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AUTONOMY AND ARTIFICIALITY

MARGARET A. BODEN

1. THE PROBLEM—AND WHY IT MATTERS

W.hen Herbert Simon wrote his seminal book on ‘the sciences of the artificial’
(Slmop 1969), he had in mind artificial intelligence (AI) and cybemnetics. Now
Fhe smer‘lces of the artificial include artificial life (A-Life) also A—Liée use,
qunngnonal concepts and computer-modelling to study the functi(;nal rincipl X
of life in gergeral (Langton 1989). Simon’s use of the word ‘sciences’pwas 5/:;
;};osep, The interests of A-Life, as of Al are largely scientific, not technological
_ at is, many researchers in these two fields hope to contribute to theoreti 1
biology and/or psychology. e
The relations between A-Life and AI are complex. One might define A-Lif
as the abstrac.t study of life, and Al as the abstract study of mind. But if on:
:lzlsfumes tl_la‘t life preﬁgures mind, that cognition is—and must be—érounded in
Cer;;)irnglamini ada}puve sys?ems, then AI may be seen as a sub-class of A-Life.
betorr );,{ . -Life is the':oreucaﬂy close to some recent work in Al (described
researc.h o We\:;, A-foe workers often go out of their way to distance their
o theom . In fiomg 50, t'hey usually stress the concept of autonomy—
Sin(’;e y say, applies to A‘-thje models but not to Al
acteﬁstica;l;%notrln}{ of some' kind is generally thought to be an important char-
indenen ot fhfe and mind, A-Life and Al should have implications for our
purcly abstmg of human autonomy, or freedom. These implications are not
backgamméaaﬁ be f(?rgotten when one leaves one’s study to play a game of
port s bec;x‘; : at science tells us aboqt human autonomy is practically im-
Whidh ;ncmd se 111t affect§ the way in which ordinary people see themselves—
I st is}; ¢ way in which they believe it is possible to behave.
exero ells us that we lallck freedom, we may be less likely to try to
it. An observable decline of personal autonomy was reported many
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years ago by the psychotherapist Rollo May (1961). His experiences in the
consulting-room led him to complain of ‘the dehumanizing dangers in our
tendency in modern science to make man over into the image of the machine,
into the image of the techniques by which we study him’ and of ‘the undermin-
ing of [modern man’s] experience of himself as responsible, the sapping of his
willing and decision’ (May 1961: 20). May’s mention of ‘the machine’ referred
not to A-Life or Al (which had barely begun), but to the mechanistic implica-
tions of the natural sciences in general and behaviourist psychology in particu-
lar. Indeed, the relevant implications of behaviourism were soon to be made
explicit by B. F. Skinner, in a spirited attack on the concepts of freedom and
dignity (Skinner 1971).

‘Freedom’, Skinner argued, is an illusion, grounded in our ignorance of the
multiple environmental pressures determining our behaviour. As for ‘dignity’,
this is a matter of giving people credit, of admiring them for their self-gener-
ated achievements. But his behaviourist principles implied that ‘the environ-
ment’, not ‘autonomous man’, is really in control (Skinner 1971: 21). No credit,
then, to us, if we exercise some skill—whether bodily, mental, or moral. And
no surprise, if people experience unhappiness and apathy at this downgrading
of their humanity. The cure for this unhappiness, said Skinner, is to drop our
sentimental, unscientific picture of autonomous man. Only then shall we be in
a position (with the help of his scientific psychology) to solve our life-
problems.

Behaviourism, then, questions received notions of human worth, According
to its high priest, Skinner, it has no room for human ‘autonomy’ or ‘freedom’.
But it is at least concerned with life. Animals are living things, and Rattus
Norvegicus a moderately merry mammal. Some small shred of our self-respect
can perhaps be retained, if we are classed with rats, or even pigeons. But what
of the artificial sciences? Surely, all they can offer is dead, autcmatic tin-
cannery? Is A-Life, for all its stress on self-organization and autonomy, really
any better in this respect than AI?

