
BEE 271 Digital circuits and systems
Spring 2017

Lecture 3:  Karnaugh maps and Verilog

Nicole Hamilton
https://faculty.washington.edu/kd1uj

http://faculty.washington.edu/kd1uj


Topics

1. Review:  Binary numbers and 
Boolean algebra

2. minterms and Maxterms
3. Sum of products
4. Product of sums
5. Karnaugh maps
6. Verilog



Numbers are positional

In decimal

1492
1’s
10’s
100’s
1000’s

In binary

1011
1’s
2’s
4’s
8’s



Numbers are positional

In decimal

1492
100

101

102

103

In binary

1011
20 = 1 
21 = 2 
22 = 4 
23 = 8 



Adding zeroes to the left doesn’t 
change the value.

In decimal

001492 = 1492
In binary

001011 = 1011



When we add numbers we get carries.

In decimal

110
1492

+  525
2017

In binary

011
1011

+  011
1110



Binary numbers

n-1                                      4      3       2       1       0

…
MSB LSB

Numbering of the individual bits is from least 
significant bit (LSB) to most significant bit (MSB).

If b0 = 0, the number is even.
If b0 = 1, the number is odd.

Each bit represents a power of 2.



Value of a binary number
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ibValue

n-1                                      4      3       2       1       0

…
MSB LSB



Hex
1. Hard to read long 

strings of nothing but 
1’s and 0’s.

2. So we break it up into 
groups of 4 bits called 
nibbles, starting at the 
LSB.

3. Take each 4-bit group 
as a value from 0 to 15.

4. Values 10 to 15 written 
as A to F.

0111010010011111

0111  0100  1001  1111

7        4        9        F



In hex

A12D
160 = 1
161 = 16
162 = 256
163 = 4096

Binary Decimal Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F



A12D
13 * 160 =       13

2 * 161 =       32
1 * 162 =     256

10 * 163 = 40960

41261



Chapter 2

Introduction to Logic Circuits



Operation Written as
NOT a a  or  a’
a AND b a • b  or  a b
a OR b a + b
a XOR b a ^ b = a b’ + a’ b

Boolean Algebra

Values 0, 1
Variables a, b, c, X, Y, s0, s1, DoorOpen, ..
Operations NOT, AND, OR, XOR



x1
x2

xn

AND If all inputs are true, the output is true.

OR If any input is true, the output is true.

x x’

NOT The output is the inverse of the input.

The basic gates.

x1 • x2 • … • xnx1
x2

x1 • x2

x1 + x2 x1 + x2 + … + xnx1
x2

x1
x2

xn



A

A • B

A

( A • B )’

B

A

B

A

B

A

B

A

B

A

B

A + B ( A + B )’

A A A’

A ^ B =
   AB’ + A’B

( A ^ B )’ =
   AB + A’B’

Buffer Inverter

AND NAND

OR NOR

XOR XNOR

A more complete set of gates



We describe Boolean functions with truth tables.

Truth tables

a      b      a  AND b 

0
0
0
1

0
0
1
1

0
1
0
1

a      b       a  OR b 

0
1
1
1

0
0
1
1

0
1
0
1

a       NOT a

1
0

0
1

a      b      a  XOR b 

0
1
1
0

0
0
1
1

0
1
0
1



Addition of one-bit binary numbers.

s1

a
b

s0

a
+b

s1 s0

1
+1

1 0

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

0
+0

0 0

0
+1

0 1

1
+0

0 1



Truth tables

OR together product terms for 
each truth table row where the 
function is 1.

If input variable is 0, it appears 
in complemented form; if 1, it 
appears uncomplemented.

Deriving Boolean equations from truth tables:

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0



Truth tables

Deriving Boolean equations from truth tables:

s0 = a ^ b

s1 = a b

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0



A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Example:  a full adder

Sum =

Cout = 



A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Example:  a full adder

Sum = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin



Example:  A majority function

1. Output should = 1 if the majority of the inputs = 1.

A
B
C

Out

2. Consider the unknown 
circuit a “black box”.

3. Create a truth table.

Truth Table

A     B     C Out



4. Enumerate all the possible input combinations.

Example:  A majority function

A
B
C

Out

Truth Table

A     B     C

0     0     0
0     0     1
0     1     0
0     1     1
1     0     0
1     0     1
1     1     0
1     1     1

Out



5. Fill in the outputs.

Example:  A majority function

A
B
C

Out
0
0
0
1
0
1
1
1

Truth Table

A     B     C

0     0     0
0     0     1
0     1     0
0     1     1
1     0     0
1     0     1
1     1     0
1     1     1

Out



5. Write the equation summing up all the 1’s.

Out = A’ B C + A B’ C + A B C’ + A B C

Example:  A majority function

A
B
C

Out
0
0
0
1
0
1
1
1

Truth Table

A     B     C

0     0     0
0     0     1
0     1     0
0     1     1
1     0     0
1     0     1
1     1     0
1     1     1

Out



A deeper dive into
Boolean algebra



Axioms of Boolean Algebra

1a.  0 • 0 = 0
1b.  1 + 1 = 1
2a.  1 • 1 = 1
2b.  0 + 0 = 0
3a.  0 • 1 = 1 •  0 = 0
3b.  1 + 0 = 0 + 1 = 1
4a.  If x = 0, then x’ = 1
4b.  If x = 1, then x’ = 0

• + 

0 1

Notice the duality:



Single-variable theorems
5a. x • 0 = 0
5b. x + 1 = 1
6a. x • 1 = x
6b. x + 0 = x
7a. x • x = x     Replication
7b. x + x = x
8a. x • x’ = 0
8b. x + x’ = 1
9. (x’)’ = x

Easily proved by perfect induction, trying all the possibilities.



