Formal Specification and Development
of
Control System Input/Output

Jonathan Jacky

Radiation Oncology Department RC-08
University of Washington
Seattle, WA 98195

jon@radonc.washington.edu

Technical Report 92-05-02

May, 1992

Abstract

This report presents a formal specification in the Z notation for computations that
calculate control system state variables from input/output device register contents (and
vice-versa). The specification is motivated by a particular medical device but is quite
generic and should be widely applicable. The specification is parameterized so that
an implementation can be adapted to different control systems by providing tables of
configuration data, rather than changing executable code. Specified behaviors include
detection of errors (where clients invoke operations with invalid parameters) and faults
(where input/output devices report invalid data). The specification is not merely de-
scriptive, but is also used in the formal development (or “refinement”) of a detailed
design. From an initial specification which naturally expresses the requirements, but
is abstract and non-constructive, we derive a functionally equivalent specification (also
in Z), which suggests a straightforward and efficient implementation in an imperative
programming language. Formal justification is provided for each step in the derivation.
Conjectures are posed that formalize claims such as “All inputs are handled properly.”
Proving the conjectures could check for errors in the derivation, and provide confidence
that the formal specification expresses the intended requirements.

(©1992 by Jonathan Jacky

This work may not be copied or reproduced in whole or part for any commercial purpose.
Permission to photocopy in whole or part without payment of fee is granted for nonprofit
educational and research purposes provided that all such copies include the following notice:
a notice that such copying is by permission of the authors; an acknowledgment of the authors
of the work; and all applicable portions of this copyright notice. All rights reserved.

©1992 by Jonathan Jacky

This work may not be copied or reproduced in whole or part for any commercial purpose.
Permission to photocopy in whole or part without payment of fee is granted for nonprofit
educational and research purposes provided that all such copies include the following notice:
a notice that such copying is by permission of the authors; an acknowledgment of the authors
of the work; and all applicable portions of this copyright notice. All rights reserved.

1 Introduction

Safety-critical control systems are often advocated as ideal applications for formal software
development methods [2]. However, few published case studies apply formal methods to
a problem of central importance in these applications: low level input/output!. Control
systems often include large numbers of input and output signals, and devote much com-
putational effort to dealing with them. The system that motivates this study, a cyclotron
used for medical isotope production and radiation therapy for cancer, has more than one
thousand input and output signals [5, 7].

A vital activity in most control systems is the processing of unscaled, unencoded contents
of the input/output device registers that are attached to the transducers that sense and
control some physical process. Register contents must be translated to the values of the
state variables that occur in the control laws that the system is supposed to obey. For
example, analog quantities must be scaled and offset to match analog-to-digital converters
(ADC’s) and DAC’s and often must be adjusted according to calibration curves. Groups
of digital signals must be encoded as discrete variables. Obviously, the correctness of the
entire system depends critically upon such translations. Translations must be computed in
both directions: register contents are encoded into variables on input, and state variables
are decoded back to register contents on output.

It is also necessary to detect errors (where clients invoke operations with invalid parameters)
and faults (where operations fail despite valid invocation by the client). In most computing
applications, it is expected that programs should detect and report errors, but it is left to
the users to deal with faults. Control systems differ from other computing applications in
part because they are expected to handle some faults.

Our system is large, but most of its size derives from repetition of similar elements. We
hope to produce a manageable system by basing the implementation on tables that describe
the system configuration. For example, one table, the “wiring list,” tells which signals are
connected to particular input/output device register addresses; another table, the “crate
diagram,” tells which kind of device is present at each address. It should be possible to
accommodate most configuration changes simply by editing tables, rather than changing
executable code. Changing the routing between signals and devices, or adding additional
signals and devices similar to those already present, should only require changing tables.
Accommodating new kinds of signals and devices should only require adding the minimal
amount of code needed to deal with their specific characteristics.

The requirements are not difficult to understand, but a large control system provides many
opportunities for confusion and error. We decided it would be useful to conduct a formal

'T could find only [1] and [3], and these are not recent.

