Instructor: Matthew Bruce / mbruce@uw.edu
University of Washington
\[ sin(\omega t) = \frac{e^{i \omega t} + e^{-i \omega t}}{2} \]
\[ cos(\omega t) = \frac{e^{i \omega t} - e^{-i \omega t}}{2i} \]
\[ e^{i \frac{2 \pi k}{N} n} \]
\[ X[k] = \sum_{n=0}^{N-1} x[n] e^{-i \frac{2 \pi k}{N} n} \]
\[ x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{i \frac{2 \pi k}{N} n} \]
Decompose time series into weighted frequency vectors.
YouTube video illustrating this idea. Link
Fourier transform for cont/discrete time/frequency Link
Results in repeated spectra and waveform.Link
Results in repeated spectra and waveform.Link
Results in repeated spectra and waveform.Link
Results in repeated spectra and waveform.Link
\[ X[k] = \sum_{n=0}^{N-1} x[n] e^{-i \frac{2 \pi k}{N} n} \]
\[ X[k] = \frac{1}{N_0} \frac{\sin ((\pi k L/N_0))}{\sin(\pi k/N_0)} \]
\[ \textrm{where } L=2N + 1 \]
$N_0=2048 \: and \; N = 64$
YouTube video illustrating this idea. Link
Fourier transform link.Link
Inverse relationship of pulse duration and bandwidth:
\[ N_e \beta_e = 1 \]
\[ X[k,j] = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} x[n,m] e^{-i \frac{2 \pi k}{N} n} e^{-i \frac{2 \pi j}{N} n} \]
YouTube video illustrating this idea. Link
\[ y[n] = \sum_{n=1}^{\infty} x[k] h[k-n] \]
The summation of the trailing impulse responses of the current and previous inputs.
\[ Y[k] = H[k]*X[k] \]
YouTube video illustrating this idea. Link
\[ y[n] = \sum_{n=1}^{\infty} x[k] h[k-n] \]
The summation of the trailing impulse responses of the current and previous inputs.
\[ Y[k] = H[k]*X[k] \]
YouTube video illustrating this idea. Link
Hilbert transform introduction. Link
\[ e(t) = \sqrt{ x(t)^2+(H(x(t))^2 } \]
The amplitude of our real waveform is referred to as envelope.
\[ x(n) = \sum X(k) e ^{i 2 \pi k/N n} + X(-k) e ^{-i 2 \pi k/N n} \] where $X(k)=X(-k)$ for real signal x(n)
For a real signal, the negative frequency Fourier coefficients serve to zero out the imaginary component of the inverse Fourier transform in order reconstruct the original real signal.
So, if we drop the negative frequencies, we are left with the forward rotating frequencies and a complex signal with a complex component having a 90 deg phase shift.
\[ x(n)+i\color{magenta}{H(}x(n)\color{magenta}) = \sum X(k) e ^{i 2 \pi k/N n} = \sum X(k) cos( 2 \pi k/N n) + i \color{magenta}{ X(k) sin( 2 \pi k/N n)} \]
\[ z(n) = x(n)+i\color{magenta}{H(}x(n)\color{magenta}) \quad FT \quad Z(k) = X(k) + sgn(k) X(k) \quad where \; Z(k) =0 \lt 0 \]