2 and 3-variable properties
10a. x • y = y • x Commutative
10b. x + y = y + x
11a. x • ( y • z ) = ( x • y ) • z Associative
11b. x + ( y + z ) = ( x + y ) + z
12a. x • ( y + z ) = x • y + x • z Distributive
12b. x + y • z = ( x + y ) • ( x + z )
13a. x + x • y = x Absorption
13b. x • ( x + y ) = x
14a. x • y + x • y’ = x Combining
14b. ( x + y ) • ( x + y’) = x

Easily proved by perfect induction, trying all the possibilities.



2 and 3-variable properties

15a. ( x • y )’ = x’ + y’ DeMorgan’s theorem
15b. ( x + y )’ = x’ • y’
16a. x + x’ • y = x + y
16b. x • ( x’ + y ) = x • y
17a. x • y + y • z + x’ • z = x • y + x’ • z Consensus
17b. ( x + y ) • ( y + z ) • ( x’ + y ) = ( x + y ) • ( x’ + z )

Easily proved by perfect induction, trying all the possibilities.



Can prove Boolean theorems by
1. Perfect induction
2. Algebraically
3. Venn diagrams



Proof of DeMorgan’s theorem by perfect induction, 
enumerating all the possibilities  in a truth table.

DeMorgan’s theorem by perfect induction
( x • y )’ = x’ + y’

LHS RHS
x y x • y ( x • y )' x' y' x' + y'
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

Identical



Combining theorem:
14a. x • y + x • y’ = x
14b. ( x + y ) • ( x + y’) = x

x • y + x • y’ = x ( y + y’ )
= x

( x + y ) ( x + y’ ) = x x + x y’ + x y + y y’
= x + x ( y’ + y ) + 0
= x + x = x

Algebraic proof of the Combining theorem



Algebraic proof of the Consensus theorem

Prove: x y + x’ z + y z  = x y + x’ z

( x + x’ ) = 1

y z = ( x + x’ ) y z = x y z + x’ y z

Substituting back into the original LHS:

x y + x’ z + y z = x y + x’ z + ( x y z + x’ y z )

= x y + x y z + x’ z + x’ y z

= x y ( 1 + z ) + x’ z ( 1 + y )

= x y + x’ z

Prove we can ignore 
this term.



X • Y

Proof of DeMorgan’s Theorem

( X • Y )’

X’

Y’

X’ + Y’



a

DeMorgan’s theorem in terms of logic gates.

Bubble pushing

b
f

a

b
f

a
b

g

a
b

f

a
b

g
a

b
g

f = ( a b )’ = a’ + b’

g = ( a + b )’ = a’ b’



Operator precedence
Highest NOT x’

AND •
Lowest OR +

Example: x + y • z’ = x + ( y • ( z’ ) )

Parentheses can be used to specify a different 
order of evaluation, for example:

( ( x + y ) • z )’

We tend to omit the • when the meaning is clear.



Minimization

Often relies on these Boolean theorems:

1. a + a b = a ( 1 + b ) = a
2. a b + a b’ = a ( b + b’ ) = a
3. ( a + b ) ( a + b’ ) = a
4. a + a = a



Synthesis is the process of beginning with a 
description of the desired functional behavior 
and then generating a circuit that realizes that 
behavior.



Exercise: Synthesize this function

x1 x2 f( x1, x2 )
0 0 1
0 1 1
1 0 0
1 1 1



Exercise: Synthesize this function

x1 x2 f( x1, x2 )
0 0 1
0 1 1
1 0 0
1 1 1

f( x1, x2 ) = x1’ x2’ + x1’ x2 + x1 x2

We like to simplify both

x1’ x2’ + x1’ x2 = x1’ ( x2’ + x2 ) = x1’

x1’ x2 + x1 x2 = ( x1’ + x1 ) x2 = x2

To do that, we add a copy of the middle 
term.  We can do that because x + x = x.



Exercise: Synthesize this function

x1 x2 f( x1, x2 )
0 0 1
0 1 1
1 0 0
1 1 1

f( x1, x2 ) = x1’ x2’ + x1’ x2 + x1 x2

Since x + x = x, we can replicate the middle 
term:

f( x1, x2 ) = x1’ x2’ + x1’ x2 + x1’ x2 + x1 x2

Using the distributive property: 

f( x1, x2 ) = x1’  ( x2’ + x2 )  + ( x1’ + x1 ) x2

= x1’ + x2



f 

(a) Canonical sum-of-products 

f 

(b) Minimal-cost realization

x 2 

x 1 

x 1 

x 2 

Figure 2.20.  Two implementations of the function in Figure 2.19.

f( x1, x2 ) = x1’ + x2

Correct, but 
not simplest.

x1 x2 f( x1, x2 )
0 0 1
0 1 1
1 0 0
1 1 1



Two ways to synthesize a function

Sum of products:  Include all rows 
where f = 1 using minterms.

Product of sums:  Exclude all rows 
where f = 0 using Maxterms.



minterms and Maxterms

A minterm is 1 for only one row.

A Maxterm is 0 for only one row.



Minterms and maxterms for all possible combinations of 3 variables

Row x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1' x2' x3' M0 = x1  + x2  + x3

1 0 0 1 m1 = x1' x2' x3 M1 = x1  + x2  + x3'

2 0 1 0 m2 = x1' x2  x3' M2 = x1  + x2' + x3

3 0 1 1 m3 = x1' x2  x3 M3 = x1  + x2' + x3'

4 1 0 0 m4 = x1  x2' x3' M4 = x1' + x2  + x3

5 1 0 1 m5 = x1  x2' x3 M5 = x1' + x2  + x3'

6 1 1 0 m6 = x1  x2  x3' M6 = x1' + x2' + x3

7 1 1 1 m7 = x1  x2  x3 M7 = x1' + x2' + x3'

Minterms are
small m

Maxterms are
big M



A minterm is 1 for only one row.

