
1

BEE 271 Digital circuits and systems
Spring 2017
Lab 2: Hex adding machine*

1 Objectives

This lab will present you with a
combinatorial logic design problem
building a hex adding machine and lead
you through the steps to solving it in
Verilog.

As shown in figures 1 through 3, your
adding machine will:

1. Read inputs A and B as 5-bit binary
numbers on the slide switches,
displaying them on the LEDs.

2. Continuously calculate the 6-bit sum
C = A + B.

3. Display A, B and C as 2-digit hex
numbers on the 7-segment displays
with leading zero suppression.

By the end of the lab, you should feel
fairly comfortable analyzing truth tables
and Karnaugh maps, synthesizing
combinatorial logic and then writing,
compiling and debugging a Verilog module
that implements it.

2 Required

To do this lab, you will need a Terasic
DE0-SoC board and a PC with the
following installed.

1. Quartus Prime Lite Edition (Free).

2. Altera’s USB Blaster driver.

3. The DE1-SoC CDROM, which should be installed in the C:\altera directory.

* This lab was written by Nicole Hamilton.

Figure 1. 5 + 3 = 8

Figure 2. 9 + 7 = 0x10

2

3 Procedure

Here are the steps you’ll follow.

1. Create a truth table specification for a
seven-segment display driver.

2. Use Karnaugh maps to write the
combinatorial equations for each of
the segments.

3. Use Quartus II and the System
Builder tool to create an empty
Verilog project.

4. Create a deliberately trivial Verilog
program that wires the switches to
the LEDs and to the segments of one of the displays to verify how they work and that
you can successfully compile a Verilog program and get it to run on the DE1-SoC board.

5. Write and debug a hex to 7-segment decoder module that implements the combinatorial
equations you wrote and use it to display the hex value on switches SW[3:0] on one of
the displays.

6. Add additional logic to add A + B and to suppress leading zeros.

4 Demo and report

Once you have you have your design working, you must demo it. You must also submit a
report containing the following. This is all you need to submit. Your truth table and
Karnaugh maps can be hand-drawn and should be submitted as a PDF.

1. Your truth table.

2. Karnaugh maps and equations for each segment.

3. Your Verilog program as a .v (Verilog) or .sv (SystemVerilog) file.

Figure 3. 0x1F + 0x1F = 0x3E

3

5 7-segment displays

In this step, you’ll develop the logic equations for a 7-
segment decoder.

5.1 Truth table

The individual segments in 7-segment display are numbered
from 0 at the top, clockwise around the outside, then the
middle, as shown in figure 4.

Your first step is to fill in the rest of the truth table in
figure 5, indicating which
segments should light up for
each hex value from 0x0 to
0xF. The values for s0 are
already filled in. You will need
to do the rest. Hex values 0xB
and 0xD should display as
lower-case b and d.

5.2 Karnaugh maps

The second step is to copy the
desired values for each output
s0 through s6 into a 4-variable
Karnaugh map and then use it
to write a sum of products or
product of sums equation.

Figure 6 shows how this might
be done for s0 as a Sum of
Products. Based on the groups chosen:

s0 = b1 b2 + b1’ b2’ b3 + b0’ b3 +
b0’ b2’ + b0 b2 b3’ + b1 b3’

You will need to work out the equations
for s1 through s6. Please do not just
copy them off the internet!

Figure 4. Numbering

of the segments.

b3 b2 b1 b0 Hex s0 s1 s2 s3 s4 s5 s6
0 0 0 0 0 1
0 0 0 1 1 0
0 0 1 0 2 1
0 0 1 1 3 1
0 1 0 0 4 0
0 1 0 1 5 1
0 1 1 0 6 1
0 1 1 1 7 1
1 0 0 0 8 1
1 0 0 1 9 1
1 0 1 0 A 1
1 0 1 1 B 0
1 1 0 0 C 1
1 1 0 1 D 0
1 1 1 0 E 1
1 1 1 1 F 1

Figure 5. Truth table for the individual segments.

Figure 6. A Karnaugh map for s0.

4

6 Create a project in Quartus Prime

In this step, you’ll create a trivial skeleton Verilog project in Quartus that ties the slide
switches to the LEDs and to the segments of one of the displays. You’ll then program the
board and observe which LEDs and segments turn on as you flip the switches.

These are the steps.

1. Use the DE1-SoC SystemBuilder tool to create a skeleton project with the inputs and
outputs you need.

2. Open it in Quartus and add the skeleton Verilog file to the project. (SystemBuilder
generates this file but doesn’t add it to the project automatically.)

3. Edit the skeleton Verilog to connect the switches, LEDs and one of the displays.

4. Compile your project.

5. Program the device.

6. Verify that everything works as expected.

6.1 Use SystemBuilder to create a skeleton

The first step is to use the System Builder tool create a skeleton project with inputs and
outputs connected to the devices on the DE1-SoC board that your logic needs to use.

SystemBuilder is on the System CD in the Tools\SystemBuilder directory. You can ignore
any security warnings when you start it.

Figure 7. SystemBuilder in the Tools directory on DE1-SoC System CD.

5

System Builder knows what devices are on a DE1-SoC board and lets you check the ones
you want to use. You will need to use the LEDs, the 7-segment displays and the slide
switches, as shown in figure 8. Give your project any name you like. I called mine
AddingMachine. Save it into a separate directory.

Figure 8. Using SystemBuilder to create a project named AddingMachine

using the LEDs, 7-segment displays and the ten slide switches.

