Portable Software Tools for 3-D Radiation
Therapy Planning

Jonathan Jacky, Ph.D.! Ira Kalet, Ph.D.! Jun Chen, M.S. 2
James Coggins, Ph.D.2 Steve Cousins, M.S. 3
Robert Drzymala, Ph.D.3 William Harms, B.S.?
Michael Kahn, M.D., Ph.D.? Sharon Kromhout-Schiro, Ph.D.!
George Sherouse, Ph.D.2 Gregg Tracton, B.S.E.?
Jonathan Unger, M.S.! Martin Weinhous, Ph.D.3
Di Yan, Ph.D.3

! University of Washington, Seattle, Washington. NCI Contract number N01-CM97566

2University of North Carolina, Chapel Hill, North Carolina. NCI Contract number N01-CM97565

3Washington University, St. Louis, Missouri. NCI Contract number N01-CM97564

O(Degrees and affiliations at the time when the work was done.)

OReprint requests to: Jonathan Jacky, Department of Radiation Oncology RC-08, Univer-
sity of Washington, Seattle WA 98195. Phone: 206-548-4117. Fax: 206-548-6218. email:

jon@radonc.washington.edu

Abstract

Purpose: Produce a collection of software tools (computer programs) that
support three-dimensional (3D) radiation therapy planning. The tools are not a
complete 3D planning sytem. Instead, they work with any 3D planning system
that meets certain minimal specifications. The tools assist in deriving anatomic
data from images, generating target volume contours, evaluating treatment
plans and verifying accurate treatment delivery. The tools are portable: they
can run without source code changes in any computing environment that pro-
vides a library of functions and data definitions called the Foundation. The
Foundation couples the portable tools to the (usually non-portable) file system
and dose calculation associated with a particular 3D planning system.

Methods and Materials: Tools were written at three different (geograph-
ically separated) institutions. Software developers from all three sites specified
the Foundation. The programmers’ interface to the Foundation is portable, but
a Foundation implementation need not be portable. Each group implemented
a Foundation adapted to the (different) 3D planning system used at their site.

Results: All tools run at all three sites without source code changes. Each
Foundation was implemented in a few person-months of programming effort.
The program text and documentation for the tools have been placed in the
public domain.

Conclusions: It is practical and economical to produce portable radiother-
apy treatment planning tools. Providers of 3D planning programs should offer
Foundations for their systems, so they can be used with tools. Researchers
considering new computer programs should write them as tools, so they can

work with any 3D planning system.

Key Words: Three-dimensional treatment planning, Software engineering, Software

tools, Portable software, Collaborative working group.

1 Introduction

Planning radiotherapy treatment usually involves the use of large, complex computer
program systems called radiation therapy planning (RTP) systems. 3D RTP systems
have been produced at several research centers and by commercial vendors. Develop-
ing a 3D RTP system is a major undertaking. Software development costs dominate
3D RTP system costs and form a major impediment to the widespread adoption of

3D treatment planning.

The time and cost to create these systems motivates interest in software exchange,
in which software developed at one institution (research center or commercial ven-
dor) could be used at another with little additional effort or cost, rather than each

institution replicating the system building effort of every other one.

In the past, such software exchange for RTP systems has usually required that the
recipients must expend several months of effort on modification of the software from
the donors, and on their own software as well. Sometimes, software is so dependent
on the originating institution’s entire RTP system, that it simply cannot be adapted

for use elsewhere.

Producing shareable software was an important goal of the Radiotherapy Treatment
Planning Tools project, a five-year collaborative effort of the National Cancer Insti-
tute, University of Washington, Seattle and Washington University, St. Louis [10].
We developed a powerful, practical, cost-effective method for creating shareable soft-
ware and for adapting RTP systems to be able to use the software. The remainder of
this paper describes the details of our method, and reports our experience applying

it.

The documentation and source program text for the software that we exchanged is

available for incorporation into any RTP system whose designers are prepared to

make the effort described here.

2 Tools

The difficulties of exchange arise from the very substantial differences between RTP
systems. We do not believe it is desirable or necessary to mandate the universal use
of a single standard planning system. There are many valid approaches to how to
build a system and how it should work from the user’s point of view. Even in a
community that supports a variety of quite different planning systems, the effort of
exchanging RTP software can be greatly reduced. This is made possible by organizing

RTP systems around independent components that we call tools.