It’s an AND expression in which 
each of the input variables appears  
once.

Each variable can be in 
complemented, or 
uncomplemented, e.g., x’ or x.

To match a row in a truth table, 
use the uncomplemented form to 
match a 1 and the complemented
form to match a 0.

For example, x1 x2’ x3 matches the 
row where
(x1, x2, x3 ) = (1, 0, 1)

Minterms (small m)

Row x1 x2 x3 Minterm

0 0 0 0 m0 = x1' x2' x3'

1 0 0 1 m1 = x1' x2' x3

2 0 1 0 m2 = x1' x2  x3'

3 0 1 1 m3 = x1' x2  x3

4 1 0 0 m4 = x1  x2' x3'

5 1 0 1 m5 = x1  x2' x3

6 1 1 0 m6 = x1  x2  x3'

7 1 1 1 m7 = x1  x2  x3



A maxterm is a 0 for only one 
matching row.

It’s an OR expression in which each 
of the input variables appears  once.

Each variable can be in 
complemented, or 
uncomplemented, e.g., x’ or x.

To match a row in a truth table, use 
the complemented form to match a 
1 and the uncomplemented form to 
match a 0.

For example, x1’ + x2 + x3’ matches 
the row where
(x1, x2, x3 ) = (1, 0, 1).

Maxterms (big M)

Row x1 x2 x3 Maxterm

0 0 0 0 M0 = x1  + x2  + x3

1 0 0 1 M1 = x1  + x2  + x3'

2 0 1 0 M2 = x1  + x2' + x3

3 0 1 1 M3 = x1  + x2' + x3'

4 1 0 0 M4 = x1' + x2  + x3

5 1 0 1 M5 = x1' + x2  + x3'

6 1 1 0 M6 = x1' + x2' + x3

7 1 1 1 M7 = x1' + x2' + x3'



Sum of products

( )∑ •= ifimf

Where fi is the desired result for row i.
If fi is 0, we can eliminate that term.

Include all rows where f = 1 using minterms.



Using minterms for the rows where we want ones:

( )∑ •= ifimf

Row x1 x2 x3 f( x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Exercise:  A 3-variable function we'd like to synthesize



( )∑ •= ifimf

Using minterms for the rows where we want ones:

f = Σm( 1, 4, 5, 6 ) = m1 + m4 + m5 + m6
= ( m1 + m5 ) + ( m4 + m6 )
= ( x1’ x2’ x3 + x1 x2’ x3 ) + ( x1 x2’ x3’ + x1 x2 x3’ )
= ( x1’ + x1 ) x2’ x3 + x1 ( x2’ + x2 ) x3’
= x2’ x3 + x1 x3’

Row x1 x2 x3 f( x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Exercise:  A 3-variable function we'd like to synthesize



Product of sums

( )∏ += ifiMf

Where fi is the desired result for row i.
If fi is 1, we can eliminate that term.

Exclude all rows where f = 0 using Maxterms.



Using Maxterms for the rows where we want zeros:
f = 

Row x1 x2 x3 f( x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

( )∏ += ifiMf

Exercise:  A 3-variable function we'd like to synthesize



Using Maxterms for the rows where we want zeros:
f = ΠM( 0, 2, 3, 7 ) = M0 • M2 • M3 • M7

Row x1 x2 x3 f( x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

( )∏ += ifiMf

Exercise:  A 3-variable function we'd like to synthesize



Using Maxterms for the rows where we want zeros:
f = ΠM( 0, 2, 3, 7 ) = M0 • M2 • M3 • M7
= ( x1 + x2 + x3 ) ( x1 + x2’ + x3 ) ( x1 + x2’ + x3’ ) ( x1’ + x2’ + x3’ )

Row x1 x2 x3 f( x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

( )∏ += ifiMf

Exercise:  A 3-variable function we'd like to synthesize



Using Maxterms for the rows where we want zeros:
f = ΠM( 0, 2, 3, 7 ) = M0 • M2 • M3 • M7
= ( x1 + x2 + x3 ) ( x1 + x2’ + x3 ) ( x1 + x2’ + x3’ ) ( x1’ + x2’ + x3’ )
= ( ( x1 + x3 ) + x2 ) ( ( x1 + x3 ) + x2’ ) ( x1 + ( x2’ + x3’ ) ) ( x1’ + ( x2’ + x3’ ) )

Row x1 x2 x3 f( x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

( )∏ += ifiMf

Exercise:  A 3-variable function we'd like to synthesize



Using Maxterms for the rows where we want zeros:

f = M0 • M2 • M3 • M7
= ( x1 + x2 + x3 )( x1 + x2’ + x3 )( x1 + x2’ + x3’)( x1’ + x2’ + x3’ )
= ( ( x1 + x3 ) + x2 ) (  ( x1 + x3 ) + x2’ ) ( x1 + ( x2’ + x3’ )  )( x1’ + ( x2’ + x3’ ) )

Combining theorem:
14a. x • y + x • y’ = x
14b. ( x + y ) • ( x + y’) = x

f = ( ( x1 + x3 ) + x2 ) ( ( x1 + x3 ) + x2’ ) ( x1 + ( x2’ + x3’ ) ) ( x1’ + ( x2’ + x3’ ) )
= ( x1 + x3 ) ( x2’ + x3’ )



