BEE 271 labs

Nicole Hamilton
https://faculty.washington.edu/kd1uj

https://faculty.washington.edu/kd1uj

S

7
14
21
28

12
19
26

June 2015
M T W T

F

S

1 2 3 4 5 6

8 910 11
15 16 17 18
22 23 24 25
29 30

July 2015

M T W T
1 2

6 7 8 9
13 14 15 16
20 21 22 23
27 28 29 30

12
19
26

F
3
10
17
24
31

13
20
27

11
18
25

Background

Jun 16: Spring grades in to the registrar. BEE 271 had
only 10 students and was expected to be cancelled.

Jun 18: Learned the class was on and that the old
version of Quartus needed to use our old Terasic FPGA
boards with lab 1 would no longer run on our PCs.

Jun 19-21: Hurriedly created a lab 1 out of whatever
TTL parts | could buy enough of off the racks at Fry’s.

Jun 22: First day of instruction.

Jun 29: The best replacement was clearly the new but
not yet shipping DE1-SoC. When Terasic promised they
could ship 14 boards immediately, we ordered the
same day.

Jul 1: Boards arrive.

Jul 3-5: Created lab 2, the adding machine assignment.
The next two weekends, | wrote lab 3, which I've since
split into two assignments.

Jul 6: The class would need a lab 2 assignment.

Terasic DE1-SoC

FPGA
Altera Cyclone V SoC
85K programmable logic elements

N = 64 MB SDRAM
b i Hard processor system (HPS)
- ' b Dual-core ARM

‘ uw"“g =3 2 hard memory controllers

- ”‘""'-‘=" e Runs Linux and “bare metal” apps
o | ’:'l B i P Board
| "'"",""’."';"""'._!T'_' 6 seven segment displays
_puopuaaugy O K g 10 switches

4 pushbuttons

2 40-pin GPIO headers

1 GB DDR3 SDRAM

+ Micro SD, USB, Ethernet, VGA,
ADC, keyboard, mouse, audio, video

Boot Ubuntu from an Micro SD card as a command
window via PuTTY.

COM4 - PuTTY

Freeing unused

kernel men

Ubuntu 12.04.5 LTS localhost.loc

localhost 1o

in: root (automatic login)

With a keyboard, mouse and VGA display, it runs
the Ubuntu desktop.

Download and run the full GCC toolchain, Firefox
browser and anything else you like.

Possible very cool microprocessor course project

Build a memory-mapped device and the device driver to go with it.

A bare metal app in C built with DS-5 and running in the ARM.

2. A memory-mapped device in Verilog compiled with Quartus and
programmed into the FPGA.

3. Simplest form: memory-mapped control and data registers only.
Bonus: add interrupts and interrupt service routines.

Biggest problem: | first have to figure out how to do it myself and the
documentation is horrible!

Software environment

Quartus Prime

The Intel/Altera IDE for compiling Verilog to the FPGA, including
SystemBuilder to create a new DE1-SoC project.

SignalTap Il

A remote logic analyzer that can be compiled onto the FPGA
along with your own code.

ModelSim
The Verilog simulator.
DS-5

Not used in 271, this is the Eclipse-based ARM IDE for developing
and debugging “bare metal” apps. (We have 100 floating
licenses that can be used even from home with Husky OnNet.)

Four labs

[l oruzs

R Y
BRETBERE <~ = 55

i B

3. Keypad scanner. 4. Keypad debouncer.

Four group exercises

Y [
= L S eSO s

1. Using the lab instruments.

3. Using the ModelSim simulator.

A T I T e T

.......

W B
B g e e e

2. Creating and running a new
Verilog project using Quartus.

4. Using the SignalTap Il logic
analyzer.

830-point (full-size)
breadboard

Texas Instruments
SN7400N Quad

NAND or equivalent.

\C

3 Generic 470 ohm,
1/4 watt, 5%
resistors

Precut and
preformed
breadboard jumper
wires

Texas Instruments
SN7402N Quad NOR
or equivalent.

e

4 Generic 10K ohm,
1/4 watt, 5%
resistors

————
Rew[0:3] Col[0:3]

16-key numerical
keypad

Texas Instruments
SN7404N Hex
Inverter or
equivalent.

3 Generic red LEDs

BEE 271 lab kits

3-piece 20 cm
multicolored 40-pin
jumper wire
“Dupont” ribbon
cable set

Texas Instruments
SN74LS86AN Quad
XOR or equivalent.

Lab 1 Digital logic devices

For many students, 271 is their first
ace 271 pigialcircuit and systems EE class and their first time in the
Lo Dt i dvices lab. They’re fascinated by all our

L o wonderful and very expensive

The purpose of this lab is to familiarize you with the characteristics of some simple TTL
parts that implement basic digital logic functions and with the use of our lab instruments.

Ters v o i cor s et o thicho, s oty ooy o instruments and they want to know
how electronic stuff works.

2 Transistor-transistor logic

Transistor-transistor logic (TTL) is a type of

digital circuitry built using bipolar junction QOutput Input

transistors (B]Ts) and resistors. It's called VCC =5V - - M

transistor-transistor logic because both the Lea rn I n g o bj ectlves

logic function applied against the input and

the amplification needed to drive the High High

output are done with transistors, in

contrast to earlier RTL and DTL Vou =24V

technologies that used resistors or diodes Viy=2V 1 L h t I b
to perform the logic function. Forbidden F;‘rbidden * ea r n OW 0 u Se o u r a
Figure 1 shows the TTL voltage levels for vV, =08V M

high and low states. Notice the standard Vo = 0.4V I n St ru m e nts .

provides a 0.4 V noise margin between the Low Low

allowable input and output values.

} Figure 1. TTL voltage levels.
The most popular family of TTL

components is the SN7400 series of small- 2 IVI k t. b t
scale integration (SSI) parts introduced by Texas Instruments in 1964, starting with the . a e a CO n n eC I O n e Wee n
SN7400 quad 2-input NAND, originally in a metal package for the military, and in 1966, in a

lastic DIP f | . Th 600 diff in th . .
Ejl‘:;i;ﬂ seri[:; Zonn;ns:\:;';?:::?;:z on tﬁ;elr?:eerr:zlwcﬁ\c‘i:;ry oﬁ;rii;eztczziz I:ftspeeed and BOO I e a n a Ige b ra a n d t h e C I rc u Its
power trade-offs.

we use to build things.

3. Learn how ones and zeros are
: represented as voltages in the
TTL standard.

1 This lab was written by Niccle Hamilton.

As shown in figure 2 in simplified form, the
first stage in a TTL NAND gate is a non-
inverting commen base amplifier but with a
transistor that’s been fabricated with multiple
emitters in the base, allowing it to be
controlled by multiple inputs. The second
stage is a common emitter that provides the
inverting amplification.

If either input A or B is pulled to 0 (ground),
there will be a voltage across that base-
emitter (BE) junction and the input transistor
will turn on, pulling the base of the second
transistor to ground, turning it off. When that
second transistor turns off, the output at Q
will rise to 1 (toward Vcc).

We can state the rule as follows: If either
input = 0, the output = 1. If both inputs = 1,
the output = 0. This is called a NAND (not
AND) function.

TTL was especially popular in the 1970s and
1980s for prototyping and debugging designs
intended for fabrication as integrated circuits.
By using hundreds or even thousands of 7400
parts on big wire-wrap boards, a node-for-node
model of a proposed chip could be built that
would run at full speed, important in debugging
something that had to respond to realtime

4.

