
Particle Swarm Optimization

Population-based stochastic optimization technique

Purpose: optimization of continuous nonlinear
functions

Background: bird flocking and fish schooling, artificial
life, social systems

First work: [Eberhart and Kennedy, 1995]

Popularity: A book [Kennedy and Eberhart, 2001], a
recent special issue on IEEE Transaction on
Evolutionary Computation [Vol. 8, June 2004], topic of
interest in several conferences and workshops

It’s actually a sort of generalization of Cellular
Automata [Wolfram, 1980–], so let’s give a quick look
to them first

39



Cellular Automata

A set of simple automata, that is, finite state machines
with few states S = {s1, s2, . . . , sk}

A topology of interconnection among the automata,
such that each automaton ai has ni neighbors,
N (ai) = {a1

i , a
2
i , . . . , a

ni

i
}

A state-transition function F that depends on the
current state si(t) of the automaton and on the state
of its neighbors N (ai)

At discrete time-steps (and either synchronously or
asynchronously) each automaton gets the state from
its neighbors and possibly change state accordingly

Examples: numeric solution of differential equations,
voting in social networks , fluid dynamics, cell behavior
. . . Loads of theoretical studies more than useful
applications

40



PSO: background

Early work on simulation of bird flocking aimed at
understanding the underlying rules that allow smooth
flocking [Reynolds, 1984] and roosting behavior
[Heppner and Grenader, 1990]

The rule were supposed simple and based on social
behavior: sharing of information and reciprocal
respect of the occupancy of physical space

Social sharing of information among conspeciates
seems to offer an evolutionary advantage

Target: study of human social behavior on the basis
of bird/fish swarm behavior. The notion of change in
human social behavior/psychology is seen as the
analogous of change in spatial position in birds.

41



PSO: background (2)

Initial simulation: a population of N � 1 agents is
initialized on a toroidal 2D pixel grid with random
position and velocity, (x̄i, v̄i), i = 1, . . . , N

At each iteration loop, each agent determines its new
speed vector according to that of its nearest neighbor

A random component is used in order to avoid fully
unanimous, unchanging flocking

All this was not so exciting, but the roosting behavior
of Heppner was intriguing: it looked like a dynamic
force such that eventually the birds were attracted to
land on a specific location. The roost could be the
equivalent of the optimum in a search space!

42



PSO: background (3)

In real life, birds don’t know for instance were food is,
but if one puts out a bird feeder he/she will see that
within hours a great number of birds will find it, even
though they had no previous knowledge about it. This
looks like the flock dynamics enables members of the
flock to capitalize on one another’s knowledge

The agents can be therefore assimilated to solution
hunters that socially share knowledge while they
fly over a solution space. Each agent that has found
anything good leads its neighbors toward it. So that
eventually they can land on the best solution in the
field

43



PSO: background (3)

In real life, birds don’t know for instance were food is,
but if one puts out a bird feeder he/she will see that
within hours a great number of birds will find it, even
though they had no previous knowledge about it. This
looks like the flock dynamics enables members of the
flock to capitalize on one another’s knowledge

The agents can be therefore assimilated to solution
hunters that socially share knowledge while they
fly over a solution space. Each agent that has found
anything good leads its neighbors toward it. So that
eventually they can land on the best solution in the
field

44



PSO: the meta-algorithm
Each agents is a particle-like data structure that contains: the
coordinates of the current location in the optimization landscape,
the best solution point visited so far, the subset of other agents
that are seen as neighbors.

procedure Particle Swarm Optimization()
foreach particle ∈ ParticleSet do

init at random positions and velocity();
select at random the neighbor set();

end foreach
while (¬ stopping criterion)

foreach particle ∈ ParticleSet do
calculate current fitness and update memory();
get neighbor with best fitness();
calculate individual deviation between current and best so far fitness();
calculate social deviation between current and best neighbor fitness();
calculate velocity vector variation as weighted sum between deviations();
update velocity vector();

end foreach
end while

return best solution found(); 45



PSO: the algorithm
procedure Particle Swarm Optimization(Particles, Neighbors, Fitness Func())

foreach particle p[i], i = 1, . . . , Particles do
p[i].q̄next ← p[i].q̄ ← get random position();
p[i].v̄ ← get random velocity();
p[i].n̄← get random neighbors(Neighbors); p[i].best.val← −∞;