2 2 THE INITIAL SPECIFICATION

development. The purpose of the effort reported here was to determine what the tables
should contain and how the implementation should interpret their contents. The objective
was to produce a specification that was sufficiently detailed so that its implementation in
an imperative programming language would be a straightforward exercise, and it would
be clear how to construct and fill in the tables to describe any particular control system
configuration. We intended that the development should be sufficiently rigorous that we
could use proofs to support claims we would like to make, for example, “All possible inputs
will be handled properly,” or “Every output will be valid.”

We used the Z notation [8] for this work because it is a good match to our chosen table-
driven strategy. Global functions and relations in 7 correspond to our configuration tables.
7 deals well with partial functions, providing a natural model for tables with gaps where
address spaces are not populated. Functional composition in Z can represent computations
where an entry found in one table is used as an index into another. Many Z textbooks
and case studies provide nice examples of error handling [6, 8]. Some of our preliminary
experiments with Z appear in [4]. The Z text in this report was found free of syntax and
type errors by the FUZZ type-checker [9].

Z does not provide built-in facilities for representing the passage of time, or synchronization
of concurrent processes. This report deals only with the functional aspects of input/output,
and defers other issues for treatment in a notation better suited for them.

This report is not a tutorial on Z, but the development is fully explained in the English text
and is intended to be meaningful to readers who are not familiar with Z. In fact, this essay
is intended to pursuade readers who are unfamiliar with formal methods that they can be
practical and effective in real projects.

2 The initial specification

In this section we present the formal specification that serves as the starting point for our
development.

2.1 The system configuration and the system state

At the lowest level, input/output is accomplished by data converter hardware. Data con-
verters accomodate signals connected to the controlled process. Signals may be digital or
analog, and carry information which is input or output with respect to the computer.

2.1 'The system configuration and the system state 3

Data converters contain registers. Every register is identified by a unique address, and holds
contents that encode the value of one signal in a form intelligible to the computer. In any
particular configuration, a fixed set of addresses is populated with registers.

We distinguish register contents from control program state variables. While registers hold
contents, variables have values.

Expressed formally, we have:

[ADDR, CONTENTS, VAR, VALUE]

toreg : P ADDR
tovar : P VAR
map : VAR < ADDR

map (iovar) C ioreg

—Sys
register : ADDR -+ CONTENTS
variable : VAR - VALUE

dom register = ioreg
dom variable N dom map C ijovar

The sets ioreg and iovar, and the relation map model some of the tables that describe the
configuration. The set ioreg lists the populated register addresses, iovar lists the variables
that can be named as parameters in input or output operations, and map relates those vari-
ables to the registers from which they are derived. The predicate says that those variables
must be related to registers that are populated.

Here ioreq, tovar and map are global constants that model the features of the system that
do not change. We do not model any operations that change the configuration tables. We
have actually specified a whole family of control systems, where each assignment of values
to ioreg, tovar and map determines a particular control system that belongs to the family.
This is an example of what Spivey [8] calls a loose specification.

The schema Sys models the volatile part of the system that can change state. The registers
along with their contents are modeled as a function from addresses to contents, and the
variables with their values are modeled as another function. The first predicate says that
there is a fixed set of registers in the configuration; only their contents may change. There
is no predicate fixing the domain of variable, because the set of variables may change as the

4 2 THE INITIAL SPECIFICATION

program executes, as different subroutines are invoked or dynamic data structures evolve.
It is possible that not all variables can be parameters of input/output operations; some may
only store intermediate values in computations. However, any variable that may be input
or output must be named in iovar.

Our choice of the words “register” and “address” does not mean this model is limited to
memory-mapped devices. A register could be any distinguishable item of data, including
a named element accessed through a “smart” controller, and an address might be a name
derived from an English word, instead of a number. Moreover, values need not be scalar;
variables might have complex internal structure.

2.2 Translating between register contents and state variable values

The higher-order function encode determines the translation between variable values and
register contents. When applied to the register, encode returns a function from variables to
values; changing the contents of the registers causes a different function to be returned. The
operation schema Translate uses encode to calculate variable values from register contents
(or vice versa).

‘ encode : (ADDR - CONTENTS) + VAR - VALUE

__ Translate
ASys
vars? : P VAR

variable’ = variable ® vars? < encode register’

This schema can be specialized in each direction.