A
B

GND

=L

Figure 2. A simplified TTL NAND gate.
https://en.wikipedia.org/wiki/Transistor-
transistor_iogic

E B C

e

LnJ
D

n

Figure 3. NPN BIJT cross-section.
httos://en. wikipedis.ora/wiki/Bipolar junction transistor

input, and allow the designer to put a logic probe on a TTL pin to examine a signal that

would be buried inside the final chip.

Today, simulation software and field programmable gate arrays (FPGAs) have replaced TTL
Ssl for prototyping but the parts remain popular for boardboarding and as system “glue”,
parts there on a board simply to connect the main components together.

Brief explanation of how TTL
circuits work.

3 Parts

Here are the parts you'll examine. Notice that all the parts require VCC = 5V on pin 14 and

ground on pin 7 or they will not do anything.

5

lcc

[z] [r] [ee] [e] [e]

=]

4

I‘%IFIWIITI

D)

][]

-

=]
g
=]

=N

D

i

=

L L B L LT LT I
GND
Figure 4. 7404 Hex inverter.

[l [[[[l 5] [

L] Lol] Led Lo L] 2]
GND
Figure 5. 7400 Quad 2-input NAND gate.

Vee

[i2] [] [2] [1r] [ro] [&] [e]

5] L5]
5] (3]

s

D)

Lk

Ll el L) Led L] Led e

GND

Figure 6. 7402 Quad 2-input NOR gate.

L el] el e L] 2]
GND
Figure 7. 7486 Quad 2-input XOR gate.

5. Breadboard and successfully
debug some simple TTL circuits
using inverters, NANDs, NORs and

XORs.

8. Be able to construct truth tables
for NAND, NOR and XOR
functions.

4 Boolean functions

4.1 7400 NAND gate

Build the circuit in figure 8 with red LEDs and
470 Q resistors. Remember to connect 5V
power and ground to pins 14 and 7.

The longer lead on the LED is the positive anode
(the triangle). The shorter lead or the one next
to the flat area if there is one is the negative
cathode (the bar).

Ky

Construct a truth table shown in figure 9 for the
NAND gate by trying all 4 possibilities of the
inputs A and B tied high to 5V = 1 or low to
ground = 0 and observing the LEDs. Figure 8. Testing NAND
gate Boolean functions.

4.2 7402 NOR gate

Rewire your circuit with a 7402 NOR gate in place of the |
NAND and construct a truth table for this function by
varying the inputs and observing the LEDs.

ool
=N =] -]
N

4.3 7486 XOR gate

Figure 9. A truth table.
Rewire your circuit with a 7486 XOR gate in place of the

NOR and construct a truth table for this function by varying
the inputs and observing the LEDs.

4.4 Analysis

1. Design a NOR function using one NAND gate and three inverters.
2. Design an XOR function using no more than three NAND gates and two inverters.

3. If a square wave is fed into one input to an XOR gate and the other input is tied high,
will the output be the same as the input square wave or will it be inverted? What if the
other input is tied low?

9. Measure the output levels
5 Device characterization aSSOCiatEd With 1S and OS and
o caracerstcs determine what a float looks like.

X o Multimeter
electrical characteristics of a real, as opposed

to an ideal inverter. You'll measure the
following.

1. Output voltages for various inputs.

2 ot g e a i e 10. Measure the input switching
thresholds rising and falling.

3. How many nanoseconds it takes for a v
change on the input to cause a change in Floating
the output. 7404N

4. How many nanoseconds it takes for the Multimeter

output to change from low to high and
high to low.

(We do this as a group.)

5.1 TTL logic levels = 7404N

Construct a table of measurements of Vout for Figure 10. Measuring Vout with the input

a 7404 inverter with the input tied high, left tied high, left floating (not connected) or
floating and tied low as shown in figure 10. tied low to ground (0 V).
.320ms 960my
- . # —1.780ms 1.04V
5.2 Switching thresholds Oscilloscope L A1.540ms AS0.0mY
Function)
Using the function generator to drive the inverter as generator i
in figure 11, set Vin = 5.0 Vpp +2.5 V offset 1 KHz alaales| A
triangle wave and check your setting on the — . ;’1—

oscilloscope.

|\|—
==

Capture a screenshot similar of vin and Vout with
cursors positioned to measure Vin at the points
where Vout begins to change and on-screen vin

Vout
measurements Vin peak-to-peak and Vout min and D‘:
max. 7404N
. Figure 11. Measuring switching g - : . 500ks/s 5 |
5.3 Analysis thresholds and transient response 10k peints 2.64 V |
under no-load conditions. alue / Max Std Dev
Peak—Peak 4.72V 4.64 5.04 45.8m
i 160my 99.6m a 160m 36.4m
0.00Vv —18.9m L 80.0m 38.0m
1. Compare your measured values for high and low output levels with the input switching ! 4.40 V 4.43 . 4.56 47.8m

threshold measured with the ramp. How much margin did you find between the high
and low output levels and input threshold switching level? How did it compare to the
TTL voltage standard?

Capture screenshots on the oscilloscope of
Vin on channel 1 and Vout on channel 2 with
appropriate cursors and on-screen
measurements of the following
characteristics as shown in figures 14 and
15.

1. tpy, the propagation time from the
50% point on the input to the 50%
point on the output for a low-to-high
output transition.

2. tpyr, the propagation time from the
50% point on the input to the 50%
point on the output for a high-to-low
output transition.

3. tmise, the time for the output to go
from 10% to 90% rising.

4. teau, the time for the output to go
from 90% to 10% falling.

5.4 Analysis

1. Compare your measured values for
high and low output levels with the
input switching threshold measured
with the ramp. How much margin did
you find between the high and low
output levels and input threshold
switching level?

L LT

Figure 14. tpyy and tpy are
measured from input to output.

Vin 4/—\7
Wout
w

trauL Taise

Figure 15. tray and tgyse are
are measured on the output only.

2. When driven by a triangle, was the output a symmetric square wave? Why or why

not?

3. Is a TTL device equally fast switching from high-to-low and low-to-high?

13.Understand propagation delays
and how to measure tpui, tpriy,
trise, trALL.

Oscilloscope

Function ﬁ
generator Ext Trig
@4
AN UN A [-
4+ A

—0 |
S
I
T

Vin {>c Vout

~600.00ps
3.0000ns

2.50Gs/%
10k points

value
5.28V
120mv

6 Active low versus active high

Build the two circuits shown in figure 14 side-by-side using two NAND gates and two 470
resistors. Both LEDs should light up. Record the measured values of your resistors, the

power supply voltage and the voltages at
A and B.

The circuit on the left is called active high
because the LED turns on (activates)
when the output from the NAND is high =
1. The one on the right is called active
low because the LED turns on when the
output is low = 0.

6.1 Analysis

1. Is the LED brighter in the active low
or the active high circuit?

5]

. Calculate the voltage across each

Figure 14. Active high on the left,
active low on the right.

resistor, VR1 = VA and VR2 = 5.0 - VB. Using Ohm'’s Law, I = V/ R, calculate the
current through each resistor and thus, through each the diode when it's on in the active

high and active low configurations.

7 Ring oscillator

7.1 Circuit

Build the circuit in figure 15 using five
inverters. Notice that it does not have any
input, only an out put

7.2 Measurements

Capture screenshots of the output with on-
screen measurements of frequency and
peak-to-peak voltage.

7.3 Analysis

1. Explain how this circuit works.

Figure 15. A ring oscillator.

2. What is the relationship between the output frequency and the rise and fall times you

measured for an inverter?

14.Learn the meaning of active low
and active high.

(The 7-segment displays they’ll
encounter in lab 2 are active low.)

