
Formal Speci�cation and DevelopmentofControl System Input/OutputJonathan JackyRadiation Oncology Department RC-08University of WashingtonSeattle, WA 98195jon@radonc.washington.eduTechnical Report 92-05-02May, 1992AbstractThis report presents a formal speci�cation in the Z notation for computations thatcalculate control system state variables from input/output device register contents (andvice-versa). The speci�cation is motivated by a particular medical device but is quitegeneric and should be widely applicable. The speci�cation is parameterized so thatan implementation can be adapted to di�erent control systems by providing tables ofcon�guration data, rather than changing executable code. Speci�ed behaviors includedetection of errors (where clients invoke operations with invalid parameters) and faults(where input/output devices report invalid data). The speci�cation is not merely de-scriptive, but is also used in the formal development (or \re�nement") of a detaileddesign. From an initial speci�cation which naturally expresses the requirements, butis abstract and non-constructive, we derive a functionally equivalent speci�cation (alsoin Z), which suggests a straightforward and e�cient implementation in an imperativeprogramming language. Formal justi�cation is provided for each step in the derivation.Conjectures are posed that formalize claims such as \All inputs are handled properly."Proving the conjectures could check for errors in the derivation, and provide con�dencethat the formal speci�cation expresses the intended requirements.

c
1992 by Jonathan JackyThis work may not be copied or reproduced in whole or part for any commercial purpose.Permission to photocopy in whole or part without payment of fee is granted for nonpro�teducational and research purposes provided that all such copies include the following notice:a notice that such copying is by permission of the authors; an acknowledgment of the authorsof the work; and all applicable portions of this copyright notice. All rights reserved.

c
1992 by Jonathan JackyThis work may not be copied or reproduced in whole or part for any commercial purpose.Permission to photocopy in whole or part without payment of fee is granted for nonpro�teducational and research purposes provided that all such copies include the following notice:a notice that such copying is by permission of the authors; an acknowledgment of the authorsof the work; and all applicable portions of this copyright notice. All rights reserved.

11 IntroductionSafety-critical control systems are often advocated as ideal applications for formal softwaredevelopment methods [2]. However, few published case studies apply formal methods toa problem of central importance in these applications: low level input/output1. Controlsystems often include large numbers of input and output signals, and devote much com-putational e�ort to dealing with them. The system that motivates this study, a cyclotronused for medical isotope production and radiation therapy for cancer, has more than onethousand input and output signals [5, 7].A vital activity in most control systems is the processing of unscaled, unencoded contentsof the input/output device registers that are attached to the transducers that sense andcontrol some physical process. Register contents must be translated to the values of thestate variables that occur in the control laws that the system is supposed to obey. Forexample, analog quantities must be scaled and o�set to match analog-to-digital converters(ADC's) and DAC's and often must be adjusted according to calibration curves. Groupsof digital signals must be encoded as discrete variables. Obviously, the correctness of theentire system depends critically upon such translations. Translations must be computed inboth directions: register contents are encoded into variables on input, and state variablesare decoded back to register contents on output.It is also necessary to detect errors (where clients invoke operations with invalid parameters)and faults (where operations fail despite valid invocation by the client). In most computingapplications, it is expected that programs should detect and report errors, but it is left tothe users to deal with faults. Control systems di�er from other computing applications inpart because they are expected to handle some faults.Our system is large, but most of its size derives from repetition of similar elements. Wehope to produce a manageable system by basing the implementation on tables that describethe system con�guration. For example, one table, the \wiring list," tells which signals areconnected to particular input/output device register addresses; another table, the \cratediagram," tells which kind of device is present at each address. It should be possible toaccommodate most con�guration changes simply by editing tables, rather than changingexecutable code. Changing the routing between signals and devices, or adding additionalsignals and devices similar to those already present, should only require changing tables.Accommodating new kinds of signals and devices should only require adding the minimalamount of code needed to deal with their speci�c characteristics.The requirements are not di�cult to understand, but a large control system provides manyopportunities for confusion and error. We decided it would be useful to conduct a formal1I could �nd only [1] and [3], and these are not recent.