Encode = | Translate | register’ = register |

Decode = [Translate | variable’ = variable |

These operations are called Encode and Decode, not Input and Output, because they are
only intended to model the translation between register contents and state variable values;
they do not necessarily include the transfer of data between the registers and the trans-
ducers connected to the controlled process. In some systems, those transfers are separate
operations.

We have not yet shown how the function encode is constructed. That is the subject of the
following sections.

3 Development strategy

In this and following sections we show how the function encode is constructed from config-
uration tables, calibration formulas and other available information. A series of represen-
tations for encode are presented, where each successive version provides more detail that
suggests a more straightforward or efficient implementation in an imperative programming
language. This development process is often called refinement. An important advantage of
a formal specification is that each development step can be calculated, inferred or otherwise
formally justified.

Our development strategy is based on several observations:

Usually only one, or a few, registers are related to any variable.

The size of large systems often derives from repetition of similar elements.

Each register and variable should only assume certain values.

Functions can sometimes be replaced by sequences.

Items defined non-constructively must be constructed later.

In the following sections we show how these observations are used, and introduce some
functions and other items that we will use to construct encode.

3.1 Only consider elements that are related

The signature of encode suggests that all registers must be examined to determine the value
of any variable. In fact, usually only one, or a few, registers are related to any variable. To
use this observation, we must introduce more information that describes how the system is
wired together.

Variables are ultimately derived from signals obtained from transducers that are connected
to the controlled process. Each signal is connected to a particular register. The signal
routing is recorded in voluminous wiring lists that are part of the documentation for any
configuration. The relation map introduced in section 2.1 is composed from this information.

[SIGNAL]

6 3 DEVELOPMENT STRATEGY

signal : VAR <— SIGNAL
routing : SIGNAL —+ ADDR

map = signal § routing

This representation makes it easy to change routing as needed, for example to bypass a
faulty data converter channel.

3.2 Collect similar elements into groups

Most of our system’s size derives from repetition of similar elements; we can achieve effi-
ciencies by grouping similar elements together and treating them all in the same way. This
section introduces relations and functions that classify signals and variables into groups.

Each variable belongs to a class, and every instance of each class is composed of items
called members. Each signal is associated with a particular member. In our system there
are hundreds of variables and signals, but only a few dozen classes and members. Signals
are assigned to variables such that all variables of the same class are associated with signals
that have the same membership.

[CLASS, MEMBER]

class : VAR -+ CLASS
member : SIGNAL +— MEMBER,
classdef : CLASS «— MEMBER

Vv : dom class e
classdef ({ class v}) = member ({signal v})

Our choice of names is influenced by the “object-oriented programming” school; in fact we
anticipate specifying another view of the system where the variables are instances (“ob-
jects”) of abstract data types (“classes”) defined by Z schemas.

It turns out to be useful to define the function amember, that associates each address with
the membership of its attached signal, and rmember, that expresses registers in terms of
membership rather than addresses:

amember : ADDR —+— MEMBER
rmember : (ADDR - CONTENTS) + (MEMBER + CONTENTS)

routing § amember = member
V reg : dom rmember o
rmember reg = { a : dom reg ® amember a — reg a }

3.3 Limit the values that elements may assume 7

3.3 Limit the values that elements may assume

Each kind of signal and variable is only supposed to take on certain values. For analog
quantities, these usually form a continuous range that represents physically reasonable
values. For digital elements, these form a meaningful set of discrete indications.

mrange : MEMBER < CONTENTS
crange : CLASS «<— VALUE

Register contents and variable values that do not lie within the ranges specified by these
two relations are considered faulty.

The relation mrange constrains the contents of each register, considered by itself. Registers
are sometimes collected together in groups, where the entire group encodes some variable.
The schema Combination associates each class with all of its members and all combinations
of their permitted values.

_ Combination
cclass : CLASS
contents : MEMBER —+— CONTENTS

dom contents = classdef ({ cclass})
contents C mrange

3.4 Replace functions with sequences

It is sometimes more efficient to replace functions with sequences. For many input/output
devices it is usual to transfer the contents of a long sequence of consecutive addresses in a
single operation (for example, in direct memory access (DMA) transfers). In such cases, we
do not need to associate addresses with items, because the source of each item is indicated
by its position in the sequence. Also, in most programming languages, parameters to
operations (procedure calls, function applications etc.) are distinguished by their position
in a sequence.

