
Formal Speci�cations for a Clinical Cyclotron Control SystemJonathan JackyDepartment of Radiation Oncology RC-08University of WashingtonSeattle, Washington 98195AbstractThis report describes preliminary experiencewriting formal speci�cations for the controlsystem for a cyclotron and neutron radia-tion therapy apparatus. This e�ort is mo-tivated by high reliability and safety require-ments, and a need for concise, authoritativedocumentation to support coding, user in-struction, and testing. Software developmentpractices for therapy machines and physicsreserach acclerators are reviewed. The op-eration of our machine from the point ofview of the cyclotron operator is described.Many of the cyclotron operator's controls arewell-matched to model-based notations suchas Z and VDM. Sample speci�cations in Zare presented for representative operations ofthe cyclotron control programs. These no-tations provide no built-in way to representthe passage of time, and they cannot ex-press some features of concurrent systems andevent-driven systems. Alternative notationsare discussed, including Petri Nets and Soft-ware Cost Reduction project (SCR) notation.We conclude that it is practical to attempt acomprehensive formal speci�cation of our ap-plication, and anticipate that this will be avaluable supplement to traditional develop-ment practices.1 IntroductionThe Clinical Neutron Therapy System at the Univer-sity of Washington is a cyclotron and radiation ther-apy facility that provides cancer treatments with fastneutrons, production of medical isotopes, and physicsexperiments [18]. The control system handles over onethousand input and output signals.

Devices under computer control include a 900 ampelectromagnet and a 30 ton rotating gantry. The facil-ity was installed in 1984 and includes a computer con-trol system provided by the cyclotron vendor, whichsupports a clinically useful subset of radiation therapytreatment techniques. The University is developing asuccessor control system including all new computerhardware and software and some changes to the periph-eral control hardware. The new system is motivated byrequirements to support more elaborate treatments.We have high reliability and safety requirements.There is growing recognition that the development ofsoftware which controls medical devices is not su�-ciently systematic, that this is adversely a�ecting costsand safety, and there is much room for improvement[1]. The urgency of these concerns was illustrated by aseries of incidents between 1985 and 1987 in which atleast three serious injuries and two deaths were causedby failures of the computer control system in one modelof a commercial radiation therapy machine [12].We are attempting to achieve high reliability andsafety by applying rigorous software development andquality assurance practices. We are intrigued bythe possibility that formal software development tech-niques might result in additional improvements in reli-ability and safety beyond those achieved through tra-ditional practices, namely, English-language speci�ca-tions, subjective design and code reviews, and lots oftesting. One aim of our control system project is todetermine whether currently available formal devel-opment techniques will prove useful in our hands, orwhether, as is sometimes claimed, they are \too di�-cult," or \not practical for large projects."Other important design goals are improved main-tainability and adaptability to future hardware andsoftware modi�cations. Currently, we are limited bya paucity of documentation recording high-level designdecisions. We often resort to inspecting wiring dia-grams and over 60,000 lines of FORTRAN source code.This is very time-consuming and it is di�cult to distin-guish key requirements from non-essential features ofthe implementation (if the code says two events occurin a particular order, is that a requirement?). A majorproduct of our e�ort will be concise and authoritative



