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Abstract. Real-time behavior of a multi-tasking program running on a
pre-emptive priority-based operating system is analyzed. The operating
system and a collection of application tasks are modelled in Z. Real time
is represented by an ordinary Z state variable. The model is adapted to
a particular application by defining a state machine for each task and
associating execution times with each state. The model is analyzed by ex-
haustive simulation with the SMV model checker. The state transitions
described by Z operation schemas are implemented in the SMV pro-
gramming language. Invariants, preconditions, and postconditions from
the Z are translated to formulas in CTL, the SMV specification language.
The SMV program is verified by checking these formulas. This detects
coding errors in the SMV program and also reveals inconsistencies in
the original Z where operation schemas are inconsistent with state in-
variants. The errors were corrected. Additional CTL formulas describe
temporal properties that cannot be expressed directly in Z. The Z model
is validated by checking an example SMV program with CTL formulas
that confirm scheduling results from rate-monotonic analysis (RMA).
Another application that does not satisfy the assumptions of RMA is
analyzed, establishing that high-priority tasks cannot indefinitely delay
low-priority tasks and real-time deadlines can be met.

1 Introduction

We wrote a control program for a radiation therapy machine, a safety-critical
medical application [8, 11]. Our control program includes several concurrent
tasks and meets real time deadlines. It runs on a commercial off-the-shelf (COTS)
real time operating system.

We feel we should be able to answer questions such as these: Will each event
be handled within its deadline? Is it possible for one high-priority task to in-
definitely delay another low-priority task? In order to answer these questions, it
is necessary to model the system as a collection of state transitions, and then
analyze the model.

We chose ordinary Z [16] for our modelling notation. Many notations can
describe state transitions; we use Z operation schemas for this. Moreover, Z
state invariants provide essential information that cannot be expressed directly
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in notations that can only describe state transitions. The Z tool-kit provides the
data types we need: sequences represent priority queues, relations (interpreted
as finite state machines) represent the control structure of application tasks.
Spivey modelled a multi-tasking operating system in Z [14]. However, he did not
model the behavior of a complete system including application tasks, and did
not model the passage of time or expiration of real-time deadlines.

We chose the SMV (Symbolic Model Verifier) [3, 13], a model checker, for
our analysis tool. It performs completely automatic analysis of state transition
systems. It can investigate behaviors that emerge when a collection of Z operation
schemas works together. To check a Z specification using SMV, one implements
the Z in the programming language of the checker. One also provides properties
to check expressed in CTL (Computation Tree Logic), the checker’s specification
language. The checker performs all possible executions of the program, in effect
performing an exhaustive simulation of the system. The checker verifies each
property or outputs a counterexample (a trace of an execution that violates the
property). An earlier experiment with Z and SMV was reported in [10].

Other formal notations provide built-in constructs for representing real time
(several are reviewed in [2]), and there are special methods analyzing real-time
scheduling [7, 12]. But sometimes the most general results can be obtained with
the simplest notations and tools. Our results (section 8, table 2) show that
ordinary Z and a general purpose model checker can support detailed analysis of
a real-time program, providing quantitative answers to specific questions about
performance.

2 Concurrency in Z

Before considering the tasking problem in detail, we represented our application
in Z using the interleaving style proposed by Evans [4, 5]. All the data used by all
tasks appears in the system state. All operations act on the same system state.
The precondition of each operation schema is a guard: when the the precondition
is satisfied, the operation is enabled. It is assumed that the underlying tasking
system will provide fairness: every enabled operation will occur eventually. Con-
currency becomes possible when more than one operation is enabled at the same
time. In this situation it is assumed that all the enabled operations occur, but
in nondeterministic order.

Up to a point, it is easy to design a multi-tasking system in Z using this style.
One merely defines the state and the operations required by the application,
taking care that the precondition of each operation causes it to become enabled
when it is needed (examples based on our project appear in [8]).

However, difficulties can arise when the design is finally implemented on some
real operating system. Operations are assigned to tasks which are scheduled by
the operating system. It becomes necessary to write the code that is supposed to
ensure fairness. For example, one task sets a semaphore to notify another task
that new data are available. At this point, the operating system knows nothing of
fairness. It deterministically selects the next task to run, based on task priorities



assigned by the programmer. If this machinery is not coded carefully, the system
might not meet the fairness assumption. For example, high-priority tasks might
be able to delay a low-priority task indefinitely.