The central idea is to distinguish between the core of essential RTP functions — data
storage, dose calculations, and a few basic 3D displays — and other optional functions
that can be separated out. Instead of making the optional functions inextricably
bound up with the core system, we build them as separable, largely independent

programs, or tools.

Each tool performs just one or a few special tasks that the basic RTP system does
not already have, or they may perform certain tasks faster or better than the corre-

sponding components in the basic RTP software.

At this writing, tools that the working group has completed (or nearly completed)

perform the following tasks:

1. Semi-automatically segment a computed tomography (CT) image data set, gen-

erating data identifying normal tissues (organs), much reducing the need for

time-consuming hand drawing on CT images [17].

2. Calculate a digitally-reconstructed radiograph (DRR), resembling a (projected)

simulator film image, from volume CT data [2].

3. Generate tiles (data structures used to produce 3D surface displays), from series

of planar contours or 3D dose distributions [18].

4. Compute and display dose-volume histograms, tumor control probabilities (TCP),
normal tissue complication probabilities (NCTP), and other dose statistics from
dose distributions computed by the RTP system (not the tool’s) dose compu-
tation code [4].

5. Rank treatment plans, incorporating treatment preferences of radiation oncol-

ogists, applying decision-analytic and heuristic techniques [8, 9].

6. Assist in verifying treatment delivery by comparing prescription images such as

a simulator film with multiple portal images such as port films [1].

7. Automatically generate a planning target volume from a gross tumor volume

(delineated perhaps by hand drawing on CT images) [12, 13].

We suggest that the best way to obtain these functions is not to expend programming

effort modifying one’s own core system, but to acquire and install these tools.

The various tools are described in greater detail elsewhere. The rest of this paper

concerns the development method common to all tools.

3 Design model

For a tool to be useful to others, it must integrate easily with whatever RTP system
happens to be in use at each recipient site. How can a tool developed to work with
one particular core RTP system be quickly adapted to work with all the others? This

is the technical problem that we solved.

Our method is based on a design model (introduced in reference [10] and elaborated
in reference [7]). According to our design model, a complete RTP system comprises
several components. The Virtual Machine Platform (VMP) includes the computer
and display hardware itself and its system software, including its operating system
and programming languages. The Local Radiotherapy Planning Program (RTP) is
software that provides the basic treatment planning dose calculations, displays, and
data storage. The Tools are separate programs that perform optional therapy plan-
ning functions. The last component is software that adapts all of the tools to the

local planning program. We call this adapter the Foundation.

At any one installation, the VMP may be any sufficiently capable computer system.
The RTP program may be one of the commerical products or a locally developed

research system. Tools may be produced locally or obtained from some other site.

An essential feature of the design model is that every tool is portable. This means
that the program text for each tool is exactly the same at every installation, regardless
of the kind of computer system or local RTP program used there. Any tool may be
used at any installation without requiring any changes to the tool’s program text. This
is made possible by providing a suitable adapter, which must be customized to the

local RTP program.

Our solution requires some investment by the developers of each core RTP system

for which one would like to incorporate software tools, but this needs to be done only

once for each type of RTP system.

This represents a significant saving of effort over the way things have been done in
the past, where the recipient of a potentially useful program usually needs to modify
the program, and the local RTP system as well, every time they wish to incorporate

a new tool.

4 Computer system requirements

The tools can run on any sufficiently capable computer system, which we call a Virtual
Machine Platform (VMP). Our definition of a “sufficiently capable” VMP appears in
reference [10]. Almost any modern high-performance graphic workstation meets the
VMP hardware requirements. It appears that some of today’s more powerful personal
computers meet our VMP specification, although we have not attempted to run any

tools on them.

A VMP must provide the X Window system [14], standard software that provides a
graphical user interface (GUI) featuring overlapping display windows controlled by
a pointing device called a “mouse.” The X Window system is supported by every

major workstation vendor and is usually included (“bundled”) in purchases.

The collaborative working group does not limit itself to a single programming lan-
guage, so a VMP must support several. At this writing, tools have been written in

ANSI C [11], Common Lisp [15], and C++ [16].