Therefore, for each class, we choose a particular sequence of the associated members. This
determines a sequence of addresses associated with each variable.

8 4 THE DEVELOPMENT STEPS

member_seq : CLASS — iseq MEMBER
addr_seq : VAR — iseq ADDR

Vit :dom classdef
ran (member_seq t) = classdef ({t})
Vo :domclass e

(addr_seq v) § amember = (class § member_seq) v

3.5 Use non-constructive definitions

In Z, the specification for some item (such as a function) is constructive if the item appears
by itself on the left side of an equal sign in the predicate where it is defined. 7 also
permits non-constructive specifications. This is an advantage because they can be concise
and expressive. For example, the function addr_seq is defined non-constructively in the
preceding section (3.4). However, at some point it is necessary to show how items so
defined can be implemented.

4 The development steps

We now have enough pieces in place to perform the development.

4.1 Define the translation tables

We begin by defining the higher-order function translate, which provides a way for system
designers to describe the translation function for each class. When translate is applied to
some class ¢, it returns a function that associates values with certain patterns of members
and contents.

translate : CLASS -+ (MEMBER —+ CONTENTS) -+ VALUE

V¢ : dom translate o
dom (translate ¢) C { Combination | cclass = c ® contents } N\
ran (translate ¢) C crange({c})

Using this predicate as a template, for any translate ¢ we can use Combination to con-
struct the domain of the function, and then use our knowledge of the application to assign

4.1 Define the translation tables 9

each corresponding VALUE. For analog quantities it is usually effective to represent this
assignment by a formula; for digital elements, a table is often preferred.

The predicate ensures that valid register contents are mapped into valid variable values (and
vice-versa). Consequently, analog quantities will not overflow, saturate or clip when they are
transfered in either direction. This is particularly important for output, because converters
often provide quite limited resolution, but it is important to use as much resolution as
is available. Designers must be especially mindful of this consideration when substituting
converters during configuration changes.

Filling in translate ¢ for each class is a central task in creating the detailed specification for
a particular control system. This report only describes generic aspects of the specification,
so this level of detail will not be described further. Our results are valid for any choice of
the translate ¢ that satisfy the predicate given here. That is what we mean when we say
our system is table-driven.

The predicate does not require all possible patterns allowed by Combination to appear in
the domain of each translate c. It is usual for some patterns to be omitted because they
indicate faulty signal values or combinations. For example, it is good practice for binary
conditions to be indicated by two independent signals, rather than a single binary signal.
Thus, there would be independent signals to indicate valve_open and valve_closed, where
each signal might indicate set or clear. The pattern

{valve_open — set, valve_closed — clear}

is expected and would be included in the domain of translate valve, but the pattern

{valve_open — set, valve_closed — set}

indicates at least one sensor is faulty and would be omitted. (Alternatively, a special element
of VALUE could be provided to indicate this and similar faults. This alternative would be
handled differently by the fault-detection mechanism described in section 6.)

By first limiting the permitted ranges in mrange and crange, and then choosing which
patterns of those defined by Combination belong to the domain of each translate ¢ when
we configure a system, we can determine which patterns of register contents represent valid
encodings of any given set of variables. This is so important that we define a schema to
describe it:

10 4 THE DEVELOPMENT STEPS

_ RegValid
vars? : P VAR
reg : ADDR - CONTENTS

dom reg = map (vars?)
Vv :wvars? eVrs:Preg | domrs = map({v}) e
rmember rs € dom (translate (class v))

This schema is used in subsequent developments to describe correctness (section 5) and
specify faults (section 6).

4.2 Define encode

Next, we propose a definition for encode. If we already know the class ¢ that a variable
belongs to, and which registers reg determine the variable’s value, encode can be derived
from translate by using rmember to adjust the type of reg:

encode reg v = translate ¢ (rmember reg)

In fact v is related to ¢ and reg through functions class and map, respectively, so:

encode register v = translate (class v) (rmember (map({v}) < register))

4.3 Make encode more efficient

In this development step, we increase efficiency by replacing functions with sequences. From
the function translate we derive translate_seq:

translate_seq : CLASS — iseq CONTENTS -~ VALUE

Y ¢ : dom translate o translate_seq ¢ =
{ ccontents : dom (translate c) o
member_seq ¢ § ccontents — translate ¢ ccontents }

Then encode can be expressed:

encode register v = translate_seq (class v) (addr_seq v § register)

This suggests an efficient implementation in an imperative programming language (as de-
scribed in section 8).