To ensure that each event is handled in time, we need to solve a real-time
scheduling problem: in some worst case situation, the sum of the execution times
of several operations must be less than some interval. But what is the worst case
situation, and which operations must be counted? Several of our application
tasks are not periodic and they interact, so the answers to these questions are
not obvious. Schedulability tests such as rate-monotonic analysis are not appli-
cable [7, 12]. A particular scheduling problem from our application is posed in
section 6 and analyzed in section 8.

3 Operating system and application tasks

We inferred our model of the operating system from the vendor’s manual [17].
Tasks may be ready (to run) or pending (waiting for an event). Each task has
a priority; for each priority, there is a queue of ready tasks in first-in, first-out
(FIFO) order. The task that runs is at the head of the highest priority queue. A
task which becomes ready can pre-empt a lower-priority task. A task becomes
pending when it calls a function that waits for an event which has not yet
occurred, and becomes ready again when the event occurs.

In our application, tasks read from devices attached to the controlled equip-
ment and also from interprocess communication channels connected to other ap-
plication tasks. Tasks become pending when they attempt to read from a device
or an inter-task communication channel where input is not available. Pending
tasks can be made to time out: they abandon the read operation if input has
not appeared when a timeout interval expires. Tasks can also be made to simply
wait for a timeout, in order to schedule periodic operations and give low-priority
tasks an opportunity to run.

4 7 Model

In this section we present a generic model of a multi-tasking program with real-
time deadlines and timeouts running on a pre-emptive priority-based operating
system, interacting with an environment that provides events. We call this a
model not a specification because it represents an already existing system and is
intended to support analyses of that system.

We abstract away the application data; our model only represents control
structure, tasking, synchronization, and the passage of time. We specialize the
model for our application in section 5. The Z texts excerpted here [9] conform
to the Reference Manual [16] and were type-checked [15].

4.1 Configuration

Our generic model can be specialized for any particular application by choosing
values for the constants declared in this subsection (see section 5).



An application consists of a set of tasks. Each task executes in several phases.
The sets of phases and tasks are fixed, but their actual contents depend on
the application (this is indicated by the three dots in the otherwise formal text
below). A task can only wait for an event at the end of a phase. In order to model
pre-emption and the passage of time, it is necessary to represent the internal
structure of the phases. Each phase occupies a contiguous range of machine
addresses or program counter (PC) values. When a task executes, the program
counter advances through a phase. Actually, execution may take different paths
through a phase, depending on the values of data which we do not model here.
The length of each phase given here can be taken to be the longest (worst case)
path through the phase.

PC ==
TASK:Z=t1|t2|t3|...
PHASE ::=py |p2 | ps|palps]|---

phs : PC +— PHASE
start, end : PHASE ~— PC

YV ph : PHASE e
start ph < end ph A
(start ph) .. (end ph) C dom phs A
phs((start ph) .. (end ph)) = {ph}

The control structure of each task is given by the finite state machine next (where
states correspond to phases). After the program counter reaches the end of a
phase, the task begins executing at the beginning of another phase, determined
by which event has occurred. Some phases send signals to a destination task
(this models semaphores and other intertask communication). Input data only
remains available during a hold time, after this deadline expires the data is lost.
A timeout interval is associated with each phase that can time out. The len
function returns the length of any phase (in program counter units, which are
the same as clock ticks). Our len, interval, and hold determine the real-time
behavior of the application. The ability to express arbitrarily complex timing
behavior by defining interacting state machines distinguishes our model from
other schedulability tests [7, 12] and makes exhaustive simulation necessary.

TIME ==
EVENT ::= signal | data | timeout | expire

dest : PHASE - TASK

len : PHASE — TIME

hold, interval : PHASE —+ TIME

next : PHASE — EVENT —+ PHASE

len = (A ph : PHASE e end ph — start ph)
dom hold = { ph : PHASE | data € dom (next ph) }
dom interval = { ph : PHASE | timeout € dom (next ph) }




Each task has a priority. Assignment of phases to tasks is determined by the
phase initially executed by each task (a phase may be executed by more than
one task).