end foreach
s.best← −∞;
while (¬ stopping criterion)

foreach particle p[i], i = 1, . . . , Particles do
p[i].q̄next ← p[i].q̄;
pF itness← Fitness Func(p[i]);
if (pF itness > p.best.val)

p[i].best.val← pF itness; p[i].best.q̄ ← p[i].q̄;
end if
if (pF itness > s.best.val)

s.best.val← pF itness; s.best.q̄ ← p[i].q̄;
end if
n← get neighbor with best fitness(p[i].n̄);
foreach d = 1, . . . , P robDimensions do

indFactor ← indWeight * random(iMin, iMax);
socFactor ← socWeight * random(socMin, socMax);
∆p← p.best[d]− p.q[d];
∆n← n.best[d]− p.q[d];
∆← (indFactor * ∆p) + (socFactor * ∆n);
p.v[d]← p.v[d] + ∆; p.v[d]← keep velocity in a min max range();
p.q[d]next ← p.q[d] + p.v[d];

end foreach
end foreach

end while
return s.best; 46



Some final considerations on PSO

Equivalent to a real-valued 2D CA where the state of
a particle is (q̄, v̄) ∪ (q̄best, F (q̄best))

The neighborhood relationship is not transitive,
however other choices can be selected

Social networks can be asymmetric (A is connected to
B but B might not care about A)

An update of the state (position on the optimization
landscape) is calculated as a tradeoff between
individual and social knowledge

Tested on benchmarks for continuous functions (e.g.,
[van den Berg and Engelbrecht, 2004]) and NN
training (10–50 particles). Performance comparable to
genetic algorithms, but simpler to design and analyze 47



ACO’ background: Shortest paths, stigmergy

48



Outline

Biological experiments that pointed out the shortest
path behavior of ant colonies

Ingredients that make the shortest path behavior
happening

Usefulness of solving shortest path problems

Stigmergy: indirect communication giving rise to
self-organization

Definition and examples of stigmergic variables

Design of a stigmergy-based multi-agent system

49



Pheromone and Shortest Paths

Several ant species have trail-laying/trail-following
behavior when foraging [Hölldobler and Wilson,
1990]. While moving, individual ants deposit on the
ground a volatile chemical substance called
pheromone, forming in this way pheromone trails.
Ants can smell pheromone and, when choosing their
way, they tend to choose, in probability, the paths
marked by stronger pheromone concentrations. In this
way pheromone trails constitute a sort of attractive

potential field

Pheromone trails allows the ants to find their way
back to food sources (or to the nest), and can be used
by other ants to find the location of the food sources
discovered by their nestmates.

50



Ant behavior illustrated

� ��

� �� ����

???

???

Pheromone

Morphology
Landscape

Stochastic
Component

51



More on pheromone and shortest paths. . .

Pheromone trails act as a sort of distributed dynamic
collective memory of the colony, a repository of all
the most recent foraging experiences of the ants
belonging to the same colony. By continually updating
and sensing this chemical repository the ants can
indirectly communicate and influence each other
through the environment

This basic form of indirect communication, coupled
with a form of positive feedback, can be enough to
allow the colony as a whole to discover, when only
few alternative paths are possible, the shortest path
connecting a source of food to the colony’s nest
[Experiments by Aron, Beckers, Deneubourg, Goss,
Pasteels et al., 1977–]

52



The binary bridge experiment

After an initial transitory phase lasting few minutes
during which some oscillations can appear, ants tend
to converge on the same path [Deneubourg, Aron,
Goss and Pasteels, 1990]

Upper Branch

Nest Food

15 cm

Lower Branch
0

20

40

60

80

100

0 5 10 15 20 25 30
%

 o
f p

as
sa

ge
s

Time (minutes)

Upper branch
Lower branch

53



Probabilistic model for binary bridge

The amount of pheromone on a branch is proportional to the
number of ants which have been using the branch in the
past (pheromone is assumed persistent). The probability of
choosing a branch at a certain time depends on the total
amount of pheromone on the branch, which, in turn, is
proportional to the number of ants which have used the
branch until that moment:

PU (m) =
(Um + k)h

(Um + k)h + (Lm + k)h
,

PL(m) = 1 − PU (m).