To many people, the notion that computer models could help us to an ad-
equate account of humanity—above all, of freedom, creativity, and morals—
seems quite absurd. To the contrary, the suspicion is that the concepts and
explanations of A-Life and/or Al must be incompatible with the notion of human
freedom. If that suspicion is correct, then the artificial sciences—A-Life in-
cluded—are the enemy of true autonomy: if they prosper, we can expect to
hear more complaints like May’s in the future.

In the next section, I explain how A-Life (and some recent AI) addresses the
phenomenon of autonomy, and how it differs from traditional Al in this respect.
In Section 3, I discuss the concept of autonomy, and claim that crucial aspects
of the strongest case (human free action) are not captured by the A-Life approach.
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Indeed, these aspects—self-reflection, deliberation, and reasoned prioritizing—
are better modelled by what John Haugeland (1985) has called GOFAI: Good
Old-Fashioned AL My conclusion is not that the artificial sciences deny, or
even downgrade, our freedom. Rather, they help us to see how autonomous
behaviour (of various kinds) is possible, and to appreciate the awesome com-
plexity of much human choice.

2. Al, A-LIFE, AND ANTS

At first sight, it may seem that the explanations offered by any ‘artificial’
science must be incompatible with human freedom. For it is not only behavi-
ourists who see conditions in the external environment as the real causes of
apparently autonomous behaviour. Only a few years after May’s complaint
quoted above, Simon—in defining the sciences of the artificial—took much the
same view (Simon 1969).

Simon described the erratic path of the ant, as it avoided the obstacles on its
way to nest ot food, as the result of a series of simple and immediate reactions
to the local details of the terrain. He did not stop with ants, but tackled humans
too. For over twenty years, Simon has argued that rational thought and skilled
behaviour are largely triggered by specific environmental cues. Unlike Skinner,
he allows that many internal, ‘mentalistic’, cues are important also; but these
produce their effects in just as direct a way as the external conditions do. The
extensive psychological experiments and computer-modelling on which Simon’s
argument is based were concerned with chess, arithmetic, and typing (Newell
and Simon 1972; Card er al. 1983). But he would say the same of every case
of skilled activity or intelligent thought.

Simon’s ant was not taken as 2 model by most of his Al colleagues. Instead,
they were inspired by his earliest, and significantly different, work on the
computer simulation of problem-solving (Newell and Simon 1961; Newell et
al. 1963). This ground-breaking theoretical research paid no attention to envi-
ronmental factors, but conceived of human thought purely in terms of internal
mental /computational processes, such as hierarchical means—end planning and
goal-representations.

Driven by this ‘internalist’ view, the young Al community designed—and in
some cases built—robots guided top-down by increasingly sophisticated internal
planning and representation (Boden 1987, ch. 12). Plans were worked out ahead
of time. In the most flexible cases, certain contingencies could be foreseen, and
the detailed movements, and even the sub-plans, could be decided on at the
time of execution. But even though they were placed in the physical world,
these robots were not real-world, real-time creatures. Their environments were
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simple, highly predictable ‘toy-worlds’. They typically involved a flat ground-
plane, polyhedral and/or pre-modelled shapes, white surfaces, shadowless light-
ing, and—by human standards—painfully slow movements. Moreover, they
were easily called to a halt, or trapped into fruitless perseverative behaviour, by
unforeseen environmental details.

Recently, however, the Al pendulum has swung towards the ant. What is
sometimes called ‘nouvelle AI’ sees behaviour as being controlled by an on-
going interaction between relatively low-level mechanisms in the system (robot
or organism) and the constantly changing details of the environment.

For example, current research in situated robotics sees no need for the sym-
bolic representations and detailed anticipatory planning typical of earlier Al
robotics. Indeed, the earlier strategy is seen as not just unnecessary, but inef-
fective. Traditional robotics suffers from the brittleness of classical AI pro-
grams in general: unexpected input can cause the system to do something
highly inappropriate, and there is no way in which the problem-environment
can help guide it back on to the right track. Accepting that the environment
cannot be anticipated in detail, workers in situated robotics have resurrected the
insight—often voiced within classical Al but also often forgotten—that the
best source of information about the real world is the real world itself,

Accordingly, the ‘intelligence’ of these very recent robots is in the hardware,
not the software (Braitenberg 1984; Brooks 1991). There is no high-level pro-
gram doing detailed anticipatory planning. Instead, the creature is engineered
in such a way that, within Lmits, it naturally does the right (adaptive) thing at
the right time. Behaviour apparently guided by goals and hierarchical planning
can, nevertheless, occur (Maes 1991).

