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The jointcal package aims at optimizing simultaneously the WCS’s of a set of astro-
nomical images of the same field. This approach produces in principle, and often as
well in practice, WCS’s which are more precise than when fitted independently. This is
especially true when the images are deeper than the astrometric reference catalogs. In
the “Astromatic” software suite, this simultaneous astrometry functionality is fulfilled by
“SCAMP”. The code we describe here has similar aims, but follows a slightly different
route. It is meant to be used within the LSST software stack framework.
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1. Introduction

With deep astronomical images, it is extremely common that the relative astrometry
between images is considerably more precise than the accuracy of external catalogs, where
“more precise” can be as large as two orders of magnitude. For applications where the
quality of relative astrometry is important or vital, it is important to rely on some sort
of simultaneous astrometry solution, if possible optimal in a statistical sense.

This package performs a least-square fit to a set of images. Since it aims at statistical
optimality, we maximize the likelihood of the measurements with respect to all unknown
parameters required to describe the data. These parameters consists mostly in two sets:
the position (on the sky) of the objects in common, and the mapping of each image to
the sky. To these obvious parameters, one can add proper motions (where applicable),
and parameters describing the differential effect of atmospheric refraction on the position
of objects. It is clear that one cannot fit simultaneously the position on the sky and
the mappings from CCD coordinates to the sky, without extra constraints: the “sky”
coordinate system is then undefined, and one needs reference positions in order to fully
define this frame. So far, we have used the USNO (A 2.0) catalog for this purpose.

SCAMP1 is the reference package for simultaneous astrometry in astronomy, at least
for relative alignment of wide-field images prior to stacking. Regarding optimization,
SCAMP follows a somehow different route from ours: it does not optimize over the posi-
tion of common objects but rather minimizes the distance between pairs of transformed
measurements of the same object. This approach is not a maximum likelihood optimiza-
tion, and hence is likely sub-optimal statistics wise. We do not know how sub-optimal it
is, but the main drawback of SCAMP in the context of LSST is the fact that it is a pro-
gram and not a library, and hence not flexible regarding formats of images and catalogs.
But since SCAMP has been used for almost a decade in production by various teams,
the quality checking tools it provides should likely be reproduced in the context of our
package. We provide residual ntuples and hope that the first serious users will contribute
plotting tools.

The code is heavily biased towards astrometry. One related problem, important in
some of the target applications, is relative photometry. We have not provided yet the
determination of relative flux scales between images but we plan to do so. The principles
are similar to relative astrometry, but considerably simpler. The main reason to integrate
it to the present package is that loading the input catalogs takes a large amount of time
and so, solving for the relative photometry once they are in memory looks like a good
idea.

The plan of this note goes as follows: we first sketch the algorithm (§2). We then
describe the first step, i.e. how we associate the measurements of the same objects in
different exposures (§3). We provide our least-squares formulation in § 4, and describe
the how we evaluate the derivatives with respect to the parameters.

2. Algorithm flow

The algorithm assumes that the input images are equipped with a WCS accurate to ∼ 1′′.
Currently, the code interprets properly the SIP WCS’s (relying on the IO’s from afw),
with or without distortions. The code might handle transparently the “PV” encoding of

1see http://www.astromatic.net/software/scamp
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distortions (used in SCAMP and Swarp), but lacks the IO’s required to use this format.
Note that in both instances, the WCS boils down to a polynomial 2D transform from
CCD space to a tangent plane, followed by a gnomonic de-projection to the celestial
sphere. The difference between formats lies into the encoding of the polynomial, but
they map exactly the same space of distortion functions.

The algorithm can be roughly split into these successive steps:

1. load the input catalogs and ’rough’ WCS’s (the selection of objects is left to the
user)

2. Associate these catalogs, i.e. associate the detections of the same object in the
image set. one can also associate these ensemble of detections with an external
catalog (USNO in practise).

3. Actually fit what should be fitted, with outlier clipping.

4. Output results.

3. Association of the input catalogs

In the LSST stack framework, the reduced input images are called “Calexp”. Each of
those typically holds the data from 1 CCD and exposure, and associate the “reduction”
products, typically a variance map, a catalog and a WCS obtained by matching the
catalog to some external reference. The data from a Calexp we need for further processing
is stored into a CcdImage object. It basically stores informations derived from the image
FITS header, from the WCS, and from the image catalog.

