BEE 271 Digital circuits and systems
Spring 2017
Lab 2: Hex adding machine™

1 Objectives

This lab will present you with a
combinatorial logic design problem
building a hex adding machine and lead
you through the steps to solving it in
Verilog.

As shown in figures 1 through 3, your
adding machine will:

1. Read inputs A and B as 5-bit binary
numbers on the slide switches,
displaying them on the LEDs.

2. Continuously calculate the 6-bit sum
C=A+B.

3. Display A, B and C as 2-digit hex
numbers on the 7-segment displays
with leading zero suppression.

By the end of the lab, you should feel
fairly comfortable analyzing truth tables
and Karnaugh maps, synthesizing
combinatorial logic and then writing,
compiling and debugging a Verilog module
that implements it.

2 Required

To do this lab, you will need a Terasic
DEO-SoC board and a PC with the
following installed.

1. Quartus Prime Lite Edition (Free).

2. Altera’s USB Blaster driver.

Figure 2. 9 + 7 = 0x10

3. The DE1-SoC CDROM, which should be installed in the C:\altera directory.

" This lab was written by Nicole Hamilton.

3

Here are the steps you’ll follow.

1.

4

Procedure

Create a truth table specification for a
seven-segment display driver.

Use Karnaugh maps to write the o= =
R . R BSY] Oorume
combinatorial equations for each of -

the segments. - Jp3636 -

R W B BB B RE

Use Quartus Il and the System
Builder tool to create an empty
Verilog project.

Create a deliberately trivial Verilog Figure 3. Ox1F + Ox1F = Ox3E

program that wires the switches to
the LEDs and to the segments of one of the displays to verify how they work and that
you can successfully compile a Verilog program and get it to run on the DE1-SoC board.

Write and debug a hex to 7-segment decoder module that implements the combinatorial
equations you wrote and use it to display the hex value on switches SW[3:0] on one of
the displays.

Add additional logic to add A + B and to suppress leading zeros.

Demo and report

Once you have you have your design working, you must demo it. You must also submit a
report containing the following. This is all you need to submit. Your truth table and
Karnaugh maps can be hand-drawn and should be submitted as a PDF.

1.
2.
3.

Your truth table.
Karnaugh maps and equations for each segment.

Your Verilog program as a .v (Verilog) or .sv (SystemVerilog) file.

5 7-segment displays

In this step, you’'ll develop the logic equations for a 7-

segment decoder.

5.1 Truth table

The individual segments in 7-segment display are numbered
from O at the top, clockwise around the outside, then the

middle, as shown in figure 4.

Your first step is to fill in the rest of the truth table in

figure 5, indicating which
segments should light up for
each hex value from 0xO0 to
OxF. The values for sO are
already filled in. You will need
to do the rest. Hex values OxB
and OxD should display as
lower-case b and d.

5.2 Karnaugh maps

The second step is to copy the
desired values for each output
sO through s6 into a 4-variable
Karnaugh map and then use it
to write a sum of products or
product of sums equation.

Figure 6 shows how this might
be done for sO as a Sum of

Products. Based on the groups chosen:

sO = bl b2 + b1’ b2’ b3 + b0’ b3 +
b0’ b2’ + b0 b2 b3’ + bl b3’

You will need to work out the equations
for s1 through s6. Please do not just

copy them off the internet!

0

T

4/ 2
3

Figure 4. Numbering

of the segments.

b3 b2 bl bO| Hex |[sO sl s3 s4 s5 s6
0 0 0 0 0 1
0 0 0 1 1 0
0 0 1 0 2 1
0 0 1 1 3 1
0 1 0 0 4 0
0 1 0 1 5 1
0 1 1 0 6 1
0 1 1 1 7 1
1 0 0 0 8 1
1 0 0 1 9 1
1 0 1 0 A 1
1 0 1 1 B 0
1 1 0 0 C 1
1 1 0 1 D 0
1 1 1 0 E 1
1 1 1 1 F 1

Figure 5. Truth table for the individual segments.

b0 b2 b3’
00 o1/ 11 /(mﬁ b0’ b2’
b3b2 oo 3 of(1 [1
o1l o |1 || 1 b1b2
11| [)0 k1‘ 1)
1010 | 11 o [T
tL J

b1 b2’ b3

b0’ b3

Figure 6. A Karnaugh map for sO.