4.4 Make definitions constructive 11

4.4 Make definitions constructive

In this final development step we derive constructive specifications from non-constructive
ones.

The expression code_seq (class v) (addr_seq v § register) derived in the previous step almost
resembles an executable statement in a functional programming language?. However, this
expression could not be evaluated because we have not yet shown how to construct the
function addr_seq. 1t is defined non-constructively in section 3.4:

(addr_seq v) § amember = (class § member_seq) v

First, we must deal with amember, which is also defined non-constructively (section 3.4):

routing § amember = member

Here amember is defined to be the function which, when composed with routing, yields
the function member. This definition is convenient because it makes sense for designers to
choose member and routing; amember is determined by those choices. However, it does not
show how to construct amember. For that, we use a lemma about functional composition
and inverse:

fsg=h=g=f"5h

This lemma is proved in Appendix A. We obtain:

amember = routing”™ § member

Since routing is an injective function, its inverse is also a function, which ensures amember
is functional. The definition of addr_seq expands to:

(addr_seq v) 5 routing™ 3 member = (class § member_seq) v

We would like to transform this to a constructive definition by twice applying another
lemma:

fsg=h=f=hs5g~

2Perhaps such resemblances help explain the common misconception that a formal specification is just a
program written in a very high-level language.

12 5 CHECKING THE DEVELOPMENT BY CALCULATION AND PROOF

However, member™ is not functional because member is not injective; many signals have
the same membership. If we applied member™ to the expression on the right, we would
obtain a relation associating multiple signals where we just want one. Fortunately, it follows
from the definitions of class and classdef (section 3.2) that the signals that contribute to a
single variable do have different membership. Thus we can use domain restriction to obtain
a constructive definition of addr_seq:

addr_seq v = (class § member_seq) v § (signal ({v}) < member)™ § routing

This completes the development.

Non-constructive definitions are one of the essential features that distinguish specification
notations from programming languages. If we were limited to a constructive notation, a
definition for addr_seq would have to be assumed without justification. It probably would
have been divined by intuition, outside the formal development process. Sometimes intuition
works, sometimes not. What if routing were not injective? What if we did not notice that
member™ is not functional?

5 Checking the development by calculation and proof

An important advantage of formal specifications is that they can be analyzed by performing
calculations or sound logical inferences. From the specification, it should be possible to prove
conjectures that formally express properties or qualities that we wish the system to have.
This can provide confidence that the formal specification really does express the intended
requirements.

Another use of proof is to check developments. We are fallible, so any development step
might be wrong®. If the development is correct, it should be possible to prove that the
product of each step is consistent with all of its predecessors. This ability to check each
intermediate development step by calculation and proof, rather than having to wait until
an executable program can be produced and tested, distinguishes formal development from
more intuitive software development methods.

We find that the conjecture we pose to express some informal requirements also serves to
check our entire development sequence. We would like to claim,

“All possible inputs will be handled properly”

3In fact, some of the development steps are based on intuition (i.e. guessing) and should be checked.

13

but this statement is much too vague to relate to our formal specification. Trying again,
we say,

“If the configuration tables are accurate, then valid input signals will be trans-
lated to the proper state variable values, and invalid input signals will be de-
tected.”

Here the features of the formal specification begin to emerge, but we need still more detail.
Trying once again, we begin,

“If a group of signals are entered into the routing table, and the addresses to
which the signals are connected are populated, and the signals are found in the
tables to be members of recognized classes, and the value of each signal falls
within the permitted range for its class membership, and ...”