The VMP specification does not require any particular operating system because this

would have limited distribution of the tools to sites that used it. In fact, the VMP

5

specification prohibits writing tools that depend on any particular operating system.
Standard programming languages and the X Window library provide access to all

necessary functions and are supported by many different operating systems.!

5 Object model

Software exchange has been difficult because different RTP systems represent radia-
tion treatments very differently. The most serious differences concern radiotherapy
concepts and their representation, not the trivial details of programming languages or
file formats. The various RTP systems differ in such basic matters as what items of
information describe a radiation beam or treatment field. For example, some systems
locate the beam with respect to the patient by specifying the isocenter coordinates,

while others specify the patient support apparatus (couch) settings.

To overcome these differences we had to reach agreement about such radiotherapy
matters as what constitutes an organ, a radiation beam, a dose distribution. Together,
these agreements constitute our object model. Our object model is described in a 60
page technical report [7]. (In some of our technical reports, the object model is called

the Foundation Library Specification.)

We defined our object model as rigorously as possible in English, using a particular
format and a special vocabulary of terms which we defined carefully. Figure 1 shows a
sample page from the report that describes an object we call polyline, which is simply
a curve that lies in some plane. More complex objects such as organs and tumors are

built up systematically from this and other simple objects.

LOur tools have run under several vendors’ variants of the Unix operating system, as well as
Digital Equipment Corporation’s VMS operating system

The object model is essentially a standard vocabulary of radiotherapy concepts ex-
pressed in terms that are meaningful at a level that is closer to physical reality than
computer language terms. Since the model is defined at this level in English, not a
programming language, it is not restricted to be implemented in any one particular
programming language. This is essential to our effort, because RTP programs and

tools may all be written in different programming languages.

Having defined the objects that are found in radiation therapy, we also defined (again
in English) three operations that act on these objects. The Fetch operation retrieves
some collection of objects — typically the input needed by some tool — from the local
RTP program’s storage (usually, its disk file system). The Store operation saves some
collection of objects — typically the output produced by some tool — in the local
RTP program’s storage. The definition of Fetch and Store are sufficiently general
that each operation can handle any collection of objects that might be needed. The
Compute operation invokes the local RTP program’s dose computation, providing it
with a collection of objects that define the patient anatomy and a radiation beam,

and obtaining from it a 3D dose distribution.

The three operations Fetch, Store and Compute are all that are needed to connect
any tool to any RTP program. It is important to understand that a single object
model applies to all RTP programs and all computer systems. The work of creating

and documenting the object model [7] need not be repeated.

6 Programming language bindings

Once we had agreed on the ingredients of RTP systems at an abstract level, we could

provide specific realizations of these agreements in the terms of each programming

7

language that we use. We call the representation of the object model in a particular
programming language a binding. There is just one object model, but there are
potentially many language bindings — one for each programming language that tool

developers might wish to use.

We produced two language bindings. The binding for ANSI C is described in a 35-
page report [6]; this binding serves C++ as well. The binding for Common Lisp
is described in a 12-page report [5]; it is shorter than the C binding because Lisp
provides a higher level of abstraction and is, therefore, a closer match to the object

model.

Figure 2 shows a sample from the C binding that represents the same object defined in
English in Figure 1. Figure 3 shows the corresponding sample from the Lisp binding.
Every object and the three operations defined in the object model [7] are defined in
this way. Objects and operations in our model are represented by data structures and

functions in the programming language, respectively.

The languages ANSI C and Common Lisp are standardized languages and are avail-
able on most computer systems. Therefore, our language bindings apply to all of
these computer systems and every RTP program that runs on any of them. It is not

necessary that the RTP program itself be written in one of these languages.

The work of creating and documenting the two language bindings [5, 6] need not
be repeated. However, creating a binding for another language (e.g., FORTRAN)
would require additional work (which would then be useable for any tool written in

FORTRAN).

7 Writing portable tools

With language bindings available, it is possible to write portable treatment planning
tools. A tool is portable if its program text (or “code”) uses only the standard features
of the programming languages, libraries provided by the VMP (for example, the X

Window library), and our language bindings.

From the programmer’s point of view, our language bindings play much the same
role as any other library of data structures and routines that might be provided by a

computer vendor or a software company (e.g. the X Window library itself).

