
BEE 271 Digital circuits and systems
Spring 2017

Lecture 3: Karnaugh maps and Verilog

Nicole Hamilton
https://faculty.washington.edu/kd1uj

http://faculty.washington.edu/kd1uj

Topics

1. Review: Binary numbers and
Boolean algebra

2. minterms and Maxterms
3. Sum of products
4. Product of sums
5. Karnaugh maps
6. Verilog

Numbers are positional

In decimal

1492
1’s
10’s
100’s
1000’s

In binary

1011
1’s
2’s
4’s
8’s

Numbers are positional

In decimal

1492
100

101

102

103

In binary

1011
20 = 1
21 = 2
22 = 4
23 = 8

Adding zeroes to the left doesn’t
change the value.

In decimal

001492 = 1492
In binary

001011 = 1011

When we add numbers we get carries.

In decimal

110
1492

+ 525
2017

In binary

011
1011

+ 011
1110

Binary numbers

n-1 4 3 2 1 0

…
MSB LSB

Numbering of the individual bits is from least
significant bit (LSB) to most significant bit (MSB).

If b0 = 0, the number is even.
If b0 = 1, the number is odd.

Each bit represents a power of 2.

Value of a binary number

∑
−

=

=
1

0
2

n

i

i
ibValue

n-1 4 3 2 1 0

…
MSB LSB

Hex
1. Hard to read long

strings of nothing but
1’s and 0’s.

2. So we break it up into
groups of 4 bits called
nibbles, starting at the
LSB.

3. Take each 4-bit group
as a value from 0 to 15.

4. Values 10 to 15 written
as A to F.

0111010010011111

0111 0100 1001 1111

7 4 9 F

In hex

A12D
160 = 1
161 = 16
162 = 256
163 = 4096

Binary Decimal Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

A12D
13 * 160 = 13

2 * 161 = 32
1 * 162 = 256

10 * 163 = 40960

41261

Chapter 2

Introduction to Logic Circuits

Operation Written as
NOT a a or a’
a AND b a • b or a b
a OR b a + b
a XOR b a ^ b = a b’ + a’ b

Boolean Algebra

Values 0, 1
Variables a, b, c, X, Y, s0, s1, DoorOpen, ..
Operations NOT, AND, OR, XOR

x1
x2

xn

AND If all inputs are true, the output is true.

OR If any input is true, the output is true.

x x’

NOT The output is the inverse of the input.

The basic gates.

x1 • x2 • … • xnx1
x2

x1 • x2

x1 + x2 x1 + x2 + … + xnx1
x2

x1
x2

xn

A

A • B

A

(A • B)’

B

A

B

A

B

A

B

A

B

A

B

A + B (A + B)’

A A A’

A ^ B =
 AB’ + A’B

(A ^ B)’ =
 AB + A’B’

Buffer Inverter

AND NAND

OR NOR

XOR XNOR

A more complete set of gates

We describe Boolean functions with truth tables.

Truth tables

a b a AND b

0
0
0
1

0
0
1
1

0
1
0
1

a b a OR b

0
1
1
1

0
0
1
1

0
1
0
1

a NOT a

1
0

0
1

a b a XOR b

0
1
1
0

0
0
1
1

0
1
0
1

Addition of one-bit binary numbers.

s1

a
b

s0

a
+b

s1 s0

1
+1

1 0

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

0
+0

0 0

0
+1

0 1

1
+0

0 1

Truth tables

OR together product terms for
each truth table row where the
function is 1.

If input variable is 0, it appears
in complemented form; if 1, it
appears uncomplemented.

Deriving Boolean equations from truth tables:

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Truth tables

Deriving Boolean equations from truth tables:

s0 = a ^ b

s1 = a b

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Example: a full adder

Sum =

Cout =

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Example: a full adder

Sum = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

Example: A majority function

1. Output should = 1 if the majority of the inputs = 1.

A
B
C

Out

2. Consider the unknown
circuit a “black box”.

3. Create a truth table.

Truth Table

A B C Out

4. Enumerate all the possible input combinations.

Example: A majority function

A
B
C

Out

Truth Table

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Out

5. Fill in the outputs.

Example: A majority function

A
B
C

Out
0
0
0
1
0
1
1
1

Truth Table

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Out

5. Write the equation summing up all the 1’s.

Out = A’ B C + A B’ C + A B C’ + A B C

Example: A majority function

A
B
C

Out
0
0
0
1
0
1
1
1

Truth Table

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Out

A deeper dive into
Boolean algebra

Axioms of Boolean Algebra

1a. 0 • 0 = 0
1b. 1 + 1 = 1
2a. 1 • 1 = 1
2b. 0 + 0 = 0
3a. 0 • 1 = 1 • 0 = 0
3b. 1 + 0 = 0 + 1 = 1
4a. If x = 0, then x’ = 1
4b. If x = 1, then x’ = 0

• +

0 1

Notice the duality:

Single-variable theorems
5a. x • 0 = 0
5b. x + 1 = 1
6a. x • 1 = x
6b. x + 0 = x
7a. x • x = x Replication
7b. x + x = x
8a. x • x’ = 0
8b. x + x’ = 1
9. (x’)’ = x

Easily proved by perfect induction, trying all the possibilities.