6 Create a project in Quartus Prime

In this step, you’'ll create a trivial skeleton Verilog project in Quartus that ties the slide
switches to the LEDs and to the segments of one of the displays. You’ll then program the
board and observe which LEDs and segments turn on as you flip the switches.

These are the steps.

1. Use the DE1-SoC SystemBuilder tool to create a skeleton project with the inputs and
outputs you need.

2. Open it in Quartus and add the skeleton Verilog file to the project. (SystemBuilder
generates this file but doesn’t add it to the project automatically.)

Edit the skeleton Verilog to connect the switches, LEDs and one of the displays.
Compile your project.

Program the device.

2

Verify that everything works as expected.

6.1 Use SystemBuilder to create a skeleton

The first step is to use the System Builder tool create a skeleton project with inputs and
outputs connected to the devices on the DE1-SoC board that your logic needs to use.

=RACE X
_ J=[)l « DE1-SoC+5.0.0 RevF System CD » Tools » SystemBuilder » + [43 [l Search s, de)
) Y Y 1)
Organize « Include in library « Share with + Mew folder 4= = iél
9 y L2
Ql] Android i Mame Date modified Type Size
3 Documents o . .
_l] S CodeGenerated 7/4/201511:36 PM File folder
el
= &8 DE150C_SystemBuilder.exe 7/1/201512:34 PM Application 47,955 KB
J” Musi y pp
@' Music
= E | ol _SystembBuilder.exe.manifest 7/1/201512:34 PM MANIFEST File 1KE
k=| Pictures
gﬂ Scans
@l Uw
E videos
3 items
[

Figure 7. SystemBuilder in the Tools directory on DE1-SoC System CD.

SystemBuilder is on the System CD in the Tools\SystemBuilder directory. You can ignore
any security warnings when you start it.

System Builder knows what devices are on a DE1-SoC board and lets you check the ones
you want to use. You will need to use the LEDs, the 7-segment displays and the slide
switches, as shown in figure 8. Give your project any name you like. | called mine
AddingMachine. Save it into a separate directory.

0

| m Systern Configuration
UNIVERSITY Project Narne:

AddingMachine

CLOCK 4 T-Segment x 6
B
Button x 4 IR TX/RX
VGEA IWideo-ln
Audio ADC
SDRAM. 32MB Ps2
HPS
GPIO-0 Header
|None |
Prefi: Name:

DE1-SoC FPGA Board

GPIO-1 Header

| Save Setting Generate ! __Nnne -__
Prefix Name:

l Load Setting | [Exit |

Figure 8. Using SystemBuilder to create a project named AddingMachine
using the LEDs, 7-segment displays and the ten slide switches.

6.2 Open itin Quartus Prime

Start Quartus Prime and open the project you created with SystemBuilder as shown in
figure 10.

€ Quartus T 64-Bit —2 © AR -
' Edit View Project Assignments Processing Tools Window Help =2 Search altera.com 0
D e o | o R I T - AL I

5 Open... Ctrl+0
Close Cirl+F4
Close Project
I save ctrl+s
Save As...
g saveal Ctrl+shift+5
Alm
File Properties...
Create [Update 3
Export... (ET)
Convert Programming Files. ..
i) | Fezzesi Version 15.0
& PrintPreview
& Print... ctri+p
Recent Files 3 Buy Software
Recent Projects 3 View Quartus Il
Information
2l Alt+£4 Documentation
P F—— - Notification Center
Opens an existing project 100%
e

Figure 10. Start Quartus and open the
project you created with SystemBuilder.