Our design model ensures that programmers can write tools without any knowledge
of the internal details of any RTP program. To read or write data into any RTP pro-
gram’s storage, the programmer need only invoke our Fetch or Store functions. The
tool programmer need not know anything about the internal organization of the RTP
program’s file system, and we did not need to define any (putatively) standard file for-
mats. Likewise, a tool programmer can use the RTP program’s dose computation by
invoking our Compute function, without knowing any details of the RTP program’s

dose calculation algorithm, or even knowing what dosimetric data it requires.

8 Writing the adapters

To make it possible for a particular kind of RTP program to use the tools, it is nec-
essary to write some additional software that couples or adapts that RTP program’s
storage and dose computation to the language bindings we defined. We call this

adapter the Foundation (in some of our technical reports, this adapter is called the

Foundation Implementation to distinguish it from the Foundation Library Specifica-

tion.)

Writing this adapter software is the essential task that must be done to make the
work of all tool developers everywhere accessible to users of a particular kind of RTP
program (e.g., some particular research system or commercial product). The adapter
need only be written once, and the same adapter will work for all copies of a particular

research system or product, and with all present and future tools.

To write an adapter, a programmer must be familiar with the internal organization
of the RTP program, as well as our object model and language binding. The adapter
code must deal with all the low-level internal details of the RTP program that our

design model hides from tool programmers.

A different adapter is required for each language binding. It is only necessary to write
an adapter for the languages used in the tools one wishes to acquire. At this writing,

there is only one tool that requires the Lisp binding; all the others use the C binding.

The adapter code itself need not be portable. It need not be written in the same
language as the RTP program. In fact, most of an adapter can be written in a
different programming language than the binding it supports. At two of our three

sites, the adapter for the Lisp binding is largely written in C.

The effort of producing the adapters is of interest because it is the entry cost of using
the tools. At each of our three sites, we produced adapters with a few person-months
of effort; they comprise only a few thousand lines of code (Table 1). This is only a
modest programming effort. (The adapter for each language can be undertaken as

an independent project, so C and Lisp are separated in the table.)

10

9 Installation experience

Each of the three working group sites has installed and run tools developed at the

other two sites (as well as its own tools).

To make this possible, we had to agree on numerous issues, for example: What ma-
terials (computer files, documents) must be provided by developers? What degree of
completion is deemed necessary before a tool may be distributed? Who is responsible

for fixing any errors that might be discovered?

We recorded our decisions in a 35-page manual [3] that documents a method that
we followed in a repeatable way (for each tool) and which could be adopted later by

other institutions outside the original working group.

A key idea in our manual holds that a completed tool is not just files of programming
language text (the source code). It also includes all the supporting documents needed
to install, use, and maintain the program, and to assure that it works. The mate-
rial distributed with each tool includes a user’s manual, design documents, certain

supporting data, test data and instructions for running the tests.

Authors may release a tool for distribution to other sites when the program and all
the associated documents required in reference [3] are complete, and the program has

passed its acceptance test at the originating site.

Other sites obtain the tool by acquiring the collection of files that constitute its
distribution kit (source code, test data, installation instructions, user’s guide, etc.).
Files were distributed over the Internet computer network, using the FTP (file transfer
program) network utility. We have never resorted to distributing computer files on

physical media (tapes or disks). In a few cases, it has been necessary to supplement

11

the electronic distribution by sending printed documents in hardcopy form (where

these included figures and formatting that could not be printed easily at all sites).

We do not distribute ready-to-run software. Even after a site has completed its
adapter, some additional work is required to install each tool. Each program is dis-
tributed as several (or many) files of human-readable program text. Staff at the
recipient site must use the utilities of their own computer system to compile these
files into executable form and link them with each other and with the local adapter.
However, they do not make any changes to the files obtained from the tool’s authors.
When they have built an executable program, the recipients run the acceptance tests
provided by the tool’s authors, making sure that the promised test results are pro-

duced.

No installation has been trouble-free. Each installation has required a part-time effort
extending over days or weeks. Typically, recipients find at first that compilation
fails. This happens because computer systems at the three sites are very diverse,
and programmers inadvertantly write non-portable code that makes unwarranted
assumptions about the computing environment at the other sites. After these are
corrected and an executable program is produced, a tool typically fails to pass all
of its acceptance tests. This reveals programming errors in the tools and/or the
adapters, that usually result from ambiguity in or misinterpretation of our various

specifications [5, 6, 7).