15.Build a ring oscillator and relate
the frequency to propagation

delays.

Value
—380mv

4.8000ns
45.000ns
A40.200ns

2.50G5/' o |
+¥16.0000ns 10k points 1.28V
dean i Max Std Dev _
—378m aridul —340m 25.7m 0 Jun 201
4 & 27.1m 2:54:33)

1 1 i . 27.13k

15.Learn how a latch works.

8 Latch

16.Challenge them to explain the

gates, two 10K resistors, two LEDs and two 470
resistors. Alternate briefly shorting the S* input to

5 :t M M
oo I S behavior of a static 1 hazard.

discover what this circuit does. &

8.1 Analysis 2 x 24700
N ey S
1. What does the latch do and how does it work? R -~ \‘T
2. What do the S* and R* inputs do? b
24700
9 Hazards L
Build the circuit in figure 17. Figure 16. Latch
9.1 Measurement
Set Vin = 5.0 Vpp +2.5 V offset 1 MHz square
wave.
vcc
Capture screenshots of Vin and Vout with T s.ov
suitable cursors and on-screen measurements Vin 1 N
showing how the circuit behaves when Vin :l:/ X . .
transitions low-to-high and high-to-low. 2.50G5/s [1
. Vout . ints 2.50V
N value ax Std Dev .
9.2 Analysis &P Frequency 1.000MHz 1.000M 999.6k 1.000M 188.2 20 Jun 2015
. R Min -160mvV —146m —320m —80.0m 56.0m 14:31:16)
1. What is the expected output for Vin high?)c { 5.52 V 5.51 5.44 5.60 35.8m
For Vin low? When Vin changes from 1 to 0 -
or from 0 to 1, should Vout change? Figure 17. A circuit with a hazard.

™

What do observe?

Explain what you observed.

pow

why do you think this is called a hazard?

Lab 1 Instructor’s notes

Example expected results, including
BEE 271.D.igitalcir(uits.and systems, Winter 2017 ScreenShOts and answers to the
h.'u:l:llell—a'“iltc-n ’ q u estio n S .

4 Boolean functions

4.1 7400 NAND gate

Build the circuit in figure 8 with red LEDs and 470 2 resistors. 1 3 p a ges .

Lit LED = 1, not lit = 0. Construct a truth table.

s the expected result.

[

= R=1t-]
=1 E=1:]

Figure 8. Testing NAND

4.2 7402 NOR gate gate Boolean functions.

Rewire your circuit with a 7402 NOR gate in place of the NAND

and construct a truth table. _ 7402 NOR
] C
Here is the expected result.
A B | ¢)
0 0 1 -
[} 1 0
1 0 0
1 1 0 J:-
4.3 7486 XOR gate
Rewire your circuit with a 7486 XOR gate in place of the NOR A 7486 XOR
and construct a truth table. “—f" c
B
s the expected result.
A B | ¢ L &3 -
[} 0 0
[} 1 1 3
1 0 1 J_; i_
1 1 0

Lab 1 reflections

1. Students report on surveys that they like the
breadboarding exercises.

2. Students are more unprepared to use the instruments,
read a schematic or wire up a simple circuit on a
breadboard than I'd have expected.

3. I'd have expected more to have played with electronics as
a hobby or to have technician experience.

Lab 2 Hex adding machine

This is a purely combinatorial
Verilog project in Quartus.

BEE 271 Digital circuits and systems
Winter 2017
Lab 2: Hex adding machine!

| objectives 1. Two 5-bit numbers, A and B, are
entered on the 10 switches.

combinatorial logic design problem
building a hex adding machine and lead
you through the steps to solving it in
Verilog.

As shown in figures 1 through 3, your
adding machine will:

2. A, Bandthe 6-bitresultC=A+B
are displayed on pairs of seven
segment displays with leading
Zero suppression.

1. Read inputs A and B as 5-bit binary
numbers on the slide switches,
displaying them on the LEDs.

2. Continuously calculate the 6-bit sum
C=A+BE.

3. Display A, B and C as 2-digit hex
numbers on the 7-segment displays
with leading zero suppression.

By the end of the lab, you should feel
fairly comfortable analyzing truth tables
and Karnaugh maps, synthesizing
combinatorial logic and then writing,
compiling and debugging a Verilog moedule
that implements it.

Learning objectives

2 Required

To do this lab, you will need a Terasic
DEO-SoC board and a PC with the

7 et 1. Basic familiarity with binary
e caton e oz o7~ auo numbers and hex notation.

2. Altera’s USB Blaster driver.
3. The DE1-SoC CDROM, which should be installed in the C:\altera directory.

2. Ability to create a simple Verilog
project in Quartus, compile it
and program the FPGA.

A close-up of what they build

-
-
-
-
-
-
-
-
-
-

NIVERSITY
ROGRAM

=3

R180 &
)}

3. Ability to create a truth table for
5 7-segment displays a deS|red fU nCtion.

In this step, you'll develop the logic equations for a 7- 0
segment decoder. B—
5/ 6 I 1

5.1 Truth tabe 7 4. Ability to use a Karnaugh map to

The individual segments in 7-segment display are numbered

_ N 3 .
o 2 e top: clodwise around the outside, then the raure 4. numbering create an SOP or POS solution.

of the segments.

Your first step is to fill in the rest of the truth table in
figure 5, indicating which

segments should light up for b3 b2 bl b0O| Hex |[s0 sl s2 s3 s4 s5 sb
each hex value from 0x0 to 0O 0 0 0 0 1
OxF. The values for s0 are 0 0 0 1 1 Q
already filled in. You will need 0o 0 1 0 2 1
to do the rest. Hex values 0xB 0o 0o 1 1 3 1
and 0xD should display as g 1 g (1) g g
lower-case b and d. IVI 'f I I I 4 k H M4)
0 1 1 0 6 1
0O 1 1ot (ercitully, Irm sSKipping pages.
5.2 Karnaugh maps 1 0 0 0O 8 1
i 0 0O 1 9 1
The second step is to copy the 1 0 1 o0 A 1
desired values for each output i 0 1 1 B 0
s0 through s6 into a 4-variable 1 1 0 o0 c 1
Karnaugh map and then use it 11 0 1 D 0
to write a sum of products or 11 1 0 E 1
product of sums equation. 11 1 1 F 1

Figure 6 shows how this might Figure 5. Truth table for the individual segments.

be done for s0 as a Sum of
Products. Based on the groups chosen:

50 = b1 b2 + b1'b2’ b3 + b0’ b3 + B0b2 b2’
b0’ b2’ + b0 b2 b3 + b1 b3’ b1 b0 / b1b3*
01/ 11 b0’ b2
You will need to work out the equations /rmj
for s1 through s6. Please do not just b3 b2 00”—1| 0
copy them off the internet! 01 ‘ o}

blb2

bl"b2’ b3 b0’ b3

Figure 6. A Karnaugh map for s0.

System Builder knows what devices are on a DE1-SoC board and lets you check the ones
you want to use. You will need to use the LEDs, the 7-segment displays and the slide
switches, as shown in figure 8. Give your project any name you like. I called mine
AddingMachine. Save it into a separate directory.

EEme— B
AITERA! System Corfiguration |
AN =ntA
INIVERSITY Preject Name

AddingMaching

DE1-SoC FPGA Board

CLOCK 7 7-Seqment x 6
Button x4 R TR
YEA Video-in I
Ao ADC
SORAM, 3ZME PS2
HFS
GPIO-0 Header
Hone 2
Prefo: Name: 1
GPIO-1 Header
[Save Satiing ‘ Generate \ (Hone =]
Frefix Hame I
} Load Satfing Exit |
L I

Figure 8. Using SystemBuilder to create a project named AddingMachine
using the LEDs, 7-segment displays and the ten slide switches.