PRIORITY ==N

init : TASK — PHASE
pri : TASK — PRIORITY

4.2 System state

The operating system stores each task’s contezt, represented here by its program
counter. Tasks that are ready to run wait in a gqueue, one for each priority.
The other tasks are pending, blocked at the end of some phase, waiting for
an event. New events appear in the environment. They may be handled soon
after they occur, or they may remain unhandled while the pertinent tasks are
ready but unable to run. A key invariant holds that no pending tasks wait
for these unhandled events. The clock indicates real time and a timer records
when timeouts will expire for pending tasks. We also use the clock to model the
expiration of real time deadlines.

_ RTSys
context : TASK — PC

ready, pending : P TASK

queue : PRIORITY — iseq TASK

clock : TIME
events, unhandled : TASK «<— EVENT
timer, deadline : TASK — TIME

ran context C dom phs

ready = TASK \ pending
Vp: PRIORITY eran(queuep) = {t: ready | prit =p}

V't : pending; ph : PHASE | ph = phs (context t) o
context t = end ph A — (e : dom (next ph) o (t, e) € unhandled)

Vit : dom deadline o (t, data) € unhandled
V¢ : dom timer o ¢t € pending A timeout € dom (next (phs (contezt t)))

V't : dom timer e clock < timert
YVt : dom deadline o clock < deadline t

The system is Running when there is at least one ready task. The task at the head
of the highest priority queue is current (running). Redundant state components
name the program counter, phase and priority of the current task.



__ Running
RTSys
pc: PC
phase : PHASE
current : TASK
priority : PRIORITY

ready # &

priority = max (pri(ready))
current = head(queue priority)
pc = context current

phase = phs pc

In the initial state each task begins at the start of its first phase. The system
is Waiting when there are no ready tasks. In the NoFEvent state there are no
new events in the environment. In the No Timeout state no timeouts or deadlines
have expired.

Init = [ Running | context = init § start |
Waiting = [ RTSys | ready = O]
NoEvent = [ RTSys | events = & ]

__NoTimeout
RTSys

VYt : dom timer e clock < timert
YVt : dom deadline o clock < deadline t

4.3 Operations

There are thirteen state transitions, each modelled by a Z operation schema:
Wait, Compute, Continue, Switch, Block, Input, Timeout, Deadline, Ezpire,
Defer, Enqueue, PreEmpt and Wakeup. We call these top-level operations be-
cause none are included in the definitions of any other operations. The top-level
operations define a state transition system which is complete and deterministic.
Their preconditions are mutually exclusive and account for all states permitted
by the invariant. Exactly one top-level operation is enabled in every possible
state so the system cannot deadlock and we do not have to make any fairness
assumptions.

Definitions of many top-level operations include these building-block opera-
tions: Run, Phase, Pend, Event, Unhandled, Ready and Resume. Building-block
operations are not mutually exclusive; some top-level operations include more



than one building block. A Run operation occurs when there is at least one
ready task and no events or timeouts occur. Phase is the specialization of Run
that occurs when the program counter reaches the end of the phase. Pend is the
specialization of Phase that occurs when no events are available for the current
task. Event occurs when an event is available. Unhandled is the specialization of
Event that occurs when the event is not handled. Ready is the specialization of
Event that occurs when a pending task is waiting for the event. Resume is the
specialization of Ready that occurs when the task that handles the event is (or
becomes) current.

The top-level Wait operation occurs when no tasks are ready and no events
occur. Compute, Continue, Switch and Block are specializations of Run. Compute
advances the program counter of the current task, but not to the end of the phase.
Continue is the specialization of Phase that occurs when the event needed by
the current task has already occurred. Switch and Block are specializations of
Pend that occur when another task is ready, or when no more tasks are ready,
respectively. Input, Timeout and Deadline model the occurence of events in the
environment. FExpire, Defer, Enqueue, PreEmpt and Wakeup are specializations
of Fvent. Expire models the expiration of a real-time deadline. Defer occurs when
no pending task is waiting to handle the event. Enqueue is the specialization of
Ready that occurs when the newly ready task does not have a higher priority
than the current task. PreEmpt and Wakeup are specializations of Resume that
occur when the newly ready task has a higher priority than the current task, or
when there is no current task, respectively.

The Wait and Compute operations are of interest because they model the
passage of time by advancing clock. They are the only operations that do so.
Other operations are considered to take negligible time.

The Wait operation occurs when nothing else can happen: no tasks are ready
and no events occur. The clock advances, but not past any timeout or deadline.
Nothing else changes (indicated by the three dots in the otherwise formal text
below).