2 and 3-variable properties
10a. x • y = y • x Commutative
10b. x + y = y + x
11a. x • (y • z) = (x • y) • z Associative
11b. x + (y + z) = (x + y) + z
12a. x • (y + z) = x • y + x • z Distributive
12b. x + y • z = (x + y) • (x + z)
13a. x + x • y = x Absorption
13b. x • (x + y) = x
14a. x • y + x • y’ = x Combining
14b. (x + y) • (x + y’) = x

Easily proved by perfect induction, trying all the possibilities.

2 and 3-variable properties

15a. (x • y)’ = x’ + y’ DeMorgan’s theorem
15b. (x + y)’ = x’ • y’
16a. x + x’ • y = x + y
16b. x • (x’ + y) = x • y
17a. x • y + y • z + x’ • z = x • y + x’ • z Consensus
17b. (x + y) • (y + z) • (x’ + y) = (x + y) • (x’ + z)

Easily proved by perfect induction, trying all the possibilities.

Can prove Boolean theorems by
1. Perfect induction
2. Algebraically
3. Venn diagrams

Proof of DeMorgan’s theorem by perfect induction,
enumerating all the possibilities in a truth table.

DeMorgan’s theorem by perfect induction
(x • y)’ = x’ + y’

LHS RHS
x y x • y (x • y)' x' y' x' + y'
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

Identical

Combining theorem:
14a. x • y + x • y’ = x
14b. (x + y) • (x + y’) = x

x • y + x • y’ = x (y + y’)
= x

(x + y) (x + y’) = x x + x y’ + x y + y y’
= x + x (y’ + y) + 0
= x + x = x

Algebraic proof of the Combining theorem

Algebraic proof of the Consensus theorem

Prove: x y + x’ z + y z = x y + x’ z

(x + x’) = 1

y z = (x + x’) y z = x y z + x’ y z

Substituting back into the original LHS:

x y + x’ z + y z = x y + x’ z + (x y z + x’ y z)

= x y + x y z + x’ z + x’ y z

= x y (1 + z) + x’ z (1 + y)

= x y + x’ z

Prove we can ignore
this term.

X • Y

Proof of DeMorgan’s Theorem

(X • Y)’

X’

Y’

X’ + Y’

a

DeMorgan’s theorem in terms of logic gates.

Bubble pushing

b
f

a

b
f

a
b

g

a
b

f

a
b

g
a

b
g

f = (a b)’ = a’ + b’

g = (a + b)’ = a’ b’

Operator precedence
Highest NOT x’

AND •
Lowest OR +

Example: x + y • z’ = x + (y • (z’))

Parentheses can be used to specify a different
order of evaluation, for example:

((x + y) • z)’

We tend to omit the • when the meaning is clear.

Minimization

Often relies on these Boolean theorems:

1. a + a b = a (1 + b) = a
2. a b + a b’ = a (b + b’) = a
3. (a + b) (a + b’) = a
4. a + a = a

Synthesis is the process of beginning with a
description of the desired functional behavior
and then generating a circuit that realizes that
behavior.

Exercise: Synthesize this function

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

Exercise: Synthesize this function

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

f(x1, x2) = x1’ x2’ + x1’ x2 + x1 x2

We like to simplify both

x1’ x2’ + x1’ x2 = x1’ (x2’ + x2) = x1’

x1’ x2 + x1 x2 = (x1’ + x1) x2 = x2

To do that, we add a copy of the middle
term. We can do that because x + x = x.

Exercise: Synthesize this function

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

f(x1, x2) = x1’ x2’ + x1’ x2 + x1 x2

Since x + x = x, we can replicate the middle
term:

f(x1, x2) = x1’ x2’ + x1’ x2 + x1’ x2 + x1 x2

Using the distributive property:

f(x1, x2) = x1’ (x2’ + x2) + (x1’ + x1) x2

= x1’ + x2

f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x 2

x 1

x 1

x 2

Figure 2.20. Two implementations of the function in Figure 2.19.

f(x1, x2) = x1’ + x2

Correct, but
not simplest.

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

Two ways to synthesize a function

Sum of products: Include all rows
where f = 1 using minterms.

Product of sums: Exclude all rows
where f = 0 using Maxterms.

minterms and Maxterms

A minterm is 1 for only one row.

A Maxterm is 0 for only one row.

Minterms and maxterms for all possible combinations of 3 variables

Row x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1' x2' x3' M0 = x1 + x2 + x3

1 0 0 1 m1 = x1' x2' x3 M1 = x1 + x2 + x3'

2 0 1 0 m2 = x1' x2 x3' M2 = x1 + x2' + x3

3 0 1 1 m3 = x1' x2 x3 M3 = x1 + x2' + x3'

4 1 0 0 m4 = x1 x2' x3' M4 = x1' + x2 + x3

5 1 0 1 m5 = x1 x2' x3 M5 = x1' + x2 + x3'

6 1 1 0 m6 = x1 x2 x3' M6 = x1' + x2' + x3

7 1 1 1 m7 = x1 x2 x3 M7 = x1' + x2' + x3'

Minterms are
small m

Maxterms are
big M

A minterm is 1 for only one row.

It’s an AND expression in which
each of the input variables appears
once.