6

6.2 Open it in Quartus Prime

Start Quartus Prime and open the project you created with SystemBuilder as shown in
figure 10.

Figure 10. Start Quartus and open the
project you created with SystemBuilder.

7

Initially, there’s nothing in the project except a mostly empty .SDC (Synoptics Design
Constraint) file that can be used (not by us) to specify timing constraints.

SystemBuilder creates a Verilog skeleton but doesn’t add it to the project automatically,
presumably because there’s nothing in it yet except the module interface definition. You’ll
need to add it yourself, as shown in figure 11.

Figure 11. Add your Verilog file.

8

6.3 Connect the switches, LEDs and segments

In this step, you’ll wire up your module. The only part we care about in the empty skeleton
is the module definition and the list of arguments. You can delete some of the rest of the
comments.

Figure 14. The empty skeleton with machine-generated comments.

9

Wire the switches to the LEDs and to the segments of one of the displays by adding these
lines, as shown in figure 15, and then save your file.

 assign LEDR = SW;
 assign HEX0 = SW[6:0];

Figure 15. Delete the extraneous comments and add statements to

connect the switches to the LEDs and to the HEX0 7-segment display.

You can also collapse the list of ports to something like this if you like, grouping the 7-
segment displays as all being of the same type.

module AddingMachine(
 output [6:0] HEX0, HEX1, HEX2, HEX3, HEX4, HEX5,
 output [9:0] LEDR,
 input [9:0] SW);

 assign LEDR = SW;
 assign HEX0 = SW[6:0];

endmodule

Any signals your module refers to are matched up by name, not order, against signals
defined on the DE1-SoC boards we’re using.

10

6.4 Compile

The next step is to compile your program, as shown in figure 16.

Figure 16. Compile your program.

11

If you have any syntax or other errors, you’ll see something like figure 17, where I’ve
deliberately left out the assign keywords for continuous assignment to a Verilog “wire”.
(You do that only with a “reg” temporary variable type.) To read the compiler error
messages, go to the Compilation Report  Analysis & Synthesis section and click on
messages, which will open in another tile. Fix your mistake and try again.

Figure 17. Error messages.

6.5 Program the device

Once you have a successful compile, you can try programming the device, as shown in
figures 18 and 19. You may need to auto detect the DE1-SoC board, in which case you’ll
need to be sure you end up with the configuration shown in figure 19, with the SOCVHPS
(hard processor system) and 5CSEMA5F31 (Cyclone V FPGA).

12

Figure 18. After successful compile, program the device.

Figure 18. Device programmer.

13

6.6 Test

Once you have board programmed, verify that it works as you expect.

Notice that the LEDs are active high (they go on when the switch is on) but that the display
segments are active low (they go on when the switch is off). This is often done because
power consumption is less for signals in the high state if they use a TTL interface, as these
parts likely do. (Remember that a float looks like a 1, so it can’t possibly require any
current.)

This means that whatever equations you’ve worked out for s0 through s6 will need to be
inverted at the end.

7 Create your 7-segment decoder

In this section, you’ll create Verilog module which will take 4 bits = 1 hex digit as input and
generate outputs to drive the individual segments of one display.

7.1 Basic skeleton

Here is the basic skeleton you will need to fill in. The equation for s0 has already been
rewritten into Verilog syntax. You will need to fill in the rest. Notice that the outputs are
inverted at the end for active low.

module SevenSegment(
 input [3:0] hexDigit,
 output [6:0] segments);

 wire b0, b1, b2, b3;
 wire [6:0] s;

 assign b0 = hexDigit[0];
 assign b1 = hexDigit[1];
 assign b2 = hexDigit[2];
 assign b3 = hexDigit[3];

 // s[0] done. TBD: Assign statements for s[1] .. s[6].
 assign s[0] = b1 & b2 | ~b1 & ~b2 & b3 | ~b0 & b3 |
 ~b0 & ~b2 | b0 & b2 & ~b3 | b1 & ~b3;

 // Invert the outputs for active low on the DE1-SoC board.
 assign segments = ~s;

endmodule

This module can be instantiated in your AddingMachine module and hooked up to some
switches and one of the displays as follows.

 SevenSegment Hex0(SW[3:0], HEX0);

14

7.2 Debug

Debug your design by verifying that as you flip switches, all the correct segments light up.

8 Create the adding machine

The final step is to turn your design into an adding machine that performs as shown in
figures 1 through 3.

1. Modify your design to wire up all the switches and all the displays with additional
instances of your SevenSegment module.

2. Implement the add function. It’s built in to Verilog as the + operator but you’ll need to
consider how to add two 5-bit numbers from the switches to get a 6-bit result and how
to split 5 and 6-bit numbers into two hex digits.

3. Verify that you have this working as an adding machine.

4. Modify your design to suppress leading zeros.

5. Demo your design and turn in your report.

	1 Objectives
	2 Required
	3 Procedure
	4 Demo and report
	5 7-segment displays
	5.1 Truth table
	5.2 Karnaugh maps

	6 Create a project in Quartus Prime
	6.1 Use SystemBuilder to create a skeleton
	6.2 Open it in Quartus Prime
	6.3 Connect the switches, LEDs and segments
	6.4 Compile
	6.5 Program the device
	6.6 Test

	7 Create your 7-segment decoder
	7.1 Basic skeleton
	7.2 Debug

	8 Create the adding machine