CcdImage
+WCS (rough)
+MJD,HA,PA,...
+Mapping
+Detection[*]

Associations
+ccdImageList
+fittedStarList
+refStarList

FittedStar
+RA,dec
+p.m. stuff
+color

MeasuredStar
+X(CCD)
+Cov(X)
+fittedStar

RefStar
+RA,dec
+Cov(RA,dec)
+fittedStar
+epoch ?

MeasuredStarList

CcdImageList

FittedStarList
RefStarList

Figure 1: Chart of class relations which implement the associations between input cat-
alogs. One FittedStar usually has several MeasuredStar pointing to it,
and each RefStar points to exactly one FittedStar. Most FittedStar’s
have no RefStar.

The Associations class holds the list of input CcdImage’s and connects together the
measurements of the same object. The input measurements are called MeasuredStar
and the common detections are called FittedStar. The objects collected in an external
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catalog are called RefStar. Despite their names, these classes can represent galaxies as
well as stars. The collections of sush objects are stored into MeasuredStarList, RefS-
tarList and FittedStarList, which are container derived from std::list. The relations
between these classes, all implemented in C++, are displayed in figure 1.

4. Least squares

4.1. Least-squares expression

The fit consists of minimizing:

χ2 =
∑
γ,i

[Mγ(Xγ,i)− Pγ(Fk)]TWγ,i[Mγ(Xγ,i)− Pγ(Fk)] (meas. terms)

+
∑
j

[P (Fj)− P (Rj)]
TWj[P (Fj)− P (Rj)] (ref. terms) (1)

where the first line iterates on all MeasuredStar (i) from all CcdImage (indexed by γ),
and the second iterates on all RefStar (j). In the first terms, the object at position
Fk is the one that was measured at position Xγ,i in image γ. The association between
measurements and objects is described in the above paragraph.

The measurement terms compare the measurement positions to objects positions, the
reference terms compare object positions to reference positions. We need these two sets
of terms because not all objects Fk in the first terms appear in the second terms: there
are plenty of objects in the images which are not in the reference catalogs, but which
constrain the mappings Mγ to transform measured coordinates to the same positions.

For the measurement terms (first line), the notations are:

• Mγ is the mapping (for CcdImage γ) from pixel space to some tangent plane to the
celestial sphere, (defined by Pγ);

• Pγ is a projector from sidereal coordinate to some tangent plane; Pγ is user-defined.

• Xγ,i is the position of MeasuredStar i of CcdImage γ in pixel space of this CcdImage;

• Fk is the (sky) position of the FittedStar corresponding to this MeasuredStar. In
the data structure, the FittedStar is just pointed to by the MeasuredStar see fig. 1;

• Wγ,i is the measurement weight of Mγ((Xγ,i), i.e. the inverse of the 2×2 covariance
matrix.

The notations for the reference terms (second line) are:

• Rj refers to the (sky) position of RefStar j

• Fj refers to the (sky) position of the corresponding FittedStar (i.e. pointed to by
the RefStar, see fig. 1)

• P is some (user-provided) projector;

• Wj is the weight matrix of the projected position P (Rj).

The expression 1 above depends on two sets of parameters: the parameters defining
the mappings M and the positions Fk. For a practical problem, this amounts to a very
large number of parameters, which becomes tractable if one remarks that every term in
the χ2 only addresses a small number of parameters. We exploit this feature to compute
rapidly the gradient and even the Hessian of the χ2.
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So far, we have not specified how we model the mappings M nor how we choose the
various projectors that appear in expression 1. The code has been written to allow the
final user to provide its own version of both the model for mappings and the projection
scheme. We however provide some implementations for both aspects that we discuss in
the next two sections.

4.2. The distortion model

The routines in the AstromFit class do not really evaluate the derivatives of the map-
pings, but rather defer those to other classes. The main reason for this separation is
that one could conceive different ways to model the mappings from pixel coordinates to
the tangent plane, and the actual model should be abstract in the routines accumulat-
ing gradient and Jacobian. The class DistortionModel is an abstract class aiming at
connecting generically the fitting routines to actual models. We have so far coded two of
these models:

• SimplePolyModel implements one polynomial mapping per input CcdImage (i.e
Calexp).