5. Use the SystemBuilder tool to
create a template project.

(We do this as a group in the lab.)

The DE1-SoC SystemBuilder utility

DE1-SoC V1.1.1

UNIVERSITY
PROGRAM

DE1-SoC FPGA Board

Qasic

WWwW.Cerasic.com

1551 e

HH HH
T
Save Setling Generate

Load Setting Exit

System Configuration

Project Name:

‘AddingMachine |
L CLOCK 7-Seagment x 6
MLEDx10 M Switch x 10

i Button x 4 O IR TXIRX

LIVGA L1Video-In

[J Audio LJADC

CJSDRAM, 32MB O PS2

LIHPS

GPIO-0 Header
None
Prefix Name:

GPIO-1 Header
None
Prefix Name:

6. Open a project in Quartus and
Wire the switches to the LEDs and to the segments of one of the displays by adding these a d d t h e Ve ri I Og fi I e B

lines, as shown in figure 15, and then save your file.

assign LEDR — 5W;
assign HEXO = SW[6:0];

7. Wire the switches to the LEDs
and to one of the 7-segment
displays.

G [
e Eor fiew ot Amgents Pocsmbg Teds Windw bew 7
IS W@ & 039

YO N LE]
a

o Fies
8 adgngsacioe.y
[Cpem——

D Heerhy | SlFka [Do d|p]

T EE3|
Fow: |Comdatien | [€urtomiee...
Tk
“kw
B Fiter (Place & Roue)

e e
b B TemCuest Tenng fnelyss

P EDA Mt wirnter
8 Frogrom Cece (open Progren

T onesu

Figure 15. Delete the extraneous comments and add statements to
connect the switches to the LEDs and to the HEX0 7-segment display.

Switches wired to the LEDs

O Quartus Prime Lite Edition - C:/Users/Nicole/Desktop/AddingMachineFirstStep/AddingMachine - AddingMachine

File Edit WView Project

= d
x » B ®|E5

Assignments

"

t@_‘

Processing Tools

AddingMachine

Window Help

/OOD

x

|Search altera.com

>t b @

Project Mavigator [Files =18 x @ AddingMachine.v
F~ Files 5= 5= 25? =
HE AddingMachine.v . M {I == :F D B‘ E) @ O @
B® AddingMachine.SDC % Amodu le AddingMachine(
3 [11111111111 SEGT [//11117111
4 output [6:0] HEXO,
5 output [6:0] HEXl
6 output [6:0] HEX2,
Tasks Compilation - |=[gg = 7 output [6:0] HEX3,
8 output [6:0] HEX4,
Task 9 output [6:0] HEX5,
~ [P Compile Design 10
11 LI111117777) LED [111]1117]
> P> Analysis & Synthesis i% output [9:0] LEDR,
> P> Fitter (Place & Route) 14 LTI SW LLLE (1777
> P Assembler (Generate programming files) ig): —lnpl“: [9:0] W
> P TimeQuest Timing Analysis ig = assign LEDR = SW:
> P EDA Netlist Writer 19 assign HEX0 = Sw[ﬁ 0]1;
20
W Edit Settings 21 endmodule
» Program Device (Open Programmer) 22
< >
Ln22 Col1 Werilog HOL File 0% 00:00:00

gMachine/Addinghachine - AddingMiachine

[bl

Fle Fdt Wew Proect Amigrmentn Frocemng Took Wrdow Heb 3

W% 000t

arch altera.com L]
OF W@ 4@ 9 o [adngeachee EY ¢S 0 r e OO0 W -
Froject Navigaiar PEX | 4 mdngiaties) | 9 ConplebonReport - Acinghechioe [
a X [®] | Fow summary
™ H = FowSetings
- = Fow Mo Default Gubl Settings
4 sddngadie.
naon o = Fo Eiapsed Tme-
= Fow 06 Summery
=l FowLog
L ansiyas s synthess.
3 Fitr
B vreomcy | Sriee o=] B> Fow messages
= Gmx |§ D rouseesedmemnges
[EEp—
R T e [e p————
S 3
W |4 » ComkOesn
L B araiyis asyrthesds Flows Sty Sueresaful -Sun Ju 05 23:26:58 2015 -
I b Foter Face BRaut] || uariue T 648 Varsian 15008 1450423201551 bich Eedtion
-/ I+ B smerti (e ate progs Revesan lane B
- b I Twequest Teing Aratysis || Topdevel Entty Name Addngchie
Ferly Cychne ¥
SCIEMASFIICE
Hides Al
Logk utkzatian (n ALNs) 1/z2pm0 < 1)
] * | ot regrims o 2

8 Progeammer -

Figure 18. After successful compile, program the device.

Be gt pew Focsmrg Iock Wndw el

S Rasdhaare Scip...| DE-SeC fusa-I] Mace: | TAC -

) Ervabie re-time ISP to slow badkgraund programming when avaishle.

@ Fie . [T—

e aneres SO0UHPS e
- Addngechine sof SCSEMAFIL COAFEIF OOAFEXF

g Auto Detect

5L elere

SSEMASFIT

o1
' u
]

T

Figure 18. Device programmer.

12

8. Successfully compile their code
and program the FPGA.

We get to here as a group

» Programmer - C;/Users/Nicole/Desktop/AddingMachineFirstStep/AddingMachine - AddingMachine - [Ad... — O X

File Edit Wiew Processing Tools Window Help |Search altera.com |.

2, Hardware Setup. | |l A Mode: |JTAG ~ Progress: [100% (Successful)

[] Enable realtime ISP to allow background programming when available

File Device Checksum Usercode Program/ Verify Blank- Examine Security Erase |

wh Start Configure Check Bit cL

<none: SOCVHRS 00000000 <nones

ol St
i AddingMachine sof SCSEMASF31 00AFB3C1 00AFB3CH

M Auto Detect

M Delete

M Add File...

" Change File.
I Save File
E Add Device..
b up

1"t Down

SOCVHPS SCSEMASFI

9. Add the basic skeleton for the
seven segment decoder and

Once you have board programmed, verify that it works as you expect.

. .
Notice that the LEDs are active high (they go on when the switch is on) but that the display I n sta nt I ate O n e CO py-

segments are active low (they go on when the switch is off). This is often done because
power consumption is less for signals in the high state if they use a TTL interface, as these
parts likely do. (Remember that a float looks like a 1, so it can't possibly require any
current.)

10.Fill in equations for segments 1
through 6.

This means that whatever equations you've worked out for s0 through s6 will need to be
inverted at the end.

7 Create your 7-segment decoder

In this section, you'll create Verilog module which will take 4 bits = 1 hex digit as input and
generate outputs to drive the individual segments of one display.

7.1 Basic skeleton

Here is the basic skeleton you will need to fill in. The equation for s0 has already been
rewritten into Verilog syntax. You will need to fill in the rest. Notice that the outputs are
inverted at the end for active low.

[3:0] hexDigit, o [6:0] segments);

SevenSegment (

b0, BL, BI, B3;
87

hexDigic[0];
hexDigic[l];
hexDigit[2];
hexDigic[3];

=Dbl & b2 | ~bl & ~
| b0

~b0 & -

assign segments = ~s;

This module can be instantiated in your AddingMachine module and hooked up to some
switches and one of the displays as follows.

