
bandwidth available in the network is likely to be several orders of magnitude higher than
the total bandwidth available, and so in many situations, these concerns are probably
unfounded.

However, when the network utilization is approaching its capacity, sending many agents
may be deemed impractical, as it eats up too much bandwidth which could be sold to
customers. From the previous sections, it is clear that the real benefits of the algorithm
show when the network is approaching its capacity, and therefore it is valuable to retain
the algorithm.

3 Alternatively, evaporator agents could circulate and reduce the pheromone concentrations.

A compromise is to assign a small amount of bandwidth on each link permanently to the
algorithm that will make best use of it, i.e. define an embedded management
communications channel. Furthermore, when the network has sufficient capacity, the
algorithm can make use of an additional amount to maximize its performance. If the
network operator decides to use the final 0.01 percent of the bandwidth for network
traffic, the swarm algorithm can be suspended and the management channel given over to
network traffic.

A further benefit of having agents roam the network is that they can gather transmission
delay and cell loss information. This can be fed back to the management system, as
statistics about how well the algorithm and network are operating.

Ants in the Management System

The other approach is running the algorithm on the management system using snapshots
either of the network, or by querying the nodes for information (although the latter is
likely to be unacceptable). We can view the network snapshots as a simulation of the
network.

This method is analogous to the demonstrator already implemented, in that the agents
operate on a model of the actual network. However, as we deal with snapshots, it is
possible that some information will be incorrect. The allocator agent must be analyzed
and time dependencies between allocating on the network model and allocating real
bandwidth on the actual network must be reduced.

This latter point raises the issue of the integration between the algorithm, the
management system and the network. The algorithm results must be close enough to the
real network in order for the solutions to be valid for any length of time on the real
network. It is clearly not desirable to work for any length of time on an out-of-sync
network model, nor is it for allocation to be attempted when the real network says that it
is not possible.

This approach to integrating the algorithm with real networks is clearly easier and
simpler than building agents that can roam around the network, and hence would be the
recommended approach.

7. Conclusions

Outstanding Problems

Sensitivity to Parameters

The algorithm is very sensitive to both the agent parameters and the particular graph on
which the algorithm operates. In order to reduce this, we focused on evolving the most
important parameters (sensitivity to cost and pheromone). This was partly successful in
reducing the sensitivity to the size and complexity of the graph.

Other parameters with can improve or reduce the efficacy of the algorithm are:

• number of agents created
• frequency of agent creation

These two parameters are very sensitive to the size and complexity of the graph. By
default, 10 agents are created every 10 ‘ticks’. Often, it is better to create agents more
frequently, although it is not always the case that more agents lead to a better solution.
Indeed, these parameters are likely to be sensitive to more than the network; it appears
that they are sensitive to the particular connection requested too. Further experimentation
will be required to resolve this issue, although it is likely that some evolutionary
approach may be beneficial.

• amount of pheromone to be dropped

The actual amount of pheromone dropped by an agent is this amount divided by a
measure of how good the found route was (i.e. some function of it’s cost). Therefore, this
parameter is sensitive to the cost distribution on the graph, and is related to the ‘Orders of
Magnitude’ problem, below.

• agent return buffer size (n)
• agent percentage required for emergence (m)

Deciding whether a path has emerged is a difficult problem. In this work, it is particularly
difficult as, from the outset, we decided to avoid using a global monitor. Therefore, one
of the nodes (the designated source node) was responsible for determining whether a path
had emerged.

We used a simple scheme: of the last n agents to return, m followed the same route. This
mechanism works reliably as a tool for detecting emergence. However, where there are
several similar solutions to a problem, it takes a long time for one to dominate over
another (it tends to oscillate).

A refinement this emergence criterion analyzed the amount of the graph that has been
explored. This is done by recording the number of distinct routes that the agents find. As
the search stagnates, fewer new paths are found (i.e. the standard deviation of the set of
routes found approaches zero), we assume that no more new paths will be found, and
then choose the current best available solution. Therefore, these parameters are not a
particular problem.