Situated robotics is closely related to two other recent forms of computer-
modelling, likewise engaged in studying ‘emergent’ behaviours, These are genetic
algorithms (GAs) and A-Life.

GA systems are self-modifying programs, which continually come up with
new rules (new structures) (Holland 1975; Holland et al. 1986). They use rule-
changing algorithms modelled on genetic processes such as mutation and cross-
over, and algorithms for identifying and selecting the relatively successful rules.
Mutation makes a change in a single rule; cross-over brings about a mix of two,
so that (for instance) the left-hand portion of one rule is combined with the
right-hand portion of the other. Together, these algorithms (working in parallel)
generate a new system better adapted to the task in hand.

One example of a GA system is a computer-graphics program written by
Karl Sims (1991). This program uses genetic algorithms to generate new images,
or patterns, from pre-existing images. Unlike most GA systems, the selection
of the ‘fittest’ examples is not automatic, but is done by the programmer—or
by someone fortunate enough to be visiting his office while the program is
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being run. That is, the human being selects the images which are aesthetically
pleasing, or otherwise interesting, and these are used to ‘breed’ the next gen-
eration. (Sims could provide automatic selection rules, but has not yet done
so—not only because of the difficulty of defining aesthetic criteria, but also
because he aims to provide an interactive graphics environment, in which human
and computer can cooperate in generating otherwise unimaginable images.)

In a typical run of the program, the first image is generated at random (but
Sims can feed in a real image, such as a picture of a face, if he wishes). Then
the program makes nineteen independent changes (mutations) in the initial
image-generating rule, so as to cover the VDU-screen with twenty images: the
first, plus its nineteen (‘asexually’ reproduced) offspring. At this point, the
human uses the computer mouse to choose either one image to be mutated, or
two images to be ‘mated’ (through cross-over). The result is another screenful
of twenty images, of which all but one (or two) are newly generated by random
mutations or cross-overs. The process is then repeated, for as many generations
as one wants.

(The details of this GA system need not concern s, However, so as to dis-
tinguish it from magic, a few remarks may be helpful. 1t starts with a list of
twenty very simple LISP functions. A “function’ is not an actual instruction, but
an instruction-schema: more like ‘X + Y” than 2 + 3°. Some of these functions
can alter parameters in pre-existing functions: for example, they can divide or
multiply numbers, transform vectors, or define the sines or cosines of angles.
Some can combine two pre-existing functions, or nest one function inside another
(so multiply-nested hierarchies can eventually result). A few are basic image-
generating functions, capable (for example) of generating an image consisting
of vertical stripes. Others can process a pre-existing image, for instance by
altering the light-conirasts so as to make ‘lines’ or ‘surface-edges’ more or less
visible. When the program chooses a function at random, it also randomly
chooses any missing parts. So if it decides to add something to an existing
number (such as a numerical parameter inside an image-generating function),
and the ‘something’ has not been specified, it randomly chooses the amount to
be added. Similarly, if it decides to combine the pre-existing function with
some other function, it may choose that function at random.)

As for A-Life, this uses computer-modelling to study processes that start
with relatively simple, locally interacting units, and generate complex indi-
vidual and/or group behaviours. Examples of such behaviours include self-
organization, reproduction, adaptation, purposiveness, and evolution.

Self-organization is shown, for instance, in the flocking behaviour of flocks of
birds, herds of cattle, and schools of fish. The entire group of animals seems to
behave as one unit. It maintains its coherence despite changes in direction, the
(témporary) separation of stragglers, and the occurrence of obstacles—which
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the flock either avoids or ‘flows around’. Yet there is no overall director work-
ing out the plan, no sergeant-major yelling instructions to all the individual
animals, and no reason to think that any one animal is aware of the group as
a whole. The question arises, then, how this sort of behaviour is possible.