Using Maxterms for the rows where we want zeros:
f = ΠM( 0, 2, 3, 7 ) = M0 • M2 • M3 • M7
= ( x1 + x2 + x3 ) ( x1 + x2’ + x3 ) ( x1 + x2’ + x3’ ) ( x1’ + x2’ + x3’ )
= ( ( x1 + x3 ) + x2 ) ( ( x1 + x3 ) + x2’ ) ( x1 + ( x2’ + x3’ ) ) ( x1’ + ( x2’ + x3’ ) )
= ( x1 + x3 )( x2 + x2’ )( x2’ + x3’ )( x1 + x1’ )
= ( x1 + x3 )( x2’ + x3’ )

Row x1 x2 x3 f( x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

( )∏ += ifiMf

Exercise:  A 3-variable function we'd like to synthesize



Figure 2.24.   Two realizations of the function.

f

(a) A minimal sum-of-products realization

f

(b) A minimal product-of-sums realization

x1

x2

x3

x2

x1
x3

f = x2’ x3 + x1 x3’

f = ( x1 + x3 )( x2’ + x3’ )

Exercise:  A 3-variable function 
we'd like to synthesize

Row x1 x2 x3
f( x1, x2, 

x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0



Are POS and SOP solutions 
always equivalent cost?

1. Does it matter how many rows 
are 1s and how many are 0s?  
Why or why not?

2. Does it matter which rows are 1s 
or 0s in relation to each other?

Exercise:  A 3-variable function 
we'd like to synthesize

Row x1 x2 x3
f( x1, x2, 

x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0



Karnaugh maps

Want simplest forms but the algebra is difficult.



Karnaugh maps

Invented by 
Maurice Karnaugh 
in 1954 as a 
graphical  method 
for simplifying 
Boolean equations.

http://www.ithistory.org/sites/default/files/honor-
roll/Maurice%20Karnaugh.jpg

http://www.ithistory.org/sites/default/files/honor-roll/Maurice%20Karnaugh.jpg


row a b f
0 0 0
1 0 1
2 1 0
3 1 1

b
0 1

a 0 0 1
1 2 3

a
0 1

b 0 0 2
1 1 3

Karnaugh maps

Truth table

Map rows in a truth table to cells in a matrix.
May choose either assignment of columns and rows. 



row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

b
0 1

a 0 1 1
1 0 1

a
0 1

b 0 1 0
1 1 1

Example

Fill in the desired output values. 

Truth table



b
0 1

a 0 1 1
1 0 1

Use the Combining property to group neighboring 
cells where the output should be the same.

14a. x • y + x • y’ = x

b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

a’



Form the minimal SOP solution.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

f 
b 
a

b
0 1

a 0 1 1
1 0 1

b

a’



bc

00 01 11 10

a 0 0 1 3 2

1 4 5 7 6

row a b c f
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

A function of 3 variables

Truth table Karnaugh map

Map the rows to a 2 x 4 matrix.
Columns are arranged so each 
differs by only 1 bit from the next.



bc

00 01 11 10

a 0 0 0 1 0

1 0 1 1 1

row a b c f
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Example

Truth table Karnaugh map



bc

00 01 11 10

a 0 0 0 1 0

1 0 1 1 1

row a b c f
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Example

Truth table Karnaugh map

f = a b + a c + b c



row a b c d f
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

cd
00 01 11 10

ab 00 0 1 3 2
01 4 5 7 6
11 12 13 15 14
10 8 9 11 10

A function of four variables
Truth table Karnaugh map

Map the rows to a 4 x 4 matrix 
either way.  (I use the top one.)

ab
00 01 11 10

cd 00 0 4 12 8
01 1 5 13 9
11 3 7 15 11
10 2 6 14 10



row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 0 0 1 0
01 1 0 0 1
11 1 0 0 1
10 0 0 1 0

Example
Truth table Karnaugh map

Copy the outputs to the 
Karnaugh map.



row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 0 0 1 0
01 1 0 0 1
11 1 0 0 1
10 0 0 1 0

Example
Truth table Karnaugh map

Notice that the Karnaugh map 
“wraps” vertically and horizontally.

f = b d’ + b’ c d 



row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 1
01 1 1
11 1 1
10 1

Example
Truth table Karnaugh map

If we’re collecting 1’s for an SOP 
solution, we can leave out the 0’s.

f = b d’ + b’ c d 



SOP terminology

Literal A variable or its complement, e.g., x or x’.

Product term A product, e.g., x y’ z, of some number of 
literals.

Implicant A product term for which the output is 1.  
That product term implies the output is 
true.

Prime implicant An implicant that cannot be combined 
with another with fewer literals.



Each row or cell where f = 1 is an implicant.
The prime implicants are a’ and b.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’



Cover A collection of implicants that account 
for all cases for which the output = 1. 

Essential prime implicant
A prime implicant that must be 
included in any cover.



f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

a’ and b form a cover for f.
Both are essential prime implicants.



For a function of n variables, there will be 2n rows in 
the truth table and 2n cells in the Karnaugh map.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’



f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

The number of cells in an implicant must be a 
power of 2.



f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

For a function of n variables, if an implicant 
has k literals, it must cover 2n-k cells.



bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

f =

b
0 1

a 0 0 1
1 0 1

g =

b
0 1

a 0 1 1
1 0 1

h =

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

j =

Examples



f = b

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

b
0 1

a 0 0 1
1 0 1

g =

b
0 1

a 0 1 1
1 0 1

h =

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

j =

Examples



g = a’ + bf = b

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

b
0 1

a 0 0 1
1 0 1

b
0 1

a 0 1 1
1 0 1

h =

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

j =

Examples



h = a’ c + b c + a’ b

g = a’ + bf = b

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

b
0 1

a 0 0 1
1 0 1

b
0 1

a 0 1 1
1 0 1

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

j =

Examples



j = bh = a’ c + b c + a’ b

f = b

bc

00 01 11 10

a 0 0 1 1 1

1 0 0 1 0

b
0 1

a 0 0 1
1 0 1

b
0 1

a 0 1 1
1 0 1

bc

00 01 11 10

a 0 0 0 1 1

1 0 0 1 1

Examples

g = a’ + b



We can also use Karnaugh maps to help us 
with Boolean algebra.