Initially, there’s nothing in the project except a mostly empty .SDC (Synoptics Design
Constraint) file that can be used (not by us) to specify timing constraints.

SystemBuilder creates a Verilog skeleton but doesn’t add it to the project automatically,
presumably because there’s nothing in it yet except the module interface definition. You'll
need to add it yourself, as shown in figure 11.

(€4 Quartus I 64-Bit - GyUsers/Nicole/Desktop/AddingMachine/AddingMachine - AddingMachine [E=EEERS
Fle Edit View Project Assignments Processing Took Window Hep 5 Search altera.com @
DEE@ 4@ 9 o [adngacine Y %9 D rwn OO % »
Project Navigator Rax
Q X

Add/Remove Files in Project...

|&r—ﬁerard’w| E| Files ‘ ?Dﬂjll =
= m ALITERA

Flow: |Compilation = | [customize... |

s i QUARTUS"II

b B Analysis & Synthesis Version 15.0

¥ Fitter (Flace & Route)

@ TimeQuest Timing Analysis
= EDA Netiist Writer Buy Software
% Program Device (Open Programn

4
[+ B Assembler (Generate progra
3
I

View Quartus Il
Information

Documentation

Notification Center
« n r

— ——

Figure 11. Add your Verilog file.

100% 00:01:57 |

6.3 Connect the switches, LEDs and segments

In this step, you’ll wire up your module. The only part we care about in the empty skeleton
is the module definition and the list of arguments. You can delete some of the rest of the
comments.

-
&4 Quartus I 64-Bit - Cy/Users/Nicole/Desktop/AddingMachine/AddingMachine - AddingMachine [E=RE
- ey e S P
|| Ble Edit View Project Assignments Processing Tools Window Help 2 Search altera.com @
OB 48 ¥ 523 9 o [nddingMamine v]'ﬁ';‘j@@ D g B e e
Project Navigator fax | e AddingMachine. v a8 |
2 o=) —
& X H@%D O NeA 08 2R | 2 EEHE
[Files 1 ol
abd i i 2 ff
Gk e 3 // This code is generated by Terasic System Builder
&4 AddingMachine.SDC 2 /7
5
6 [Fmodule AddingMachine|
T
8 SILEPIAAIFE] BEGT fATSA1A717
9 output [6:01 HEX0, i
10 output [6:0] HEX1,
11 output [6:0] HEX2,
12 output [6:0] HEX3,
13 output [6:0] HEX4,
= 14 output 6:0 HEXS,
| % Hierarchry | @Fi\es | o Desi;il}l 15 v ! !
Tasks 0@ x||6 FELFEEEFLPES LED [fFFFEFPET I
17 output [3:0] LEDR,
Flow: [Compilation '] [Cusbomize...] ig
19 FELFEREELESS SR FIAFFPFEES EI
Task 20 input [9:01 50
4 = Compile Design 21)
22
> # Analysis & Synthesis 23
I» B Fitter (Place & Route) 24 £
I> #* passembler (Generate progra | 25 I
b B TimeQuest Timing Analysis || 26 // REG/WIRE declarations
27
[» W EDA Netlist Writer 58 /
% Program Device (Open Programn | 29
30
31
32 s
33 // Structural coding
34 1
35
36
37 | 5
38 endmodule
AL e
4 n 3 4 nr 3

100% 00:01:57

S -

Figure 14. The empty skeleton with machine-generated comments.