Orders of Magnitude

There are two parts to this problem: cost magnitudes and pheromone magnitudes.
Consider the graph below. Link AB has a cost of 1, while link AC has a cost of 100. This
leads to the situation where AC is significantly less likely to be chosen than AB. It can be
argued that this is exactly the desired behaviour. However, without careful consideration
of relative costs on the network, this can lead to poor utilization of resources. Therefore,
we recommend that costs on links be kept within one order of magnitude, as this will
ensure good searching of the network. This may require a level of normalization before
using the algorithm.

The other magnitude problem is to do with pheromone. When a large number of agents
follow a particular route, a very large amount of pheromone can build up on that path.
Indeed, the amount can be so great that it is impossible for the agents to escape that path.
This problem is more significant than the cost magnitude problem, as it becomes very
problematic on a network where connections come and go, freeing bandwidth on other
links. When the agents become locked into a route due to a high amount of pheromone,
and another, far better route becomes available, the agents will never find that route.

The use of a genetic algorithm allied to a simplified Q-learning mechanism served to
avoid some of this, although it can still become locked into solutions. Further research on
this problem is required.

Other Telecommunications Applications Areas

There are other applications within the telecommunications domain besides routing and
load balancing, for which swarm intelligence may prove useful.

A

C

B
Cost = 1

Cost = 100

Figure 14: Order of magnitude problem

In addition to the quadratic assignment problem and the job shop scheduling problem,
which have obvious uses within and outside telecommunications, some work has been
done on temporal graphs and correlation.

The concept behind using swarm intelligence for alarm correlation is that alarms arrive
separated in time and space, and this can be though of as forming a temporal graph.
Finding correlations between alarms, i.e. diagnosing problems is equivalent to
partitioning the graph into a number of cliques. Swarm Intelligence has been used for
graph partitioning [Kuntz et al. 94].

The factors that effect the partitioning of alarms include:

• temporal closeness
• topological closeness — within and between network layers
• logical closeness — known direct causal relationships

These factors could be introduced into a swarm intelligence algorithm, and the sensitivity
to each value can be varied using a power relationship with a sensitivity factor (raising to
a power works well for routing and TSP).

As ants explore the graph, they will lay a pheromone trail representing the partitioning
they have found. Other ants have a tendency to follow this trail, based on a sensitive
factor, as for the other grouping factors.

Over time, the pheromone trails will be reinforced as more ants follow that path. This can
be seen as a positive feedback search technique, which is controlled by evaporating the
pheromone at a constant rate. This means that infrequently used relationships between
alarms will evaporate toward zero, thus making their use more unlikely.

Solutions correspond to large accumulations of pheromone between nodes in a closed
ring formation, the clique. The decision as to whether a large enough ring of pheromone
has emerged has yet to be investigated.

Unlike routing problems where paths are limited to following arcs between nodes, the
alarm correlation problem allows ants to explore any appropriate alarm nodes on the
graph. Clearly, this can be large, but it is anticipated that the complexity of the problem
can be reduced by using a sliding window technique. This removes ‘old’ alarms over
time, but can also be modified to ‘forget’ alarms that have been resolved, or to remove
‘irrelevant’ alarms. This sliding window technique can be seen as a global controller over
the algorithm.

Use of this graph partitioning technique should lead directly to solutions where there are
multiple faults, as this corresponds to multiple partitions within the graph.

Summary

Our investigations and experiments have shown that this multi-agent search technique,
called Swarm Intelligence, can solve routing problems on networks.

The main strengths of the algorithm are its robustness, the simple nature of the agents,
and that it continues searching for new solutions even if a very good one was found. The
algorithm also appears to perform well in problems with a large graph.

In an enhancement of the routing algorithm, we were able to obtain a load-balancing
algorithm. All our experiments were on general graphs, therefore this kind of heuristic
could be used as a general purpose tool (c.f. Dorigo’s application of the same algorithm
to the TSP, QAP, JSP with minimal changes).