_ Wait
ARTSys

Waiting
NoFEvent
NoTimeout
clock’ > clock

context’ = context
timer’ = timer A deadline’ = deadline A ready’ = ready A ...

Compute advances the program counter of the current task, but not past the end
of the phase. The clock advances also, at the rate of one tick for each program
counter step. Nothing else changes. Compute includes the Run building-block.

Run = [ ARTSys; Running | NoEvent A NoTimeout |



— Compute
Run
Running'

pc < end phase

pe < pc’ < end phase
clock' = clock + (pc' — pc)

{current} < context’ = {current} < context
timer’ = timer A deadline’ = deadline A\ ready’ = ready A ...

It is helpful to collect formulas from related operations together. Table 1 is
similar to the mode transition tables of the SCR notation [1]. It summarizes
the top-level operations Wait, Compute, Continue, Switch and Block, along
with their building-blocks Run, Phase and Pend. The Run building block is
included in all the operations that appear below it in the table. Likewise, Pend
is included in all operations below it. The second column in the table shows
that the preconditions are mutually exclusive and cover all states where there
are no inputs, events, or timeouts. A second table in [9] summarizes the other
operations, whose preconditions cover the rest of the state space. There are 246
lines of Z in the entire model?

5 An application

We can specialize our model for any application by providing values for the
constants declared in section 4.1. This example is based on our radiation therapy
control program [8, 11].

There are four tasks: a watchdog, an interlock scanner intlk, and two con-
troller tasks ctlrl and ctlr2. The watchdog runs at highest priority, the interlock
scanner is next highest, and the two controller tasks are lowest, at the same
low priority. The watchdog and interlock tasks each execute just one phase,
synch and scan, respectively. The controller tasks both execute the poll and
read phases, starting with poll.

TASK ::= watchdog | intlk | ctirl | ctir2
PHASE ::= synch | scan | poll | read
pri = {watchdog — 3, intlk — 2, ctlrl — 1, ctlr2 — 1}

init == {watchdog — synch, intlk — scan, ctlrl — poll, ctlr2 — poll}

The watchdog task runs periodically: it pends at synch for the timeout event.
The intlk task only runs when it is signalled by another task: it pends at scan
for the signal event. The ctlrl and ctir2 tasks each pend at poll and read. If
data appears, they execute the read phase. If no data appears, a timeout event

? Nonblank lines output by running the Fuzz tool -v option [15] on [9].



|Z operation|Precondition

[Unchanged|Progress postcondition

Wait Waiting, no input (All but  |clock’ > clock
NoEvent A NoTimeout|clock)
(Run) Running, no input
NoEvent A NoTimeout
Compute |pc < end phase (All but  |pc’ > pc
pc,clock) |clock’ = clock + (pc’ — pe)
Continue |pc = end phase ready Running’
(Phase) |(Fe: unhandled...) |pending |e = (pe: unhandled...)
queue unhandled’ = unhandled \ {(current, )}
current phase’ = next phase e
priority  |pc’ = start phase’
deadline’ = deadline \ {(current,...)}
events' = events U {(dest phase, signal)}
(Pend) pc = end phase unhandled |ready’ = ready \ {current}
(Phase) |= (3 e: unhandled ...) |contest  |pending’ = pending U {current}
queue’ priority = tail (queue priority)
timer’ = timer & {. .. clock + interval phase}
Switch ready \ {current} # & Running’
(Pend) priority’ = maz (pri(ready’))
current’ = head(queue priority")
pc’ = context current
current’ # current
priority’ < priority
Block ready = {current} Waiting’
(Pend)

Table 1. Task state transitions: Wait and Run operations

will occur and they execute the poll phase again. At the end of its synch phase,
the watchdog signals the intlk task, and at the end of their read phase, the two
controller tasks signal the intlk task.

next synch = {timeout — synch}

next scan = {signal — scan}

next poll = next read = {data — read, timeout — poll}

dest = {synch — intlk, read — intlk}

interval = {synch — period, poll — sample, read — sample}

The watchdog task is periodic. The two controller tasks are recurrent: they run
repeatedly, but not with any fixed period. Each of these tasks will pend for




some variable amount of time until data appears (nondeterministically) or the
timeout expires. They will become unsynchronized with each other and with
the watchdog. The interlock task runs whenever it is signalled by the periodic
watchdog or by either recurrent controller task, and the interlock task can pre-
empt or delay the controller tasks.