documentation.This report describes initial experiences attemptingto cast our informal speci�cation [13] into formal no-tations. It is intended to acquaint the formal methodscommunity with our application, and also to intro-duce the radiation therapy community to the formalapproach.2 Review of Software DevelopmentPractices for Accelerator ControlsOur project is apparently the �rst application of for-mal methods to an accelerator control system. Theliterature on radiation therapy machine control sys-tems is very scant. A few reviews brie
y discuss con-trol system functionality [4, 14]; a few reports describeacceptance testing from the customer's point of view[17, 20]; none discuss design internals nor developmentpractices. The commercial vendors do not publish theirpractices or experiences.There is a larger literature is devoted to research ac-celerators, which share many features with therapy ma-chines. A typical presentation (e.g., in [16]) emphasizeshardware organization. Discussion of software is lim-ited to informal treatment of program structure, for ex-ample descriptions of important processes and subrou-tines. There is little interest in development method-ology; the very concept of \speci�cation" is practicallyabsent from this literature.3 A Brief Introduction to CyclotronControls3.1 What the cyclotron operator doesOur facility is larger and more complex than a com-mercial accelerator; there are several operators, notjust one. The cyclotron provides beam to two treat-ment rooms, each with its own therapy control console,as well as a third beamline devoted to isotope pro-duction. In commercial therapy machines beam pro-duction is largely automatic but our facility requiresa cyclotron operator, who works at a control consolesimilar to those found at research accelerators. Thecyclotron operator is responsible for bringing up andshutting down the machine, switching the beam be-tween the two treatment rooms and the isotope pro-duction line, and restoring normal machine operationafter shutdowns or interruptions caused by faults.To obtain satisfactory performance, the cyclotronoperator must adjust, or tune, about eighty analogquantities which the operators call cyclotron controlparameters or just parameters (in this paper we use theterm \parameters" in this sense, not in the program-ming languages sense). The parameters are physicalquantities such as ion source gas 
ow, de
ector volt-age, switching magnet current, etc. The cyclotron de-signers calculated sets of theoretically ideal parametervalues, or tuning tables, for each combination of parti-cle and energy. In practice these idealized values are

only starting points; variations in beamline character-istics imposed by experimental or treatment con�gura-tions and the vagaries of nature require frequent man-ual tuning. A few parameters are partially controlledby automated servo loops in some operating modes,but the operator's participation is still essential.3.2 What the cyclotron control programs doThe cyclotron control programs are the control subsys-tem dedicated to assisting the cyclotron operator. In-puts and outputs of this subsystem include a terminalkeyboard, two video dispays, numerous buttons andlamps on the cyclotron operator's console, and the dig-ital and analog interfaces to the controlled parameters.The cyclotron control programs scale quantities be-tween the engineering units needed by the operator(e.g. cc per minute, kilovolts, amps) and the digitallyencoded bit patterns on the input and output con-verters. They multiplex subsets of parameters into asmaller number of physical dispays and controls. Earlycontrol consoles provided hard-wired meters, switchesand dials for each parameter, but it is impractical toplace over one hundred parameters within reach of theoperator. Our console provides dedicated indicatorsand controls for only a few essential parameters; othersare selected by the operator, singly or in groups, andassigned to a relatively small bank of meters, dials, andvideo displays. The control programs save and restorecollections of parameter settings, so the operator neednot repeatedly write down and individually set eachone. The programs perform automatic startup, shut-down, and sequencing, so that collections of related pa-rameters that are usually operated as a group (e.g. thethree collections of magnets that focus the beam downeach of the beamlines) can be operated as a unit, with-out requiring the operator to throw dozens of switchesin the right order. The programs also perform a cer-tain amount of fault detection, turning o� the beamor shutting down subsystems when faults occur, andinterlocking, preventing certain subsystems from beingturned on when it might be unsafe to do so. They im-plement di�erent operating modes, depending on whichbeamlines are in use, and whether treatments, isotopeproduction, or physics experiments are in progress. Fi-nally, the control programs log operating data and er-ror reports to disk �les for subsequent record keeping,performance analysis, and troubleshooting.Patient and operator safety shutdown systems andinterlocks at our facility are nonprogrammable hard-wired controls, but these functions are backed up, andare displayed to the operators, through the computer.In addition, much internal equipment protection is pro-vided solely by the computer. The cyclotron deliversup to 3.5 kilowatts in a beam about 5 millimeters wide;a poorly tuned beam may strike the beamline walls andcan burn through tens of thousands of dollars worth offragile components in a few seconds.



