
Analyzing a Real-Time Program with ZJonathan Jacky �Radiation Oncology, Box 356043University of WashingtonSeattle, WA 98195-6043Abstract. Real-time behavior of a multi-tasking program running on apre-emptive priority-based operating system is analyzed. The operatingsystem and a collection of application tasks are modelled in Z. Real timeis represented by an ordinary Z state variable. The model is adapted toa particular application by de�ning a state machine for each task andassociating execution times with each state. The model is analyzed by ex-haustive simulation with the SMV model checker. The state transitionsdescribed by Z operation schemas are implemented in the SMV pro-gramming language. Invariants, preconditions, and postconditions fromthe Z are translated to formulas in CTL, the SMV speci�cation language.The SMV program is veri�ed by checking these formulas. This detectscoding errors in the SMV program and also reveals inconsistencies inthe original Z where operation schemas are inconsistent with state in-variants. The errors were corrected. Additional CTL formulas describetemporal properties that cannot be expressed directly in Z. The Z modelis validated by checking an example SMV program with CTL formulasthat con�rm scheduling results from rate-monotonic analysis (RMA).Another application that does not satisfy the assumptions of RMA isanalyzed, establishing that high-priority tasks cannot inde�nitely delaylow-priority tasks and real-time deadlines can be met.1 IntroductionWe wrote a control program for a radiation therapy machine, a safety-criticalmedical application [8, 11]. Our control program includes several concurrenttasks and meets real time deadlines. It runs on a commercial o�-the-shelf (COTS)real time operating system.We feel we should be able to answer questions such as these: Will each eventbe handled within its deadline? Is it possible for one high-priority task to in-de�nitely delay another low-priority task? In order to answer these questions, itis necessary to model the system as a collection of state transitions, and thenanalyze the model.We chose ordinary Z [16] for our modelling notation. Many notations candescribe state transitions; we use Z operation schemas for this. Moreover, Zstate invariants provide essential information that cannot be expressed directly� email jon@radonc.washington.edu

in notations that can only describe state transitions. The Z tool-kit provides thedata types we need: sequences represent priority queues, relations (interpretedas �nite state machines) represent the control structure of application tasks.Spivey modelled a multi-tasking operating system in Z [14]. However, he did notmodel the behavior of a complete system including application tasks, and didnot model the passage of time or expiration of real-time deadlines.We chose the SMV (Symbolic Model Veri�er) [3, 13], a model checker, forour analysis tool. It performs completely automatic analysis of state transitionsystems. It can investigate behaviors that emerge when a collection of Z operationschemas works together. To check a Z speci�cation using SMV, one implementsthe Z in the programming language of the checker. One also provides propertiesto check expressed in CTL (Computation Tree Logic), the checker's speci�cationlanguage. The checker performs all possible executions of the program, in e�ectperforming an exhaustive simulation of the system. The checker veri�es eachproperty or outputs a counterexample (a trace of an execution that violates theproperty). An earlier experiment with Z and SMV was reported in [10].Other formal notations provide built-in constructs for representing real time(several are reviewed in [2]), and there are special methods analyzing real-timescheduling [7, 12]. But sometimes the most general results can be obtained withthe simplest notations and tools. Our results (section 8, table 2) show thatordinary Z and a general purpose model checker can support detailed analysis ofa real-time program, providing quantitative answers to speci�c questions aboutperformance.2 Concurrency in ZBefore considering the tasking problem in detail, we represented our applicationin Z using the interleaving style proposed by Evans [4, 5]. All the data used by alltasks appears in the system state. All operations act on the same system state.The precondition of each operation schema is a guard: when the the preconditionis satis�ed, the operation is enabled. It is assumed that the underlying taskingsystem will provide fairness: every enabled operation will occur eventually. Con-currency becomes possible when more than one operation is enabled at the sametime. In this situation it is assumed that all the enabled operations occur, butin nondeterministic order.Up to a point, it is easy to design a multi-tasking system in Z using this style.One merely de�nes the state and the operations required by the application,taking care that the precondition of each operation causes it to become enabledwhen it is needed (examples based on our project appear in [8]).However, di�culties can arise when the design is �nally implemented on somereal operating system. Operations are assigned to tasks which are scheduled bythe operating system. It becomes necessary to write the code that is supposed toensure fairness. For example, one task sets a semaphore to notify another taskthat new data are available. At this point, the operating system knows nothing offairness. It deterministically selects the next task to run, based on task priorities