Wire the switches to the LEDs and to the segments of one of the displays by adding these

lines, as shown in figure 15, and then save your file.

assign LEDR
assign HEXO

Sw;
SW[6:0];

-
£ Quartus Il 64-Bit - Cy/Users/Nicole/Desktop/AddingMachine/AddingMachine - AddingMachine [=S
| Fle | Edit Wiew Project Assignments Processing Tools Window Help S Search altera.com @
DS @ & 2@ 9 o [acingMachine JHEY S0 D rwn OO R >
Project Navigator 1ax | ¢ AddingWachine.v £ | “igh Compilation Report - AddingMachine |
e X 5% e hom 0 2Ry | 2EEE
[Files 1 [Hmodule AddingMachine | -
2
ﬁﬂ AddingMachine. v 3 o e .
%4 AddingMachine.5DC 4 output [6:0] HEXO,
5 output [6:0] HEX1,
& output [6:0] HEXZ,
T output [6:0] HEX3,
8 output [6:0] HEX4,
(% Hierarchy | E| Files | 2 Desit 4| p 13 output [6:0] HEXS,
Tasks aEx |11 /i
12 output LEDR,
Flaw: [Ccmpilation '] [Cusbomize...] 13
14 Iy /
Task 15 input 5w
i 16 Vr
> A S
) 18 assign LEDR = 5SW;
s W Fitter (Place &Route) 19 assign HEXO = SW[6:0]:
> @ Assembler (Generate progrg | 20
> B TimeQuest Timing Analysis || 21 endmodule
> = EDA Metlist Writer =
w Program Device (Open Program
4 m | ke C
2% 00:00:16

Figure 15. Delete the extraneous comments and add statements to
connect the switches to the LEDs and to the HEXO 7-segment display.

You can also collapse the list of ports to something like this if you like, grouping the 7-
segment displays as all being of the same type.

module AddingMachine(
output [6:0] HEXO, HEX1, HEX2, HEX3, HEX4, HEX5,
output [9:0] LEDR,
input [9:0] SW);

assign LEDR
assign HEXO

SW;
SW[6:0];

endmodule

Any signals your module refers to are matched up by name, not order, against signals
defined on the DE1-SoC boards we’re using.

6.4 Compile

The next step is to compile your program, as shown in figure 16.

€4 Quartus T 64-Bit - C1/Users/Nicole/Desktop/AddingMachine/AddingMachine - AddTngMachine‘ BTN
File Edit View Project Assignments |Processing | Tooks Window Help 5 Search altera.com @
|_1 ﬁ H ﬁ PN, i) Stop Processing Ctrl+5hift+C G @ ol @ ,{:} 6} G} "E ’3. »
Project Navigator R & start Compiation Cirl+L iddingMachine | |
Q, alyze Lurrent File = @ SeL abr | = QE
| Files Start 3 ”
AddingMachine.v Update Memory Initialization File
&4 AddingMachine.SDC 4 Compiation Report Crl+R X0,
».9 Dynamic Synthesis Report X1,
y
g PowerPlay Power Analyzer Tool X3,
¥ 5SN Analyzer Tool X4,
" = - X5
| (i Hierarchy | E| Files | o Deﬁsj_ !
Receive Compilation Status Notifications
Tasks 28 x
12 output [2:0] LEDR,
Flow: [Compilaﬁon '] [Cushomize...] 13
14 FALEFFFEFERS SU fAfFFFfrds
Task 15 input [2:0] S0
? 4 P Compile Design 16)i
? [y A .
i8 assign LEDR = S5W;
I+ B Fitter (Place & Route) 19 assign HEXO = SW[6:01:
[+ @ Assembler (Generate progrg| 20
[B TimeQuest Timing Analysis || 21 endmodule
[> = EDA Metlist Writer 22
% Program Device {Open Programn
] T Kl 1 3
Starts a new compilation 2% 00:00:16

Figure 16. Compile your program.

10

If you have any syntax or other errors, you’ll see something like figure 17, where I've
deliberately left out the assign keywords for continuous assignment to a Verilog “wire”.
(You do that only with a “reg” temporary variable type.) To read the compiler error
messages, go to the Compilation Report - Analysis & Synthesis section and click on
messages, which will open in another tile. Fix your mistake and try again.