4 Model-based formal speci�cations:Z and VDMMany functions of the cyclotron control programs ap-pear well-suited to formal speci�cations in notationsbased on typed set theory and predicate calculus.These are called model-based notations because the de-veloper de�nes data structures that are supposed tomodel the internal state of the system, as opposed toproperty-oriented or algebraic approaches which modelonly the input-output behavior. The model-based ap-proach seems best for us because the internal states arethe essential characteristics of the facility; many inputsand outputs may be changed to suit convenience.The best-known model-based notations are Z [7, 19]and VDM [11, 5]. Both have similar expressive power,but as of this writing Z appears to be gathering morepublished tutorials and case studies. The distinguish-ing feature of Z is the schema calculus, which providesa convenient way to build up large speci�cations fromtextually separate components called schemas. On theother hand, publications from the VDM school providemore guidance for implementing their speci�cations intraditional imperative programming languages. Weuse Z in this manuscript because we admire the ex-pository style it encourages.In both notations, speci�cations consist of two prin-ciple components: descriptions of abstract data struc-tures that model the internal state, and de�nitions ofoperations that manipulate the state. The data de-scriptions resemble data declarations in strongly-typedprogramming languages such as Pascal, but are usu-ally more abstract; one may declare an ordered se-quence without committing to an array, linked list, orsome other implementation that is directly supportedby an executable programming language. Each opera-tion de�nition includes a section that resembles a pro-cedure declaration in a programming languages. But,where a programmer would write an executable proce-dure body, the speci�er writes logical assertions thatdescribe the e�ects of each operation.5 Model-based speci�cation ofcyclotron control programs5.1 ScopeWe present sample speci�cations for some essential op-erations that are required to run the beam inside thecyclotron vault. This is su�cient to produce isotopesbut not to perform treatments. Running beam out-side the vault into either treatment room requires thatseveral nonprogrammable hardwired interlocks associ-ated with treatments (including keys controlled by thetherapy technologists) be clear. Therefore, our speci�-cations here need not consider interaction with therapyoperations and do not have critical human safety impli-cations. However, they do have equipment protectionimplications. The operations speci�ed here are simpli-�ed for purposes of exposition, but several important

issues are considered.5.2 CaveatsThe author is not an experienced Z user. The frag-ments presented here may seem awkward and na�ive toZ experts. Moreover, these samples have not been runthrough a type-checker, and may contain errors in Zusage. They are only intended to show how some ofthe control system requirements might be expressed inZ style, and to reveal some of the di�culties encoun-tered by self-taught practitioners.5.3 System stateThere are about one hundred and twenty cyclotroncontrol parameters, whose names were assigned bythe cyclotron vendor: GASFLOW, DFLVOLT, SWT-MAGN, etc. The names for these parameters consti-tute a Z set:PNAME = fGASFLOW ;DFLVOLT ; : : : gThe system state is composed primarily of severalquantities associated with each parameter. Most pa-rameters have a quantity called (again following thevendor's nomenclature) pset , which is the control pa-rameter output value most recently written to itsdigital-to-analog converter (DAC). The central prob-lem in specifying the cyclotron controls is to de�ne eachpset as a function of time, the operators' activities, andpotentially hundreds of other quantities, including theinput values of other parameters, digital inputs suchas interlocks, etc.An important in
uence on the value of pset ispsetting , which is the output value most recently re-quested by the operator; however, pset and psetting ingeneral are not equal. The quantity pread is the inputvalue most recently read from the parameter's analog-to-digital converter (ADC); phigh and plow de�ne theupper and lower boundaries of a window of permissiblevalues for pread , outside of which a fault is consideredto exist.All of these quantities are described by the Z schema:CycloParamspset ; psetting ; pread ; phigh; plow :PNAME ! FIXThis schema says that the collection of cyclotroncontrol parameters is a collection of functions thatassociates each parameter name with a named quan-tity. This usage of function di�ers from that encour-aged by many programming languages, in which \func-tions" are methods for computing results, given somearguments. In contrast with that view, but consistentwith ordinary mathematical usage, Z functions maybe thought of as static objects pairing elements in adomain with elements in a range. The range of eachfunction is declared as type FIX, the subrange of in-tegers that can be represented by the hardware deviceregisters in the ADC's and DAC's.