Each variable can be in
complemented, or
uncomplemented, e.g., x’ or x.

To match a row in a truth table,
use the uncomplemented form to
match a 1 and the complemented
form to match a 0.

For example, x1 x2’ x3 matches the
row where
(x1, x2, x3) = (1, 0, 1)

Minterms (small m)

Row x1 x2 x3 Minterm

0 0 0 0 m0 = x1' x2' x3'

1 0 0 1 m1 = x1' x2' x3

2 0 1 0 m2 = x1' x2 x3'

3 0 1 1 m3 = x1' x2 x3

4 1 0 0 m4 = x1 x2' x3'

5 1 0 1 m5 = x1 x2' x3

6 1 1 0 m6 = x1 x2 x3'

7 1 1 1 m7 = x1 x2 x3

A maxterm is a 0 for only one
matching row.

It’s an OR expression in which each
of the input variables appears once.

Each variable can be in
complemented, or
uncomplemented, e.g., x’ or x.

To match a row in a truth table, use
the complemented form to match a
1 and the uncomplemented form to
match a 0.

For example, x1’ + x2 + x3’ matches
the row where
(x1, x2, x3) = (1, 0, 1).

Maxterms (big M)

Row x1 x2 x3 Maxterm

0 0 0 0 M0 = x1 + x2 + x3

1 0 0 1 M1 = x1 + x2 + x3'

2 0 1 0 M2 = x1 + x2' + x3

3 0 1 1 M3 = x1 + x2' + x3'

4 1 0 0 M4 = x1' + x2 + x3

5 1 0 1 M5 = x1' + x2 + x3'

6 1 1 0 M6 = x1' + x2' + x3

7 1 1 1 M7 = x1' + x2' + x3'

Sum of products

()∑ •= ifimf

Where fi is the desired result for row i.
If fi is 0, we can eliminate that term.

Include all rows where f = 1 using minterms.

Using minterms for the rows where we want ones:

()∑ •= ifimf

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Exercise: A 3-variable function we'd like to synthesize

()∑ •= ifimf

Using minterms for the rows where we want ones:

f = Σm(1, 4, 5, 6) = m1 + m4 + m5 + m6
= (m1 + m5) + (m4 + m6)
= (x1’ x2’ x3 + x1 x2’ x3) + (x1 x2’ x3’ + x1 x2 x3’)
= (x1’ + x1) x2’ x3 + x1 (x2’ + x2) x3’
= x2’ x3 + x1 x3’

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Exercise: A 3-variable function we'd like to synthesize

Product of sums

()∏ += ifiMf

Where fi is the desired result for row i.
If fi is 1, we can eliminate that term.

Exclude all rows where f = 0 using Maxterms.

Using Maxterms for the rows where we want zeros:
f =

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Using Maxterms for the rows where we want zeros:
f = ΠM(0, 2, 3, 7) = M0 • M2 • M3 • M7

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Using Maxterms for the rows where we want zeros:
f = ΠM(0, 2, 3, 7) = M0 • M2 • M3 • M7
= (x1 + x2 + x3) (x1 + x2’ + x3) (x1 + x2’ + x3’) (x1’ + x2’ + x3’)

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Using Maxterms for the rows where we want zeros:
f = ΠM(0, 2, 3, 7) = M0 • M2 • M3 • M7
= (x1 + x2 + x3) (x1 + x2’ + x3) (x1 + x2’ + x3’) (x1’ + x2’ + x3’)
= ((x1 + x3) + x2) ((x1 + x3) + x2’) (x1 + (x2’ + x3’)) (x1’ + (x2’ + x3’))

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Using Maxterms for the rows where we want zeros:

f = M0 • M2 • M3 • M7
= (x1 + x2 + x3)(x1 + x2’ + x3)(x1 + x2’ + x3’)(x1’ + x2’ + x3’)
= ((x1 + x3) + x2) ((x1 + x3) + x2’) (x1 + (x2’ + x3’))(x1’ + (x2’ + x3’))

Combining theorem:
14a. x • y + x • y’ = x
14b. (x + y) • (x + y’) = x

f = ((x1 + x3) + x2) ((x1 + x3) + x2’) (x1 + (x2’ + x3’)) (x1’ + (x2’ + x3’))
= (x1 + x3) (x2’ + x3’)

Using Maxterms for the rows where we want zeros:
f = ΠM(0, 2, 3, 7) = M0 • M2 • M3 • M7
= (x1 + x2 + x3) (x1 + x2’ + x3) (x1 + x2’ + x3’) (x1’ + x2’ + x3’)
= ((x1 + x3) + x2) ((x1 + x3) + x2’) (x1 + (x2’ + x3’)) (x1’ + (x2’ + x3’))
= (x1 + x3)(x2 + x2’)(x2’ + x3’)(x1 + x1’)
= (x1 + x3)(x2’ + x3’)

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Figure 2.24. Two realizations of the function.

f

(a) A minimal sum-of-products realization

f

(b) A minimal product-of-sums realization

x1

x2

x3

x2

x1
x3

f = x2’ x3 + x1 x3’

f = (x1 + x3)(x2’ + x3’)

Exercise: A 3-variable function
we'd like to synthesize

Row x1 x2 x3
f(x1, x2,

x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Are POS and SOP solutions
always equivalent cost?