SevenSegment HexO(SW[3:0], HEXO0):

13

Basic skeleton

O Quartus Prime Lite Edition - C:/Users/Nicole/Google Drive/bee271/Simulations/AddingMachine/AddingMachine - AddingMachine — O X
File Edit View Project Assignments Processing Tools Window Help Search altera.com |.
OO0 C e/ SEQ D>+ 4.9 CAVH
M ud B':' < | & _‘
Project Navigator E Files =08 x @ AddingMachine.v a
[~ Files - o | 3= I= — 267 —
= +«= AN =
deingMachinev B w } 5= 5= D m‘ |ﬁ) @ [- @ 268 —
BB AddingMachine SDC 7 ~
8 Emodule Sevensegment(
9 input [3:0] hexDigit,
10 output [6:0] segments);
11
12 wire b0, bl b2, b3;
13 wire [6] s;
14
15 assign b0 = hexDigit[0 1;
16 assign bl = hexDigit[1 1;
17 assign b2 = hexDigit[2 1;
18 assign b3 = hexDigit[3 1;
19
20 // s[0] done. TBD: Assign statements for s[1] .. s[6].
21 assign s[0] =bl &b2 | ~bl & ~b2 & b3 | ~b0 & b3 |
22 ~b0 & ~b2 | b0 & b2 & ~b3 | bl & ~b3;
— _ 23
v = q ox -
=25 Compilation — 24 // Invert the outputs for active low on the DE1-SoC board.
Task 25 assign segments = ~s5;
26
+ v P Compile Design 27 endmoduTe
v > P Analysis & Synthesis %g
v > P> Fitter (Place & Route) 30 // Stubbed wrapper for the DE1-SoC
31
v > P> Assembler (Generate programming files)|| 32 Emodule AddingMachine(
: - _ 33 output [6:0] HEXO, HEX1, HEX2, HEX3, HEX4, HEXS,
i > P TimeQuest Timing Analysis 34 output [9:0] LEDR,
> B> EDA Netlist Writer 3(53 input [9:0] sw);
W Edit Settings 37 assign LEDR = SW;
38 sevensegment Hex0(sw[3:0], HEXO0);
» Program Device (Open Programmer) 39
40 endmodule
< > a1 v

Ln24 Col 52 Verilog HDL File 0% 00:00:00

On their own to solve remaining
design problems

Debug your design by verifying that as you flip switches, all the correct segments light up.

8 Create the adding machine 1

The final step is to turn your design into an adding machine that performs as shown in

_ Instantiate copies of the 7-
1. ﬂodifyyourdesigntowireupa\ltheswitchesandal\thedisp\ayswith additional Segment decoder for each of the

instances of your SevenSegment module.

2. Implement the add function. It's built in to Verilog as the + operator but you'll need to d H I
consider how to add two 5-bit numbers from the switches to get a 6-bit result and how I S p ayS °
to split 5 and 6-bit numbers into two hex digits.

3. Verify that you have this working as an adding machine.

4. Modify your design to suppress leading zeros.

5. bemo your design and urn i you rpor 2. Implement C=A + B.

3. Split the bits for A, Band C
across the 6 displays.

4. Suppress leading zeros.

Demo and submit Karnaugh maps
and code.

14 pages.

Lab 2 reflections

1. The students like the exercise and most complete it without much help.

2. They like building something and that it’s more satisfying than
homework as a way to learn Karnaugh maps. It works or it doesn’t and
they can keep at it until it does.

3. Compiles are very slow and often hang. We need much faster lab
machines.

Lab 3 Keypad scanner

BEE 271 Digital circuits and systems
Winter 2017
Lab 3: Keypad scanner!

1 Objectives

In this lab, you will design and build a
keypad scanner and display as shown
in figure 1.

1. The display will use the 7-segment
decoder from lab 2.

2. The keypad is connected via the
GPIO (general purpose I/0)
connector.

3. The * (asterisk) key should mean
hex E and the # (pound sign) key
should mean hex F. All the other
keys should be as marked.

4. When a key is pressed, the new
digit should be displayed in the
rightmost 7-segment display. If
no key is being pressed, the
display should be blank.

5. A count of the cumulative number
of keystrokes should always be
displayed in the four leftmost 7-
segment displays with leading zero
suppression.

EA A

displayed and the count is incremented

Figure 1. When a key is pressed, it’s

" e o -

7 i3 i =
it B it B it B Fesg
— = = Rem
L s Lo o
L L L o

6. The remaining 7-segment display Figure 2. Keypad with pull-up resistors. The columns

should always be blank.

7. One of the pushbutton switches

should provide a reset function, blanking all the digits.

are the inputs and the rows are the outputs.

By the end of the lab, you should be comfortable designing, building and debugging a useful
clocked sequential circuit in Verilog and you will have learned how a classic problem of

working with mechanical switches is solved.

* This lab was written by Nicole Hamilton.

This is a sequential logic project.

1.

2.

Scan a hex keypad to determine
when a key has been pressed.

When a key is pressed, display it
and increment a 16-bit count.

Learning objectives

1.

Ability to solve a simple
sequential logic problem.

Understanding of an actual
application, how a keypad is
read.

2 Work product

At the end of this lab, you must demo your design and submit your code as a .v or .vs file.
That is all you need to submit. You will not be writing a report.

3 Keypad scanning

It's impractical to run even one wire per key to any large keyboard, so the standard solution
for decades has been to arrange the switches into columns and rows as shown in figure 2.
The coordinates for any given key are referred to as the scan code, which is then mapped to

the appropriate character code.

Using this technique, the number of wires required, nw, grows only with the square root of

number of keys, nk, not linearly.

Ny, = 2yn

For a keypad with 16 keys, this
means we need only 8 wires, not
17 wires (one for each key + a
common wire.)

Each row pin has an internal
weak pull-up on the FPGA, a
resistor tied high to guarantee
the rows will normally be a logic
level 1, not floating, but with a
high enough value resistor that it
won't take much current to pull
the row to 0. The on-chip weak
pull-ups are 25K%; from Ohm's
Law we can calculate it will take
only 132 pA to pull a row to
ground.

E 33V

I=—=
R 25KQ

=132 pA

Columns driven as outputs from the FPGA

z 0 z z
33v

Calt Col2 Colz .

v) U pullups
4/=—‘ 4«»:»—] 4/»—| Rowd 1
___l! _°/°_| = Bt
oy e -

s

—‘*/ﬁ — = == Rowd o

Rows read as inputs
with on-chip pullups

Figure 3. A closed switch creates a path
to pull a row to 0 with only 132 pA.

When a key is pressed, it connects a row wire to a column wire. By scanning the columns
very rapidly, pulling just one column at a time to 0 while putting Zs (high impedance, like
it's not connected) on all the other columns as shown in figure 3, we can quickly discover

any key that’s pressed because when we pull its column to 0, the row it's connected to will

also go to 0.

8]

3. Rotate a 0 across the columns at
some reasonable scan rate.

4. If arow goes to zero, a key at the
intersection has been pressed.

Columns driven as outputs from the FPGA

VA 0 VA VA 3.3V
Col0 Coll Col2 Col3 . 25KQ
y y y y § g § g pullups
'_o/o_| _O/O_J _O/O_J _O/O_J Rou0
="] T Rowt.
>
'_o/o_| _O/O_J _O/O_J _O/O_J Row2 4
c,/o| _°/°_J _°/°_J _°/°_J Rous
m Rows read as inputs
<spr-smar with on-chip pullups

Row[0:3] Col[0:3]

5. Starts with a simple counter tied
to the LEDs and discussion of

The first step is verify that you know how use CLOCK_50, the 50 MHz clock by building a

.) .
simple counter that can divide the clock down low enough that you can watch the output h OW fa St t h ey I I b I I n k
.

change on the LEDs.