assigned by the programmer. If this machinery is not coded carefully, the systemmight not meet the fairness assumption. For example, high-priority tasks mightbe able to delay a low-priority task inde�nitely.To ensure that each event is handled in time, we need to solve a real-timescheduling problem: in some worst case situation, the sum of the execution timesof several operations must be less than some interval. But what is the worst casesituation, and which operations must be counted? Several of our applicationtasks are not periodic and they interact, so the answers to these questions arenot obvious. Schedulability tests such as rate-monotonic analysis are not appli-cable [7, 12]. A particular scheduling problem from our application is posed insection 6 and analyzed in section 8.3 Operating system and application tasksWe inferred our model of the operating system from the vendor's manual [17].Tasks may be ready (to run) or pending (waiting for an event). Each task hasa priority; for each priority, there is a queue of ready tasks in �rst-in, �rst-out(FIFO) order. The task that runs is at the head of the highest priority queue. Atask which becomes ready can pre-empt a lower-priority task. A task becomespending when it calls a function that waits for an event which has not yetoccurred, and becomes ready again when the event occurs.In our application, tasks read from devices attached to the controlled equip-ment and also from interprocess communication channels connected to other ap-plication tasks. Tasks become pending when they attempt to read from a deviceor an inter-task communication channel where input is not available. Pendingtasks can be made to time out: they abandon the read operation if input hasnot appeared when a timeout interval expires. Tasks can also be made to simplywait for a timeout, in order to schedule periodic operations and give low-prioritytasks an opportunity to run.4 Z ModelIn this section we present a generic model of a multi-tasking program with real-time deadlines and timeouts running on a pre-emptive priority-based operatingsystem, interacting with an environment that provides events. We call this amodel not a speci�cation because it represents an already existing system and isintended to support analyses of that system.We abstract away the application data; our model only represents controlstructure, tasking, synchronization, and the passage of time. We specialize themodel for our application in section 5. The Z texts excerpted here [9] conformto the Reference Manual [16] and were type-checked [15].4.1 Con�gurationOur generic model can be specialized for any particular application by choosingvalues for the constants declared in this subsection (see section 5).

An application consists of a set of tasks . Each task executes in several phases .The sets of phases and tasks are �xed, but their actual contents depend onthe application (this is indicated by the three dots in the otherwise formal textbelow). A task can only wait for an event at the end of a phase. In order to modelpre-emption and the passage of time, it is necessary to represent the internalstructure of the phases. Each phase occupies a contiguous range of machineaddresses or program counter (PC) values. When a task executes, the programcounter advances through a phase. Actually, execution may take di�erent pathsthrough a phase, depending on the values of data which we do not model here.The length of each phase given here can be taken to be the longest (worst case)path through the phase.PC == TASK ::= t1 j t2 j t3 j : : :PHASE ::= p1 j p2 j p3 j p4 j p5 j : : :phs : PC � PHASEstart ; end : PHASE� PC8 ph : PHASE �start ph < end ph ^(start ph) : : (end ph) � dom phs ^phs�(start ph) : : (end ph)� = fphgThe control structure of each task is given by the �nite state machine next (wherestates correspond to phases). After the program counter reaches the end of aphase, the task begins executing at the beginning of another phase, determinedby which event has occurred. Some phases send signals to a destination task(this models semaphores and other intertask communication). Input data onlyremains available during a hold time, after this deadline expires the data is lost.A timeout interval is associated with each phase that can time out. The lenfunction returns the length of any phase (in program counter units, which arethe same as clock ticks). Our len, interval , and hold determine the real-timebehavior of the application. The ability to express arbitrarily complex timingbehavior by de�ning interacting state machines distinguishes our model fromother schedulability tests [7, 12] and makes exhaustive simulation necessary.TIME == EVENT ::= signal j data j timeout j expiredest : PHASE � TASKlen : PHASE" TIMEhold ; interval : PHASE� TIMEnext : PHASE" EVENT � PHASElen = (� ph : PHASE � end ph � start ph)dom hold = f ph : PHASE j data 2 dom (next ph) gdom interval = f ph : PHASE j timeout 2 dom (next ph) g

Each task has a priority . Assignment of phases to tasks is determined by thephase initially executed by each task (a phase may be executed by more thanone task).PRIORITY == init : TASK " PHASEpri : TASK " PRIORITY4.2 System stateThe operating system stores each task's context , represented here by its programcounter. Tasks that are ready to run wait in a queue, one for each priority.The other tasks are pending , blocked at the end of some phase, waiting foran event. New events appear in the environment. They may be handled soonafter they occur, or they may remain unhandled while the pertinent tasks areready but unable to run. A key invariant holds that no pending tasks waitfor these unhandled events. The clock indicates real time and a timer recordswhen timeouts will expire for pending tasks. We also use the clock to model theexpiration of real time deadlines .RTSyscontext : TASK " PCready ; pending : �TASKqueue : PRIORITY " iseqTASKclock : TIMEevents ; unhandled : TASK # EVENTtimer ; deadline : TASK � TIMEran context � dom phsready = TASK n pending8 p : PRIORITY � ran (queue p) = f t : ready j pri t = p g8 t : pending ; ph : PHASE j ph = phs (context t) �context t = end ph ^ : (9 e : dom (next ph) � (t ; e) 2 unhandled)8 t : dom deadline � (t ; data) 2 unhandled8 t : dom timer � t 2 pending ^ timeout 2 dom (next (phs (context t)))8 t : dom timer � clock � timer t8 t : dom deadline � clock � deadline tThe system is Running when there is at least one ready task. The task at the headof the highest priority queue is current (running). Redundant state componentsname the program counter, phase and priority of the current task.