This is beginning to assume the prolix but shallow quality of most theorems in software
verification. Rather than press on in this vein, we resort to formal notation. We are trying
to state a hypotheses about signals:

—SigValid
sigs : P SIGNAL
scontents : SIGNAL +— CONTENTS

stgs = dom scontents
routing (sigs) C ioreg
member(sigs) C ran classdef
J RegValid o
sigs = signal (vars?) A
scontents = { a : dom reg ® routing™a — reg a }

Here, we use the RegValid schema defined in section 4.1. We wish to relate the signals sigs
in these hypotheses to the wvars? parameter in the Encode operation schema, so we also
need:

_ SigMatchVar
sigs : P SIGNAL
vars? : P VAR

sigs = signal(vars?)

14 5 CHECKING THE DEVELOPMENT BY CALCULATION AND PROOF

Now we can state the entire conjecture, which formalizes the requirement, “All valid signals
will be handled properly”.

SigValid N SigMatchVar A Encode =
Vv :vars? edc: CLASS e ¢ = class v A
variable’ v = translate ¢ {s : sigs ® member s — scontents s}

The conclusion says that the variables should have the values required for the signals’
contents by the tables and formulas for the signals’ class membership.

This example demonstrates Z style for writing conjectures [6]. It means that, from the
declarations and predicates of the schema expression before the turnstile -, we can derive
(or prove) the conclusion after the turnstile?.

Proving this conjecture would provide confidence that the formal specification expresses the
informally stated requirement®. It would also serve as a good check on the development
steps, since the hypothesis SigValid and the conclusion are expressed in terms of signals,
classes, members, and the function translate, while the schema that describes the operation,
Encode, is expressed in terms of registers, variables, and the function encode. The schema
SigMatchVar ties the two representations together.

Our development, and the conjecture posed to check it, are closely related to the formal de-
velopment method called refinement described by Spivey [8] and taught (in slightly different
form) by Potter, et al. [6]. In this method, one first proposes an abstract specification, then
refines it to a more concrete specification composed of items that are closer to the imple-
mentation language. The retrieve relation relates items in the abstract and concrete states.
To justify a refinement, one should prove several conjectures that the method prescribes.
One of these, the correctness conjecture, has the form:

pre AOp A Retr A COp A Retr' = AOp

Where AOp is the operation schema for the abstract state, Retr is the schema describing
the retrieve relation, and Cop is the operation schema for the concrete operation®.

This is almost the same as our own conjecture; our hypotheses SigValid corresponds to
pre AOp, our SigMatchVar to Retr, our Encode to COp, and our conclusion to AOp. The
similarity is clear, except our development proceeded from the “concrete” to the “abstract”

“This convention is not described in [8], and this conjecture was not type-checked.
5I have not yet attempted to prove any of the conjectures posed in this report.
®This is the form used in [6]. They call this the correctness theorem, not conjecture.

15

represention! We shouldn’t feel obligated to follow the recommended sequence too dogmat-
ically, but instead should consider refinement a useful collection of methods for checking
development steps, regardless of the order in which they are discovered.

6 Detecting errors and faults

An important specification task is to enumerate the errors and faults that might occur in
each operation and determine how to handle them. An advantage of a formal specification
is that it isn’t necessary to rely solely on inspiration to discover potential errors and faults;
some of them can be calculated.

6.1 Calculating the preconditions

The precondition of an operation describes the set of initial states for which a final state
is defined. If the precondition of an operation does not include some possible states, the
operation is partial. States which do not satisfy the precondition of a partial operation are
usually those that designers consider erroneous or faulty”. Obviously, it is poor practice to
implement partial operations, since their response to errors and faults is undefined.

Our Encode operation is partial, as the following calculation reveals. In Z, it is not necessary
to explicitly state preconditions. Preconditions that are implicit in an operation schema can
be calculated, as described in [8]. For the operation Encode on state Sys, the precondition
is:

PreEncode = 3 Sys’ e Encode

The essential requirement expressed here turns out to be that the expression vars? <
encode register from Encode must be defined, so register must lie within the domain of
encode, and wvars? must lie within the domain of encode register. The expression on the
right can be expanded, simplified and expressed as a schema®:

"If a state fails to satisfy a precondition, but does not appear erroneous or faulty, the formal specification
may not express the intended requirements.
8This is a guess. I haven’t actually performed the calculation.