Figure 5 shows a simple module that increments a

32-bit counter with the high-order 10 bits wired module scan(input CLOCK_50,
to the LEDs. output [9:0] LEDR);

. . reg [31:0] counter;
The always block in the example is entered on the

positive edge of the clock. (You can choose any assign LEDR = counter[31:22]; mOdU I e Scan (i nput CLOCK_SO »
clock and either edge but stick with whatever you Tw. @ d 50 - -
choose throughout your design.) ? ‘\igantgrpgiecgﬁngégcf_l:) OUtpUt [9 - O] LEDR) ”
endmodule

This is a clocked, not combinatorial logic. In
clocked logic, the intended next state, in this Figure 5. A simple counter to start.

case, the next value of the counter, is calculated I"eg [31 - O] Counte r ;
based on the current state and then clocked (written) simultaneously into all the outputs at

the clock edge.

Because this is intended as sequential clocked logic where the outputs should all change at ass i g n LEDR = Counte r[26 - 25] ;

once, the assignments use the “<=" operator instead of the "=" operator used for
combinatorial logic. The right-hand side of each "<=" assignment is evaluated using the

values at entry to the always block. The actual assignment to the variable on the left is
deferred until after the end of the always block and is done simultaneously with all the a I WayS @ (pOSGdg e C LOCK_5O)
others.

counter <= counter + 1;
Never mix combinatorial "=" assignments with clocked "<=" assignments in the same always
block. If the always block is clocked sequential logic, use only the "<=" operator. If it's

combinatorial, use only the “=" operator.
e ’ endmodule

Instantiate a copy of this in your main module and compile and run this on your board.

What you should observe is the LEDs counting in binary, each LED blinking at half the

frequency of the one to its right.

With a 50 MHz clock, counter[0] will flip from 0 to 1, then back to 0 in two clocks, meaning
it will be running at 25 MHz, half the input clock. By extension, each bit k of the counter
will have a frequency and period as follows:

50 MHz
Y =
T 1
TR

Thus, we'd expect LEDR[0] to blink at about 50e6/223 = 6 Hz. LEDR[9] should blink at
50e6/232 = .01 Hz (a period of 86 s.)

This should give you an idea of how you
might choose two bits from your counter
as your column number. If you know
the frequency you want, you can
calculate which bit will flip at that rate as
follows:

50 MHZ)

k= logz(T

4.4 Turn that into a one-hot

You then need to turn a two-bit column
number into a one-hot as shown in
figure 6. Your eventual objective will be
to scan from one column to the next at
perhaps 30 KHz to 100 KHz. But to
make it possible to watch things change
on the LEDs, we need something slower,
so let’s pick fk = 1 Hz, giving k = 25.

In this second step, I've picked
counter[26:25] as the two-bit column
number and then translated that to a
one-hot output, wiring the column
number and the one-hot to the LEDs.

Compile and run this on your board.
What you should observe is 4 LEDs
rotating a one hot pattern and 2 LEDs
counting 0 to 3 in binary, changing at
a 1 Hz rate.

4.5 Plug in the keypad

Plug the keypad into the GPIO-1 with
the leftmost pin, Row[0], at GPIO[25]
and the rightmost, Col[3], at
GPIO[11], as shown in figures 7 and
8.

4.6 Add internal pull-ups

The next step is to enable the internal

weak pull-up resistors on the rows. From the main Quartus menu bar, go to Assignments 3

Assignment Editor.

Figure 7. Keypad pinout.

module Scan(input CLOCK_50,
output [9:0] LEDR J);

0] counter;
reg [3:0] onehot;
wire [1:0] columnNumber:

assign columnNumber = counter[26:25];
assign LEDR = { onehot, columnNumber };

always @(posedge CLOCK_50)
counter <= counter + 1;

always @E * %

case columnNumber)
0: onehot = "h1000;
1: onehot = ' B
2: anehot = ;
3: onehot = B

endcase

endmodule

Figure 6. A one-hot counter.

|
|

———
Row[0:3] Col[0:3]

Figure 8. GPIO pinout.
The notch is on the left.
Image source: Altera

6. Example turned into a one-hot,
which has to be modified by the
student.

module Scan(input CLOCK 50,
output [9:0] LEDR);

reg [31:0] counter;
reg [3:0] onehot;
wire [1:0] columnNumber;

assign columnNumber = counter|[26:25];
assign LEDR = { onehot, columnNumber };

always @(posedge CLOCK 50)
counter <= counter + 1;

always @(C *)
case (columnNumber)
0: onehot = "b1000;
1: onehot = "b0100;

2: onehot = "b0010;
3: onehot = "b0001;
endcase

endmodule

Do not change any lines already there but add the last 4 lines shown in figure 9, assigning
weak pull-ups to GPIO pins 19, 21, 23 and 25, corresponding to the rows on the keypad.

(i Quartus Prime Lite Edition - C/Users/Nicole/Google Drive/bee271/Lab3/Tri 15canner/KeypadScanner - KeypadScanner -

Flle Edt View Project Assignments Processing Tools

O d [o)

Project Nevigator || Files

KeypanSesnsr

@ Keyptcanner)

eGSO

& pasigoment Sdnor O

[X -T2

Q) Compltion Rapor - KeypadScanmer

o
alters oo L]

Figure 9. Adding weak pull-ups.

Filns wsnews w [Z] Filles on nade nammes | Catequry A1 -
B KeypadScannery satw From T Assignment Hams Value Enavled Entity A
T2 KaypadScamer 00 19 v I G Lacain FrAZI Ve —

o0 v N a GPIOZO) VD Stamird VLT Yes KeypodScanner

201 v N % CPIO[30] Luction PIN_AF19 Yes []

202 v [= GFIO[N0] VO Standard IIVIVTTL Yas KoypatScantar

201 v [N % GPORY| Locaton PrAGT ves .

204 v [N ' GFIO[31] /O Standand FIVLVITL Yes KeypadScanner

205 v [N = GFIO[Z] Lacation FiN_AFTE Yas []

205 v [N % SFO D Stancar IzwlviL ves Keypeascanner

207 v [N & GFIO[33 Location PIN_AGZI Yas []

200 v [% GFIO[33| VO Standard IIVLVITL Yes KeypadScannar

200 v [N % CPIO[3| Lacstion PIN_AG1E Yes []

210 v | % GFIO[34] VO Standard LIVLVITL Yes KeypadScannar

B we-||2" v s GFOS Lcatin FIN A1 Yas []

- 212 v - =

Ml % Progesa 8[43 ' GPIO[13] Wask PullUpResistor On Yes KeypadScanner

Full Gampilation 24 v “ GRIO[ZI] Wask Full Up Rasistor Dn Yas Koypatcanar
Analysis & Symihesis 215 & e GPIO[Z3] Weak Pull-UpResistr On Yes KeypadScannar
Fitar 26 v Y OFIO[2S] Wesk Pulblp Resistor On Yes KeypedSeanner
Assamblar | Tos Gl p— — = -
Tmettuse! Trrng Aralyce IITCENN 00| N

[This cel shows the siaius of the assigument in the cument row
a
]
< >
00% 000141

The result will be to add the following lines near the bottom of your .qsf (Quartus Settings
File) file. (If you prefer, you can simply edit the .qsf file directly to add these lines.)

set_instance_assignment
s=t_instance assignment
set_instance_assignment

set_instance_assignment

4.7 Scan the keypad

-name

—nams

-name

-name

WEAK_PULL_UP_RESISTCR ON
WEAR PULL_UF_RESISTCR ON
WEAK_PULL_UP_RESISTCR ON
WEAK_PULL_UP_RESISTCR ON

&

o GPIO[19]
o GPIO[21]
o GPIO[23]
o GPIO[25]

o

&

&

Modify your Scan module to have the following inputs and outputs.

module Scan(input CLOCK 50, inout [

£ reg [

0 1 keypad,

] rawRey, output reg rawValid);

Bits 7:4 of the keypad are the rows. Bits 3:0 are the columns. If a key is being pressed,
rawValid should equal 1 and rawKey should equal the character code (hex 0 through F) of

that key.