Ethologists argue that communal behaviour of large groups of animals must
depend on local communications between neighbouring individuals, who have
no conception of the group-behaviour as such. But just what are these ‘tocal
communications’? ’

Flocking has been modelled within A-Life, in terms of a collection of very
simple units, called Boids (Reynolds.1987). Each Boid follows three rules: (1)
keep a minimum distance from other objects, including other Boids; (2) match
velocity to the average velocity of the Boids in the immediate neighbourhood;
and (3) move towards the perceived centre of mass of the Boids in the neigh-
bourhood. These rules, depending as they do only on very limited, local, in-
formation, result in the holistic flocking behaviour just described, It does not
follow, of course, that real birds follow just those rules: that must be tested by
ethological studies. But this research shows that it is at least possible for group-
behaviour of this kind to depend on very simple, strictly local, rules.

Situated robotics, GAs, and A-Life can be combined, for they share an
emphasis on botiom-up, self-adaptive, parallel processing. At present, most
situated robots are hand-crafted. But some are ‘designed’ by evolutionary algo-
rithms from the GA/A-Life stable: fully simulated robots have already been
evolved, and real robots are now being constructed with the help of simulated
evolution. The automatic evolution of real physical robots without any recourse
to simulation s more difficult { Brooks 1992), but progress is being made in this
area too.

Recent work in evolutionary robotics (CHLff et al. 1993) has simulated inseci-
like robots, with simple “brains’ controlling their behaviour. The (simulated)
neural net controlling the (simulated) visuomotor system of the robot gradually
adapts to its specific (simulated) task-environment. This automatic adaptation
can result in some surprises. For instance, if—in the given task-environment—
the creature does not actually need its (simulated) in-built whiskers as well as
its eyes, the initial network-links to the whiskers may eventually be lost, and
the relevant neural units may be taken over by the eyes. Eyes can even give
way to eye: if the task is so simple that only one eye is needed, one of them
may eventually lose its links with the creature’s network-brain.

Actual (physical) robots of this type can be generated by combining simu-
lated evolution with hardware-construction (CUff et al. 1993), The detailed
physical connections to, and within, the ‘brain’ of the robot-hardware are ad-
Jjusted every n generations (where 7 may be 100, or 1,000, or . . .}, mirroring the
current blueprint evolved within the simulation. This acis as a cross-check: the
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real robot should behave as the simulated robot does. Moreover, the resulting
embodied robot can roam around an actual physical envitonment, its real-world
task-failures and successes being fed into the background simulation so as to
influence its future evolution. The brain is not the only organ whose anatomy
can be evolved in this way: the placement and visual angle of the creatures’
eyes can be optimized, too. (The same research-team has begun work on the
evolution of physical robots without any simulation. This takes much longer,
because every single evaluation of every individual in the population has to be
done using the real hardware.)

A-Life (some of which uses GAs) and situated robotics have strong links
with biology: with neuroscience, ethology, genetics, and the theory of evolution,
As a result, animals are becoming theoretically assimilated to animais (Meyer
and Wilson 1991). The behaviour of swarms of bees, and of ant-colonies, is
hotly discussed at A-Life conferences, and entomologists are constantly cited
in the A-Life and sitnated-robotics literatures (Lestel 1992). Environmentally
situated (and formally defined) accounts of apparently goal-secking behaviour
in various animals, including birds and mammals, are given by (some) ethologists
(McFarland 1989). And details of invertebrate psychology, such as visual tracking
in the hoverfiy, are modelled by research in connectionist AT (CLff 1990; 1992).