• ConstrainedPolyModel implements a model where the mapping for each CcdIm-
age is a composition of a polynomial for each CCD and a polynomial for each ex-
posure. For one of the exposures, the mapping should be fixed or the model is
degenerate.

For example, if one fits 10 exposures from a 36-CCD camera, there will be 10×36 polyno-
mials to fit with the first model, and 10 + 36 with the second model. The Constrained-
PolyModel assumes that the focal plane of the instrument does not change across the
data set. We could consider coding a model made from one ConstrainedPolyModel
per set of images for which the instrument can be considered as geometrically stable.
This is similar to how Scamp models the distortions.

In both of these models, we have used standard polynomials in 2 dimensions rather than
an orthogonal set (e.g. Legendre, Laguerre, ...) because regular polynomials are easy to
compose (i.e. one can easily compute the coefficients of P(Q(X)) ), and they map exactly
the same space as the common orthogonal sets. We have taken care of “normalizing”
the input coordinates (roughly map the range of fitted data over the [−1, 1] interval), in
order to alleviate the well-know numerical issues associated to fitting of polynomials.

4.3. Choice of projectors

In the least squares expression 1, the residuals of the measurement terms read:

Rγi = Mγ(Xγ,i)− Pγ(Fj)

If the coordinates Fj are sidereal coordinates, the projector Pγ determine the meaning of
the mapping Mγ. If one is aiming at producing WCS’s for the image, it seems wise to
choose for Pγ the projection used foe the envisioned WCS, so that the mapping Mγ just
describes the transformation from pixel space to the projection plane. For a SIP WCS,
one will then naturally choose a gnomonic projector, so that Mγ can eventually be split
into the “CD” matrix and the SIP-specific higher order distortion terms (see §A for a
brief introduction to WCS concepts).
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So, the choice of the projectors involved in the fit are naturally left to the user. This
is done via a virtual class ProjectionHandler, an instance of which has to be provided
to the AstromFit constructor. There are obviously ready-to-use ProjectionHandler
implementations which should suit essentially any need. For the standard astrometric fit
aiming at setting WCS’s, we provide the OneTPPerShoot derived class, which imple-
ments a common projection point for all chips of the same exposure. It is fairly easy to
implement derived classes with other policies.

The choice of the projector appearing in the reference terms of 1 is not left to the
user because we could not find a good reason to provide this flexibility, and we have
implemented a gnomonic projection. We use a projector there so that the comparison of
positions is done using an Euclidean metric.

4.4. Proper motions and atmospheric refraction

The expression 1 above depends on two sets of parameters: the parameters defining the
mappings and the positions Fk. This expression hides two details implemented in the
code: accounting for proper motions and differential effects of atmospheric refraction.

Proper motions can be accounted for to predict the expected positions of objects and
even be considered as fit parameters. At the moment we neither have code to detect that
some (presumably stellar) object is moving, nor code to ingest proper motions from some
external catalog. Each FittedStar has a flag that says whether it is affected by a proper
motion and the proper motion parameters can all be fitted or not (see §4.6).

The code allows to account for differential chromatic effects of atmospheric refraction,
i.e. the fact that objects positions in the image plane are shifted by atmospheric refraction
in a way that depends on their color. The shift reads:

δX = kb(c− c0)n̂ (2)

where kb is a fit parameter (one per band b), c is the color of the object in hand, c0 is
the average color, and n̂ is the direction of the displacement in the tangent plane (i.e. a
normalized vector along the parallactic direction, computed once for all for each Calexp).
We have not accounted for pressure variations because they are usually small, but it
would not be difficult. The code accounts for color-driven differential effects within a
given band, but ignores the differences across bands, would one attempt to fit images
from different bands at the same time. Differences in recorded positions across bands
will be accounted for in the fitted mappings. It is important to do so because we are
fitting WCS’s, and we want the fitted mappings to reflect at best the effects affecting
measured positions. Since the color correction 2 is not accounted for when using WCS’s
to transform measured position, we have made this correction zero on average. As for
proper motions, fitting or not these refraction-induced differential position shifts is left
to the user (see §4.6).