7. On-chip pullups are added with
the Assignment Editor.

8. Create a Scan module.

module Scan(input CLOCK 50,
inout [7:0] keypad,
output reg [3:0] rawKey,
output reg rawvalid);

9. Instantiate their Scan module
To hook this up to the GPIO pins, the instantiation in your main module should look and tie it to the GPIO-

something like this. Notice how concatenation is used to collect the GPIO pins connected to
the keypad into an 8-bit vector to be passed to the scan module.

Wi 3:0 Key; u - -
vire Ll wire [3:0] rawKey;
50, = = -

S ol o5 Gp1of 23 1, GPI0[21 1, GPIOL 19 | wire rawvValid ;

GPIO[17 1, GPIOL ﬁ, GPTO[13 1, GPIO[11] }:
rawkey, rawvalid);

Modify the scan module so that scans until it finds a key that's pressed, stays there so long Scan SC (C LOCK 50
S]

as the key remains pressed, and then starts scanning again if the key is released.

1. Medify your one-hot code to drive the selected column to 0 and the rest to z (high { GP I O [25] 7 G P I O [23] 7

impedance) rather than 1.

2. Pick a sensible rate for scanning across columns, somewhere between 30 and 100 KHz. GP I O [2 1] L] G P I O [19] L]
3. Increment the column number only if none of the rows is currently 0. (If we've found a G P I O [17] G P I O [15]
2 2

key that's pressed, stay on that column.)

4. If a key is pressed, translate the row and column number coordinates into the GP I O [13] G P I O [1 1] }
7 7

corresponding hex value as rawKey.

5. Wire the rawKey to the rightmost of the 7-segment displays (HEX0) but only display the raWKey » raWVa I i d) ;

digit if rawValid = 1.

4.8 Add a counter

Add a 16-bit counter of the number of key depressions. Each time rawValid goes to a 1,

increment the counter. Display it as a hex number in the 4 leftmost 7-segment displays 1 O . Ad d a CO u nte r’ 7 —s eg m e nt

with zero suppression of the three high-order digits. Add a reset function tied to the
leftmost button.

What you likely observe is that the keypad works only sometimes. Sometimes when you d I S p I ays a n d a reset .

press a key, the count goes up by only 1 as it should. But it sometimes goes up by 2 or 3
or maybe more because the key is bauncing.

;P 11.They should observe that keys
sometimes bounce.

12.Demo and submit the code.

Lab 3 reflections

1. The students like the exercise and are intrigued to learn how a simple
keypad works but find it deceptively difficult.

2. If they have trouble, it’s in:

a) How to stop advancing to the next column if they’ve discovered a
key that’s pressed.

b) How to translate row and column coordinates into a hex key code.

3. Sadly, some of the keypads don’t bounce very much.

Lab 4 Keypad debounce

BEE 271 Digital circuits and systems
Summer 2016
Lab 4: Keypad debounce!

1 Objectives

In this lab, you will modify the keypad
scanner you built in lab 3 to add
debounce logic and modify the display
to scroll the characters typed.

1. When a key is pressed, the new
digit should be added to the right
end of the display and the
previous digits shifted left.

2. Debounce logic should be included
ensure that if you press a key only
ance, you get only one digit.

Figure 1. Keypad scanner.

3. One of the pushbutton switches

should provide a reset function, . Eﬁm Cﬁ” Cﬁlz cﬂ’

blanking all the digits. ’_oﬂ_ ’_,/.,_ '_DO_ '_c/n_ .
By the end of the lab, you should be e
comfortable designing, building and o e Ao o] rewn
debugging a useful clocked sequential i J_ﬂ — C = =
circuit in Verilog and you will have o] o] o] —] ko
learned how a classic problem of i - r =
working with mechanical switches is

g J—., — ’—a — '—-’ o— ’—" o— ROWS

solved. 20

Figure 2. Keypad with pull-up resistors. Columns are

the inputs and the rows are the outputs.
2 Work product P P

At the end of this lab, you must demo your design and submit your code as a .v or .vs file.
That is all you need to submit. You will not be writing reports.
3 Switch debounce

When a mechanical switch is closed, the contacts will bounce like a ball for perhaps a
millisecond or so, rapidly opening and closing. This happens much too fast for any human
to notice, but to digital logic, it looks like the key is being pressed multiple times.

* This lab was written by Nicole Hamilton.

This is a sequential logic project.

1. Build a new module that will
debounce the raw keys.

2. When a key is pressed, shift the
displays and add it.

Learning objectives

1. Ability to solve a slightly more
difficult sequential logic
problem.

2. Understanding of how to use
hysteresis to debounce a signal.

Without additional logic to debounce the signal, pressing a |
key once can generate not just one character, it can 17
generate a whole slew of them racing across the display.

The standard solution is a circuit that exhibits hysteresis, Output
meaning that its behavior is sticky. As illustrated
conceptually in figure 3, once it in a given state, it's hard to
get it out.

Hysteresis can be accomplished by integrating the input Input
over time either digitally or with an analog circuit (e.g., with
a device called a Schmitt trigger), switching the output
state only after the integral has crossed an appropriate
threshold.

Figure 3. Hysteresis.

This is a class about digital design so course we will do it digitally.

4 Procedure

In this lab, you’'ll add logic to your keypad scanner to debounce the output to ensure that if
you press a key once, you get exactly one key depression.

Here are the design steps you'll follow.

1. Create a new module to debounce the output of your scan module.
2. Add additional logic to shift each a new keystroke into the rightmost 7-segment display.

3. Debug your final design, demo and submit your .v or .vs file.

4.1 Stage 2: Debounce each key

Create a module with the following inputs and outputs to debounce the raw output of your
scanner. When the input changes, it should wait for it settle before changing its output.

module Debounce(input CLOCK 50, input [3:0] rawRey, input rawvalid,

cutput reg [3:0] debouncedRey, ocutput reg debouncedvalid);

The way to decide if the input has settled is to use a counter to count down until enough
time has elapsed and the signal has been steady enough that you trust it. You will also
need some reg variables to remember the last state of the raw input.

How long you wait for settling is not very critical. Any reasonable value from about 1 ms =
5,000 clocks to about 10 ms = 50,000 clocks seemed to work fine for me. The shorter the
settle time, the more responsive the keyboard but anything in the few millisecond range is
fast enough to seem instantaneous to humans.

Create an always block entered on the positive edge of the clock.
1. Each time you see the same valid raw key as last time, decrement the counter.

2

3.

Understand the concept of
hysteresis as a way of
debouncing a signal.

Create a debounce module that
can take in a raw key and output
a debounced key.

module Debounce(
input CLOCK 50,
input [3:0] rawKey,
input rawvalid,
output reg [3:0] debouncedKey,
output reg debouncedvValid);

Each time the input isn’t valid, increment the counter.

. If you see a different key, reset the counter to the maximum, representing the desired

settle time, and set the debounced output as invalid.

. If the counter hits 0, it means the key has settled. Stop decrementing, set the

debounced output to the new value and indicate that it's valid.