6 A real-time scheduling problem

Real-time deadlines arise in our example (section 5) because the information
associated with a data event will be lost if the controller task does not begin to
execute its read phase before the hold time expires. The controller task might
miss the deadline because it cannot run while the higher priority watchdog and
interlock tasks run. A controller task might also be delayed by the other controller
task, which has the same priority.

Is it possible for a deadline to be missed? By applying reasoning similar
to that of Liu and Layland [12], we can write some conditions which must be
satisfied to prevent missing a deadline. The sum of the lengths of all the phases
that might pre-empt a controller task must be less than the hold time. This
includes the other controller task; moreover, the interlock task might run twice,
signalled by both the watchdog task and the other controller, so this condition is
len synch + len read + 2 x len scan < hold. Also, the period of the watchdog task
must be long enough to prevent it from pre-empting a controller task repeatedly:
len read + 2 x len scan < period. It seems obvious that these conditions are
necessary to prevent missing a deadline, but are they sufficient? We should check
our intuition with some analysis.

7 Analyzing the Z model using SMV

To analyze a Z model using the SMV model checker, one implements the Z in
the SMV programming language and provides properties to check in CTL, the
SMV specification language. The checker verifies each property or produces a
counterexample (a trace of an execution that violates the property).

7.1 Writing the SMYV program

The SMV program is, in effect, a simulation of a multi-tasking application run-
ning on a pre-emptive priority-based operating system. The Z texts presented in
section 4, originally considered a model of that system, now serve as the spec-
ification for the simulation program. The specification could be implemented
in any programming language, but there are two advantages to using SMV:
the checker can verify that the program implements the specification, and the
checker performs all possible executions of the program, achieving exhaustive
simulation.

The SMV programming language [13] is much less expressive than Z. Its
only data types are small integers (including booleans and enumerations). Our



specification cannot be implemented directly but must be simplified and made
concrete.

To simplify, we abandon the generality of the model. We just implement
one particular example, the application in section 5. Now we only need one
priority queue that holds at most two controller tasks. The implementation is
two-element array that indicates whether the two positions in the queue hold
ctlrl, ctlr2, or neither.

To make the model concrete we represent all state variables as integers (in-
cluding booleans and enumerations). The value of every variable must be kept
small to limit the size of the state space so exhaustive simulation will be feasible.
Program counters, clock and timers cannot be allowed to grow indefinitely. In
our SMV program we reset the program counter to zero at the beginning of each
phase so the program counters never grow larger than the length of the longest
phase. Each phase is only a few units long, just long enough to admit the pos-
sibility of being pre-empted by higher priority tasks. We have a separate clock
for each timeout and deadline, which remains at zero except when its timeout
or deadline is counting up (several might be counting at once).

We defined SMV symbols that implement redundant state components such
as current and predicates such as Running. This makes the SMV program shorter
and helps it resemble the Z model more closely, without enlarging the state space.

Most of the implementation is not difficult because our Z model is already
expressed in an operational style: the new value of every state variable after
each transition appears by itself on one side of an equation. These equations
are translated to SMV assignments. For each variable there is an SMV case
statement. For each Z operation where that variable changes value, there is a
case branch that assigns the new value, guarded by that operation’s precondition.

The checker itself provides input to our SMV program nondeterministically.
When the ctlrl or ctlr2 task is pending, the checker may (or may not) provide a
data event to that task at each execution step. The checker explores all possible
execution sequences: the one where the data event occurs on the first execution
step after ctlrl pends at poll, the one where the data event occurs on the second
execution step, the one where the data event never occurs so the timeout event
occurs instead, etc. As a result, the checker considers all possible interleavings
of the tasks.

Our SMV program [9] (excluding CTL formulas that express properties to be
checked) is 423 (nonblank, noncomment) lines long. Fig. 1 shows excerpts that
deal with context watchdog, timer watchdog, and clock (compare to the Wait,
Run and Compute schemas in section 4.3). We used the smallest values for
lengths of phases and intervals that still reveal the properties of interest (sec-
tion 8). With these values, SMV reports that the program has 30062 reachable
states in a space of more than 10%® states (278, or 78 state bits). SMV uses a
data structure called a binary decision diagram (BDD) to represent the transition
relation defined by a program [3]. It encodes the next-state relation implicitly
defined by all thirteen top-level operation schemas described in section 4.3. SMV
reports that the BDD for our program contains 24594 nodes.