1. Does it matter how many rows
are 1s and how many are 0s?
Why or why not?

2. Does it matter which rows are 1s
or 0s in relation to each other?

Exercise: A 3-variable function
we'd like to synthesize

Row x1 x2 x3
f(x1, x2,

x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Karnaugh maps

Want simplest forms but the algebra is difficult.

Karnaugh maps

Invented by
Maurice Karnaugh
in 1954 as a
graphical method
for simplifying
Boolean equations.

http://www.ithistory.org/sites/default/files/honor-
roll/Maurice%20Karnaugh.jpg

http://www.ithistory.org/sites/default/files/honor-roll/Maurice%20Karnaugh.jpg

row a b f
0 0 0
1 0 1
2 1 0
3 1 1

b
0 1

a 0 0 1
1 2 3

a
0 1

b 0 0 2
1 1 3

Karnaugh maps

Truth table

Map rows in a truth table to cells in a matrix.
May choose either assignment of columns and rows.

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

b
0 1

a 0 1 1
1 0 1

a
0 1

b 0 1 0
1 1 1

Example

Fill in the desired output values.

Truth table

b
0 1

a 0 1 1
1 0 1

Use the Combining property to group neighboring
cells where the output should be the same.

14a. x • y + x • y’ = x

b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

a’

Form the minimal SOP solution.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

f
b
a

b
0 1

a 0 1 1
1 0 1

b

a’

bc

00 01 11 10

a 0 0 1 3 2

1 4 5 7 6

row a b c f
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

A function of 3 variables

Truth table Karnaugh map

Map the rows to a 2 x 4 matrix.
Columns are arranged so each
differs by only 1 bit from the next.

bc

00 01 11 10

a 0 0 0 1 0

1 0 1 1 1

row a b c f
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Example

Truth table Karnaugh map

bc

00 01 11 10

a 0 0 0 1 0

1 0 1 1 1

row a b c f
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Example

Truth table Karnaugh map

f = a b + a c + b c

row a b c d f
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

cd
00 01 11 10

ab 00 0 1 3 2
01 4 5 7 6
11 12 13 15 14
10 8 9 11 10

A function of four variables
Truth table Karnaugh map

Map the rows to a 4 x 4 matrix
either way. (I use the top one.)

ab
00 01 11 10

cd 00 0 4 12 8
01 1 5 13 9
11 3 7 15 11
10 2 6 14 10

row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 0 0 1 0
01 1 0 0 1
11 1 0 0 1
10 0 0 1 0

Example
Truth table Karnaugh map

Copy the outputs to the
Karnaugh map.

row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 0 0 1 0
01 1 0 0 1
11 1 0 0 1
10 0 0 1 0

Example
Truth table Karnaugh map

Notice that the Karnaugh map
“wraps” vertically and horizontally.

f = b d’ + b’ c d

row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 1
01 1 1
11 1 1
10 1

Example
Truth table Karnaugh map

If we’re collecting 1’s for an SOP
solution, we can leave out the 0’s.

f = b d’ + b’ c d

SOP terminology

Literal A variable or its complement, e.g., x or x’.

Product term A product, e.g., x y’ z, of some number of
literals.

Implicant A product term for which the output is 1.
That product term implies the output is
true.

Prime implicant An implicant that cannot be combined
with another with fewer literals.

Each row or cell where f = 1 is an implicant.
The prime implicants are a’ and b.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

Cover A collection of implicants that account
for all cases for which the output = 1.

Essential prime implicant
A prime implicant that must be
included in any cover.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

a’ and b form a cover for f.
Both are essential prime implicants.

For a function of n variables, there will be 2n rows in
the truth table and 2n cells in the Karnaugh map.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

The number of cells in an implicant must be a
power of 2.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

For a function of n variables, if an implicant
has k literals, it must cover 2n-k cells.

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

f =

b
0 1

a 0 0 1
1 0 1

g =

b
0 1

a 0 1 1
1 0 1

h =

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

j =

Examples

f = b

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

b
0 1

a 0 0 1
1 0 1

g =

b
0 1

a 0 1 1
1 0 1

h =

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

j =

Examples

g = a’ + bf = b

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

b
0 1

a 0 0 1
1 0 1

b
0 1

a 0 1 1
1 0 1

h =

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

j =

Examples

h = a’ c + b c + a’ b

g = a’ + bf = b

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

b
0 1

a 0 0 1
1 0 1

b
0 1

a 0 1 1
1 0 1

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

j =

Examples

j = bh = a’ c + b c + a’ b

f = b

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

b
0 1

a 0 0 1
1 0 1

b
0 1

a 0 1 1
1 0 1

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

Examples

g = a’ + b

We can also use Karnaugh maps to help us
with Boolean algebra.