Clearly, much more is needed. We frequently displaythe value of a quantity in a form that is useful to theoperator: a decimal number expressed in engineeringunits. We need to associate each parameter with itsunits and a conversion formula. These are also repre-sented by Z sets:UNIT = fAmps ; kVolts ; cc=min;mbar ; : : : gFORM = fScale;O�set ;Poly ;Table; : : : gNow we use Schema inclusion to indicate that theearlier de�nition of CycloParams is being extendedwith additional components:CycloParamsCycloParamsunits : PNAME ! UNITformula : PNAME ! FORMa; b : PNAME 7! FLOATconvert : PNAME ! (FIX ! FLOAT )units = u0 ^ formula = f0a = a0 ^ b = b0 ^ convert = c0dom a = dom formula C fO�set ;Polygdom b = dom formula C fScale;O�set ;Polygformula = Scale ,convert = (� x : FIX ; b : FLOAT � bx=M )formula = O�set ,convert = (� x : FIX ; a; b : FLOAT �a + bx=M )formula = Poly ,convert = (� x : FIX ; a; b : FLOAT �a + b2x=M ): : :(etc:)Each parameter now has conversion functionconvert . Note that the value of the function convertfor any parameter is itself a function. The values ofthe functions formula; a; and b determine the shapeof each parameter's convert . We declare a; b and therange of the conversion function to be FLOAT to in-dicate that they may assume values that may not beable to be represented in the DAC and ADC deviceregisters.This schema has a predicate section (below the hor-izontal line) which places constraints upon the valuesthat may be assumed by the objects named in the dec-laration section, also called the signature (above theline). The �rst group of predicates indicates that thevariables units ; formula; a; b and convert are supposedto behave as constants. For example, the function u0would be de�ned in Z as follows:u0 : PNAME ! UNITu0 = fGASFLOW 7! cc=min;DFLVOLT 7! kVolts ; : : :g

Table 1: Tabular representation of CycloParamsschemaIn an implementation, the functions u0; f0; a0; b0 andc0 might be hard-coded into the program text or (bet-ter) read from a con�guration �le at system startup.The functions a and b are declared with the sym-bol 7! to indicate that they are partial functions whichare not de�ned for some values of PNAME . The sec-ond group of predicates in CycloParams uses the rangerestriction symbol C to indicate that they are only de-�ned for parameters associated with certain values ofFORM .The third group of predicates describe how the con-version functions are determined by the other compo-nents. They assume that mixed-mode arithmetic in-volving FIX and FLOAT is de�ned, and that the re-sults can always be represented as a FLOAT (M isa global constant determined by the word size of theregisters). It may seem that the formula componentis redundant with convert ; the intent is to convey thatthere are only a few kinds of conversion formulae (cur-rently there are eight), even though each parameterhas a di�erent conversion function.The CycloParams schema reveals that a large partof the task before us is to actually enumerate the ele-ments of all the sets PNAME ;UNIT and FORM , andassign all the values to u0; f0; a0; b0 and c0. Ratherthan include these hundreds of items in the Z text (asin the de�nition of u0 shown above) we maintain theinformation in a database so the cyclotron operatingcharacteristics can be conveniently modi�ed and ex-amined independently of the Z text [9]. For example,the predicates in schema CycloParams describe Table1. Much of our use of Z so far can be viewed as amethod for documenting the contents and meaning ofour database. This alone is quite valuable; since thenotation is described in the literature and supportedby tools, it saves us from having to invent, explain andsupport one ourselves.5.4 Some essential operationsZ models system behavior as a collection of discreteoperations that are also written as schemas.We need an operation that displays the value of aparameter to the user:



DisplayParam�CycloParamsparam? : PNAMEdisplayed pread ! : FLOATdisplayed pread ! =convert param?(pread param?)The � indicates that this operation does not changethe state of CycloParams ; param? is the input to theoperation (indicated in Z by ?); displayed pread ! isthe output. We chose to make the displayed value anoutput, rather than a component of the system state,to indicate that the implementation is not required tomaintain conversions of all quantities at all times, butis free to perform only those which are needed. Thepredicate says that the output is obtained by selectingthe appropriate element from the range of the conver-sion function (in most implementations this would beaccomplished by calculating the needed value from theconversion function). In Z, function application maybe indicated by simple juxtaposition of function nameand argument; in this example we use parentheses tohelp make it clear that �rst the values of convert andpread associated with param? are found, and then theresulting conversion function is applied to the value ofpread .There is a complementary input operation to set thepsetting from an input value expressed in engineeringunits: SetParam�CycloParamsparam? : PNAMEnew psetting? : FLOATconvert param?(psetting 0 param?) =new psetting?The � indicates that this operation changes the stateof CycloParams ; the 0 on psetting 0 indicates the valueof that component of the state after the operation hascompleted. The predicate says that input conversionis the inverse of output conversion. It is not necessaryto provide an explicit input conversion formula, in factwriting out a particular formula, e.g. M (y�a)=b wouldnot convey the essential property of inverse-ness. Thisexample illustrates the economy of expression providedby non-executable notations such as Z.The DisplayParam operation is usually not appliedto just one quantity at a time; instead, it is usual todisplay groups of related quantities on one of the cy-clotron operator's video screens. The Status DisplayScreen is repetitively updated in (almost) real time; itis the computer-age replacement for a bank of analogmeters. This schema says that the control system pro-vides a pre-de�ned set of named screen designs, eachshowing a collection of related parameters:DNAME = fRFSystem;VacuumSystem; : : : g