RunningRTSyspc : PCphase : PHASEcurrent : TASKpriority : PRIORITYready 6= �priority = max (pri�ready�)current = head(queue priority)pc = context currentphase = phs pcIn the initial state each task begins at the start of its �rst phase. The systemis Waiting when there are no ready tasks. In the NoEvent state there are nonew events in the environment. In the NoTimeout state no timeouts or deadlineshave expired.Init b= [Running j context = init � start]Waiting b= [RTSys j ready = �]NoEvent b= [RTSys j events = �]NoTimeoutRTSys8 t : dom timer � clock < timer t8 t : dom deadline � clock < deadline t4.3 OperationsThere are thirteen state transitions, each modelled by a Z operation schema:Wait , Compute, Continue, Switch, Block , Input , Timeout , Deadline, Expire,Defer , Enqueue, PreEmpt and Wakeup. We call these top-level operations be-cause none are included in the de�nitions of any other operations. The top-leveloperations de�ne a state transition system which is complete and deterministic.Their preconditions are mutually exclusive and account for all states permittedby the invariant. Exactly one top-level operation is enabled in every possiblestate so the system cannot deadlock and we do not have to make any fairnessassumptions.De�nitions of many top-level operations include these building-block opera-tions: Run, Phase, Pend , Event , Unhandled , Ready and Resume. Building-blockoperations are not mutually exclusive; some top-level operations include more

than one building block. A Run operation occurs when there is at least oneready task and no events or timeouts occur. Phase is the specialization of Runthat occurs when the program counter reaches the end of the phase. Pend is thespecialization of Phase that occurs when no events are available for the currenttask. Event occurs when an event is available. Unhandled is the specialization ofEvent that occurs when the event is not handled. Ready is the specialization ofEvent that occurs when a pending task is waiting for the event. Resume is thespecialization of Ready that occurs when the task that handles the event is (orbecomes) current.The top-level Wait operation occurs when no tasks are ready and no eventsoccur. Compute, Continue, Switch and Block are specializations ofRun. Computeadvances the program counter of the current task, but not to the end of the phase.Continue is the specialization of Phase that occurs when the event needed bythe current task has already occurred. Switch and Block are specializations ofPend that occur when another task is ready, or when no more tasks are ready,respectively. Input , Timeout and Deadline model the occurence of events in theenvironment. Expire, Defer , Enqueue, PreEmpt and Wakeup are specializationsof Event . Expire models the expiration of a real-time deadline.Defer occurs whenno pending task is waiting to handle the event. Enqueue is the specialization ofReady that occurs when the newly ready task does not have a higher prioritythan the current task. PreEmpt and Wakeup are specializations of Resume thatoccur when the newly ready task has a higher priority than the current task, orwhen there is no current task, respectively.The Wait and Compute operations are of interest because they model thepassage of time by advancing clock . They are the only operations that do so.Other operations are considered to take negligible time.TheWait operation occurs when nothing else can happen: no tasks are readyand no events occur. The clock advances, but not past any timeout or deadline.Nothing else changes (indicated by the three dots in the otherwise formal textbelow).Wait�RTSysWaitingNoEventNoTimeoutclock 0 > clockcontext 0 = contexttimer 0 = timer ^ deadline 0 = deadline ^ ready 0 = ready ^ : : :Compute advances the program counter of the current task, but not past the endof the phase. The clock advances also, at the rate of one tick for each programcounter step. Nothing else changes. Compute includes the Run building-block.Run b= [�RTSys ; Running j NoEvent ^ NoTimeout]