Simplify

k = a’ b c’ + a b c’ + a b c

bc

00 01 11 10

a 0 1

1 1 1

Simplify

1. Create the Karnaugh map.

k = a’ b c’ + a b c’ + a b c
= Σm(2, 6, 7)

bc

00 01 11 10

a 0 1

1 1 1

Simplify

2. Find the prime implicants.

k = a’ b c’ + a b c’ + a b c
= Σm(2, 6, 7)

k = a’ b c’ + a b c’ + a b c
= a’ b c’ + a b c’ + a b c’ + a b c
= b c’ (a’ + a) + a b (c’ + c)
= b c’ + a b

We’ll need to duplicate the
middle term.

bc

00 01 11 10

a 0 1

1 1 1

Simplify

3. Use this as a guide to solving the algebra.

Simplify

k = a’ b’ c’ + a’ b c’ + a b c’ + a b c

bc

00 01 11 10

a 0 1 1

1 1 1

Simplify

1. Create the Karnaugh map.

k = a’ b’ c’ + a’ b c’ + a b c’ + a b c
= Σm(0, 2, 6, 7)

Simplify

2. Find the prime implicants.

k = a’ b’ c’ + a’ b c’ + a b c’ + a b c
= Σm(0, 2, 6, 7)

bc

00 01 11 10

a 0 1 1

1 1 1

k = a’ b’ c’ + a’ b c’ + a b c’ + a b c
= a’ (b’ + b) c’ + a b (c + c’)
= a’ c’ + a b

b c’ is non-essential.
So we should combine the other
terms instead.

bc

00 01 11 10

a 0 1 1

1 1 1

Simplify

3. Use this as a guide to solving the algebra.

k = a’ b’ c’ + a’ b c’ + a b c’ + a b c
= a’ (b’ + b) c’ + a b (c + c’)
= a’ c’ + a b

b c’ is non-essential.
So we should combine the other
terms instead.

bc

00 01 11 10

a 0 1 1

1 1 1

Simplify

3. Use this as a guide to solving the algebra.

Simplify

m = a’ b’ c + a’ b c + a b’ c’ + a b’ c

bc

00 01 11 10

a 0 1 1

1 1 1

m = a’ b’ c + a’ b c + a b’ c’ + a b’ c
= Σm(1, 3, 4, 5)

Simplify

1. Create the Karnaugh map.

bc

00 01 11 10

a 0 1 1

1 1 1

m = a’ b’ c + a’ b c + a b’ c’ + a b’ c
= Σm(1, 3, 4, 5)

Simplify

2. Find the prime implicants.

bc

00 01 11 10

a 0 1 1

1 1 1

m = a’ b’ c + a’ b c + a b’ c’ + a b’ c
= a’ (b’ + b) c + a b’ (c + c’)
= a’ c + a b’

b’ c is non-essential.
So we should combine the other
terms instead.

Simplify

3. Use this as a guide to solving the algebra.

f(a, b, c) = Σm(0, 2, 4, 5, 6)

Simplify

bc

00 01 11 10

a 0 1 1

1 1 1 1

f(a, b, c) = Σm(0, 2, 4, 5, 6)
= a b’ + c’

Write directly from the Karnaugh map

f(a, b, c) = Σm(1, 4, 5, 6)

Write directly from the Karnaugh map

bc

00 01 11 10

a 0 1

1 1 1 1

f(a, b, c) = Σm(1, 4, 5, 6)
= a c’ + b’ c

a b’ is not essential.

Write directly from the Karnaugh map

cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = g =

h = j =

Examples

cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = a d’ + a’ b c g =

h = j =

Examples

cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = a d’ + a’ b c g = a + b c

h = j =

Examples

cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = a d’ + a’ b c g = a + b c

h = a c’ + b’ d’ + a b d j =

Examples

cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = a d’ + a’ b c g = a + b c

h = a c’ + b’ d’ + a b d Either: j = a’ c’ + a c + c d
j = a’ c’ + a c + a’ d

Examples

cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00 1
01 1 1
11 1 1
10 1 1

f = a c’ + a’ b c + a’ c d’ e

e = 0

A 5-variable Karnaugh map

e = 1

Must be done in layers.

Realistically, Karnaugh maps are impractical beyond 5
variables. (We turn the problem over to software.)

Often, there are many different networks
than can realize a given function.

Some may be simpler than others.

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1
10 1 1 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

What cells are still not covered?

Of the rest, which do you choose?

f =

f(a, b, c, d) = Σm(5, 7, 8, 9, 10, 11, 12, 13, 14)

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1
10 1 1 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

a’ b d + a b’ + a d’

What cells are still not covered?

Of the rest, which do you choose?

f(a, b, c, d) = Σm(5, 7, 8, 9, 10, 11, 12, 13, 14)

f =

Not all the implicants are needed.

Which are the essential prime implicants?

a’ b d + a b’ + a d’

What cells are still not covered?

Only 1101, covered by either a c’ or b c’ d

Of the rest, which do you choose?

f =

f(a, b, c, d) = Σm(5, 7, 8, 9, 10, 11, 12, 13, 14)

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1
10 1 1 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

a’ b d + a b’ + a d’

What cells are still not covered?

Only 1101, covered by either a c’ or b c’ d

Of the rest, which do you choose?

Obviously, a c’. f = a’ b d + a b’ + a d’ + a c’

f(a, b, c, d) = Σm(5, 7, 8, 9, 10, 11, 12, 13, 14)

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

What cells are still not covered?

Of the rest, which do you choose?

f =

f(a, b, c, d) = Σm(0, 1, 2, 3, 7, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

Only a’ b’

What cells are still not covered?