&4 Quartus I 64-Bit - Cx/Users/Nicole/Desktop/AddingMachine/AddingMachine - AddingMachine ==
Fle Edit View Project Assignments Processing Tools Window Help (5 Search altera.com @
O H&@ % 2@ 9 o [AddngMachine v]g'é'\,;@@ Deg OO 0 A 0
Project Navigator 38| | 4 addngvachiney [1] | 4gb Complation Report - AddngMachine £ | &g addingMachine.soc [|
Q, K (8] 3 Flow summary
& Fies ? B Flow Settings
559 pddingMachine.v 1 Flow Non-Default Global Settings
4 AddingMachine.5DC =F Fiow Elapsed Time
59 Flow 05 Summary

| Flow Log
4 [T Analysis & Synthesis
5 summary
b [Settings

el Compilation

(i) Flow Messages
\i) Flow Suppressed Messages

|P iy Herarchy | E|Fles | of Desit 4 mmk&s‘mﬁﬁk"ﬁ

q
s X o @ @ [T e

IFlow: [Compdauon vl [Cusmmlze..‘ I

Table of Contents

ID Message
Task

x 4 P Comple Design Running Quartus II &4-Bit Analysis & Synthesis

X b B Analysis & Synthesis Command: quartus_map —-read settings_files—on —-—write_settings_files=off AddingMachir
> B Fitter {Place & Route) 11104 Parallel Compilation has detected § hyper-threaded processors. However, the extra hyp
ilog HDL syntax error at AddingMachine.v(18) near text "="; expecting ".", oxr "("

1011 ored design unit "AddingMachine" at AddingMachine.wv(1) due to previous errors

b B TimeQuest Timing Analysis 1
12021 Found 0 design units, including 0 entities, in source file addingmachine.wv

Quartus II 64-Bit Analysis & Synthesis was unsuccessful. 2 errors, 0 warnings

b B EDA Netiist Writer
4 Program Device (Open Program

)]
5]
5]
> B Assembler (Generate progrg & 10170V
]
W
[x]

o i v

4 i, V| _Processing (8)

2% 00:00: 17

Figure 17. Error messages.

6.5 Program the device

Once you have a successful compile, you can try programming the device, as shown in
figures 18 and 19. You may need to auto detect the DE1-SoC board, in which case you'll
need to be sure you end up with the configuration shown in figure 19, with the SOCVHPS
(hard processor system) and 5CSEMA5F31 (Cyclone V FPGA).

11

- Y
" Quartus I 64-Bit - C; ingMachine/AddingMachine - AddingMachine [E=EER

Fie Edit View Project Assignments Processing Tools Window Help 5 Search altera,com @

DS @ % @ 9 o [AddingMachine VLGP D ron 0 R »

Project Navigator 1ax | @ AddingMachine.v [| QCcmpiIaﬁon Report - AddingMachine [£J |
Q X [a| [Flow Summary
a)
= Fies =3 Flow Settings
AddingMachine. v B2 Flow Non-Default Global Settings |
&9 AddingMachine.SDC E= Flow Elapsed Time '
B2 Flow 05 Summary
@ Flow Log
I [Analysis & Synthesis
I+ [Fitter
(i Hierarchy | E]| Files | i Desit 4| Pl (1) Flow Messages
w
— 15 x | E \D Flow Suppressed Messages
é I [Assembler
: |G ilati 7 ize. .. = .
Fiow [gppialiog] [Cushorruze] 5| b O TimeQuest Timing Analyzer
x
Task ﬂ
fa

Compile Design

v Lt Flow Summary
L b W Analysis & Synthesis Flow Status Successfil - Sun Jul 05 23:36:58 2015
v [> W Fitter (Place &Route) Quartus IT 64-Bit Version 15.0.0 Build 145 04/22/2015 5] Web Edition
L d [B Assembler (Generate progrg |Revision Name AddingMachine £
o &> B TimeQuest Timing Analysis Topevel Entity Name AddingMachine
MU et Wirite Cydone V
SCSEMASF31CE
g Models Final i

Logic utlization (jn ALMs) 132070 (<1%) I

d L1 " || Total reqisters] i

100% 00:0L:40

Figure 18. After successful compile, program the device.