4.5. Minimization approach

The expression 1 depends on two sets of parameters: the parameters defining the map-
pings Mγ(X) ≡= Mγ(ηγ, X), and the positions Fk. There are indeed extra parameter
sets and what is described here applies as well to those.

We call θ the vector that gathers all parameters. For a practical problem its size can
easily reach 105. But the matrix d2χ2/dθ2 is very sparse, because there are no terms
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connecting Fi and Fj if i 6= j, and depending on how the mappings are parametrized, a
set of ηγ parameters could be connected (in the second derivative matrix) to only a small
set of Fj’s. So, it is tempting to search for the χ2 minimum using methods involving the
second derivative matrix, if we take advantage of its sparseness.

Let us rewrite the χ2 (expression 1) as:

χ2 =
∑
γ,i

Rm
γi
TWγ,iR

m
γi

+
∑
j

Rr
j
TWjR

r
j (3)

(4)

where the meaning or the R vectors is easily derived by comparing to 1. We want to find
the point where dχ2/dθ = 0, where θ of (size Np) denotes the vector of parameters. We
have

1

2

dχ2

dθ
=
∑
γ,i

Rm
γi
TWγ,iH

m
γi (5)

+
∑
j

Rr
j
TWjH

r
j (6)

(7)

where the H matrices are 2×Np in size and read:

Hm
γi =

dRm
γi

dθ
(8)

Hr
j =

dRm
j

dθ
(9)

(10)

If one is ready to evaluate the second derivative matrix of the χ2, the standard method
to zero the gradient is to Taylor expand it:

dχ2

dθ
(θ0 + δθ) =

dχ2

dθ
(θ0) +

d2χ2

dθ2
(θ0)δθ +O(δθ2)

and solve for the offset that zeroes it to first order:

δθ = −
[
d2χ2

dθ2
(θ0)

]−1
dχ2

dθ
(θ0) (11)

At this stage, if the problem is non-linear (more precisely, if the second derivative varies
rapidly) it is wise to consider a line search, i.e. to minimize χ2(θ0 + λ× δθ) over λ.

We write the second derivative of our χ2 (or Hessian) as:

1

2

d2χ2

dθ2
=
∑
γ,i

Hm
γi
TWγ,iH

m
γi

+
∑
j

Hr
j
TWjH

r
j (12)

(13)
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where we have neglected the second derivatives of the R vectors. This is both simple
and handy, because this second derivative is then by construction positive-definite and
hence the parameter offsets (defined in 11) can be evaluated using the (fast) Cholesky
factorization. This indicates that, if possible, mappings Mγ(ηγ, X) linear with respect to
their parameter ηγ, for example polynomials, are to be favored.

Since the matrices Wγ,i are positive-definite, they have square roots (e.g. the Cholesky
square root) and can be written as: Wγ,i = αTγiαγi. Defining Km

γi = αγiH
m
γi , the Hessian

expression becomes

1

2

d2χ2

dθ2
=
∑
γ,i

Km
γi
TKm

γi +
∑
j

Kr
jK

r
j (14)

The sums present in this expression can be performed using matrix algebra. We concate-
nate all the K matrices into a big matrix, called the Jacobian matrix:

J ≡
[
{Km

γi ,∀γ, i}, {Kr
j ,∀j}

]
and we then simply have

1

2

d2χ2

dθ2
= JTJ

In the code, we take advantage of the fact that each term of the χ2 only depends on a
small number of parameters. The data stuctures allow us to collect easily the indices of
these parameters, and we evaluate in fact the H matrices for these indices only.

The computation of the Jacobian and the gradient is orchestrated in the Astrom-
Fit class. The routines AstromFit::LSDerivatives1 and AstromFit::LSDerivatives2

evaluate the contributions to the Jacobian and gradient of the χ2 from the measurement
terms and the references terms respectively. In these routines, the Jacobian is repre-
sented as a list of triplets (i, j, Jij) describing its elements. This list is then transformed
into a representation of sparse matrices suitable for algebra, and in particular suitable to
evaluate the product JTJ . Once we have evaluated H ≡ JTJ , we can solve HX = −g
using a Cholesky factorization. For sparse linear algebra, at least the Cholmod and Eigen
packages provide the required functionalities. It turns out that for practical problems,
the factorization is the most CPU intensive part of the calculations, and there is hence
not much to be gained in speeding up the calculation of derivatives. For the factorization,
we have tried both Eigen and Cholmod (via the Eigen interface) and their speeds differ
by less than 10 %.