ComputeRunRunning 0pc < end phasepc < pc0 � end phaseclock 0 = clock + (pc0 � pc)fcurrentg� context 0 = fcurrentg� contexttimer 0 = timer ^ deadline 0 = deadline ^ ready 0 = ready ^ : : :It is helpful to collect formulas from related operations together. Table 1 issimilar to the mode transition tables of the SCR notation [1]. It summarizesthe top-level operations Wait , Compute, Continue, Switch and Block , alongwith their building-blocks Run, Phase and Pend . The Run building block isincluded in all the operations that appear below it in the table. Likewise, Pendis included in all operations below it. The second column in the table showsthat the preconditions are mutually exclusive and cover all states where thereare no inputs, events, or timeouts. A second table in [9] summarizes the otheroperations, whose preconditions cover the rest of the state space. There are 246lines of Z in the entire model25 An applicationWe can specialize our model for any application by providing values for theconstants declared in section 4.1. This example is based on our radiation therapycontrol program [8, 11].There are four tasks: a watchdog , an interlock scanner intlk , and two con-troller tasks ctlr1 and ctlr2. The watchdog runs at highest priority, the interlockscanner is next highest, and the two controller tasks are lowest, at the samelow priority. The watchdog and interlock tasks each execute just one phase,synch and scan, respectively. The controller tasks both execute the poll andread phases, starting with poll .TASK ::= watchdog j intlk j ctlr1 j ctlr2PHASE ::= synch j scan j poll j readpri = fwatchdog 7! 3; intlk 7! 2; ctlr1 7! 1; ctlr2 7! 1ginit == fwatchdog 7! synch; intlk 7! scan; ctlr1 7! poll ; ctlr2 7! pollgThe watchdog task runs periodically: it pends at synch for the timeout event.The intlk task only runs when it is signalled by another task: it pends at scanfor the signal event. The ctlr1 and ctlr2 tasks each pend at poll and read . Ifdata appears, they execute the read phase. If no data appears, a timeout event2 Nonblank lines output by running the Fuzz tool -v option [15] on [9].

Z operation Precondition Unchanged Progress postconditionWait Waiting, no input (All but clock 0 > clockNoEvent ^ NoTimeout clock)(Run) Running, no inputNoEvent ^ NoTimeoutCompute pc < end phase (All but pc0 > pcpc,clock) clock 0 = clock + (pc0 � pc)Continue pc = end phase ready Running 0(Phase) (9 e : unhandled : : :) pending e = (� e : unhandled : : :)queue unhandled 0 = unhandled n f(current ; e)gcurrent phase 0 = next phase epriority pc0 = start phase 0deadline 0 = deadline n f(current ; : : :)gevents 0 = events [f(dest phase; signal)g(Pend) pc = end phase unhandled ready 0 = ready n fcurrentg(Phase) : (9 e : unhandled : : :) context pending 0 = pending [fcurrentgqueue 0 priority = tail (queue priority)timer 0 = timer � f: : : clock + interval phasegSwitch ready n fcurrentg 6= � Running 0(Pend) priority 0 = max (pri�ready 0�)current 0 = head(queue priority 0)pc0 = context currentcurrent 0 6= currentpriority 0 � priorityBlock ready = fcurrentg Waiting 0(Pend) Table 1. Task state transitions: Wait and Run operationswill occur and they execute the poll phase again. At the end of its synch phase,the watchdog signals the intlk task, and at the end of their read phase, the twocontroller tasks signal the intlk task.next synch = ftimeout 7! synchgnext scan = fsignal 7! scangnext poll = next read = fdata 7! read ; timeout 7! pollgdest = fsynch 7! intlk ; read 7! intlkginterval = fsynch 7! period ; poll 7! sample; read 7! samplegThe watchdog task is periodic. The two controller tasks are recurrent: they runrepeatedly, but not with any �xed period. Each of these tasks will pend for

some variable amount of time until data appears (nondeterministically) or thetimeout expires. They will become unsynchronized with each other and withthe watchdog. The interlock task runs whenever it is signalled by the periodicwatchdog or by either recurrent controller task, and the interlock task can pre-empt or delay the controller tasks.6 A real-time scheduling problemReal-time deadlines arise in our example (section 5) because the informationassociated with a data event will be lost if the controller task does not begin toexecute its read phase before the hold time expires. The controller task mightmiss the deadline because it cannot run while the higher priority watchdog andinterlock tasks run. A controller task might also be delayed by the other controllertask, which has the same priority.Is it possible for a deadline to be missed? By applying reasoning similarto that of Liu and Layland [12], we can write some conditions which must besatis�ed to prevent missing a deadline. The sum of the lengths of all the phasesthat might pre-empt a controller task must be less than the hold time. Thisincludes the other controller task; moreover, the interlock task might run twice,signalled by both the watchdog task and the other controller, so this condition islen synch + len read +2 � len scan < hold . Also, the period of the watchdog taskmust be long enough to prevent it from pre-empting a controller task repeatedly:len read + 2 � len scan < period . It seems obvious that these conditions arenecessary to prevent missing a deadline, but are they su�cient? We should checkour intuition with some analysis.7 Analyzing the Z model using SMVTo analyze a Z model using the SMV model checker, one implements the Z inthe SMV programming language and provides properties to check in CTL, theSMV speci�cation language. The checker veri�es each property or produces acounterexample (a trace of an execution that violates the property).7.1 Writing the SMV programThe SMV program is, in e�ect, a simulation of a multi-tasking application run-ning on a pre-emptive priority-based operating system. The Z texts presented insection 4, originally considered a model of that system, now serve as the spec-i�cation for the simulation program. The speci�cation could be implementedin any programming language, but there are two advantages to using SMV:the checker can verify that the program implements the speci�cation, and thechecker performs all possible executions of the program, achieving exhaustivesimulation.The SMV programming language [13] is much less expressive than Z. Itsonly data types are small integers (including booleans and enumerations). Our