Simplify

k = a’ b c’ + a b c’ + a b c



bc

00 01 11 10

a 0 1

1 1 1

Simplify

1.  Create the Karnaugh map.

k = a’ b c’ + a b c’ + a b c
= Σm( 2, 6, 7 )



bc

00 01 11 10

a 0 1

1 1 1

Simplify

2.  Find the prime implicants.

k = a’ b c’ + a b c’ + a b c
= Σm( 2, 6, 7 )



k = a’ b c’ + a b c’ + a b c
= a’ b c’ + a b c’ + a b c’ + a b c
= b c’ ( a’ + a ) + a b ( c’ + c )
= b c’ + a b

We’ll need to duplicate the 
middle term.

bc

00 01 11 10

a 0 1

1 1 1

Simplify

3.  Use this as a guide to solving the algebra.



Simplify

k = a’ b’ c’ + a’ b c’ + a b c’ + a b c



bc

00 01 11 10

a 0 1 1

1 1 1

Simplify

1.  Create the Karnaugh map.

k = a’ b’ c’ + a’ b c’ + a b c’ + a b c
= Σm( 0, 2, 6, 7 )



Simplify

2.  Find the prime implicants.

k = a’ b’ c’ + a’ b c’ + a b c’ + a b c
= Σm( 0, 2, 6, 7 )

bc

00 01 11 10

a 0 1 1

1 1 1



k = a’ b’ c’ + a’ b c’ + a b c’ + a b c
= a’ ( b’ + b ) c’ + a b ( c + c’ )
= a’ c’ + a b

b c’ is non-essential.
So we should combine the other 
terms instead.

bc

00 01 11 10

a 0 1 1

1 1 1

Simplify

3.  Use this as a guide to solving the algebra.



k = a’ b’ c’ + a’ b c’ + a b c’ + a b c
= a’ ( b’ + b ) c’ + a b ( c + c’ )
= a’ c’ + a b

b c’ is non-essential.
So we should combine the other 
terms instead.

bc

00 01 11 10

a 0 1 1

1 1 1

Simplify

3.  Use this as a guide to solving the algebra.



Simplify

m = a’ b’ c + a’ b c + a b’ c’ + a b’ c



bc

00 01 11 10

a 0 1 1

1 1 1

m = a’ b’ c + a’ b c + a b’ c’ + a b’ c
= Σm( 1, 3, 4, 5 )

Simplify

1.  Create the Karnaugh map.



bc

00 01 11 10

a 0 1 1

1 1 1

m = a’ b’ c + a’ b c + a b’ c’ + a b’ c
= Σm( 1, 3, 4, 5 )

Simplify

2.  Find the prime implicants.



bc

00 01 11 10

a 0 1 1

1 1 1

m = a’ b’ c + a’ b c + a b’ c’ + a b’ c
= a’ ( b’ + b ) c + a b’ ( c + c’ )
= a’ c + a b’

b’ c is non-essential.
So we should combine the other 
terms instead.

Simplify

3.  Use this as a guide to solving the algebra.



f( a, b, c ) = Σm( 0, 2, 4, 5, 6 )

Simplify



bc

00 01 11 10

a 0 1 1

1 1 1 1

f( a, b, c ) = Σm( 0, 2, 4, 5, 6 )
= a b’ + c’

Write directly from the Karnaugh map



f( a, b, c ) = Σm( 1, 4, 5, 6 )

Write directly from the Karnaugh map



bc

00 01 11 10

a 0 1

1 1 1 1

f( a, b, c ) = Σm( 1, 4, 5, 6 )
= a c’ + b’ c

a b’ is not essential.

Write directly from the Karnaugh map



cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = g =

h = j =

Examples



cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = a d’ + a’ b c g =

h = j =

Examples



cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = a d’ + a’ b c g = a + b c

h = j =

Examples



cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = a d’ + a’ b c g = a + b c

h = a c’ + b’ d’ + a b d j =

Examples



cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1 1
10 1 1 1 1

cd
00 01 11 10

ab 00 1 1
01
11 1 1 1
10 1 1 1

cd
00 01 11 10

ab 00 1 1 1
01 1 1 1
11 1 1
10 1 1

f = a d’ + a’ b c g = a + b c

h = a c’ + b’ d’ + a b d Either: j = a’ c’ + a c + c d
j = a’ c’ + a c + a’ d

Examples



cd
00 01 11 10

ab 00
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00 1
01 1 1
11 1 1
10 1 1

f = a c’ + a’ b c + a’ c d’ e

e = 0

A 5-variable Karnaugh map

e = 1

Must be done in layers.

Realistically, Karnaugh maps are impractical beyond 5 
variables.  (We turn the problem over to software.)



Often, there are many different networks 
than can realize a given function.

Some may be simpler than others.



cd
00 01 11 10

ab 00
01 1 1
11 1 1 1
10 1 1 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

What cells are still not covered?