In short, Simon’s ant is now sharing the limelight on the Al stage. Some
current Al is more concerned with artificial insects than with artificial human
minds. But—what is of particular interest to us here—this form of Al sees
itself as designing ‘autonomous agents’, as A-Life in general seeks to design
‘autonomous systems’,

3. AUTONOMOUS AGENCY

Autonomy is ascribed to these artificial insects because it is their intrinsic
physical structure, adapted as it is to the soris of environmental problem they
are likely to meet, which enables them to act appropriately. Unlike traditional
robots, their behaviour is not directed by complex software written for a general-
purpose machine, imposed on their bodies by some alien (human) hand. Rather,
they are specifically constructed to adapt to the particular environment they
inhabit,

We are faced, then, with two opposing intuitions concerning autonomy. Our
{and Skinner’s) original intuition was that response determined by the external
environment lessens one’s autonomy. But the intuition of nouvelle Al and of
A-Life, is that to be in thrall to an internal plan is to be a mere puppet. (Notice
that one can no longer say ‘a mere robot’.) How can these contrasting intuitions
be reconciled?
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Autonomy is not an all-or-nothing property. It has several dimensions, and
many gradations. Three aspects of behaviour—or rather, of its control—are
crucial. First, the extent to which response to the environment is direct (deter-
mined only by the present state in the external world) or indirect (mediated by
inner mechanisms partly dependent on the creature’s previous history). Second,
the extent to which the controlling mechanisms were self-generated rather than
externally imposed. And third, the extent to which inner directing mechanisms
can be reflected upon, and/or selectively modified in the light of general interests
or the particularities of the current problem in its environmental context. An
individual’s autonomy is the greater, the more its behaviour is directed by self-
generated (and idiosyncratic) inner mechanisms, nicely responsive to the specific
problem-situation, yet reflexively modifiable by wider concerns.

The first aspect of autonomy involves behaviour mediated, in part, by inner
mechanisms shaped by the creature’s past experience. These mechanisms may,
but need not, include explicit representations of current or future states. Tt is
controversial, in ethology as in philosophy, whether animals have explicit in-
ternal representations of goals (Montefiore and Noble 1989). And, as we have
seen, Al includes strong research-programmes on both sides of this methodo-
logical fence. But this controversy is irrelevant here. The important distinction
is between a response wholly dependent on the current environmental state
(given the original, “innate’, bodily mechanisms), and one largely influenced by
the creature’s experience. The more a creature’s past experience differs from
that of other creatures, the more ‘individual’ its behaviour will appear.

The second aspect of autonomy, the extent to which the controlling mechan-
isms were self-generated rather than externally imposed, may seem to be the same
as the first. After all, a mechanism shaped by experience is sensitive to the past
of that particular individual-—which may be very different from that of other,
initially comparable, individuals. But the distinction, here, is between behavi-
our which ‘emerges’ as a result of self-organizing processes, and behaviour
which was deliberately prefigured in the design of the experiencing creature.

In computer-simulation studies within A-Life, and within situated robotics
also, holistic behaviour—often of an unexpected sort—may emerge. It results,
of course, from the initial list of simple rules concerning locally interacting
units. But it was neither specifically mentioned in those rules, nor (often) fore-
seen when they were written. )

A flock, for example, is a holistic phenomenon. A bird-watcher sees a flock
of birds as a unit, in the sense that it shows behaviour that can be described
only at the level of the flock itself, For instance, when it comes to an obstacle,
such as a tall building, the flock divides and ‘Hows’ smoothly around it, re-
organizing itself into a single unit on the far side. But no individual bird is
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divided in half by the building. And no bird has any notion of the flock as a
whole, still less any goal of reconstituting it after its division.

Clearly, flocking behaviour must be described on its own level, even though
it can be explained by (reduced to) processes on a lower level. This point is
especially important if ‘emergence-hierarchies’ evolve as a result of new forms
of perception, capable of detecting the emergent phenomena as such. Once a
holistic behaviour has emerged it, or its effects, may be detected (perceived) by
some creature or other—including, sometimes, the ‘unit-creatures’ making it up,

(This implies that a creature’s perceptual capacities cannot be fully itemized
for all time. In Gibsonian terms, one might say that evolution does not know
what all the relevant affordances will turn out to be, so cannot know how they
will be detected. The current methodology of Al and A-Life does not allow for
‘latent’ perceptual powers, actualized only by newly emerged environmental
features. This is one of the ways in which today’s computer-modelling is bio-
logically unrealistic (Kugler 1992).)