A key requirement of this process is that all corrections to the tool must be made by
the originating site. Recipients only report errors to the tool’s original authors. It
is sometimes difficult for recipients to resist the temptation to fix seemingly trivial
problems themselves. However, doing so would defeat the purpose of the project, since

it would result in different (incompatible) versions of every tool, each customized to

12

the incidental peculiarities of the recipient site.

We have always been able to correct every problem (eventually) and produce a single
version of each tool that can be successfully built and run at every site. The effort
seems large but is not unlike what commercial vendors experience when they first
release a new product for “beta-testing” outside the original group of developers. We

expect that the process will become easier as we gain experience.

There is also the problem of integrating the tools seamlessly into the local system.
This is quite distinct from, and harder than, just getting them to run, involving issues

of convenience and aesthetics. Work on this problem continues at each site.

10 Discussion

Does the tools approach work? Can a research center or commercial vendor benefit

by acquiring our tools, instead of writing their own?

Our collaborative working group expended considerable effort in developing this ap-
proach. By far the larger portion of that effort was devoted to reaching consensus
on goals and procedures and then creating and documenting the design model, the
computer system requirements, the object model, and the programming language
bindings. The products of this effort apply to any RTP system and are now available
in our reports [3, 5, 6, 7, 10]. Therefore, this effort need not be repeated. Compared
to the large initial design effort, relatively little additional effort is needed to produce
the adapter that couples all tools to a particular RTP system. Only this lesser por-
tion of the work needs to be repeated in order to adapt our tools to additional RTP

systems.

13

The data presented in Table 1 shows that an individual or small team of program-
mers working from the design information provided in our reports can produce an
adapter in a few months, or less. This is considerably smaller than the year or more
usually needed to produce a single tool. This suggests that producing an adapter
and acquiring portable tools is an economical alternative to modifying the local RTP

program to duplicate tool functions.

We do not distribute ready-to-run software. To use our work, an institution must be
prepared to devote several person-months to build an adapter and some additional
time to install and integrate each tool. These tasks require program development
tools such as compilers and linkers and a thorough understanding of the internals of
the local RTP program. Vendors of commercial RTP products are in the best position
to do this work for their own systems, although customers or third parties could also
do the work if vendors make the necessary information and permissions available to

them.

To take best advantage of our work requires a quite different approach to RTP sys-
tem development than has been customary in the past. The two biggest differences
are conceiving RTP systems as separable tools rather than monolithic systems, and
a willingness to understand and comply with specifications written by others. Pro-
grammers who wish to incorporate our work must master the contents of our reports,
about 150 pages technical material. Important distinctions, such as tool versus core
RTP program, and portable tool code versus site-dependent adapter code, are quite

difficult to infer from the tool code itself.

Our documents and program text (code) are available, and some recipients may choose
to bypass our method and simply extract interesting fragments to incorporate into

their own systems, in the traditional ad-hoc way. We do not recommend this. Al-

14

though the amount of detail and strictness of our method may seem burdensome, it
achieves overall a large saving in effort and makes the software developments of one
institution rapidly available for use by others. The greatest advantages will accrue
if a large community, including commercial vendors, adopts this approach. If this

occurs, innovations from each center can be made available to the entire community.

15

References

1]

2]

3]

[4]

[5]

W. R. Bosch, D. A. Low, R. L. Gerber, J. M. Michalski, M. V. Graham, C. A.
Perez, W. B. Harms, and J. A. Purdy. An electronic viewbox tool for radiation

therapy treatment verification. International Journal of Radiation Oncology Bi-

ology and Physics, 27(Supplement 1):179, 1993. (Abstract).

E. L. Chaney, J. S. Thorn, G. Tracton, T. Cullip, J. G. Rosenman, and J. E. Tep-
per. A portable software tool for computing digitally reconstructed radiographs.

International Journal of Radiation Oncology Biology and Physics, 27(Supplement
1):180 — 181, 1993. (Abstract).