The Swarm Intelligence dynamic routing algorithm showed strengths of versatility and
generality. These can also be weaknesses: some other very specialized algorithms can
outperform this algorithm. Its real strength is in the way it can adapt to new situations.
Real ants are able to quickly find a new path when their environment changes, and the
swarm algorithm also exhibits this behaviour. For instance, it can be shown that the
explorer agents react quickly to changes in available bandwidth (and hence cost) by
avoiding a particular link. This kind of heuristic would be very relevant in cases where
the “environment” is changing rapidly, with a large flow of data. This is the case for
problems like air traffic management [Ndovie, 93].

Adaptive behaviour could be used in managing incidents, or network failures. The fact
that it can adapt to totally new situations may be very useful. This way, during the failure
of some of its physical elements, a network would be able to manage routing. It is
interesting too, that the agents can behave and act without human intervention. During
network failures, this algorithm could behave as the “immune system” of the network and
insure that during incident the routing of data would still be done.

It is our opinion that this work requires further ‘hardening’ before it can be used for
industrial applications. This could take the form of further demonstrators or trials. The
field of Swarm Intelligence is still rather small (<20 researchers worldwide) and
immature. However, the potential benefits of this kind of approach are great: no overall
control, simple agents, robustness, adaptation, and so this work is quite compelling.
There are several powerful ideas contained within this algorithm and report that will be
investigated by further research.

8. References

[Bieszczad and Pagurek 97] Bieszczad, A. and Pagurek, B., Towards plug-and play
networks with mobile code, to be presented at the International
Conference for Computer Communications ICCC’97, November
19-21, 1997, Cannes, France.

 [Bieszczad and Pagurek 98] Bieszczad, A. and Pagurek, B., Network Management
Application-Oriented Taxonomy of Mobile Code, to be presented
at the IEEE/IFIP Network Operations and Management
Symposium NOMS’98, New Orleans, Louisiana, February 1998.

[Beni 91] Key issues of the theory of cellular automata as applied to swarm
intelligence, G. Beni, proceeding of the 1990 IEEE International
Symposium on Intelligent Control, Philadelphia.

[Bonabeau et al. 94] Intelligence Collective, Eric Bonabeau & Guy Theraulaz, Hermes,
Paris, 1994.

[Colorni et al. 94] Ant System for Job-shop Scheduling, Alberto Colorni, Marco
Dorigo, Vittorio Maniezzo & Marco Trubian, Belgian Journal of
Operations Research, Statistics and Computer Science, 1994.

[Dorigo et al. 92] Distributed Optimization by Ant Colonies, Alberto Dorigo, Marco
Dorigo & Vittorio Maniezzo, European Conference on Artificial
Life 1991, pp. 134-142.

[Dorigo et al. 96] The Ant System: Optimization by a colony of cooperating agents.
Marco Dorigo & Alberto Colorni, IEE Transactions on Systems,
Man and Cybernetics, Vol. 26, No. 2, 1996.

[Faieta et al. 94] Diversity and Adaptation in Populations of Clustering Ants, Baldo
Faieta & Erik Lumer, proceedings of Conference on Simulation of
Adaptive Behaviour, Brighton 1994.

[Goldberg 89] Goldberg, D. Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley.

[Kuntz et al. 94] Emergent Colonization and Graph Partitioning, Pascale Kuntz &
Dominique Snyers, proceedings of Conference on Simulation of
Adaptive Behaviour, Brighton, 1994.

[Maniezzo et al. 94] Maniezzo V., A. Colorni and M. Dorigo, The Ant System Applied
to the Quadratic Assignment Problem. Tech. Rep. IRIDIA/94-28,
Université Libre de Bruxelles, Belgium, 1994.

[Schramm et al. 98] Schramm, C., Bieszczad, A. and Pagurek, B., Application-Oriented
Network Modeling with Mobile Agents, to be presented at the
IEEE/IFIP Network Operations and Management Symposium
NOMS’98, New Orleans, Louisiana, February 1998.

[Susilo et al. 98] Susilo, G., Bieszczad, A. and Pagurek, B., Infrastructure for
Advanced Network Management based on Mobile Code, to be
presented at the IEEE/IFIP Network Operations and Management
Symposium NOMS’98, New Orleans, Louisiana, February 1998.
(Also available as technical report SCE-97-10).