Of the rest, which do you choose?

f =

f(a, b, c, d) = Σm(0, 1, 2, 3, 7, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

Only a’ b’

What cells are still not covered?

Everything else.

Of the rest, which do you choose?

f =

f(a, b, c, d) = Σm(0, 1, 2, 3, 7, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

Only a’ b’

What cells are still not covered?

Everything else.

Of the rest, which do you choose?

Two choices.

f(a, b, c, d) = Σm(0, 1, 2, 3, 7, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

Only a’ b’

What cells are still not covered?

Everything else.

Of the rest, which do you choose?

Best to choose b c d + a c d’. f = a’ b’ + b c d + a c d’

f(a, b, c, d) = Σm(0, 1, 2, 3, 7, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

What cells are still not covered?

Of the rest, which do you choose?

f =

f(a, b, c, d) = Σm(0, 1, 5, 7, 8, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

There are none.

What cells are still not covered?

Everything.

Of the rest, which do you choose?

f =

f(a, b, c, d) = Σm(0, 1, 5, 7, 8, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

There are none.

What cells are still not covered?

Everything.

Of the rest, which do you choose?

Two choices.

f(a, b, c, d) = Σm(0, 1, 5, 7, 8, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

There are none.

What cells are still not covered?

Everything.

Of the rest, which do you choose?

Two equivalent choices.

f = a’ b’ c’ + a’ b d + a b c + a b’ d’

f = b’ c’ d’ + a’ c’ d + b c d + a c d’

f(a, b, c, d) = Σm(0, 1, 5, 7, 8, 10, 14, 15)

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00 0 0 0 0
01 0 0
11 0
10

Karnaugh maps can also be used for POS
minimization, collecting zeros instead of ones.

bc
00 01 11 10

a 0 0 0
1 0

f = ΠM(2, 3, 6)

= (a + b’) (b’ + c)

f = ΠM(0, 1, 2, 3, 4, 6, 15)

= (a + d) (a + b) (a’ + b’ + c’ + d’)

cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

f = g =

h = j =

Examples

cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

g =

h = j =

Examples

f = (a’ + d) (a + b’ + c’)

cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

g = a’ (b’ + c’)

Examples

h = j =

f = (a’ + d) (a + b’ + c’)

cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

Examples

g = a’ (b’ + c’)f = (a’ + d) (a + b’ + c’)

h = (a’ + c) (b + d) (a’ + b’ + d’) j =

cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

j = (a + c) (a’ + c’) (c’ + d’)
j = (a + c) (a’ + c’) (a + d’)

Examples

f = (a’ + d) (a + b’ + c’)

h = (a’ + c) (b + d) (a’ + b’ + d’)

g = a’ (b’ + c’)

cd
00 01 11 10

ab 00 1 d
01 1 d
11 d
10 1 1 d 1

f = a’ d + a b’

f = Σm(1, 5, 8, 9, 10) + D(3, 7, 11, 15)

A don’t care is a cell where
we really don’t care whether
the output is a 1 or a 0.

We can decide whether to
make it a 1 or a 0 depending
on which makes for a simpler
circuit.

don’t cares

Example: A seven segment decoder to be used for
displaying BCD digits 0 through 9 only.

a

b

c

d

e

f g

a
b
c
d
e
f
g

Logic
networkb1

b0

b2

b3

a

b

c

d

e

f g

a

b

c

d

e

f

g

Logic
networkb1

b0

b2

b3

decimal BCD a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

b1 b0
00 01 11 10

b3 b2 00
01
11 d d d d
10 d d

Start with a truth table and
a blank Karnaugh map with
don’t cares.

decimal BCD a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

b1 b0
00 01 11 10

b3 b2 00 0
01 0
11 d d d d
10 d d

a = ΠM(1, 4) + D(10, 11, 12, 13, 14, 15)

= (b2’ + b1 + b0) (b3 + b2 + b1 + b0’)

Using don’t-cares for
segment a.

a

b

c

d

e

f g

a

b

c

d

e

f

g

Logic
networkb1

b0

b2

b3

decimal BCD a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

b1 b0
00 01 11 10

b3 b2 00
01 0 0
11 d d d d
10 d d

b = ΠM(5, 6) + D(10, 11, 12, 13, 14, 15)

= (b2’ + b1 + b0’) (b2’ + b1’ + b0)

Continue for c, d, e, f and g.

Using don’t-cares for
segment b.

a

b

c

d

e

f g

a

b

c

d

e

f

g

Logic
networkb1

b0

b2

b3

Multiple-input / multiple-output problems

Often offer opportunities to share terms.
(But they can be difficult to find by hand.)

a

b

c

d

e

f g

a
b
c
d
e
f
g

Logic
networkb1

b0

b2
b3

cd
00 01 11 10

ab 00 1 1
01 1 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1 1
10 1 1

f = a c’ + a’ c + a’ b d

g = a c’ + a’ c + a b d

f

g

a’
b
d

a
b
d

a
c’

a’
c’

Example: Simple sharing of terms

Example: Sharing requiring joint optimization
cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

Individually optimized h Individually optimized j

Jointly optimized h Jointly optimized j

Example: Sharing requiring joint optimization
cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

h = b c’ + b c d + a b’ c’ d

cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

j = b d’ + b c d + a b’ c’ d

b
c’
b
c
d
a
b’
c’
d
b
d’

h

j

Multiple-input, multiple-output minimization

One of the first algorithmic methods was Quine-McCluskey
minimization invented in 1952, but the runtime grows
exponentially with the number of variables.