Of the rest, which do you choose?

f =

f( a, b, c, d ) = Σm( 5, 7, 8, 9, 10, 11, 12, 13, 14 )



cd
00 01 11 10

ab 00
01 1 1
11 1 1 1
10 1 1 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

a’ b d + a b’ + a d’

What cells are still not covered?

Of the rest, which do you choose?

f( a, b, c, d ) = Σm( 5, 7, 8, 9, 10, 11, 12, 13, 14 )

f =



Not all the implicants are needed.

Which are the essential prime implicants?

a’ b d + a b’ + a d’

What cells are still not covered?

Only 1101, covered by either a c’ or b c’ d

Of the rest, which do you choose?

f =

f( a, b, c, d ) = Σm( 5, 7, 8, 9, 10, 11, 12, 13, 14 )

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1
10 1 1 1 1



Not all the implicants are needed.

Which are the essential prime implicants?

a’ b d + a b’ + a d’

What cells are still not covered?

Only 1101, covered by either a c’ or b c’ d

Of the rest, which do you choose?

Obviously, a c’. f = a’ b d + a b’ + a d’ + a c’

f( a, b, c, d ) = Σm( 5, 7, 8, 9, 10, 11, 12, 13, 14 )

cd
00 01 11 10

ab 00
01 1 1
11 1 1 1
10 1 1 1 1



cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

What cells are still not covered?

Of the rest, which do you choose?

f =

f( a, b, c, d ) = Σm( 0, 1, 2, 3, 7, 10, 14, 15 )



cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

Only a’ b’

What cells are still not covered?

Of the rest, which do you choose?

f =

f( a, b, c, d ) = Σm( 0, 1, 2, 3, 7, 10, 14, 15 )



cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

Only a’ b’

What cells are still not covered?

Everything else.

Of the rest, which do you choose?

f =

f( a, b, c, d ) = Σm( 0, 1, 2, 3, 7, 10, 14, 15 )



cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1

Not all the implicants are needed.

Which are the essential prime implicants?

Only a’ b’

What cells are still not covered?

Everything else.

Of the rest, which do you choose?

Two choices.

f( a, b, c, d ) = Σm( 0, 1, 2, 3, 7, 10, 14, 15 )

cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1



Not all the implicants are needed.

Which are the essential prime implicants?

Only a’ b’

What cells are still not covered?

Everything else.

Of the rest, which do you choose?

Best to choose b c d + a c d’. f = a’ b’ + b c d + a c d’

f( a, b, c, d ) = Σm( 0, 1, 2, 3, 7, 10, 14, 15 )

cd
00 01 11 10

ab 00 1 1 1 1
01 1
11 1 1
10 1



cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

What cells are still not covered?

Of the rest, which do you choose?

f =

f( a, b, c, d ) = Σm( 0, 1, 5, 7, 8, 10, 14, 15 )



cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

There are none.

What cells are still not covered?

Everything.

Of the rest, which do you choose?

f =

f( a, b, c, d ) = Σm( 0, 1, 5, 7, 8, 10, 14, 15 )



cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

Not all the implicants are needed.

Which are the essential prime implicants?

There are none.

What cells are still not covered?

Everything.

Of the rest, which do you choose?

Two choices.

f( a, b, c, d ) = Σm( 0, 1, 5, 7, 8, 10, 14, 15 )

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1



Not all the implicants are needed.

Which are the essential prime implicants?

There are none.

What cells are still not covered?

Everything.

Of the rest, which do you choose?

Two equivalent choices.

f = a’ b’ c’ + a’ b d + a b c + a b’ d’

f = b’ c’ d’ + a’ c’ d + b c d + a c d’

f( a, b, c, d ) = Σm( 0, 1, 5, 7, 8, 10, 14, 15 )

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1
10 1 1



cd
00 01 11 10

ab 00 0 0 0 0
01 0 0
11 0
10

Karnaugh maps can also be used for POS 
minimization, collecting zeros instead of ones.

bc
00 01 11 10

a 0 0 0
1 0

f = ΠM( 2, 3, 6 )

= ( a + b’ ) ( b’ + c )

f = ΠM( 0, 1, 2, 3, 4, 6, 15 )

= ( a + d ) ( a + b ) ( a’ + b’ + c’ + d’ )



cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

f = g =

h = j =

Examples



cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

g =

h = j =

Examples

f = ( a’ + d ) ( a + b’ + c’ )



cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

g = a’ ( b’ + c’ )

Examples

h = j =

f = ( a’ + d ) ( a + b’ + c’ )



cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

Examples

g = a’ ( b’ + c’ )f = ( a’ + d ) ( a + b’ + c’ )

h = ( a’ + c ) ( b + d ) ( a’ + b’ + d’ ) j =



cd
00 01 11 10

ab 00
01 0 0
11 0 0
10 0 0

cd
00 01 11 10

ab 00
01 0 0
11 0 0 0 0
10 0 0 0 0

cd
00 01 11 10

ab 00 0 0
01
11 0 0 0
10 0 0 0

cd
00 01 11 10

ab 00 0 0 0
01 0 0 0
11 0 0
10 0 0

j = ( a + c ) ( a’ + c’ ) ( c’ + d’ )
j = ( a + c ) ( a’ + c’ ) ( a + d’ )

Examples

f = ( a’ + d ) ( a + b’ + c’ )

h = ( a’ + c ) ( b + d ) ( a’ + b’ + d’ )

g = a’ ( b’ + c’ )



cd
00 01 11 10

ab 00 1 d
01 1 d
11 d
10 1 1 d 1

f = a’ d + a b’

f = Σm( 1, 5, 8, 9, 10 ) + D( 3, 7, 11, 15 )

A don’t care is a cell where 
we really don’t care whether 
the output is a 1 or a 0.