James Coggins, George Sherouse, Sharon Hummel, Jonathan Jacky, Robert
Drzymala, and Martin Weinhous. Standards and Practices of the Collabora-
tive Working Group on Radiotherapy Treatment Planning Tools. Technical Re-
port 90-2, National Cancer Institute, Radiation Research Program, 6120 Exec-
utive Boulevard, Executive Plaza North, Rockville, MD 20852, 1990. Report
of the Task Group on Documentation of the Collaborative Working Group on
Radiotherapy Treatment Planning Tools.

R. E. Drzymala, M. Holman, Di Yan, W. B. Harms, , N. Jain, M. Kahn, B.
Emami, and J. A. Purdy. Integrated software tools for the evaluation of ra-

diotherapy. International Journal of Radiation Oncology Biology and Physics,
24(Supplement 1):157, 1992. (Abstract).

Jonathan Jacky, Ira Kalet, Michael Kahn, and Steve Cousins. Common Lisp
Language Bindings to the Foundation and Virtual Machine Platform (VMP).
Technical Report 92-2, National Cancer Institute, Radiation Research Program,

6120 Executive Boulevard, Executive Plaza North, Rockville MD 20852, 1992.

16

[6]

[7]

8]

[9]

[10]

Report of the Radiotherapy Treatment Planning Tools Implementation Task
Group.

Jonathan Jacky, Gregg Tracton, Di Yan, and William Harms. ANSI C' Language
Bindings to the Foundation and Virtual Machine Platform (VMP). Technical
Report 92-1, National Cancer Institute, Radiation Research Program, 6120 Ex-
ecutive Boulevard, Executive Plaza North, Rockville MD 20852, 1992. Report

of the Radiotherapy Treatment Planning Tools Implementation Task Group.

Jonathan Jacky, Martin Weinhous, James Coggins, Robert Drzymala, William
Harms, Sharon Kromhout-Schiro, George Sherouse, Gregg Tracton, and
Jonathan Unger. Foundation Library Specification and Virtual Machine Plat-
form (VMP) Specification. Technical Report 91-1, National Cancer Institute,
Radiation Research Program, 6120 Executive Boulevard, Executive Plaza North,
Rockville MD 20852, 1991. Report of the Radiotherapy Treatment Planning
Tools Specification Task Group.

N. L. Jain and M. G. Kahn. Ranking radiotherapy treatment plans using
decision-analytic and heuristic techniques. Computers in Biomedical Research,

25:374 — 383, 1992.

N. L. Jain, M. G. Kahn, R. E. Drzymala, B. Emami, and J. A. Purdy. Objective
evaluation of 3-D radiation treatment plans: a decision-analytic tool incorpo-
rating treatment preferences of radiation oncologists. International Journal of

Radiation Oncology Biology and Physics, 26:321 — 333, 1993.

Ira J. Kalet, Edward Chaney, James Purdy, and Sandra Zink. Radiotherapy
Treatment Planning Tools First Year Progress Report. Technical Report 90-1,

National Cancer Institute, Radiation Research Program, 6120 Executive Boule-

vard, Executive Plaza North, Rockville MD 20852, 1990.

17

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Brian W. Kernighan and D. M. Ritchie. The C' Programming Language. Prentice-
Hall, second edition, 1988.

Sharon Kromhout-Schiro. Development and Evaluation of a Model of Radiother-
apy Planning Target Volumes. PhD thesis, University of Washington, 1993.

Sharon Kromhout-Schiro, Mary Austin-Seymour, and Ira Kalet. A computer
model for derivation of the planning target volume from the gross or clinical
tumor volume. In A. R. Hounsell, J. M. Wilkinson, and P. C. Williams, editors,
Proceedings of the Eleventh International Conference on Computers in Radio-

therapy, Christie Hospital, Manchester, UK, 1994.

R. W. Scheifler and J. Gettys. The X window system. ACM Transactions on
Graphics, 5(2):79-109, 1986.

Guy Steele, Jr. COMMON LISP, the Language. Digital Press, Burlington,

Massachusetts, second edition, 1990.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, 1986.

Gregg Tracton, Edward Chaney, Julian Rosenman, and Stephen Pizer. MASK:
combining 2D and 3D segmentation methods to enhance functionality. In Mathe-
matical Methods in Medical Imaging I1I: Proceedings of 1994 International Sym-
posium on Optics, Imaging, and Instrumentation, SPIE, 1994. (in press).