2 2 THE INITIAL SPECIFICATIONdevelopment. The purpose of the e�ort reported here was to determine what the tablesshould contain and how the implementation should interpret their contents. The objectivewas to produce a speci�cation that was su�ciently detailed so that its implementation inan imperative programming language would be a straightforward exercise, and it wouldbe clear how to construct and �ll in the tables to describe any particular control systemcon�guration. We intended that the development should be su�ciently rigorous that wecould use proofs to support claims we would like to make, for example, \All possible inputswill be handled properly," or \Every output will be valid."We used the Z notation [8] for this work because it is a good match to our chosen table-driven strategy. Global functions and relations in Z correspond to our con�guration tables.Z deals well with partial functions, providing a natural model for tables with gaps whereaddress spaces are not populated. Functional composition in Z can represent computationswhere an entry found in one table is used as an index into another. Many Z textbooksand case studies provide nice examples of error handling [6, 8]. Some of our preliminaryexperiments with Z appear in [4]. The Z text in this report was found free of syntax andtype errors by the FUZZ type-checker [9].Z does not provide built-in facilities for representing the passage of time, or synchronizationof concurrent processes. This report deals only with the functional aspects of input/output,and defers other issues for treatment in a notation better suited for them.This report is not a tutorial on Z, but the development is fully explained in the English textand is intended to be meaningful to readers who are not familiar with Z. In fact, this essayis intended to pursuade readers who are unfamiliar with formal methods that they can bepractical and e�ective in real projects.2 The initial speci�cationIn this section we present the formal speci�cation that serves as the starting point for ourdevelopment.2.1 The system con�guration and the system stateAt the lowest level, input/output is accomplished by data converter hardware. Data con-verters accomodate signals connected to the controlled process. Signals may be digital oranalog, and carry information which is input or output with respect to the computer.

2.1 The system con�guration and the system state 3Data converters contain registers. Every register is identi�ed by a unique address, and holdscontents that encode the value of one signal in a form intelligible to the computer. In anyparticular con�guration, a �xed set of addresses is populated with registers.We distinguish register contents from control program state variables. While registers holdcontents, variables have values.Expressed formally, we have:[ADDR;CONTENTS ;VAR;VALUE]ioreg : �ADDRiovar : �VARmap : VAR# ADDRmap�iovar� � ioregSysregister : ADDR� CONTENTSvariable : VAR�VALUEdom register = ioregdom variable \ dommap � iovarThe sets ioreg and iovar , and the relation map model some of the tables that describe thecon�guration. The set ioreg lists the populated register addresses, iovar lists the variablesthat can be named as parameters in input or output operations, and map relates those vari-ables to the registers from which they are derived. The predicate says that those variablesmust be related to registers that are populated.Here ioreg , iovar and map are global constants that model the features of the system thatdo not change. We do not model any operations that change the con�guration tables. Wehave actually speci�ed a whole family of control systems, where each assignment of valuesto ioreg , iovar and map determines a particular control system that belongs to the family.This is an example of what Spivey [8] calls a loose speci�cation.The schema Sys models the volatile part of the system that can change state. The registersalong with their contents are modeled as a function from addresses to contents, and thevariables with their values are modeled as another function. The �rst predicate says thatthere is a �xed set of registers in the con�guration; only their contents may change. Thereis no predicate �xing the domain of variable, because the set of variables may change as the

4 2 THE INITIAL SPECIFICATIONprogram executes, as di�erent subroutines are invoked or dynamic data structures evolve.It is possible that not all variables can be parameters of input/output operations; some mayonly store intermediate values in computations. However, any variable that may be inputor output must be named in iovar .Our choice of the words \register" and \address" does not mean this model is limited tomemory-mapped devices. A register could be any distinguishable item of data, includinga named element accessed through a \smart" controller, and an address might be a namederived from an English word, instead of a number. Moreover, values need not be scalar;variables might have complex internal structure.2.2 Translating between register contents and state variable valuesThe higher-order function encode determines the translation between variable values andregister contents. When applied to the register , encode returns a function from variables tovalues; changing the contents of the registers causes a di�erent function to be returned. Theoperation schema Translate uses encode to calculate variable values from register contents(or vice versa).encode : (ADDR� CONTENTS)� VAR� VALUETranslate�Sysvars? : �VARvariable 0 = variable � vars? � encode register 0This schema can be specialized in each direction.Encode b= [Translate j register 0 = register]Decode b= [Translate j variable 0 = variable]These operations are called Encode and Decode, not Input and Output , because they areonly intended to model the translation between register contents and state variable values;they do not necessarily include the transfer of data between the registers and the trans-ducers connected to the controlled process. In some systems, those transfers are separateoperations.We have not yet shown how the function encode is constructed. That is the subject of thefollowing sections.