4.6. Indices of fits parameters and Fits of parameter subsets

Since we use vector algebra to represent the fit parameters, we need some sort of mecha-
nism to associate indices in the vector parameter to some subset (e.g. the position of an
FittedStar) of these parameters. Furthermore, the implementation we have chosen does
not allow trivially to allocate the actual parameters at successive positions in memory.
The AstromFit::AssignIndices takes care of assigning indices to all classes of param-
eters. For the mappings, the actual DistortionModel implementation does this part
of the job. All these indices are used to properly fill the Jacobian and gradient, and
eventually to offset parameters in the AstromFit::OffsetParams.

Since the indexing of parameters is done dynamically, it is straightforward to only fit a
subset of parameters. this is why the routine AstromFit::AssignIndices takes a string
argument that specifies what is to be fitted.
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5. Fitting the transformations between a set of images

Some applications require to determine transformations between images rather than map-
pings on the sky. For example a simultaneous fit of PSF photometry for the computation
of the light curve a point-like transient requires mappings between images to transport
the common position in pixel space from some reference image to any other in the series.
The calexp series would typically involve the CCD from each exposure that covers the
region of interest. The package described here can fit for the needed mappings:

• in order to remove all reference terms from the χ2 of eq. 1, one just avoids to call
Associations::CollectRefStars.

• One chooses polynomial mappings for all Calexp but one which will serve as a refer-
ence and have a fixed identity mapping. The distortion model SimplePolyModel
allows to do that.

• Chose identity projectors (the class IdentityProjector does precisely that).

So, fitting transformations between image sets can be done with the provided code.

6. Run example

assoc = Associations()

# iterate on the input calexps

for dataRef in ref :

src = dataRef.get("src", immediate=True)

calexp = dataRef.get("calexp", immediate=True)

tanwcs = afwImage.TanWcs.cast(calexp.getWcs())

bbox = calexp.getBBox()

md = dataRef.get("calexp_md", immediate=True)

calib = afwImage.Calib(md)

filt = calexp.getFilter().getName()

# select proper sources

newSrc = ss.select(src, calib)

# actually load the data

assoc.AddImage(newSrc, tanwcs, md, bbox, filt, calib,

dataRef.dataId[’visit’], dataRef.dataId[’ccd’],

dataRef.getButler().mapper.getCameraName(),

astromControl)

# carry out the association

matchCut = 3.0

assoc.AssociateCatalogs(matchCut)

# collect reference objects

assoc.CollectRefStars(False) # do not project RefStars

# select objects measured at least twice.

assoc.SelectFittedStars()

# Send back fitted stars on the sky.
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assoc.DeprojectFittedStars() # required for AstromFit

# Chose a ProjectionHandler

sky2TP = OneTPPerShoot(assoc.TheCcdImageList())

# chose a distortion model

spm = SimplePolyModel(assoc.TheCcdImageList(), sky2TP, True, 0)

# Assemble the whole thing

fit = AstromFit(assoc,spm)

# we are ready to run. Initialize parameters by running "partial fits"

fit.Minimize("Distortions")

fit.Minimize("Positions")

# now fit both sets simultaneously.

fit.Minimize("Distortions Positions")

# output residual tuples

fit.MakeResTuple("res.list")

A. Representation of distortions in SIP WCS’s

The purpose of the appendix is to provide the minimal introduction to WCS concepts
required to understand the code (and the comments) when browsing through it. Readers
familiar with WCSs can give up here.

WCS’s are abstract concepts meant to map data on coordinate systems. In the as-
tronomical imaging framework, this almost always means mapping the pixel space into
sidereal coordinates, expressed in some conventional space2. One key aspect of the WCS
“system” is that it proposes some implementation of the mappings in FITS headers, which
comes with software libraries to decode and encode the mappings. The WCS conventions
cover a very broad scope of applications, and wide-field imaging makes use of a very small
subset of those.

For the mappings used in wide-field imaging, the transformation from pixel space to
sky can be pictured in two steps:

1. mapping coordinates in pixel space onto a plane.