16 6 DETECTING ERRORS AND FAULTS

_ PreEncode
Sys
vars? : P VAR

vars? C tovar
Jreg : P register RegValid

The first line in the predicate deals with the input parameter vars?; failure to satisfy this
predicate is an error. The second deals with the contents of register; failure to satisfy
this predicate is a fault. The latter predicate is based on the schema RegValid defined in
section 4.1.

6.2 Making the operation total

With preconditions in hand, we can follow usual Z style for extending partial operations.
Errors and faults are reported through status values. We define a small schema to indicate
an operation was successful.

STATUS ::= success | badvar | badreg | ...
Success = [status : STATUS | status = success |

When an error or fault is detected, it should be reported, but the system state must not
otherwise change, for example:

_ BadReg
ESys
vars? : P VAR
status : STATUS

status = badreg
— (I reg : P register @ RegValid)

A similar schema BadVar describes the case where the input variables are not valid. Then
the Encode operation can be extended:

T_Encode = (Encode A Success) V BadVar V BadRey

These three outcomes are supposed to exhaust all possibilities. Therefore, the operation
T_Encode should be total; it should be defined in every possible state. This could be
confirmed by proving Pre_T_FEncode = Sys.

17

7 Inverse operations

Non-counstructive notations make it easy to define inverse operations. One example is the
definition of the Decode operation that translates state variable values to register contents
(section 2.2). It contains the predicate

variable = variable ® vars? < encode register’
This is nonconstructive because register’ is the item being defined. We can define a con-
structive version of Decode by analogy with Encode:

| decode : (VAR —+ VALUE) - ADDR -+ CONTENTS

— Decode

ASys
vars? : P VAR

variable’ = variable
register’ = register @ map (vars?) < decode variable

It seems clear that decode should be the inverse of encode. If we already knew which variable
v was associated with a particular register address, we could derive decode from the inverse
of translate:

decode variable a = (translate (class v))™ (variable v) (amember a)
In fact v is related to a through the function map, so we can just use the preceding definition,
where it is understood that v € map™~({a}) (any element will do)?.
The function decode is expressed here in terms of previously-defined items. Thefore, we
do not need to define any additional configuration tables. Where evaluating translate c is
implemented by table lookup, the implementation of (¢ranslate (class v))™ can use the same

table, with the direction of lookup reversed.

This development could be checked by proving Encode § Decode & register’ = register.

Hmnn. . .

18 8 TOWARDS AN IMPLEMENTATION

8 Towards an implementation

In this section show how the final development of our specification suggests an efficient and
straightforward implementation in an imperative programming language.

Given sets, global functions and relations can be implemented as tables that are loaded when
the control system is initialized; the predicates for these items suggest acceptance tests that
could be performed when the tables are produced, or run-time checks to be performed each
time the tables are loaded. Application of a higher-order function to its first argument can
be implemented as code that dispatches to a handler for that particular case. Ordinary
function application can be implemented as table lookup or formula evaluation, whichever
is more efficient.

In section 4.3 we showed that the function encode can be represented:

encode register v = translate_seq (class v) (addr_seq v § register)

Evalution of encode register v could be implemented as follows: Look up the sequence of
register addresses associated with variable v, which is addr_seq v. Then find the contents
of those registers, preserving the sequence order; that is addr_seq v § register. Look up
the class of v, which is class v. Then dispatch to the code that handles that class, which
is translate_seq (class v); this code usually looks up items in tables or computes formu-
las. Finally, execute that code on the sequence of register contents. That is expressed by
translate_seq (class v) (addr_seq v § register), and yields variable v, the value of v.

Functional composition (indicated f § g) is ubiquitous in this specification. In some cases,

for example addr_seq as defined in section 4.4, it is clearly more efficient to pre-compute the

composed function when a system is configured. In other cases, the specification reveals op-

portunities to trade off time against space. For example, the expression translate_seq (class v)
could be implemented in two steps, as described previously. The equivalent representation

(classstranslate_seq) v suggests the alternative of speeding execution by first pre-computing

a single large table with an entry for each variable (not just each class).

The final development of the specification appears sufficiently detailed to serve as a basis
for formal verification of the implementation, if we wish to attempt it.

19

9 Discussion

Critics charge that many formal developments are described in retrospect, merely casting
into formal notations work that has already been developed intuitively. Our own experience
refutes that cynical assessment.