53 Development strategyIn this and following sections we show how the function encode is constructed from con�g-uration tables, calibration formulas and other available information. A series of represen-tations for encode are presented, where each successive version provides more detail thatsuggests a more straightforward or e�cient implementation in an imperative programminglanguage. This development process is often called re�nement. An important advantage ofa formal speci�cation is that each development step can be calculated, inferred or otherwiseformally justi�ed.Our development strategy is based on several observations:� Usually only one, or a few, registers are related to any variable.� The size of large systems often derives from repetition of similar elements.� Each register and variable should only assume certain values.� Functions can sometimes be replaced by sequences.� Items de�ned non-constructively must be constructed later.In the following sections we show how these observations are used, and introduce somefunctions and other items that we will use to construct encode.3.1 Only consider elements that are relatedThe signature of encode suggests that all registers must be examined to determine the valueof any variable. In fact, usually only one, or a few, registers are related to any variable. Touse this observation, we must introduce more information that describes how the system iswired together.Variables are ultimately derived from signals obtained from transducers that are connectedto the controlled process. Each signal is connected to a particular register. The signalrouting is recorded in voluminous wiring lists that are part of the documentation for anycon�guration. The relationmap introduced in section 2.1 is composed from this information.[SIGNAL]

6 3 DEVELOPMENT STRATEGYsignal : VAR# SIGNALrouting : SIGNAL� ADDRmap = signal � routingThis representation makes it easy to change routing as needed, for example to bypass afaulty data converter channel.3.2 Collect similar elements into groupsMost of our system's size derives from repetition of similar elements; we can achieve e�-ciencies by grouping similar elements together and treating them all in the same way. Thissection introduces relations and functions that classify signals and variables into groups.Each variable belongs to a class, and every instance of each class is composed of itemscalled members. Each signal is associated with a particular member. In our system thereare hundreds of variables and signals, but only a few dozen classes and members. Signalsare assigned to variables such that all variables of the same class are associated with signalsthat have the same membership.[CLASS ;MEMBER]class : VAR� CLASSmember : SIGNAL�MEMBERclassdef : CLASS#MEMBER8 v : dom class �classdef �fclass vg� = member�fsignal vg�Our choice of names is in
uenced by the \object-oriented programming" school; in fact weanticipate specifying another view of the system where the variables are instances (\ob-jects") of abstract data types (\classes") de�ned by Z schemas.It turns out to be useful to de�ne the function amember , that associates each address withthe membership of its attached signal, and rmember , that expresses registers in terms ofmembership rather than addresses:amember : ADDR�MEMBERrmember : (ADDR� CONTENTS)� (MEMBER� CONTENTS)routing � amember = member8 reg : dom rmember �rmember reg = f a : dom reg � amember a 7! reg a g

3.3 Limit the values that elements may assume 73.3 Limit the values that elements may assumeEach kind of signal and variable is only supposed to take on certain values. For analogquantities, these usually form a continuous range that represents physically reasonablevalues. For digital elements, these form a meaningful set of discrete indications.mrange : MEMBER# CONTENTScrange : CLASS#VALUERegister contents and variable values that do not lie within the ranges speci�ed by thesetwo relations are considered faulty.The relation mrange constrains the contents of each register, considered by itself. Registersare sometimes collected together in groups, where the entire group encodes some variable.The schema Combination associates each class with all of its members and all combinationsof their permitted values.Combinationcclass : CLASScontents : MEMBER� CONTENTSdom contents = classdef �fcclassg�contents � mrange
3.4 Replace functions with sequencesIt is sometimes more e�cient to replace functions with sequences. For many input/outputdevices it is usual to transfer the contents of a long sequence of consecutive addresses in asingle operation (for example, in direct memory access (DMA) transfers). In such cases, wedo not need to associate addresses with items, because the source of each item is indicatedby its position in the sequence. Also, in most programming languages, parameters tooperations (procedure calls, function applications etc.) are distinguished by their positionin a sequence.Therefore, for each class, we choose a particular sequence of the associated members. Thisdetermines a sequence of addresses associated with each variable.