The dynamics regulating the ant choices are:

Um+1 = Um + 1 if ψ ≤ PU , ψ = U(0, 1)

Um+1 = Um otherwise,

Monte Carlo simulations were run to test the model versus
real data: results of simulations were in agreement with the
experiments with real ants for k ≈ 20 and h ≈ 2 54



Binary bridge with unequal branches (1)

If the branches of the bridges are of different length, then the
pheromone field can lead the majority of the ants in the
colony to select the shortest between the two available
paths [Goss, Aron, Deneubourg and Pasteels, 1989]

The first ants able to arrive at the food source are those that
traveled following the shortest branch. Accordingly, the
pheromone that these same ants have laid on the shortest
branch while moving forward towards the food source
makes this branch marked by more pheromone than the
longest one. The higher levels of pheromone present on the
shortest branch stimulate these same ants to
probabilistically choose again the shortest branch when
moving backward to their nest. Recursive behavior: the very
fact of choosing a path increases its probability of being
chosen again in the near future (autocatalytic effect)

55



Binary bridge with unequal branches (2)

Moving backward, additional pheromone is released on the
shortest path. In this way, pheromone is laid on the shortest
branch at a higher rate than on the longest branch. This
reinforcement of the pheromone intensity on the shorter
paths is the result of a form of implicit path evaluation: the
shorter paths are completed earlier than the longer ones,
and therefore they receive pheromone reinforcement
more quickly

Therefore, for a same number of ants choosing either the
shortest or the longest branch at the beginning, since the
pheromone on the shortest branch is accumulated at a
higher rate than on the longest one, the choice of the
shortest branch becomes more and more attractive for the
subsequent ants at both the decision points

56



Binary bridge with unequal branches (3)

Food
1 2

Nest Food
2

Nest
1

0

50

100

0-20 20-40 40-60 60-80 80-100

%
 o

ve
r 

n 
e

xp
e

ri
m

e
n

ts

% of ants selecting the shorter branch

n=14, r=2

Nest

Food

Pheromone Intensity Scale

t = 2 t = 3

t = 1

Nest

Food

Nest

FoodFood

Nest

t = 0

57



Ingredients of the shortest path behavior
Population (colony) of foraging ants (autonomous,
asynchronous, concurrent, distributed)

Forward-backward path following

Pheromone laying and sensing (shared distributed memory,
distributed control)

Pheromone-biased stochastic decisions (local field)
Autocatalysis
Implicit path evaluation
Iteration over time

The colony realizes concurrent computation. Multiple paths are
repeatedly tried out back and forth and some information related
to each followed path is released on the environment. Stochastic
decisions are based on the local pheromone content.
Implicit path evaluation, coupled with autocatalysis, results in
distributed and collective path optimization. Given enough time,
and depending on the number of ants, relative length of the
paths, pheromone evaporation, etc., this can result in the
convergence onto the shortest path 58



Ant repertoire vs. colony repertoire

A single ant is capable of building a solution (cf. with
PSO: every particle IS a solution point, or with the
Immune System where none of the agents provides a
solution)

However, it is only the simultaneous presence and
synergistic action of a swarm of ants that makes
possible the shortest path finding behavior

This self-organized behavior is a property of the
colony and of the concurrent presence of all the
discussed ingredients. It is not a property of the single
ant

59



Solving shortest path problems is useful

This class of problems is a very important one and
encompasses a vast number of other problems. Graphs
whose nodes represent possible alternatives/states and
whose edges represent distances/losses/rewards/costs
associated to node transitions are graphical models for a
huge number of practical and theoretical decision and
optimization problems

In general, any combinatorial optimization or network
flow problem can modeled in the terms of shortest paths

Several general and very effective techniques to solve
general shortest path problems are available: label setting
techniques (e.g., Dijkstra algorithm [Dijkstra, 1959]), label
correcting techniques (e.g. Bellman-Ford /
dynamic-programming algorithms [Bellman, 1957, 1958;
Ford and Fulkerson, 1962; Bertsekas, 1995], and rollout
algorithms [Bertsekas, Tsitsiklis and Wu, 1997]. The
literature on the subject is extensive

The novelty of ants is that they solve it in a distributed and
dynamic way using environment-mediated communication 60