The checker’s performance depends on the ordering of variable declarations
in the program and on several command line parameters such as cache size [13].
We adjusted these by trial and error to achieve acceptable performance (on
a Hewlett-Packard J282 workstation with a PA8000 processor running at 180
MHz). Most CTL formulas can be verified in a few minutes, using about ten
megabytes of memory.

7.2 Refinement

The development of the SMV program can be easily (but tediously) formal-
ized as a refinement. Refinement is a method for establishing formally that one
(concrete) specification is an implementation of another (more abstract) speci-
fication. Here we use refinement to show how expressions in SMV and formulas
in CTL can be identified with expressions and predicates in Z.

The concrete specification (below) closely resembles our SMV program: the
set of ready tasks is represented by an array of booleans cready, the tasks them-
selves are the array indices CTASK1, and the priority queue for the two con-
troller tasks is the two-element array cqueue, where the first element is the head
of the queue. The invariant shows how the current task is selected, based on
the priorities of the ready tasks. The corresponding predicates in Running are
priority = maz (pri(ready)) and current = head(queue priority).

BOOLEAN == {0,1}

cnone == 0; cctlrl == 1; cctlr2 == 2; cwatchdog == 3; cintlk ==
CTASK == {cnone, cctlrl, cctlr2, cwatchdog, cintlk};

CTASK1 == CTASK \ {cnone}

_ CRTSys
ccurrent : CTASK
cready : CTASK1 — BOOLEAN
cqueue : {1,2} — {none, cctlrl, cctlr2}

ccurrent = cwatchdog < cready cwatchdog = 1
ccurrent = cintlk < cready cwatchdog = 0 A cready cintlk = 1
ccurrent = cqueue 1 & cready cwatchdog = 0 A cready cintlk =0

Now we can relate the two specifications. The function abs associates each con-
crete task with its abstract counterpart, and the abstraction schema Abs relates
the concrete state CRTSys to the abstract state defined in RTSys and Running.

abs == {cctlrl — ctlrl, cctlr2 — ctlr2, cwatchdog — watchdog, cintlk — intlk}



MODULE main

VAR
context: array 1 .. 4 of {0,1,2,3,4}; -- program counter indexed by task
tclock: {0,1,2,3,4,5,6,7}; —-- clock for watchdog timer
timer: boolean; -- true if watchdog timer counting

DEFINE
watchdog := 3; -- index into context array
lsynch := 1; -- watchdog task, len synch in the Z
Running := ready[watchdogl | readylintlk] | readyl[ctlrl] | readyl[ctlr2];

preRun := Running & NoInput & NoEvent & NoTimeout;
preWait := Waiting & NoInput & NoEvent & NoTimeout;

preCompute := preRun & InPhase;
ASSIGN
init(context[watchdogl) := 0; -- program counter at start of phase
init(timer) := 0; -- watchdog timer is not counting
init (tclock) := 0; -- clock is reset
next (context [watchdog]) := case
preCompute & current = watchdog
& context[watchdog] < 1lsynch: context[watchdogl+l; -- Compute
preResumeWD: O; -- Resume
1: context[watchdog] ; -- else no change
esac;
next(tclock) := case
preWait & timer & tclock < period: tclock + 1; -- Wait, tick
preCompute & timer & tclock < period: tclock + 1; -- Compute, tick
preTimeoutWD: O; -- Timeout, reset
1: tclock; -- else no change
esac;
next(timer) := case
prePend & current = watchdog: 1; -- (Pend), set
preTimeoutWD: O; -- Timeout, reset
1: timer; -- else no change
esac;

Fig. 1. Excerpts from SMV program



_ Abs
RTSys
Running
CRTSys

ccurrent # cnone = current = abs ccurrent
ready = {t: CTASK1 | creadyt =1 e abst}

dom queue = {1,2,3}

queue 1 = (cqueue | CTASK1) § abs

queue 2 = if cready cintlk = 1 then (intlk) else ()

queue 3 = if cready cwatchdog = 1 then (watchdog) else ()

We can define a concrete operation for each abstract operation. This fragment of
the concrete CPend operation shows what happens when the controller task at
the head of the priority queue becomes pending: the next array element advances
to the head of the queue.