8 4 THE DEVELOPMENT STEPSmember seq : CLASS� iseqMEMBERaddr seq : VAR� iseqADDR8 t : dom classdef �ran (member seq t) = classdef �ftg�8 v : dom class �(addr seq v) � amember = (class �member seq) v3.5 Use non-constructive de�nitionsIn Z, the speci�cation for some item (such as a function) is constructive if the item appearsby itself on the left side of an equal sign in the predicate where it is de�ned. Z alsopermits non-constructive speci�cations. This is an advantage because they can be conciseand expressive. For example, the function addr seq is de�ned non-constructively in thepreceding section (3.4). However, at some point it is necessary to show how items sode�ned can be implemented.4 The development stepsWe now have enough pieces in place to perform the development.4.1 De�ne the translation tablesWe begin by de�ning the higher-order function translate, which provides a way for systemdesigners to describe the translation function for each class. When translate is applied tosome class c, it returns a function that associates values with certain patterns of membersand contents.translate : CLASS� (MEMBER� CONTENTS)� VALUE8 c : dom translate �dom (translate c) � fCombination j cclass = c � contents g ^ran (translate c) � crange�fcg�Using this predicate as a template, for any translate c we can use Combination to con-struct the domain of the function, and then use our knowledge of the application to assign

4.1 De�ne the translation tables 9each corresponding VALUE . For analog quantities it is usually e�ective to represent thisassignment by a formula; for digital elements, a table is often preferred.The predicate ensures that valid register contents are mapped into valid variable values (andvice-versa). Consequently, analog quantities will not over
ow, saturate or clip when they aretransfered in either direction. This is particularly important for output, because convertersoften provide quite limited resolution, but it is important to use as much resolution asis available. Designers must be especially mindful of this consideration when substitutingconverters during con�guration changes.Filling in translate c for each class is a central task in creating the detailed speci�cation fora particular control system. This report only describes generic aspects of the speci�cation,so this level of detail will not be described further. Our results are valid for any choice ofthe translate c that satisfy the predicate given here. That is what we mean when we sayour system is table-driven.The predicate does not require all possible patterns allowed by Combination to appear inthe domain of each translate c. It is usual for some patterns to be omitted because theyindicate faulty signal values or combinations. For example, it is good practice for binaryconditions to be indicated by two independent signals, rather than a single binary signal.Thus, there would be independent signals to indicate valve open and valve closed , whereeach signal might indicate set or clear . The patternfvalve open 7! set ; valve closed 7! cleargis expected and would be included in the domain of translate valve, but the patternfvalve open 7! set ; valve closed 7! setgindicates at least one sensor is faulty and would be omitted. (Alternatively, a special elementof VALUE could be provided to indicate this and similar faults. This alternative would behandled di�erently by the fault-detection mechanism described in section 6.)By �rst limiting the permitted ranges in mrange and crange, and then choosing whichpatterns of those de�ned by Combination belong to the domain of each translate c whenwe con�gure a system, we can determine which patterns of register contents represent validencodings of any given set of variables. This is so important that we de�ne a schema todescribe it:

10 4 THE DEVELOPMENT STEPSRegValidvars? : �VARreg : ADDR� CONTENTSdom reg = map�vars?�8 v : vars? � 8 rs : � reg j dom rs = map�fvg� �rmember rs 2 dom (translate (class v))This schema is used in subsequent developments to describe correctness (section 5) andspecify faults (section 6).4.2 De�ne encodeNext, we propose a de�nition for encode. If we already know the class c that a variablebelongs to, and which registers reg determine the variable's value, encode can be derivedfrom translate by using rmember to adjust the type of reg :encode reg v = translate c (rmember reg)In fact v is related to c and reg through functions class and map, respectively, so:encode register v = translate (class v) (rmember (map�fvg� � register))4.3 Make encode more e�cientIn this development step, we increase e�ciency by replacing functions with sequences. Fromthe function translate we derive translate seq :translate seq : CLASS� iseqCONTENTS�VALUE8 c : dom translate � translate seq c =f ccontents : dom(translate c) �member seq c � ccontents 7! translate c ccontents gThen encode can be expressed:encode register v = translate seq (class v) (addr seq v � register)This suggests an e�cient implementation in an imperative programming language (as de-scribed in section 8).