If the emergent phenomenon can be detected, it can feature in rules govern-
ing the perceiver's behaviour. Holistic phenomena on a higher level may then
result. .. and so on. Ethologists, A-Life workers, and situated roboticists all
assume that increasingly complex hierarchical behaviour can arise in this sort
of way. The more levels in the hierarchy, the less direct the influence of environ-
mental stimuli-—and the greater the behavioural autonomy.

Even if we can explain a case of emergence, however, we cannot necessarily
understand it. One might speak of intelligible vs. unintelligible emergence.

Flocking gives us an example of the former. Once we know the three rules
governing the behaviour of each individual Boid, we can see lucidly how it is
that holistic flocking results.

Sims’s computer-generated images give us an example of the latter. One may
not be able to say just why this image resulted from #hiar LISP expression. Sims
himself cannot always explain the changes he sees appearing on the screen
before him, even though he can access the mini-program responsible for any
image he cares to investigate, and for its parent(s) too. Often, he cannot even
‘genetically engineer’ the underlying LISP expression so as to get a particular
visual effect. To be sure, this is partly because his system makes several changes
simultaneously, with every new generation. If he were to restrict it to making
only one change, and studied the results systematically, he could work out just
what was happening. But when several changes are made in parallel, it is often
impossible to understand the generation of the image even though the ‘explana-
tion’ is available.

Where real creatures are concerned, of course, we have multiple interacting
changes, and no explanation at our fingertips. At the genetic level, these multiple
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changes and simultaneous influences arise from mutations and cross-over. At
the psychological level, they arise from the plethora of ideas within the mind.
Think of the many different thoughts which arise in your consciousness, more
or less fleetingly, when you face a difficult choice or moral dilemma. Consider
the likelihood that many more conceptual associations are being activated un-
consciously in your memory, influencing your conscious musings accordingly.
Even if we had a listing of all these ‘explanatory’ influences, we might be in
much the same position as Sims, staring in wonder at one of his nth-generation
images and unable to say why this LISP expression gave rise to it. In fact, we
cannot hope to know about more than a fraction of the ideas aroused in human
minds {(one’s own, or someone else’s) when such choices are faced.

The third criterion of autonomy lisied above was the extent to which a
system’s inner directing mechanisms can be reflected upon, and/or selectively
modified, by the individual concerned. One way in which a system can adapt
its own processes, selecting the most fruitful modifications, is to use an ‘evo-
lutionary’ strategy such as the genetic algorithms mentioned above. It may be
that something broadly similar goes on in human minds. But the mutations and
selections carried out by GAs are modelled on biological evolution, not con-
scious reflection and self-modification. And it is conscious deliberation which
many people assume to be the crux of human autonomy.

For the sake of argument, let us accept this assumption at face value. Let us
ignore the mounting evidence (e.g. Nisbett and Ross 1980) that our conscious
thoughts are less relevant than we like to think. Let us ignore neuroscientists’
doubts about whether our conscious intentions actually direct our behaviour (as
the folk-psychology of ‘action’ assumes) (Libet 1987). Let us even ignore the
fact that unthinking spontaneity—the opposite of conscious reflection—is often
taken as a sign of individual freedom. (Spontaneity may be based in the sort
of multiple constraint satisfaction modelled by connectionist Al, where many
of the constraints are drawn from the person’s idiosyncratic experience.) What
do the sciences of the artificial, and Al-influenced psychology, have to say
about conscious thinking and deliberate self-control?