__CPend
ACRTSys

(ccurrent ¢ {cctirl, cctir2} A cqueue’ = cqueue) V
(ccurrent € {cctlrl, cctlr2} A cqueue’ 1 = cqueue 2 A cqueue’ 2 = cnone)

The corresponding predicate in the abstract Pend operation is simply

queue’ priority = tail (queue priority). The refinement laws in [16] can be used
to check that CPend is a correct implementation of Pend, given the relations
defined by Abs.

7.3 Analyzing the SMV program with CTL

Properties to check are expressed in CTL (Computation Tree Logic) [3]. CTL
formulas are about SMV program states and paths (sequences of states that occur
when the SMV program executes). CTL state formulas are like Z predicates.
Path formulas provide temporal operators: if p is a state formula, G p means
that condition p is true in all states on a path. F p means that p eventually
becomes true. X p means that p is true in the next state. CTL also provides
quantifiers: A (all paths) and E (some paths).

AG p expresses safety: p is invariant (is true on all paths, in all states). AG (pre
-> AX post) means that if pre is true in a state, then post is true in the next
state. These two CTL formulas correspond to predicates in Z state schemas and
operation schemas, respectively. Other CTL formulas can express behaviors that
emerge when sequences of operations are executed. EF p expresses liveness: p
can occur, p is reachable (is true on some paths, eventually). AG AF p expresses
that condition p is cyclic or recurrent (on all paths p is always true eventually,



p occurs “infinitely often”). There are no built-in constructs corresponding to
path formulas in ordinary Z, they can only be expressed after explicitly defining
a next-state relation and sequences of states [6].

7.4 Verifying the SMV program

We verified our SMV program by the method of Atlee and Gannon [1]. For
each Z operation, we wrote two kinds of CTL formulas: EF pre checks that the
operation occurs and AG(pre —> AX post) checks that it has the intended effect.
It is necessary to check both formulas; if the EF liveness property is false, the AG
correctness property will be vacuously true.

These CTL formulas are a machine-checkable formal specification for the
SMV program. At first the checker found counterexamples to several formulas,
which we traced to trivial coding errors. After we corrected the errors, all for-
mulas were verified. This is a machine-checked proof that the SMV program
correctly implements its CTL specification. The close resemblance between the
CTL formulas and their Z counterparts, supported by the refinement arguments
of section 7.2, suggest that the program correctly implements the Z specification
as well.

We wrote 104 CTL formulas to verify the SM'V program. The checker verified
them in 24 minutes, using 10 megabytes.

7.5 Checking the Z specification

The preceding subsections establish that our SMV program is a correct imple-
mentation of the operation schemas in the Z specification. Therefore properties
which are false in our program are not universally true in our specification. This
means that checking our program can reveal errors in the Z. In particular, if a
CTL property which is a translation of a (putative) Z invariant is not invariant
in our SMV program, then the Z specification is inconsistent.

We translated the invariants of the RTSys and Running state schemas into
CTL AG inv formulas. At first the checker found counterexamples to several
formulas, revealing that the RTSys invariants were too strong®. After revising
(weakening) the invariants to those shown in section 4.2, the checker verified all
34 of these formulas in one minute, using 9 megabytes.

Our SMV program is only one example implementation of our Z specification,
so properties which are true in this program may not be universally true of our
specification. There could be additional errors in our corrected Z specification
which are not revealed by this example.

7.6 Validating the Z specification

We must show that the Z specification actually expresses the properties we
intend. Checking the formula ! (EF p) causes the checker to generate a coun-
terexample showing the execution sequence from the initial state to a state that

3 A reviewer of an early version of this paper also detected some of these errors.



satisfies p (see Table 2). This is a way of “running” the SMV program. Used in
this way, the SMV program serves as a kind of animation of the Z specification.
The counterexamples confirm that the intended behaviors occur.

If the Z specification is valid, our implementation should be able to reproduce
examples of well-known results from real-time scheduling theory. Rate-monotonic
analysis (RMA) applies in the special case where each task has a single phase,
tasks do not signal each other, events occur on a strictly periodic schedule,
and the deadline equals the period [7, 12]. A simple example with two tasks
appears in [12]. We represented this example, and revised our SMV program
to deliver events on a periodic schedule instead of nondeterministically. The
program reproduced the results shown in Figs. 2a, 2b, and 2c in [12] and discussed
in the accompanying text.