4.4 Make de�nitions constructive 114.4 Make de�nitions constructiveIn this �nal development step we derive constructive speci�cations from non-constructiveones.The expression code seq (class v) (addr seq v � register) derived in the previous step almostresembles an executable statement in a functional programming language2. However, thisexpression could not be evaluated because we have not yet shown how to construct thefunction addr seq . It is de�ned non-constructively in section 3.4:(addr seq v) � amember = (class �member seq) vFirst, we must deal with amember , which is also de�ned non-constructively (section 3.4):routing � amember = memberHere amember is de�ned to be the function which, when composed with routing , yieldsthe function member . This de�nition is convenient because it makes sense for designers tochoose member and routing ; amember is determined by those choices. However, it does notshow how to construct amember . For that, we use a lemma about functional compositionand inverse:f � g = h) g = f � � hThis lemma is proved in Appendix A. We obtain:amember = routing� �memberSince routing is an injective function, its inverse is also a function, which ensures amemberis functional. The de�nition of addr seq expands to:(addr seq v) � routing� �member = (class �member seq) vWe would like to transform this to a constructive de�nition by twice applying anotherlemma:f � g = h) f = h � g�2Perhaps such resemblances help explain the common misconception that a formal speci�cation is just aprogram written in a very high-level language.

12 5 CHECKING THE DEVELOPMENT BY CALCULATION AND PROOFHowever, member� is not functional because member is not injective; many signals havethe same membership. If we applied member� to the expression on the right, we wouldobtain a relation associating multiple signals where we just want one. Fortunately, it followsfrom the de�nitions of class and classdef (section 3.2) that the signals that contribute to asingle variable do have di�erent membership. Thus we can use domain restriction to obtaina constructive de�nition of addr seq :addr seq v = (class �member seq) v � (signal�fvg� �member)� � routingThis completes the development.Non-constructive de�nitions are one of the essential features that distinguish speci�cationnotations from programming languages. If we were limited to a constructive notation, ade�nition for addr seq would have to be assumed without justi�cation. It probably wouldhave been divined by intuition, outside the formal development process. Sometimes intuitionworks, sometimes not. What if routing were not injective? What if we did not notice thatmember� is not functional?5 Checking the development by calculation and proofAn important advantage of formal speci�cations is that they can be analyzed by performingcalculations or sound logical inferences. From the speci�cation, it should be possible to proveconjectures that formally express properties or qualities that we wish the system to have.This can provide con�dence that the formal speci�cation really does express the intendedrequirements.Another use of proof is to check developments. We are fallible, so any development stepmight be wrong3. If the development is correct, it should be possible to prove that theproduct of each step is consistent with all of its predecessors. This ability to check eachintermediate development step by calculation and proof, rather than having to wait untilan executable program can be produced and tested, distinguishes formal development frommore intuitive software development methods.We �nd that the conjecture we pose to express some informal requirements also serves tocheck our entire development sequence. We would like to claim,\All possible inputs will be handled properly"3In fact, some of the development steps are based on intuition (i.e. guessing) and should be checked.

13but this statement is much too vague to relate to our formal speci�cation. Trying again,we say,\If the con�guration tables are accurate, then valid input signals will be trans-lated to the proper state variable values, and invalid input signals will be de-tected."Here the features of the formal speci�cation begin to emerge, but we need still more detail.Trying once again, we begin,\If a group of signals are entered into the routing table, and the addresses towhich the signals are connected are populated, and the signals are found in thetables to be members of recognized classes, and the value of each signal fallswithin the permitted range for its class membership, and : : : "This is beginning to assume the prolix but shallow quality of most theorems in softwareveri�cation. Rather than press on in this vein, we resort to formal notation. We are tryingto state a hypotheses about signals:SigValidsigs : �SIGNALscontents : SIGNAL� CONTENTSsigs = dom scontentsrouting�sigs� � ioregmember�sigs� � ran classdef9RegValid �sigs = signal�vars?� ^scontents = f a : dom reg � routing�a 7! reg a gHere, we use the RegValid schema de�ned in section 4.1. We wish to relate the signals sigsin these hypotheses to the vars? parameter in the Encode operation schema, so we alsoneed: SigMatchVarsigs : �SIGNALvars? : �VARsigs = signal�vars?�

14 5 CHECKING THE DEVELOPMENT BY CALCULATION AND PROOFNow we can state the entire conjecture, which formalizes the requirement, \All valid signalswill be handled properly".SigValid ^ SigMatchVar ^ Encode `8 v : vars? � 9 c : CLASS � c = class v ^variable 0 v = translate c fs : sigs � member s 7! scontents sgThe conclusion says that the variables should have the values required for the signals'contents by the tables and formulas for the signals' class membership.This example demonstrates Z style for writing conjectures [6]. It means that, from thedeclarations and predicates of the schema expression before the turnstile `, we can derive(or prove) the conclusion after the turnstile4.Proving this conjecture would provide con�dence that the formal speci�cation expresses theinformally stated requirement5. It would also serve as a good check on the developmentsteps, since the hypothesis SigValid and the conclusion are expressed in terms of signals,classes, members, and the function translate, while the schema that describes the operation,Encode, is expressed in terms of registers, variables, and the function encode. The schemaSigMatchVar ties the two representations together.Our development, and the conjecture posed to check it, are closely related to the formal de-velopment method called re�nement described by Spivey [8] and taught (in slightly di�erentform) by Potter, et al. [6]. In this method, one �rst proposes an abstract speci�cation, thenre�nes it to a more concrete speci�cation composed of items that are closer to the imple-mentation language. The retrieve relation relates items in the abstract and concrete states.To justify a re�nement, one should prove several conjectures that the method prescribes.One of these, the correctness conjecture, has the form:pre AOp ^ Retr ^ COp ^ Retr 0 ` AOpWhere AOp is the operation schema for the abstract state, Retr is the schema describingthe retrieve relation, and Cop is the operation schema for the concrete operation6.This is almost the same as our own conjecture; our hypotheses SigValid corresponds topre AOp, our SigMatchVar to Retr , our Encode to COp, and our conclusion to AOp. Thesimilarity is clear, except our development proceeded from the \concrete" to the \abstract"4This convention is not described in [8], and this conjecture was not type-checked.5I have not yet attempted to prove any of the conjectures posed in this report.6This is the form used in [6]. They call this the correctness theorem, not conjecture.

15represention! We shouldn't feel obligated to follow the recommended sequence too dogmat-ically, but instead should consider re�nement a useful collection of methods for checkingdevelopment steps, regardless of the order in which they are discovered.
6 Detecting errors and faultsAn important speci�cation task is to enumerate the errors and faults that might occur ineach operation and determine how to handle them. An advantage of a formal speci�cationis that it isn't necessary to rely solely on inspiration to discover potential errors and faults;some of them can be calculated.6.1 Calculating the preconditionsThe precondition of an operation describes the set of initial states for which a �nal stateis de�ned. If the precondition of an operation does not include some possible states, theoperation is partial. States which do not satisfy the precondition of a partial operation areusually those that designers consider erroneous or faulty7. Obviously, it is poor practice toimplement partial operations, since their response to errors and faults is unde�ned.Our Encode operation is partial, as the following calculation reveals. In Z, it is not necessaryto explicitly state preconditions. Preconditions that are implicit in an operation schema canbe calculated, as described in [8]. For the operation Encode on state Sys, the preconditionis: PreEncode b= 9Sys 0 � EncodeThe essential requirement expressed here turns out to be that the expression vars? �encode register from Encode must be de�ned, so register must lie within the domain ofencode, and vars? must lie within the domain of encode register . The expression on theright can be expanded, simpli�ed and expressed as a schema8:7If a state fails to satisfy a precondition, but does not appear erroneous or faulty, the formal speci�cationmay not express the intended requirements.8This is a guess. I haven't actually performed the calculation.