Compilers today optimize using heuristics.

Willard Van Orman Quine Edward J. McCluskey

Image sources: http://ethw.org/Edward_McCluskey
http://www.philosophybasics.com/philosophers_quine.html

http://ethw.org/Edward_McCluskey
http://www.philosophybasics.com/philosophers_quine.html

Verilog

Designs

The basic decisions for any design.
1. What should it do.
2. How should it do it.

You’ll work top-down through the problem by breaking it
up into pieces, filling in detail.

As you create your design, you write it out in a
programming language. Here it’s Verilog.

A lot of the work is guided by intuition and experience.

40 years ago

Today

We no longer draw gates for complex
designs.

Hardware description languages (HDLs)
have replaced schematics.

HDL

A hardware description language (HDL)
allows us to describe logic circuits as if we
were writing software in C or Java.

a

f

s
b

The Multiplexer

Selects a or b based on s, multiplexing these
signals onto the output f.

s f
0 a
1 b

Three ways to represent the multiplexer in Verilog

1. Structural
representation as gates.

2. Boolean expressions.
3. Behavioral description.

a

f

s
b

1. Structural representation

Verilog code for a multiplexer.

Structural representation as gates

module Mux2To1A(
input s, a, b,
output f);

wire g, h, k;
not (k, s);
and (g, k, a);
and (h, s, b);
or (f, g, h);

endmodule

a

f

s
b

k

h

g

Verilog code for a multiplexer.

module Mux2To1A(
input s, a, b,
output f);

wire g, h, k;
not (k, s);
and (g, k, a);
and (h, s, b);
or (f, g, h);

endmodule

a

f

s
b

k

h

g
The “ports”

a

f

s
b

k

h

g

Verilog code for a multiplexer.

module Mux2To1C(s, a, b, f);

input s, a, b;
output f;

wire g, h, j, k;
not (k, s);
and (g, k, a);
and (h, s, b);
or (f, g, h);

endmodule

Alternate
form of
specifying the
ports.

Verilog code for a multiplexer.

Wires
constantly
reflect the
value of
whatever
they’re
connected to.

module Mux2To1A(
input s, a, b,
output f);

wire g, h, k;
not (k, s);
and (g, k, a);
and (h, s, b);
or (f, g, h);

endmodule

a

f

s
b

k

h

g

module Mux2To1B(
input s, a, b,
output f);

not (k, s);
and (g, k, a);
and (h, s, b);
or (f, g, h);

endmodule

a

f

s
b

k

h

g
Undeclared
variables
default to 1-
bit wires.

Verilog code for a multiplexer.

Verilog code for a multiplexer.

module Mux2To1A(
input s, a, b,
output f);

wire g, h, k;
not (k, s);
and (g, k, a);
and (h, s, b);
or (f, g, h);

endmodule

a

f

s
b

k

h

g
The first port
to a gate is
the output.

Verilog code for a multiplexer.

a

f

s
b

k

h

g

module Mux2To1A(
input s, a, b,
output f);

// This 2-in mux module.

wire g, h, k;
not (k, s);
and (g, k, a);
and (h, s, b);
or (f, g, h);

endmodule

Comments
start with //.

module MultiOutput(
input a, b, c, d,
output f, g);

wire p, q, r, s;
and (p, ~a, b, d);
and (q, a, ~c);
and (r, ~a, ~c);
and (s, a, b, d);
or (f, p, q, r);
or (g, q, r, s);

endmodule

A multiple output example.

f

g

a’
b
d

a
b
d

a
c’

a’
c’

p

q

r

s

a

f = a • b

a

f = (a • b)’

b

a

b

a

b

a

b

a

b

a

b

f = a + b f = (a + b)’

f = a a f = a’

f = a ^ b f = (a ^ b)’

buf(f, a); not(f, a);

and(f, a, b, …); nand(f, a, b, …);

or(f, a, b, …); nor(f, a, b, …);

xor(f, a, b, …); xnor(f, a, b, …);

Basic gates in Verilog

a f = e ? a : 'bz a f = e ? a’ : 'bz

bufif1(f, a, e); notif1(f, a, e);

e e

a f = e ? 'bz : a a f = e ? 'bz : a’

bufif0(f, a, e); notif0(f, a, e);

e e

Tri-state drivers in Verilog

A tri-state driver presents a high impedance (high Z) load
unless enabled. It’s as if it’s disconnected.

A multiplexer built from 2 tri-state drivers.

a

b f = s ? a : b

s

A more realistic application as a device or chip select.

Image source: http://faculty.etsu.edu/tarnoff/ntes2150/memory/memory.htm

http://faculty.etsu.edu/tarnoff/ntes2150/memory/memory.htm

2. Boolean expressions

module Mux2To1D(
input s, a, b,
output f);

assign f = ~s & a | s & b;

endmodule

Continuous assignment

a

f

s
b

k

h

g

f will continuously
reflect the value of
the RHS.

module Mux2To1D(
input s, a, b,
output f);

assign f = ~s & a | s & b;

endmodule

Continuous assignment

a

f

s
b

k

h

g

~ is done before &,
which is done
before |.

a

f

s
b

k

h

g
module Mux2To1E(

input s, a, b,
output f);

assign f = s ? b : a;

endmodule

The trinary operator.