. If the counter hits the maximum, set the debounced output as invalid (meaning no key

is being pressed) and stop incrementing.

. Verify that it you connect the output to a 7-segment display, you get what you expect.

4.2 Display the result

In your main routine, connect it all together.

1.

Create an array of six 4-bit reg variables to hold the six hex digits you can display.
Create a 6-bit reg variable to indicate whether there’s anything in each digit and wire
this up to your 7-segment decoders.

. You will also need a 1-bit reg variable to remember the state of debouncedValid from

one clock cycle to the next.

. Instantiate a copy of your Scan module and wire it to the keypad. Instantiate a copy of

your Debounce module and wire it to the output of Scan.

. Create an always block that's entered on the positive edge of the clock.

5. If debouncedValid = 1 on this clock and it was D on the last clock, you have a new

keystroke. Shift all the current digits left and insert the new one on the right.

. Add a reset function to your always block, with reset tied to the leftmost button on the

DE1-SoC board.

Demo your design and turn in your code.

Only 3 pages.

5. Demo and submit your code.

Lab 4 reflections

1. Least amount of how-to guidance.

2. Deceptively difficult for most students.

ModelSim group exercise

ModelSim is Altera’s Verilog
BEE 271 Winter 2017 SimUIator.

How to simulate with ModelSim
Nicole Hamilton

Quartus includes a limited simulation feature but for more complex simulations, the answer W h I t ht E E 2 7 1 M S tt I I
is ModelSim. Two big advantages of ModelSim are that, compared to Quartus, compiles are e n a u g I n ea e’
lightning quick and you den't need an FPGA board to run your code.

To use ModelSim, you need to add a testbench module to your Verilog file and a few script I i ke d t h e Way Scott H a u C k Wa S u Si n g

files to your Quartus project directory. The examples shown here have been posted as
simulation.zip to files area in Canvas. Download and unzip it.

Here are the three examples: MOdeISim in his |abs-

1. The lab 2 adding machine
2. A 2-to-1 mux
3. A simple counter

What he didn’t have was a stand-
Adding machine example alone tu rn key tutorial.

Here is the basic skeleton you're using for the lab 2 adding machine project, suitable for
compiling and running on the DE1-SoC beards. Sevensegment is a partially specified seven
segment decoder module.

Three examples as a .zip file.

module Sevensegment(
input [3:0] hexpigit,
output [6:0] segments);

1. The seven segment decoder

wire [6:0] s;

zosion b0 = betotel 0 1 from the lab 2 adding machine
assign b2 = hexpigit[2 1;
assign b3 = hexbigit[3];

b T Tl 2. Several 2-to-1 muxes

~b0 & ~b2 | b0 & b2 & ~b3 bl & ~b3;

i-ssig:'egggigﬁtguzpig? for active Tow on the DE1-SoC board. 3 . TWO Si m p | e CO u nte rS

endmodule

M ModelSim ALTERA STARTER EDITION 10.4d = [l X

File Edit View Compile 5Simulate Add Transcript Tools Layout Bookmarks Window Help
B-@ ‘
| Layout |Simulate v
EXXE
&4 sim - Default ——— — Hdl x| pm|Wave - Default Hd x

Vinsance be | vime TS icels ___l

——gl testbench Y1101

Ty %3 3¢ | || [T [0 [0

‘%H G| 4 == | Ef
> || %-%-8 ’T“a--‘%\ G

‘ &

+ 8 55
|’ #vsim_capacity#

T f— 2
-ﬂ esses (Active) =0 H Y X
'1Name IT

Cursor 4ps |

M= | KIS
| | Transcript
teatbench2
testbench
End time: 10:19:25 on Nov 19,2016, Elapsed time: 0:00:00
Errors: 0, Warningsa: 0
vaim -voptargs=""+acc"" -t lpa -lib werk teatbench
Start time: 10:19:26 on Nov 19,2016
Loading k.teatbench
L"adl'ig w‘;‘:k Sen 'e“e:ment

._pa'me wave.interior.cs. bndy pw.wE ;]

T T T

Mow: 160 ps Delta: 1 [3] 0

SignalTap Il group exercise

On-chip logic analyzer that can be
BEE 271 Winter 2017 compiled onto the FPGA along with your

How to use the SignalTap II logic analyzer d .
esign.

Nicole Hamilton

SignalTap II is the builtin Quartus logic analyzer for debugging clocked sequential circuits
running on the FPGA. It's comprised of 3 user interface running on the PC for setting it up
and viewing captured data plus the logic analyzer itself, which is compiled onto the FPGA
along with your design. The logic analyzer captures data on every positive edge of the clock
and then, when a trigger condition is met, transfers it to the PC for display.

The example used here is the simple a 32-bit counter included in Simulation.zip, posted

to the files area in Canvas. Download and unzip it and open the Simplecounter.gpf file.

module countera(
input clock, reset,
input [31:0] resetvalue,
output reg [31:0] count = 0);

/ synchronous reset (synchronized to the clock)

always @(posedge clock)
count <= reset ? resetvalue : count + 1;

endmodule

In this simple wrapper for the DE1-SoC board, the high-order 10 bits of the counter are tied
to the LEDs, the reset value is tied to the switches and the reset button to KEY[2].

module SimpleCounter(
input CLOCK_50,
input [3:0] KEY,
output [9:0] LEDR,
input [9:0] Sw);

wire reset = ~key[3];
wire [31:0] count;

assign LEDR = count[31:22];
counterA ¢ (CLOCK_50, reset, { sw, 22'b0 }, count);

endmodule

SignalTap Il

- SignalTap Il Logic Analyzer - C;/Users/Nicole/Desktop/Simulations/SimpleCounter. Thursday/SimpleCounter - SimpleCounter - [SimpleCou.. —

File Edit View Project Processing Tools Window Help

FMHEHY>CcCFEN > O

|

X

Search altera.com]

tene anager || 1) |) [Aculioninpaaess | | 7TAG Chan Conurion: 7RG sty E
Instance Status Enabled LEs: 1275 Memory: 9728 Small: 0/0 Medium: 2/ Hardware: [DE-S0C [USBY] _ Setup
auto_signaltap_0 \Waiting for tri. 1275 cells 9728 bits 0 blocks 2 blocks
Device: @2: 5CSE(BASIMAS)YSCSTFDS ~ Scan Chain
log: Trig @ 2016/10/27 10:35:48 {0:0:5.8 elapse click to insert time bar
ype|Alias Name -3 -2 -1 9 1 3 i 4 5
Y CounterA-clreset |
= - CounterA:clcount[31..0] FCCO00000h FCC00001h FCCO00002h FCC00003h FCC00004h
é CounterA:clresetValue[31..0] FCC00000h
4* KEY[3]
| & - SW[9..0] ! 3F3h
< >
7 Data &, Setup
Hierarchy Display: [] Data Log: x

v ® SimpleCounter
* CounterAc

auto_signaltap_0

auto_signaltap_0

0% 00:00-00

	BEE 271 labs
	Background
	Terasic DE1-SoC
	Slide Number 4
	Slide Number 5
	Possible very cool microprocessor course project
	Software environment
	Slide Number 8
	Four group exercises
	BEE 271 lab kits
	Lab 1 Digital logic devices
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Lab 1 Instructor’s notes
	Lab 1 reflections
	Lab 2 Hex adding machine
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Lab 2 reflections
	Lab 3 Keypad scanner
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Lab 3 reflections
	Lab 4 Keypad debounce
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Lab 4 reflections
	ModelSim group exercise
	Slide Number 49
	SignalTap II group exercise
	SignalTap II