16 6 DETECTING ERRORS AND FAULTSPreEncodeSysvars? : �VARvars? � iovar9 reg : � register � RegValidThe �rst line in the predicate deals with the input parameter vars?; failure to satisfy thispredicate is an error. The second deals with the contents of register ; failure to satisfythis predicate is a fault. The latter predicate is based on the schema RegValid de�ned insection 4.1.6.2 Making the operation totalWith preconditions in hand, we can follow usual Z style for extending partial operations.Errors and faults are reported through status values. We de�ne a small schema to indicatean operation was successful.STATUS ::= success j badvar j badreg j : : :Success b= [status : STATUS j status = success]When an error or fault is detected, it should be reported, but the system state must nototherwise change, for example:BadReg�Sysvars? : �VARstatus : STATUSstatus = badreg: (9 reg : � register � RegValid)A similar schema BadVar describes the case where the input variables are not valid. Thenthe Encode operation can be extended:T Encode b= (Encode ^ Success) _ BadVar _ BadRegThese three outcomes are supposed to exhaust all possibilities. Therefore, the operationT Encode should be total; it should be de�ned in every possible state. This could becon�rmed by proving Pre T Encode) Sys.

177 Inverse operationsNon-constructive notations make it easy to de�ne inverse operations. One example is thede�nition of the Decode operation that translates state variable values to register contents(section 2.2). It contains the predicatevariable = variable � vars?� encode register 0This is nonconstructive because register 0 is the item being de�ned. We can de�ne a con-structive version of Decode by analogy with Encode:decode : (VAR� VALUE)� ADDR� CONTENTSDecode�Sysvars? : �VARvariable 0 = variableregister 0 = register �map�vars?� � decode variableIt seems clear that decode should be the inverse of encode. If we already knew which variablev was associated with a particular register address, we could derive decode from the inverseof translate:decode variable a = (translate (class v))� (variable v) (amember a)In fact v is related to a through the functionmap, so we can just use the preceding de�nition,where it is understood that v 2 map��fag� (any element will do)9.The function decode is expressed here in terms of previously-de�ned items. Thefore, wedo not need to de�ne any additional con�guration tables. Where evaluating translate c isimplemented by table lookup, the implementation of (translate (class v))� can use the sametable, with the direction of lookup reversed.This development could be checked by proving Encode � Decode ` register 0 = register .9Hmnn: : :

18 8 TOWARDS AN IMPLEMENTATION8 Towards an implementationIn this section show how the �nal development of our speci�cation suggests an e�cient andstraightforward implementation in an imperative programming language.Given sets, global functions and relations can be implemented as tables that are loaded whenthe control system is initialized; the predicates for these items suggest acceptance tests thatcould be performed when the tables are produced, or run-time checks to be performed eachtime the tables are loaded. Application of a higher-order function to its �rst argument canbe implemented as code that dispatches to a handler for that particular case. Ordinaryfunction application can be implemented as table lookup or formula evaluation, whicheveris more e�cient.In section 4.3 we showed that the function encode can be represented:encode register v = translate seq (class v) (addr seq v � register)
Evalution of encode register v could be implemented as follows: Look up the sequence ofregister addresses associated with variable v , which is addr seq v . Then �nd the contentsof those registers, preserving the sequence order; that is addr seq v � register . Look upthe class of v , which is class v . Then dispatch to the code that handles that class, whichis translate seq (class v); this code usually looks up items in tables or computes formu-las. Finally, execute that code on the sequence of register contents. That is expressed bytranslate seq (class v) (addr seq v � register), and yields variable v , the value of v .Functional composition (indicated f � g) is ubiquitous in this speci�cation. In some cases,for example addr seq as de�ned in section 4.4, it is clearly more e�cient to pre-compute thecomposed function when a system is con�gured. In other cases, the speci�cation reveals op-portunities to trade o� time against space. For example, the expression translate seq (class v)could be implemented in two steps, as described previously. The equivalent representation(class �translate seq) v suggests the alternative of speeding execution by �rst pre-computinga single large table with an entry for each variable (not just each class).The �nal development of the speci�cation appears su�ciently detailed to serve as a basisfor formal veri�cation of the implementation, if we wish to attempt it.