Gregg Tracton, Jun Chen, and Edward Chaney. CTI: automatic construction
of complex 3D surfaces from contours using the Delaunay triangulation. In
Mathematical Methods in Medical Imaging II1: Proceedings of 1994 International
Symposium on Optics, Imaging, and Instrumentation, SPIE, 1994. (in press).

18

Uw UNC wU

C Lisp C Lisp C Lisp
Size, 4000 250 9500 2000 5000 2000
lines
Effort, 3 <1 2 1 2.5 1

person-months

UW: University of Washington, Seattle
UNC: University of North Carolina, Chapel Hill
WU: Washington University, St. Louis

Table 1: Approximate size and effort in adapters (“Foundation”)

List of Figures

1 Sample object description
2 Sample ANSI C language binding . . .

3 Sample Common Lisp language binding

Polyline
Role Represents an unconstrained curve in a plane, e.g. a clipped isodose contour or a
physician’s signature.

Also used to derive other classes, e.g. Contour
Ancestry

Attributes

vertices: sequence of real x,y pairs
transform: 4 x 4 matrix of reals

Conventions Transform, when applied to any vertex, yields the 3D coordinates of the ver-
tex in a reference coordinate system. This reference coordinate system is determined
by context (e.g., the object of which the curve is part).

Usually the curve is constructed by connecting consecutive elements or vertices with
straight line segments but something fancier (e.g. splines) is also permissible.

The z coordinate of each vertex is implicitly 0 in the untransformed coordinate system.

Constraints Vertices must include two or more z,y pairs.
Transform is a rigid transformation that preserves the shape of the curve and the

length of each segment.

Comments Transform allows a curve defined only with z,y pairs to lie in any plane in
the enclosing reference coordinate system (usually the patient coordinate system):
transverse, coronal, sagittal, oblique ...

Figure 1: Sample object description

All classes in the Foundation [7] are represented by C structs. ... The first member of each
of these typedefs must be named obj_id and be of type rtpt_id_t. The value of this
member must one of the constants named in section 6.1.5.

In transformation matrices, the first dimension is the column and the second dimension
is the row. For example, the ¢, element in a transformation matrix trans (as defined in
equation 2.1 in [7]) is trans[2] [3]. ...

Contours are declared employing rtpt_vertex_t and the usual C idiom for variable-length
arrays: a member in the structure is a pointer to the first element of the array. The number
of elements is stored in another member:

typedef struct rtpt_vertex
{
small_float x;
small_float y;
} rtpt_vertex_t;

typedef struct rtpt_transform
{

large_float transform([4][4]; /* transformation matrix */
} rtpt_transform_t; /* [column:0..3] [row:0..3] */

/* Polyline */
typedef struct rtpt_polyline

{
rtpt_id_t obj_id; /* has value RTPT_POLYLINE */
rtpt_vertex_t xvertices_p;/* vertices -- array of rtpt_vertex_t */
medium_uint nvertices; /* n of elements in vertices */
rtpt_transform_t trans; /* transform */

} rtpt_polyline_t;

Figure 2: Sample ANSI C language binding

For each class in [7], the RTPT Support must provide a defclass form. Tool authors must
use make-instance to create an instance of a Foundation class, as in

(make-instance ’rtpt:polyline ...)

For each attribute in each class, the RTPT Support must provide an accessor function. The
name of the accessor function is the attribute name given in [7].
A tool author uses this function to read the value of of an attribute, as in:

(rtpt:vertices ...)

To write a new value for an attribute, the programmer uses setf with the same accessor
function:

(setf (rtpt:vertices ...) ...)

This document does not specify the actual CL code in the class definitions; that is not
necessary. ...

Matrices in [7] (4 x 4 transformation matrices, dose matrices, images) are represented by
CL arrays. Transformation are arrays of floats. ...

For transformation matrices, the first dimension is the column and the second dimension
is the row. This means that in aref forms, the index that occurs first is the column
index and the index that occurs second is the row index. For example, the ¢, element in a
transformation matrix transform (as defined in equation 2.1 in [7]) is obtained by

(aref transform 2 3)
The z,y pairs used to represent vertices of polylines in [7] are represented by 2-element
lists, where each element is a CL float. The first element of the list is the x-coordinate

and the second element is the y-coordinate.
The sequence of vertices is represented by a CL list of such pairs.

Figure 3: Sample Common Lisp language binding