If s is true, f = b,
otherwise, f = a.

f

g

a’
b
d

a
b
d

a
c’

a’
c’

p

q

r

s

module MultiOutput(
input a, b, c, d,
output f, g);

wire p, q, r, s;
assign p = ~a & b & d;
assign q = a & ~c;
assign r = ~a & ~c;
assign s = a & b & d;
assign f = p | q | r;
assign g = q | r | s;

endmodule

A multiple output example.

f

g

a’
b
d

a
b
d

a
c’

a’
c’

p

q

r

s

module MultiOutput(
input a, b, c, d,
output f, g);

wire p, q, r, s;
assign p = ~a & b & d,

q = a & ~c,
r = ~a & ~c,
s = a & b & d,
f = p | q | r,
g = q | r | s;

endmodule

assign statements can be chained with commas.

Verilog operator precedence
() [] Grouping.
~ - ! + & | ^ Unary bitwise, arithmetic and logical

complements and plus and the AND, OR
and XOR reduction operators. Right to
left associativity.

* / % Multiplication, division and remainder.
+ - Addition and subtraction.
<< >> Bit-shifting.
< <= >= > Relation testing.
== != Equality testing.
& Bitwise AND.
^ Bitwise XOR.
| Bitwise OR.
&& Logical AND.
|| Logical OR.
? : Trinary conditional operator.
= <= Blocking and non-blocking assignment.
{ } { { } } Concatenation and replication.

Source: Table 11-2—Operator precedence and associativity, IEEE Standard for SystemVarilog,
IEEE Std 1800-2012, IEEE, 2013, p. 221.

Basic Verilog operators
Assume a = 4’b0101 = 5, b = 3’b011 = 3.
Operator Meaning Result
Bitwise
~ a Bitwise inversion 1010
a & b Bitwise AND = a b 0001
a | b Bitwise OR = a + b 0111
a ^ b Bitwise XOR = a’ b + a b 0110
Logical
! a Logical NOT: 1 if all bits of a = 0 0
a && b Logical AND: 1 if both a and b

are non-zero
1

a || b Logical OR: 1 if either a or b is
non-zero

1

Reduction
& a AND of all bits in a 0
| a OR of all bits in a 1
^ a XOR of all bits in a 0

Basic Verilog operators
Assume a = 4’b0101 = 5, b = 3’b011 = 3.
Operator Meaning Result
Relational
a == b a equals b 0
a != b a not equal b 1
a > b a greater than b 1
a < b a less than b 0
a >= b a greater than or equal b 1

Basic Verilog operators
Assume a = 4’b0101 = 5, b = 3’b011 = 3.
Operator Meaning Result
Arithmetic
- a Arithmetic complement -5
+ a Unary plus. 5
a * b Multiplication. 15
a / b Integer division. 1
a % b Modulo (remainder) division. 2
Shifting
a >> b Shift a right b bits 0000
a << b Shift a left b bits 1000

Basic Verilog operators
Assume a = 2 = 3’b010, b = 3’b011, c = 3’b101.
Operator Meaning Result
Concatenation and replication
{ a, b } Concate a and b. 010011
{ b { a } } Replicate and concatenate

b copies of a. b must be a
constant.

010010010

Conditional (Trinary)
a ? b : c If a is non-zero, result = b.

Otherwise, result = c.
011

	BEE 271 Digital circuits and systems�Spring 2017�Lecture 3: Karnaugh maps and Verilog
	Topics
	Numbers are positional
	Numbers are positional
	Adding zeroes to the left doesn’t change the value.
	When we add numbers we get carries.
	Binary numbers
	Value of a binary number
	Hex
	Slide Number 10
	Slide Number 11
	Chapter 2��Introduction to Logic Circuits��
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Truth tables
	Slide Number 17
	Truth tables
	Truth tables
	Example: a full adder
	Example: a full adder
	Example: A majority function
	Example: A majority function
	Example: A majority function
	Example: A majority function
	A deeper dive into�Boolean algebra
	Axioms of Boolean Algebra
	Single-variable theorems
	2 and 3-variable properties
	2 and 3-variable properties
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Algebraic proof of the Consensus theorem
	Slide Number 35
	Slide Number 36
	Operator precedence
	Minimization
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Two ways to synthesize a function
	minterms and Maxterms
	Slide Number 46
	Minterms (small m)
	Maxterms (big M)
	Sum of products
	Slide Number 50
	Slide Number 51
	Product of sums
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Are POS and SOP solutions always equivalent cost?
	Karnaugh maps
	Karnaugh maps
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	SOP terminology
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	We can also use Karnaugh maps to help us with Boolean algebra.
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Multiple-input / multiple-output problems
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Multiple-input, multiple-output minimization
	Verilog�
	Designs
	40 years ago
	Today
	HDL
	Slide Number 145
	Three ways to represent the multiplexer in Verilog
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	2. Boolean expressions
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Verilog operator precedence
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170