speci�cation cannot be implemented directly but must be simpli�ed and madeconcrete.To simplify, we abandon the generality of the model. We just implementone particular example, the application in section 5. Now we only need onepriority queue that holds at most two controller tasks. The implementation istwo-element array that indicates whether the two positions in the queue holdctlr1, ctlr2, or neither.To make the model concrete we represent all state variables as integers (in-cluding booleans and enumerations). The value of every variable must be keptsmall to limit the size of the state space so exhaustive simulation will be feasible.Program counters, clock and timers cannot be allowed to grow inde�nitely. Inour SMV program we reset the program counter to zero at the beginning of eachphase so the program counters never grow larger than the length of the longestphase. Each phase is only a few units long, just long enough to admit the pos-sibility of being pre-empted by higher priority tasks. We have a separate clockfor each timeout and deadline, which remains at zero except when its timeoutor deadline is counting up (several might be counting at once).We de�ned SMV symbols that implement redundant state components suchas current and predicates such asRunning . This makes the SMV program shorterand helps it resemble the Z model more closely, without enlarging the state space.Most of the implementation is not di�cult because our Z model is alreadyexpressed in an operational style: the new value of every state variable aftereach transition appears by itself on one side of an equation. These equationsare translated to SMV assignments. For each variable there is an SMV casestatement. For each Z operation where that variable changes value, there is acase branch that assigns the new value, guarded by that operation's precondition.The checker itself provides input to our SMV program nondeterministically.When the ctlr1 or ctlr2 task is pending, the checker may (or may not) provide adata event to that task at each execution step. The checker explores all possibleexecution sequences: the one where the data event occurs on the �rst executionstep after ctlr1 pends at poll , the one where the data event occurs on the secondexecution step, the one where the data event never occurs so the timeout eventoccurs instead, etc. As a result, the checker considers all possible interleavingsof the tasks.Our SMV program [9] (excluding CTL formulas that express properties to bechecked) is 423 (nonblank, noncomment) lines long. Fig. 1 shows excerpts thatdeal with context watchdog , timer watchdog , and clock (compare to the Wait ,Run and Compute schemas in section 4.3). We used the smallest values forlengths of phases and intervals that still reveal the properties of interest (sec-tion 8). With these values, SMV reports that the program has 30062 reachablestates in a space of more than 1023 states (278, or 78 state bits). SMV uses adata structure called a binary decision diagram (BDD) to represent the transitionrelation de�ned by a program [3]. It encodes the next-state relation implicitlyde�ned by all thirteen top-level operation schemas described in section 4.3. SMVreports that the BDD for our program contains 24594 nodes.

The checker's performance depends on the ordering of variable declarationsin the program and on several command line parameters such as cache size [13].We adjusted these by trial and error to achieve acceptable performance (ona Hewlett-Packard J282 workstation with a PA8000 processor running at 180MHz). Most CTL formulas can be veri�ed in a few minutes, using about tenmegabytes of memory.7.2 Re�nementThe development of the SMV program can be easily (but tediously) formal-ized as a re�nement. Re�nement is a method for establishing formally that one(concrete) speci�cation is an implementation of another (more abstract) speci-�cation. Here we use re�nement to show how expressions in SMV and formulasin CTL can be identi�ed with expressions and predicates in Z.The concrete speci�cation (below) closely resembles our SMV program: theset of ready tasks is represented by an array of booleans cready , the tasks them-selves are the array indices CTASK1, and the priority queue for the two con-troller tasks is the two-element array cqueue, where the �rst element is the headof the queue. The invariant shows how the current task is selected, based onthe priorities of the ready tasks. The corresponding predicates in Running arepriority = max (pri�ready�) and current = head(queue priority).BOOLEAN == f0; 1gcnone == 0; cctlr1 == 1; cctlr2 == 2; cwatchdog == 3; cintlk == 4CTASK == fcnone; cctlr1; cctlr2; cwatchdog ; cintlkg;CTASK1 == CTASK n fcnonegCRTSysccurrent : CTASKcready : CTASK1" BOOLEANcqueue : f1; 2g" fnone; cctlr1; cctlr2g: : :ccurrent = cwatchdog , cready cwatchdog = 1ccurrent = cintlk , cready cwatchdog = 0 ^ cready cintlk = 1ccurrent = cqueue 1, cready cwatchdog = 0 ^ cready cintlk = 0: : :Now we can relate the two speci�cations. The function abs associates each con-crete task with its abstract counterpart, and the abstraction schema Abs relatesthe concrete state CRTSys to the abstract state de�ned in RTSys and Running .abs == fcctlr1 7! ctlr1; cctlr2 7! ctlr2; cwatchdog 7! watchdog ; cintlk 7! intlkg