% Programmer - C:/Users/Nicole/Desktop/AddingMachine/AddingMachine - AddingMachine - [AddingMachine.cdf]* E@I@ul

Ele Edit View Processing Tools Window Help 5 Search altera.com @

| Eremesw) escum] ‘

Enable real-time ISP to allow background programming when available

m File Device Checksum Usercode Program, Verify Blank- Examine
i Start Configure Check

| s | <none > SOCVHPS 00000000 <none > B B H B
L =y AddingMachine. sof 5CSEMASF31 00AFB36F O0AFE36F [l |} [l
| M oDelete |

|

| ?“_}‘ Change Fil

< [

| [save File |
L thewe |
| 1 Down |
SOCYHPS SCSEMASF31
TDO
4
b O —

Figure 18. Device programmer.

12

6.6 Test
Once you have board programmed, verify that it works as you expect.

Notice that the LEDs are active high (they go on when the switch is on) but that the display
segments are active low (they go on when the switch is off). This is often done because
power consumption is less for signals in the high state if they use a TTL interface, as these
parts likely do. (Remember that a float looks like a 1, so it can’t possibly require any
current.)

This means that whatever equations you’ve worked out for sO through s6 will need to be
inverted at the end.

7 Create your 7-segment decoder

In this section, you’ll create Verilog module which will take 4 bits = 1 hex digit as input and
generate outputs to drive the individual segments of one display.

7.1 Basic skeleton

Here is the basic skeleton you will need to fill in. The equation for sO has already been
rewritten into Verilog syntax. You will need to fill in the rest. Notice that the outputs are
inverted at the end for active low.

module SevenSegment(
input [3:0] hexDigit,
output [6:0] segments);

wire bO, bl, b2, b3;
wire [6:0] s;

assign b0 = hexDigit[0];
assign bl = hexDigit[1];
assign b2 = hexDigit[2];
assign b3 = hexDigit[3];

// s[O] done. TBD: Assign statements for s[1] .. s[6]-
assign s 0] = bl &b2 | ~bl & ~b2 & b3 | ~b0 & b3 |
~b0 & ~b2 | bO & b2 & ~b3 | bl & ~b3;

// Invert the outputs for active low on the DE1-SoC board.
assign segments = -~s;

endmodule

This module can be instantiated in your AddingMachine module and hooked up to some
switches and one of the displays as follows.

SevenSegment HexO(SW[3:0], HEXO);

13

7.2 Debug

Debug your design by verifying that as you flip switches, all the correct segments light up.

8 Create the adding machine

The final step is to turn your design into an adding machine that performs as shown in
figures 1 through 3.

1. Modify your design to wire up all the switches and all the displays with additional
instances of your SevenSegment module.

2. Implement the add function. It's built in to Verilog as the + operator but you’ll need to
consider how to add two 5-bit numbers from the switches to get a 6-bit result and how
to split 5 and 6-bit numbers into two hex digits.

3. Verify that you have this working as an adding machine.
4. Modify your design to suppress leading zeros.

5. Demo your design and turn in your report.

14

	1 Objectives
	2 Required
	3 Procedure
	4 Demo and report
	5 7-segment displays
	5.1 Truth table
	5.2 Karnaugh maps

	6 Create a project in Quartus Prime
	6.1 Use SystemBuilder to create a skeleton
	6.2 Open it in Quartus Prime
	6.3 Connect the switches, LEDs and segments
	6.4 Compile
	6.5 Program the device
	6.6 Test

	7 Create your 7-segment decoder
	7.1 Basic skeleton
	7.2 Debug

	8 Create the adding machine