We can decide whether to 
make it a 1 or a 0 depending 
on which makes for a simpler 
circuit.

don’t cares



Example:  A seven segment decoder to be used for 
displaying BCD digits 0 through 9 only.

a

b

c

d

e

f g

a
b
c
d
e
f
g

Logic
networkb1

b0

b2

b3



a

b

c

d

e

f g

a

b

c

d

e

f

g

Logic
networkb1

b0

b2

b3

decimal BCD a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

b1 b0
00 01 11 10

b3 b2 00
01
11 d d d d
10 d d

Start with a truth table and 
a blank Karnaugh map with 
don’t cares.



decimal BCD a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

b1 b0
00 01 11 10

b3 b2 00 0
01 0
11 d d d d
10 d d

a = ΠM( 1, 4 ) + D( 10, 11, 12, 13, 14, 15 )

= ( b2’ + b1 + b0 ) ( b3 + b2 + b1 + b0’ )

Using don’t-cares for 
segment a.

a

b

c

d

e

f g

a

b

c

d

e

f

g

Logic
networkb1

b0

b2

b3



decimal BCD a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

b1 b0
00 01 11 10

b3 b2 00
01 0 0
11 d d d d
10 d d

b = ΠM( 5, 6 ) + D( 10, 11, 12, 13, 14, 15 )

= ( b2’ + b1 + b0’ ) ( b2’ + b1’ + b0 )

Continue for c, d, e, f and g.

Using don’t-cares for 
segment b.

a

b

c

d

e

f g

a

b

c

d

e

f

g

Logic
networkb1

b0

b2

b3



Multiple-input / multiple-output problems

Often offer opportunities to share terms.
(But they can be difficult to find by hand.)

a

b

c

d

e

f g

a
b
c
d
e
f
g

Logic
networkb1

b0

b2
b3



cd
00 01 11 10

ab 00 1 1
01 1 1 1
11 1 1
10 1 1

cd
00 01 11 10

ab 00 1 1
01 1 1
11 1 1 1
10 1 1

f = a c’ + a’ c + a’ b d

g = a c’ + a’ c + a b d

f

g

a’
b
d

a
b
d

a
c’

a’
c’

Example:  Simple sharing of terms



Example:  Sharing requiring joint optimization
cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

Individually optimized h Individually optimized j

Jointly optimized h Jointly optimized j



Example:  Sharing requiring joint optimization
cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

h = b c’ + b c d + a b’ c’ d

cd
00 01 11 10

ab 00
01 1 1 1
11 1 1 1
10 1

j = b d’ + b c d + a b’ c’ d

b
c’
b
c
d
a
b’
c’
d
b
d’

h

j



Multiple-input, multiple-output minimization

One of the first algorithmic methods was Quine-McCluskey 
minimization invented in 1952, but the runtime grows 
exponentially with the number of variables.

Compilers today optimize using heuristics.

Willard Van Orman Quine Edward J. McCluskey

Image sources:  http://ethw.org/Edward_McCluskey
http://www.philosophybasics.com/philosophers_quine.html

http://ethw.org/Edward_McCluskey
http://www.philosophybasics.com/philosophers_quine.html


Verilog



Designs

The basic decisions for any design.
1. What should it do.
2. How should it do it.

You’ll work top-down through the problem by breaking it 
up into pieces, filling in detail.

As you create your design, you write it out in a 
programming language.  Here it’s Verilog. 

A lot of the work is guided by intuition and experience.



40 years ago



Today

We no longer draw gates for complex 
designs.

Hardware description languages (HDLs)
have replaced schematics.



HDL

A hardware description language (HDL) 
allows us to describe logic circuits as if we 
were writing software in C or Java.



a

f

s
b

The Multiplexer

Selects a or b based on s, multiplexing these 
signals onto the output f.

s f
0 a
1 b



Three ways to represent the multiplexer in  Verilog

1. Structural 
representation as gates.

2. Boolean expressions.
3. Behavioral description.

a

f

s
b



1. Structural representation



Verilog code for a multiplexer.

Structural representation as gates

module Mux2To1A(
input  s, a, b,
output f );

wire g, h, k;
not ( k, s );
and ( g, k, a );
and ( h, s, b );
or  ( f, g, h );

endmodule
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Verilog code for a multiplexer.

module Mux2To1A(
input  s, a, b,
output f );

wire g, h, k;
not ( k, s );
and ( g, k, a );
and ( h, s, b );
or  ( f, g, h );

endmodule
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h

g
The “ports”
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Verilog code for a multiplexer.

module Mux2To1C( s, a, b, f );

input s, a, b;
output f;

wire g, h, j, k;
not ( k, s );
and ( g, k, a );
and ( h, s, b );
or  ( f, g, h );

endmodule

Alternate 
form of 
specifying the 
ports.



Verilog code for a multiplexer.

Wires 
constantly 
reflect the 
value of 
whatever 
they’re 
connected to.

module Mux2To1A(
input  s, a, b,
output f );

wire g, h, k;
not ( k, s );
and ( g, k, a );
and ( h, s, b );
or  ( f, g, h );

endmodule

a

f

s
b

k

h

g



module Mux2To1B(
input  s, a, b,
output f );

not ( k, s );
and ( g, k, a );
and ( h, s, b );
or  ( f, g, h );

endmodule
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b

k

h

g
Undeclared 
variables 
default to 1-
bit wires.

Verilog code for a multiplexer.



Verilog code for a multiplexer.

module Mux2To1A(
input  s, a, b,
output f );

wire g, h, k;
not ( k, s );
and ( g, k, a );
and ( h, s, b );
or  ( f, g, h );

endmodule
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k

h

g
The first port 
to a gate is 
the output.