MODULE mainVARcontext: array 1 .. 4 of {0,1,2,3,4}; -- program counter indexed by tasktclock: {0,1,2,3,4,5,6,7}; -- clock for watchdog timertimer: boolean; -- true if watchdog timer countingDEFINEwatchdog := 3; -- index into context arraylsynch := 1; -- watchdog task, len synch in the ZRunning := ready[watchdog] | ready[intlk] | ready[ctlr1] | ready[ctlr2];preRun := Running & NoInput & NoEvent & NoTimeout;preWait := Waiting & NoInput & NoEvent & NoTimeout;preCompute := preRun & InPhase;ASSIGNinit(context[watchdog]) := 0; -- program counter at start of phaseinit(timer) := 0; -- watchdog timer is not countinginit(tclock) := 0; -- clock is resetnext(context[watchdog]) := casepreCompute & current = watchdog& context[watchdog] < lsynch: context[watchdog]+1; -- ComputepreResumeWD: 0; -- Resume1: context[watchdog]; -- else no changeesac;next(tclock) := casepreWait & timer & tclock < period: tclock + 1; -- Wait, tickpreCompute & timer & tclock < period: tclock + 1; -- Compute, tickpreTimeoutWD: 0; -- Timeout, reset1: tclock; -- else no changeesac;next(timer) := caseprePend & current = watchdog: 1; -- (Pend), setpreTimeoutWD: 0; -- Timeout, reset1: timer; -- else no changeesac; Fig. 1. Excerpts from SMV program

AbsRTSysRunningCRTSysccurrent 6= cnone) current = abs ccurrentready = f t : CTASK1 j cready t = 1 � abs t gdom queue = f1; 2; 3gqueue 1 = (cqueue � CTASK1) � absqueue 2 = if cready cintlk = 1 then hintlki else hiqueue 3 = if cready cwatchdog = 1 then hwatchdogi else hi: : :We can de�ne a concrete operation for each abstract operation. This fragment ofthe concrete CPend operation shows what happens when the controller task atthe head of the priority queue becomes pending : the next array element advancesto the head of the queue.CPend�CRTSys(ccurrent =2 fcctlr1; cctlr2g ^ cqueue 0 = cqueue) _(ccurrent 2 fcctlr1; cctlr2g ^ cqueue 0 1 = cqueue 2 ^ cqueue 0 2 = cnone): : :The corresponding predicate in the abstract Pend operation is simplyqueue 0 priority = tail (queue priority). The re�nement laws in [16] can be usedto check that CPend is a correct implementation of Pend , given the relationsde�ned by Abs .7.3 Analyzing the SMV program with CTLProperties to check are expressed in CTL (Computation Tree Logic) [3]. CTLformulas are about SMV program states and paths (sequences of states that occurwhen the SMV program executes). CTL state formulas are like Z predicates.Path formulas provide temporal operators: if p is a state formula, G p meansthat condition p is true in all states on a path. F p means that p eventuallybecomes true. X p means that p is true in the next state. CTL also providesquanti�ers: A (all paths) and E (some paths).AG p expresses safety: p is invariant (is true on all paths, in all states). AG(pre-> AX post) means that if pre is true in a state, then post is true in the nextstate. These two CTL formulas correspond to predicates in Z state schemas andoperation schemas, respectively. Other CTL formulas can express behaviors thatemerge when sequences of operations are executed. EF p expresses liveness: pcan occur, p is reachable (is true on some paths, eventually). AG AF p expressesthat condition p is cyclic or recurrent (on all paths p is always true eventually,