2. de-projecting this plane to the celestial sphere.

Let us clear up the projection/de-projection step first. There are plenty of choices possible
here, and the differences only matter fir really large images. The projection used by
default in the imaging community seems to be the gnomonic projection: the intermediate
space is a plane tangent to the celestial sphere and the plane→sphere correspondence is
obtained by drawing lines that go through the center of the sphere. In practice there is no
need to know that, because any software dealing with WCS’s can pick up the right FITS
keywords and compute the required projection and de-projection. For this gnomonic
projection, one finds CTYPE1=’RA---TAN’ and CTYPE2=’DEC--TAN’ in the FITS header.
This projection is often used to generate re-sampled and/or co-added images and one
should keep in mind that, for large images, the pixels are not exactly iso-area. One point
of convention that might be useful to keep in mind; is that WCS conventions express
angles in degrees. In the gnomonic projection, offsets in the tangent plane are expressed
in degrees (defined through angles along great circles at the tangent point), so that the

2The WCS concepts are broad enough to accommodate mapping of planet images, but we will obviously not venture
into that.
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metric in the tangent plane is ortho-normal), and sidereal angles evaluated on the sky
are also provided in degrees by the standard implementations. A notable exception is the
LSST software stack where, by default, the angles are provided in radians.

We now come back to the first mapping step, i.e. converting coordinates measured in
pixel units into some intermediate coordinate system. The universal WCS convention
here is pretty minimal: it allows for an affine transform, which is in general not sufficient
to map the optical distortions of the imaging system, even after a clever choice of the
projection. Extensions of the WCS convention have been proposed here, but none is
universally understood. The LSST software stack implements the SIP addition, which
consists in applying a 2-d polynomial transform to the CCD space coordinates, prior to
entering the standard WCS chain (affine transform, then de-projection). In practice, the
SIP “twisting” is applied by the LSST software itself (in the class afw::image::TanWcs),
and the “standard” part (affine and de-projection, or the reverse transform) are sub-
contracted to the “libwcs” code.

One common complication of the WCS arena is that it was designed in the FITS frame-
work convention, itself highly fortran-biased for array indexing, so that the first corner
pixel of an image is indexed (1,1). The LSST software, and most modern environments
use C-like indexing, i.e. images stars at (0,0), as well as coordinates in images. The
WCS LSST software hides this detail to users, by offsetting the pixel space coordinates
provided and obtained from the wcs-handling library.

We now detail what is involved in the SIP convention: the SIP “twisting” itself is
encoded through 4 polynomials of 2 variables, which encode the direct and reverse trans-
formations. The standard affine transform is expressed through a 2× 2 matrix (Cd) and
a reference point Xref (called CRPIX in the fits header):

YTP = Cd(Xpix −Xref )

Xpix is a point in the CCD space, and YTP is its transform in the tangent plane. Obviously,
Xpix and Xref should be expressed in the same frame so that the transform does not
depend this frame choice. We write symbolically this transform as YTP = L(Xpix) The
SIP distortions are defined by a polynomial transformation in pixel space, that we call
PA, for the forward transformation. By convention, the transform from pixel space to
tangent plane then reads:

YTP = L (Xpix −Xref + PA(Xpix −Xref ))

which again does not depend on the frame choice (0-based or 1-based), provided Xpix and
Xref are expressed in the same frame.

In jointcal ,the internal representation of SIP WCS’s uses three straight 2d→2d trans-
formations: the SIP correction, the affine transformation and the de-projection. Those
are just composed to yield the actual transform, and the two first ones are generic poly-
nomial transformations. We provide routines to translate the TanWcs objects into our
representation (ConvertTanWcs) and back (GtransfoToTanWcs). In the latter case, we
also derive the reverse distortion polynomials, which are built if needed in our represen-
tation of SIP WCSs.

11


	Introduction
	Algorithm flow 
	Association of the input catalogs 
	Least squares 
	Least-squares expression
	The distortion model
	Choice of projectors
	Proper motions and atmospheric refraction
	Minimization approach
	Indices of fits parameters and Fits of parameter subsets 

	Fitting the transformations between a set of images
	Run example
	Representation of distortions in SIP WCS's 