Our results may seem obvious; in fact, we made several false starts that led to cumbersome
specifications and unfinished developments. The formal notation, by providing compact
descriptions that can be manipulated and checked algebraically, was quite helpful for identi-
fying problems, exploring alternatives, and expressing a detailed solution. The development
was easy to calculate, but might have been difficult to intuit or improvise. Had we plunged
on into implementation without the formal development, we might have begun building a
less satisfactory alternative.

The existing implementation provides some indication of the difficulties we have avoided
(we are developing a replacement for the control system that was provided by the cyclotron
vendor when the facility was installed [7]). The code seems unnecessarily large and is
quite difficult to follow. There was some attempt to make the system table-driven, but
reconfiguring it to accommodate different converter hardware, or even to move a signal
from a failed converter, cannot be accomplished by changing table entries; it is necessary
to modify executable code. There is little error checking; it is not clear what errors are
checked. A manual startup sequence is necessary because the sytem can set outputs before
valid register contents are established.

The formally-developed replacement described in this report has not yet been implemented,
but we are confident that it will not be difficult, and will provide much improvement over
the present system.

References

[1] Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas. A procedure for
designing abstract interfaces for device interface modules. In Proceedings, Fifth Inter-
national Conference on Software Engineering, pages 195-204. IEEE Computer Society
Press, 1981.

[2] Dan Craigen. FM89: Assessment of formal methods for trustworthy computer systems.
In 12th International Conference on Software Engineering Proceedings, pages 233-235.
IEEE Computer Society, 1990.

[3] K.L. Heninger. Specifying software requirements for complex systems: new techniques
and their application. IEEE Transactions on Software Engineering, SE-6(1):2-13, 1980.

20 A TWO USEFUL LEMMAS ABOUT COMPOSITION AND INVERSE

[4] Jonathan Jacky. Formal specifications for a clinical cyclotron control system. In Mark
Moriconi, editor, Proceedings of the ACM SIGSOFT International Workshop on Formal
Methods in Software Development, pages 45—54, Napa, California, USA, May 9-11 1990.
(Also in ACM Software Engineering Notes, 15(4), Sept. 1990).

[5] Jonathan Jacky, Ruedi Risler, Ira Kalet, and Peter Wootton. Clinical neutron therapy
system, control system specification, Part I: System overview and hardware organization.
Technical Report 90-12-01, Radiation Oncology Department, University of Washington,
Seattle, WA, December 1990.

[6] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification and
Z. Prentice Hall International (UK) Ltd, Hemel Hempstead, Hertfordshire, 1991.

[7] Ruedi Risler, Jiri Eenmaa, Jonathan P. Jacky, Ira J. Kalet, Peter Wootton, and S. Lind-
baeck. Installation of the cyclotron based clinical neutron therapy system in Seattle. In

Proceedings of the Tenth International Conference on Cyclotrons and their Applications,
pages 428-430, East Lansing, Michigan, May 1984. IEEE.

[8] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York, 1989.

[9] J. M. Spivey. The FUZZ Manual. J. M. Spivey Computing Science Consultancy, Oxford,
January 1991. Second Printing.

A Two useful lemmas about composition and inverse

In this appendix we prove two lemmas used in section 4.4 to derive constructive definitions
from non-constructive ones.

Our proofs are based on the observation that composition with some function is itself a
function (a higher order function that takes a function as input and returns a new function).
This is true regardless of the order in which the functions are composed; either of the two
composed functions can be considered the argument of a higher-order function. Therefore,
we can apply Leibniz’ law, which states that

a=b=fa=f>

for any objects ¢ and b, where f is any function with the appropriate signature.

First we prove f ;g = h = g = f™~ § h. Page numbers refer to [8].

fsg=h [premise]

21

[75(fs9)=f"35h [Leibniz]
(f~sf)sg=f"35h [law about composition, p. 97]
id(ranf)sg=f~sh [law about id, ran, inverse and composition, p. 105]
g=I"35h [law about id and composition p. 97]

The proofof f39 =h = g = h g~ is similar:

fs9="n [premise]
(f39)59~ =hsg~ [Leibniz]
f=hsg™ [laws about composition, inverse, etc. pps. 97 and 105]