p occurs \in�nitely often"). There are no built-in constructs corresponding topath formulas in ordinary Z, they can only be expressed after explicitly de�ninga next-state relation and sequences of states [6].7.4 Verifying the SMV programWe veri�ed our SMV program by the method of Atlee and Gannon [1]. Foreach Z operation, we wrote two kinds of CTL formulas: EF pre checks that theoperation occurs and AG(pre -> AX post) checks that it has the intended e�ect.It is necessary to check both formulas; if the EF liveness property is false, the AGcorrectness property will be vacuously true.These CTL formulas are a machine-checkable formal speci�cation for theSMV program. At �rst the checker found counterexamples to several formulas,which we traced to trivial coding errors. After we corrected the errors, all for-mulas were veri�ed. This is a machine-checked proof that the SMV programcorrectly implements its CTL speci�cation. The close resemblance between theCTL formulas and their Z counterparts, supported by the re�nement argumentsof section 7.2, suggest that the program correctly implements the Z speci�cationas well.We wrote 104 CTL formulas to verify the SMV program. The checker veri�edthem in 24 minutes, using 10 megabytes.7.5 Checking the Z speci�cationThe preceding subsections establish that our SMV program is a correct imple-mentation of the operation schemas in the Z speci�cation. Therefore propertieswhich are false in our program are not universally true in our speci�cation. Thismeans that checking our program can reveal errors in the Z. In particular, if aCTL property which is a translation of a (putative) Z invariant is not invariantin our SMV program, then the Z speci�cation is inconsistent.We translated the invariants of the RTSys and Running state schemas intoCTL AG inv formulas. At �rst the checker found counterexamples to severalformulas, revealing that the RTSys invariants were too strong3. After revising(weakening) the invariants to those shown in section 4.2, the checker veri�ed all34 of these formulas in one minute, using 9 megabytes.Our SMV program is only one example implementation of our Z speci�cation,so properties which are true in this program may not be universally true of ourspeci�cation. There could be additional errors in our corrected Z speci�cationwhich are not revealed by this example.7.6 Validating the Z speci�cationWe must show that the Z speci�cation actually expresses the properties weintend. Checking the formula !(EF p) causes the checker to generate a coun-terexample showing the execution sequence from the initial state to a state that3 A reviewer of an early version of this paper also detected some of these errors.

satis�es p (see Table 2). This is a way of \running" the SMV program. Used inthis way, the SMV program serves as a kind of animation of the Z speci�cation.The counterexamples con�rm that the intended behaviors occur.If the Z speci�cation is valid, our implementation should be able to reproduceexamples of well-known results from real-time scheduling theory. Rate-monotonicanalysis (RMA) applies in the special case where each task has a single phase,tasks do not signal each other, events occur on a strictly periodic schedule,and the deadline equals the period [7, 12]. A simple example with two tasksappears in [12]. We represented this example, and revised our SMV programto deliver events on a periodic schedule instead of nondeterministically. Theprogram reproduced the results shown in Figs. 2a, 2b, and 2c in [12] and discussedin the accompanying text.8 Analyzing a real-time scheduling problemIn our application (section 5), high-priority tasks must not be able to delay low-priority tasks inde�nitely. All four tasks should be recurrent: each should executerepeatedly, though not necessarily with a �xed period. This property cannot beexpressed directly in Z because each cycle involves the sequential execution ofseveral operations. We wrote four CTL formulas to check recurrence: AG AFcurrent = watchdog etc. The checker veri�ed all four in less than two minutes,using 9 megabytes.The application will miss a real time deadline if a data event remains un-handled when its deadline expires. We checked !(EF p) formulas which ex-press that this condition is unreachable. To check this, it is necessary to as-sign values to the lengths of all the phases and intervals. We made the phasesas short as possible, while still allowing for pre-emption: len synch = 1 andlen scan = len read = len poll = 2. By trial and error, we found period = 10 (thewatchdog task period) and hold = 12 (the data hold time) were the shortest in-tervals where the deadlines could always be met (the CTL formula was veri�ed).Reducing the value of period or hold by one makes it possible for the deadlineto be missed4.When the data hold time is reduced to 11, the checker takes two minutesand 10 megabytes to generate a counterexample of 57 states that shows how thedeadline is missed (Table 2): The read timeout for the ctlr2 task expires (state28), but then a data event occurs anyway (state 30). After ctlr2 handles thetimeout (state 40), it handles the data event also (state 43), and consequentlysignals the intlk task to run as well (state 47). All this delays ctrl1 so it misses itsdeadline (state 57). We did not anticipate that a data event would appear aftera read timeout. In fact this is unlikely, but the checker shows the consequencesof the SMV program we actually wrote, not what we expected.4 We kept sample = 5 (the controller task read timeout period).

St. Clk Operation Task Comment1 (Init) watchdog Initial state...28 Timeout intlk timeout event for ctlr2 while intlk is current29 Enqueue timeout event queued for ctlr230 Input data event for ctlr231 Enqueue data event queued for ctlr232 Switch ctlr1 intlk pends, ctlr1 becomes current33 Switch ctlr2 ctlr1 pends, ctlr2 becomes current34 PreEmpt intlk intlk pre-empts ctlr2, handles signal from ctlr135 Input data event for ctlr136 0 Enqueue data event queued for ctlr137 1 Compute intlk computes in scan phase38 2 Compute intlk computes in scan phase39 2 Switch ctlr2 intlk pends, ctrl2 becomes current40 2 Continue ctrl2 handles timeout event41 3 Compute ctlr2 computes in poll phase42 4 Compute ctlr2 computes in poll phase43 4 Continue ctrl2 handles data event44 5 Compute ctlr2 computes in read phase45 6 Compute ctlr2 computes in read phase46 6 Switch ctlr1 ctlr2 pends, ctlr1 becomes current47 6 PreEmpt intlk intlk pre-empts ctlr1, handles signal from ctlr248 7 Compute intlk computes in scan phase49 8 Compute intlk computes in scan phase50 8 Timeout timeout event for watchdog51 8 PreEmpt watchdog watchdog pre-empts intlk , handles timeout52 9 Compute watchdog computes in synch phase53 9 Switch intlk watchdog pends, intlk becomes current54 9 Defer intlk defers handling signal from watchdog55 9 Continue intlk handles signal from watchdog56 10 Compute intlk computes in scan phase57 11 Compute ctlr1 misses deadlineTable 2. Counterexample showing missed deadline9 ConclusionOrdinary Z and a general purpose model checker can support detailed analyses ofa real-time program, providing quantitative answers to speci�c questions aboutperformance. Exhaustive simulation with a model checker can be a practicalalternative when other schedulability tests are not applicable. Our simulationsused modest computing resources (two minutes, ten megabytes). Much largersimulations appear feasible.The SMV programming language is so low-level that a formal speci�cation