Pheromone evaporation

0

50

100

0-20 20-40 40-60 60-80 80-100

%
 o

ve
r 

n 
ex

pe
rim

en
ts

% of ants selecting the shorter branch

n = 18, r = 2
The characteristics of the dynamic pro-
cesses regulating pheromone evapora-
tion play a central role determining the
conditions for shortest path behavior and
to favor exploration and adaptation

Both pheromone evaporation and the characteristics of the
ant stochastic decision policy are strictly related to the
choice of the tradeoff between exploitation (e.g., of a path
that seems to be particularly good) and exploration (e.g., of
new alternative paths). This is a major issue for any system
engaged in a search process repeated over time (e.g., ACO,
Simulated Annealing)

The literature on the mathematical and practical aspects of
the exploration/exploitation dilemma (and on the related
bias/variance dilemma) is vast [Kearns and Singh, 1998;
Thrun, 1992; Robert and Casella, 1999; Kirkpatrick, Gelatt
and Vecchi, 1982] 61



Stigmergy

Stigmergy expresses the general idea of using indirect
communication mediated by physical modifications of the
environment to activate and coordinate self-organizing
behaviors (in a colony of insects):

The coordination of tasks and the regulation of
constructions does not depend directly on the workers, but
on the constructions themselves. The worker does not direct
his work, but is guided by it. It is to this special form of
stimulation that we give the name stigmergy (stigma, sting;
ergon, work, product of labour = stimulating product of
labour) [Grassé, 1959]

Grassé observed that insects are capable to respond to so
called significant stimuli which activate a genetically
encoded reaction. In social insects, the effects of these
reactions can act as new significant stimuli for both the
insect that produced them and for other insects in the
colony, generating a recursive feedback that can lead to a
phase of a global coordination

62



Termite nest building

The combination of stigmergy and phys-
ical characteristics of the environment
gives rise to astonishing results

63



A more operative definition

We call stigmergy any form of indirect communication
among a set of possibly concurrent and distributed
agents which happens through acts of local
modification of the environment and local sensing of
the outcomes of these modifications [Dorigo, Di Caro
and Gambardella, 1999]

The local environment’s variables whose value
determine in turn the characteristics of the agents’
response, are called stigmergic variables [Dorigo,
Bonabeau and Theraulaz, 1999]. Stigmergic
communication and the presence of stigmergic
variables is expected (depending on parameter
setting) to give raise to a synergy of effects resulting
in self-organized global behaviors

64



Examples of stigmergic variables

The height of a pile of dirty dishes floating in the sink

Pheromone intensity in trail-following and shortest
path behavior in ant colonies

Nest energy level in foraging robot activation [Krieger
and Billeter, 1998]

Level of customer demand in adaptive allocation of
pick-up postmen [Bonabeau et al., 1997]

Two main model of response: converging and
diverging behavior at the group level

65



Threshold models of labor division

Diverging behavior is explained by threshold models
of labor division and task allocation:

s = stimulus intensity
θ = internal response threshold

Tθ(s) = response function: probability of performing
the task as a function of s

if s � θ → Tθ(s) ≈ 0

if s � θ → Tθ(s) ≈ 1

The internal response threshold can change over time
according to some evolution or learning.
A typical choice for T is:

Tθ(s) =
sn

sn + θn
66



Designing a stigmergy-based system
When a stigmergic approach is adopted to design a
multi-agent system, the focus is put on the definition of:

effective stigmergic variables, such that robust coordination
and synergy can result,

an effective system of realizing in practice the indirect agent
communication by exploiting environment structure

The central issue is the definition of theprotocols
(interfaces), rather than of the modules (agents) of the
system [Csete and Doyle, 2002] (simple, cheap?)

Protocols here are rules that prescribe allowed interfaces
between modules, permitting system functions that could
not be achieved by isolated modules
Protocols facilitate the addition of new protocols, and
simplify modeling and abstraction

A good protocol supplies global robustness, scalability,
evolvability, and, in the end, allows to fully exploit the
potentialities of the modules and of modularity 67



ACO and other (meta)heuristics for CO

68



Outline

Notes on combinatorial optimization and algorithmic
complexity

Construction and modification metaheuristics: two
complementary ways of searching a solution space

Finally, Ant Colony Optimization explained

Other population-based metaheuristics for
optimization problems: Genetic Algorithms, Cultural
Algorithms, Cross-entropy

Single agent metaheuristics: Local Search, Tabu
Search, Rollout algorithms

69