199 DiscussionCritics charge that many formal developments are described in retrospect, merely castinginto formal notations work that has already been developed intuitively. Our own experiencerefutes that cynical assessment.Our results may seem obvious; in fact, we made several false starts that led to cumbersomespeci�cations and un�nished developments. The formal notation, by providing compactdescriptions that can be manipulated and checked algebraically, was quite helpful for identi-fying problems, exploring alternatives, and expressing a detailed solution. The developmentwas easy to calculate, but might have been di�cult to intuit or improvise. Had we plungedon into implementation without the formal development, we might have begun building aless satisfactory alternative.The existing implementation provides some indication of the di�culties we have avoided(we are developing a replacement for the control system that was provided by the cyclotronvendor when the facility was installed [7]). The code seems unnecessarily large and isquite di�cult to follow. There was some attempt to make the system table-driven, butrecon�guring it to accommodate di�erent converter hardware, or even to move a signalfrom a failed converter, cannot be accomplished by changing table entries; it is necessaryto modify executable code. There is little error checking; it is not clear what errors arechecked. A manual startup sequence is necessary because the sytem can set outputs beforevalid register contents are established.The formally-developed replacement described in this report has not yet been implemented,but we are con�dent that it will not be di�cult, and will provide much improvement overthe present system.References[1] Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas. A procedure fordesigning abstract interfaces for device interface modules. In Proceedings, Fifth Inter-national Conference on Software Engineering, pages 195{204. IEEE Computer SocietyPress, 1981.[2] Dan Craigen. FM89: Assessment of formal methods for trustworthy computer systems.In 12th International Conference on Software Engineering Proceedings, pages 233{235.IEEE Computer Society, 1990.[3] K.L. Heninger. Specifying software requirements for complex systems: new techniquesand their application. IEEE Transactions on Software Engineering, SE-6(1):2{13, 1980.

20 A TWO USEFUL LEMMAS ABOUT COMPOSITION AND INVERSE[4] Jonathan Jacky. Formal speci�cations for a clinical cyclotron control system. In MarkMoriconi, editor, Proceedings of the ACM SIGSOFT International Workshop on FormalMethods in Software Development, pages 45{54, Napa, California, USA, May 9{11 1990.(Also in ACM Software Engineering Notes, 15(4), Sept. 1990).[5] Jonathan Jacky, Ruedi Risler, Ira Kalet, and Peter Wootton. Clinical neutron therapysystem, control system speci�cation, Part I: System overview and hardware organization.Technical Report 90-12-01, Radiation Oncology Department, University of Washington,Seattle, WA, December 1990.[6] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Speci�cation andZ. Prentice Hall International (UK) Ltd, Hemel Hempstead, Hertfordshire, 1991.[7] Ruedi Risler, J�uri Eenmaa, Jonathan P. Jacky, Ira J. Kalet, Peter Wootton, and S. Lind-baeck. Installation of the cyclotron based clinical neutron therapy system in Seattle. InProceedings of the Tenth International Conference on Cyclotrons and their Applications,pages 428{430, East Lansing, Michigan, May 1984. IEEE.[8] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York, 1989.[9] J. M. Spivey. The FUZZ Manual. J. M. Spivey Computing Science Consultancy, Oxford,January 1991. Second Printing.A Two useful lemmas about composition and inverseIn this appendix we prove two lemmas used in section 4.4 to derive constructive de�nitionsfrom non-constructive ones.Our proofs are based on the observation that composition with some function is itself afunction (a higher order function that takes a function as input and returns a new function).This is true regardless of the order in which the functions are composed; either of the twocomposed functions can be considered the argument of a higher-order function. Therefore,we can apply Leibniz' law, which states thata = b) f a = f bfor any objects a and b, where f is any function with the appropriate signature.First we prove f � g = h) g = f � � h. Page numbers refer to [8].f � g = h [premise]

21f � � (f � g) = f � � h [Leibniz](f � � f) � g = f � � h [law about composition, p. 97]id (ran f) � g = f � � h [law about id, ran, inverse and composition, p. 105]g = f � � h [law about id and composition p. 97]The proof of f � g = h) g = h � g� is similar:f � g = h [premise](f � g) � g� = h � g� [Leibniz]f = h � g� [laws about composition, inverse, etc. pps. 97 and 105]