at the level of Z operation schemas is a practical necessity. It would not bereasonable to write an SMV program by intuition and debug it by trial anderror. Our program was automatically veri�ed by checking CTL formulas basedon the Z. The veri�cation quickly revealed coding errors that could have beenquite di�cult to detect and correct.SMV can be quite useful for checking and exploring Z speci�cations. It caninvestigate behaviors that emerge when sequences of operations are executed.By providing exhaustive simulation and counterexample generation, it combinessome of the advantages of theorem proving and animation.References1. Joanne M. Atlee and John Gannon. State-based model checking of event-drivensystem requirements. IEEE Transactions on Software Engineering, 19(1):24{40,January 1993.2. Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of durations.Information Processing Letters, 40:269 { 276, 1991.3. E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-state concurrentsystems. In J. W. De Bakker, W.-P. de Roever, and G. Rozenberg, editors, ADecade of Concurrency, pages 124{175, Noordwijkerhout, The Netherlands, 1993.REX School/Symposium, Springer-Verlag. Lecture Notes in Computer Science,vol. 803.4. Andy S. Evans. Specifying and verifying concurrent systems using Z. In MauriceNaftalin, Tim Denvir, and Miquel Bertran, editors, FME '94: Industrial Bene-�t of Formal Methods, pages 366{380. Springer-Verlag, 1994. (Lecture Notes inComputer Science number 873).5. Andy S. Evans. Visualizing concurrent Z speci�cations. In J. P. Bowen and J. A.Hall, editors, Z User Workshop, Cambridge 1994, pages 269{281. Springer-Verlag,1994. (Workshops in Computer Science).6. Andy S. Evans. An improved recipe for specifying reactive systems in Z. InJonathan P. Bowen, Michael G. Hinchey, and David Till, editors, ZUM '97: TheZ Formal Speci�cation Notation, pages 275 { 294. Tenth International Conferenceof Z Users, Springer-Verlag, 1997. Lecture Notes in Computer Science 1212.7. C. J. Fidge. Real-time schedulability tests for preemptive multitasking. Real-TimeSystems, 14(1):61 { 93, 1998.8. Jonathan Jacky. The Way of Z: Practical Programming with Formal Methods.Cambridge University Press, 1997.9. Jonathan Jacky. Analyzing a real-time program with Z and SMV. TechnicalReport 98-06-01, Department of Radiation Oncology, University of Washington,Box 356043, Seattle, Washington 98195-6043, USA, June 1998.10. Jonathan Jacky and Michael Patrick. Modelling, checking, and implementing acontrol program for a radiation therapy machine. In Rance Cleaveland and DanielJackson, editors, AAS '97: Proceedings of the First ACM SIGPLAN Workshop onAutomated Analysis of Software, pages 25 { 32, 1997.11. Jonathan Jacky, Jonathan Unger, Michael Patrick, David Reid, and Ruedi Risler.Experience with Z developing a control program for a radiation therapy machine.In Jonathan P. Bowen, Michael G. Hinchey, and David Till, editors, ZUM '97: The

Z Formal Speci�cation Notation, pages 317 { 328. Tenth International Conferenceof Z Users, Springer-Verlag, 1997. Lecture Notes in Computer Science 1212.12. C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in ahard-real-time environment. Journal of the Association for Computing Machinery,20(1):46 { 61, 1973.13. K. L. McMillan. The SMV system. Carnegie-Mellon University, February 2 1992.(draft).14. J. M. Spivey. Specifying a real-time kernel. IEEE Software, 7(5):21{28, September1990.15. J. M. Spivey. The FUZZ Manual. J. M. Spivey Computing Science Consultancy,Oxford, January 1991. Second Printing.16. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York,second edition, 1992.17. Wind River Systems, Inc., Alameda, California. VxWorks Programmer's Guide5.3.1, 1997.

This article was processed using the LaTEX macro package with LLNCS style