Verilog code for a multiplexer.
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module Mux2To1A(
input  s, a, b,
output f );

// This 2-in mux module.

wire g, h, k;
not ( k, s );
and ( g, k, a );
and ( h, s, b );
or  ( f, g, h );

endmodule

Comments 
start with //.



module MultiOutput(
input a, b, c, d,
output f, g );

wire p, q, r, s;
and ( p, ~a, b, d );
and ( q, a, ~c );
and ( r, ~a, ~c );
and ( s, a, b, d );
or ( f, p, q, r );
or ( g, q, r, s );

endmodule

A multiple output example.
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a

f = a • b

a

f = ( a • b )’

b

a

b

a

b

a

b

a

b

a

b

f = a + b f = ( a + b )’

f = a a f = a’

f = a ^ b f = ( a ^ b )’

buf( f, a ); not( f, a );

and( f, a, b, … ); nand( f, a, b, … );

or( f, a, b, … ); nor( f, a, b, … );

xor( f, a, b, … ); xnor( f, a, b, … );

Basic gates in Verilog



a f = e ? a : 'bz a f = e ? a’ : 'bz

bufif1( f, a, e ); notif1( f, a, e );

e e

a f = e ? 'bz : a a f = e ? 'bz : a’ 

bufif0( f, a, e ); notif0( f, a, e );

e e

Tri-state drivers in Verilog

A tri-state driver presents a high impedance (high Z) load 
unless enabled.  It’s as if it’s disconnected.



A multiplexer built from 2 tri-state drivers.

a

b f = s ? a : b

s



A more realistic application as a device or chip select.

Image source: http://faculty.etsu.edu/tarnoff/ntes2150/memory/memory.htm

http://faculty.etsu.edu/tarnoff/ntes2150/memory/memory.htm


2. Boolean expressions



module Mux2To1D(
input  s, a, b,
output f );

assign f = ~s & a | s & b;

endmodule

Continuous assignment

a

f

s
b

k

h

g

f will continuously 
reflect the value of 
the RHS.



module Mux2To1D(
input  s, a, b,
output f );

assign f = ~s & a | s & b;

endmodule

Continuous assignment

a

f

s
b

k

h

g

~ is done before &, 
which is done 
before |.
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module Mux2To1E(

input  s, a, b,
output f );

assign f = s ? b : a;

endmodule

The trinary operator.

If s is true, f = b, 
otherwise, f = a.
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module MultiOutput(
input a, b, c, d,
output f, g );

wire p, q, r, s;
assign p = ~a & b & d;
assign q = a & ~c;
assign r = ~a & ~c;
assign s = a & b & d;
assign f = p | q | r;
assign g = q | r | s;

endmodule

A multiple output example.
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module MultiOutput(
input a, b, c, d,
output f, g );

wire p, q, r, s;
assign p = ~a & b & d,

q = a & ~c,
r = ~a & ~c,
s = a & b & d,
f = p | q | r,
g = q | r | s;

endmodule

assign statements can be chained with commas.



Verilog operator precedence
( )   [ ] Grouping.
~   - !   +   &   |   ^ Unary bitwise, arithmetic and logical 

complements and plus and the AND, OR 
and XOR reduction operators.  Right to 
left associativity.

*   /   % Multiplication, division and remainder.
+   - Addition and subtraction.
<<   >> Bit-shifting.
<   <=   >=   > Relation testing.
==   != Equality testing.
& Bitwise AND.
^ Bitwise XOR.
| Bitwise OR.
&& Logical AND.
|| Logical OR.
? : Trinary conditional operator.
=   <= Blocking and non-blocking assignment.
{ }   { { } } Concatenation and replication.

Source:  Table 11-2—Operator precedence and associativity, IEEE Standard for SystemVarilog, 
IEEE Std 1800-2012, IEEE, 2013, p. 221.



Basic Verilog operators
Assume a = 4’b0101 = 5, b = 3’b011 = 3.
Operator Meaning Result
Bitwise
~ a Bitwise inversion 1010
a & b Bitwise AND = a b 0001
a | b Bitwise OR = a + b 0111
a ^ b Bitwise XOR = a’ b + a b 0110
Logical
! a Logical NOT:  1 if all bits of a = 0 0
a && b Logical AND:  1 if both a and b 

are non-zero
1

a || b Logical OR:  1 if either a or b is 
non-zero

1

Reduction
& a AND of all bits in a 0
| a OR of all bits in a 1
^ a XOR of all bits in a 0



Basic Verilog operators
Assume a = 4’b0101 = 5, b = 3’b011 = 3.
Operator Meaning Result
Relational
a == b a equals b 0
a != b a not equal b 1
a > b a greater than b 1
a < b a less than b 0
a >= b a greater than or equal b 1



Basic Verilog operators
Assume a = 4’b0101 = 5, b = 3’b011 = 3.
Operator Meaning Result
Arithmetic
- a Arithmetic complement -5
+ a Unary plus. 5
a * b Multiplication. 15
a / b Integer division. 1
a % b Modulo (remainder) division. 2
Shifting
a >> b Shift a right b bits 0000
a << b Shift a left b bits 1000



Basic Verilog operators
Assume a = 2 = 3’b010, b = 3’b011, c = 3’b101.
Operator Meaning Result
Concatenation and replication
{ a, b } Concate a and b. 010011
{ b { a } } Replicate and concatenate 

b copies of a.  b must be a 
constant.

010010010

Conditional (Trinary)
a ? b : c If a is non-zero, result = b.

Otherwise, result = c.
011
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