8 Analyzing a real-time scheduling problem

In our application (section 5), high-priority tasks must not be able to delay low-
priority tasks indefinitely. All four tasks should be recurrent: each should execute
repeatedly, though not necessarily with a fixed period. This property cannot be
expressed directly in Z because each cycle involves the sequential execution of
several operations. We wrote four CTL formulas to check recurrence: AG AF
current = watchdog etc. The checker verified all four in less than two minutes,
using 9 megabytes.

The application will miss a real time deadline if a data event remains un-
handled when its deadline expires. We checked ! (EF p) formulas which ex-
press that this condition is unreachable. To check this, it is necessary to as-
sign values to the lengths of all the phases and intervals. We made the phases
as short as possible, while still allowing for pre-emption: len synch = 1 and
len scan = len read = len poll = 2. By trial and error, we found period = 10 (the
watchdog task period) and hold = 12 (the data hold time) were the shortest in-
tervals where the deadlines could always be met (the CTL formula was verified).
Reducing the value of period or hold by one makes it possible for the deadline
to be missed*.

When the data hold time is reduced to 11, the checker takes two minutes
and 10 megabytes to generate a counterexample of 57 states that shows how the
deadline is missed (Table 2): The read timeout for the ctlr2 task expires (state
28), but then a data event occurs anyway (state 30). After ctlr2 handles the
timeout (state 40), it handles the data event also (state 43), and consequently
signals the intlk task to run as well (state 47). All this delays ctrll so it misses its
deadline (state 57). We did not anticipate that a data event would appear after
a read timeout. In fact this is unlikely, but the checker shows the consequences
of the SMV program we actually wrote, not what we expected.

1 We kept sample =5 (the controller task read timeout period).



St.|Clk|Operation|Task Comment
1 (Inst) watchdog|Initial state

28 Timeout |intlk timeout event for ctlr2 while intlk is current

29 Engueue timeout event queued for ctlr2

30 Input data event for ctir2

31 Enqueue data event queued for ctir2

32 Switch  |ctlrl intlk pends, ctlrl becomes current

33 Switch ctlr2 ctlrl pends, ctlr2 becomes current

34 PreEmpt |intlk intlk pre-empts ctlr2, handles signal from ctlrl
35 Input data event for ctirl

36| O|Enqueue data event queued for ctlrl

37| 1|Compute intlk computes in scan phase

38| 2|Compute intlk computes in scan phase

39| 2|Switch ctlr2 intlk pends, ctrl2 becomes current

40| 2|Continue ctrl2 handles timeout event

41| 3|Compute ctlr2 computes in poll phase

42| 4|Compute ctlr2 computes in poll phase

43| 4|Continue ctrl2 handles data event

44| 5|Compute ctlr2 computes in read phase

45| 6|Compute ctlr2 computes in read phase

46| 6|Switch ctlrl ctlr2 pends, ctlrl becomes current

47| 6|PreEmpt |intlk intlk pre-empts ctlrl, handles signal from ctlr2
48| 7|Compute intlk computes in scan phase

49| 8|Compute intlk computes in scan phase

50| 8|Timeout timeout event for watchdog

51| 8|PreEmpt |watchdog|watchdog pre-empts intlk, handles timeout
52| 9|Compute watchdog computes in synch phase

53| 9|Switch |intlk watchdog pends, intlk becomes current

54| 9|Defer intlk defers handling signal from watchdog
55| 9|Continue intlk handles signal from watchdog

56| 10| Compute intlk computes in scan phase

57| 11| Compute ctlrl misses deadline

Table 2. Counterexample showing missed deadline

9 Conclusion

Ordinary Z and a general purpose model checker can support detailed analyses of
a real-time program, providing quantitative answers to specific questions about
performance. Exhaustive simulation with a model checker can be a practical
alternative when other schedulability tests are not applicable. Our simulations
used modest computing resources (two minutes, ten megabytes). Much larger
simulations appear feasible.

The SMV programming language is so low-level that a formal specification



at the level of Z operation schemas is a practical necessity. It would not be
reasonable to write an SMV program by intuition and debug it by trial and
error. Qur program was automatically verified by checking CTL formulas based
on the Z. The verification quickly revealed coding errors that could have been
quite difficult to detect and correct.

SMYV can be quite useful for checking and exploring Z specifications. It can

investigate behaviors that emerge when sequences of operations are executed.
By providing exhaustive simulation and counterexample generation, it combines
some of the advantages of theorem proving and animation.
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