Surprisingly, perhaps, neither A-Life nor the most biologically realistic (more
accurately: the least biologically unrealistic) forms of Al can help us here.
Ants, and artificial ants, are irrelevant. Nor can connectionism help. It is widely
agreed, even by connectionists, that conscious thought requires a sequential
‘virtual machine’, more like a von Neumann computer than a parallel-process-
ing neural net. As yet, we have only very sketchy ideas about how the types
of problem-solving best suited to conscious deliberation might be implemented
In connectionist systems,

The most helpful “artificial’ approach so far, where conscious deliberation is
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involved, is classical Al, or GOFAI—much of which was inspired by human
introspection. Consciousness involves reflection on one level of processes going
on at a lower level. Work in classical AL such as the work on planning men-
tioned above, has studied multi-level problem-solving. Computationally informed
work in developmental psychology has suggested that flexible self-control, and
eventually consciousness, result from a series of ‘representational redescriptions’
of lower-level skills (Clark and Karmiloff-Smith 1993).

Representational redescriptions, many-levelled maps of the mind, are crucial
to creativity (Boden 1990, esp. ch. 4). Creativity is an aspect of human auto-
nomy, and workers whose working-conditions allow them no room for crea-
tive ingenuity (or even for choice) may describe themselves as ‘monkeys’,
‘robots’, ‘machines’, or even ‘objects’ (Terkel 1974, p. xi). Their discontent is
understandable, given that our ability to think new thoughts in new ways is one
of our most salient, and most valued, characteristics,

This ability often involves someone’s doing something which they not only
did not do before, but which they could not have done before. To do this, they
must either explore a formerly unrecognized area of some pre-existing ‘concep-
tual space’, or transform some dimension of that generative space, Transform-
ing the space allows novel mental structures to arise which simply could not
have been generated from the initial set of constraints. The nature of the creat-
ive novelties depends on which feature has been transformed, and how. Con-
ceptual spaces, and procedures for transforming them, can be clarified by thinking
of them in computational terms. But this does not mean that creativity is pre-
dictable, or even fully explicable post hoc: for various reasons (including those
mentioned above), it is neither (Boden 1990, ch. M.

Autonomy in general is commonly associated with unpredictability. Many
people feel Al to be a threat to their seif-esteem because they assume that it
involves a deterministic predictability. But they are mistaken. Some connectionist
Al systems include non-deterministic (stochastic) processes, and are more

~efficient as a result.

Moreover, determinism does not always imply predictability, Workers in A-
Life, for instance, sometimes justify their use of computer-simulation by citing
chaos theory, according to which a fully deterministic dynamic process may be
theoretically unpredictable {(Langton 1989). If there is no analytic solution to
the differential equations describing the changes concerned, the process must
simply be ‘run’, and observed, to know what its implications are. The same is
true of many human choices. We cannot always predict what a person will do.
Moreover, predicting one’s own choices is not always possible. One may have
to ‘run one’s own equations’ to find out what one will do, since the outcome
cannot be known until the choice is actually made.
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4. CONCLUSION

One of the pioneers of A-Life has said:

The field of Artificial Life is unabashedly mechanistic and reductionist. However, this
new mechanism—based as it is on multiplicities of machines and on recent results in the
fields of nonlinear dynamics, chaos theory, and the formal theory of computation—is
vastly different from the mechanism of the last century. (Langton 1989: 6; italics in original)

Our discussion of A-Life and nouvelle Al has suggested just how vast this
difference is. Similarly, the potentialities of classical Al systems go far beyond
what most people think of as ‘machines’. If this is reductionism, it is very
different from the sort of reductionism which insists that the only scientifically
respectable concepts lie at the most basic ontological level (neurones and bio-
chemical processes, or even electrons, mesons, and quarks).

In sum, the sciences of the artificial can model autonomy of various kinds.
A-Life (like nouvelle AT) explicitly highlights autonomy, as a characteristic of
living things. A-Life can teach us a great deal about how increasing complexity
arises from self-organization on successive levels, and how a creature can
negotiate its environment by constant interaction with it. However, the kind of
autonomy that we call free choice is better illuminated by the theoretical ap-
proach of classical AL If this is generally accepted the result need not be
insidiously dehumanizing, as the acceptance of behaviourism sometimes was.
Properly understood, A does not reduce our respect for human minds. If any-
thing, it increases it. Far from denying human autonomy, it helps us to under-
stand how it is possible.
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