StatusDisplayscreen : PPNAMEdesigns : DNAME ! PPNAMEdesigns = d0A typical operation is to select a named screen designand display it on the status display screen (replacingwhatever was previously displayed there):SelectStatus�StatusDisplaydesign? : DNAMEbackground ! : PNAME 7! UNITscreen 0 = designs design?background ! = dom screen 0 B u0Here design? is the input from the operator request-ing a particular named collection of parameters. Thisoperation also sends output background ! to the display,painting the �xed background that persists throughsuccessive display updates. This background usu-ally includes text depicting the names and engineeringunits of each parameter. We represent this as a func-tion pairing parameter names with units. The func-tion is partial because not all parameters are presentin any one design. The �rst expression in the pred-icate says that the requested design is stored in thestatus display's state. The latter predicate says thatthe parameters whose names and units are depicted onthe display background are the very ones in the screendesign requested in the input, and that the correct as-sociation of parameter names and units is made byusing the domain restriction operator B to select theappropriate subset of the previously de�ned functionu0.Then we need a similar operation to update thedisplay with the current values of all the associatedquantities, using the appropriate conversion formulae,something like:UpdateStatus�StatusDisplayupdates ! : PNAME 7! FLOATupdates ! = dom screen B pread o9�DisplayParam � displayed pread !Here again, the output is a function, to indicatethat the correct pairing of values with parametersmust be maintained (e.g., by positioning the valuesnext to the corresponding labels and units on the dis-play screen). The predicate is supposed to conveythat the values displayed by this operation are ex-actly those that would be obtained by applying theDisplayParam operation to each of the parameters inthe set screen. The o9 indicates function composition,and �DisplayParam � displayed pread indicates theprojection function that extracts the displayed pread !



component from the DisplayParam schema (The pred-icate is not quite right because the range of pread isnot the same type as the domain of � : : :).It is useful to remark what is not stated in the pre-vious two schemas. SelectStatus does not say howthe operator actually performs the selection; neitherschema describes what the screen actually looks like.It is implicitly understood, but not expressed in Z, thatthe DisplayStatus operation is repetitively applied, andthe results are somehow portrayed on the screen, untilsome other display is selected.There are analogous schemas TUModule,SelectTUM , and ScanTUM to connect groups of pa-rameters to a bank of input dials called Tuning Moduleswhich are repetitively sampled at a high rate.5.5 Ordering constraintsOur speci�cation thus far models each parameter as abox (like a lab bench power supply) that has a dial(psetting), a meter (pread) and an output terminal(pset). We still can't control the cyclotron because wehaven't de�ned any operations that change the pset 's.We need an an ON/OFF switch, and an operation toturn on the switch. An obvious solution is:ChangeParam�CycloParamsparam? : PNAMEpset 0 param? = psetting param?However, naive implementation of this schema coulddestroy the equipment! About forty of the parametersrepresent power supplies that deliver current, often 50amps or more, to the magnets that steer and focus thebeam: Power supply switching is implemented by relaycontactors at the output of each supply. If these relaysshould close when the pset demands a high current, theresulting sudden rush of current creates an inductivetransient that could damage the magnets and/or thesupplies. We include this information in the relevantschemas:PS = fMAINFLD ;SWTMAG ; : : :gswitch state = fOPEN ;CLOSEDgCycloparamsCycloParamsswitch : PNAME 7! switch statedom switch = PSWe need to specify a software interlock that allowsthe contactors to close only when the pset is near zero.Our solution is to specify two separate operations. Thisoperation closes the contactors:

NormalSwitchPS�CycloParamsparam? : PNAMEparam? 2 PSpset param? � smallswitch 0 param? = CLOSEDThe predicate says that this operation is meaningfulonly for power supplies, and that the switch is closedonly if the power supply output is low. For the casewhere the output is too high, there is another schema:TooHighPS�CycloParamsparam? : PNAMEerror ! : MESSAGEparam? 2 PSpset param? > smallerror ! = "Output too high;power supply param? not switched"It is understood that the error message is displayedand logged somehow. The two schemas are combined:SwitchPS b= NormalSwitchPS _ TooHighPSThis example illustrates a use of the schema calculus.It is customary Z style to separate error handling inthis way. The operation to change the power supplycurrent is handled similarly:NormalChangePSChangeParamparam? 2 PSswitch param? = CLOSED(Note the inclusion of the ChangeParam schema)OpenedPS�CycloParamsparam? : PNAMEerror ! : MESSAGEparam? 2 PSswitch param? = OPENerror ! = "Contactor open;current param? not changed"ChangePS b= NormalChangePS _OpenedPSNow we combine these operations:TurnOnPS b= SwitchPS o9 ChangePSThe o9 indicates schema composition, and capturesthe e�ect of SwitchPS then ChangePS . This operationcloses the contactors and then sets the output currentto the most recently requested value of psetting .



5.6 Timing constraints: timeoutsSchema TurnOnPS does not yet capture all the essen-tial features. It is possible that the ChangePS opera-tion may not succeed, even if its preconditions are met.Some parameters are driven by mechanical mechanisms(e.g., sliders on variacs); the mechanism may jam orperhaps the drive belt falls o�. The control programdetects such occurences by noting that the correspond-ing pread has not approached its expected value afterappreciable time has passed. We say that such an op-eration has timed out; an error should be indicated. Zand VDM do not provide any built-in way to expressthe passage of time. Other authors have noted thedi�culties of representing time in Z [6] and VDM [2].Bowen proposed a technique for dealing with timeoutsin Z [3], which is outlined (as we understand it) here:De�ne a type INTERVAL to represent time inter-vals, and use a variable duration which is understoodto represent the amount of time elapsed since the op-eration begins:TimelyChangeParamChangeParamduration : INTERVALplow � pread 0 � phighduration � timelimitand TimeOutChangeParamduration : INTERVALerror ! : MESSAGEduration > timelimit(pread 0 < plow) _ (pread 0 > phigh)error ! = "Operation timed out"obtainingTimedChangeParam b=TimelyChangeParam _ TimeOutThis is just a sketch; we actually require a di�er-ent time limit for each combination of parameter andoperation.5.7 Timing constraints: time-varyingfunctionsThere are additional complications: If the power sup-ply output current should change abruptly even whilethe relays are closed, damage from inductive transientsmay still occur. Internal circuitry protects some sup-plies, but others depend on the control system to grad-ually change, or ramp the output current to the newvalue. In other words, the time course of the transitionof pset is constrained.Here we approach the limits of notations such as Zthat model systems as collections of discreet operations

and provide no built-in way to represent the intervalswhile operations are in progress. One might proposeadding to operation schemas a variable called historywhich is the time-course of the change in the output.For ChangeParam The function history is the sequenceof pairs (ti ; pseti ) observed at a set of times ti while theoperation is in progress. One could imagine predicateslike: RampPS: : :8 ti ; tj : INTERVAL jti ; tj 2 dom history ^ ti 6= tj �j history(ti )� history(tj )=(ti � tj ) j� ratelimitThe constraint on history is simple: the rate ofchange observed between any two intervals cannot betoo large. This must be combined with a timeout con-straint to ensure that the rate of change is not tooslow.On the other hand, it might be better to considerwhether time-varying outputs should be modelled bysome other technique entirely.5.8 Combined operations with serial andparallel componentsUsually the operator selects values for all of the param-eters while the system is in a power-conserving quies-cent state called Standby 1, in which most power sup-plies are turned o�. The operator turns them all onat once by pressing a button labelled, Standby 2. Theintent is that all the contactors will close, and then allof the supplies will ramp up. The operation is consid-ered complete when every parameter's pread is withinthe window determined by its phigh and plow . Themachine is then in the Standby 2 state, in which it isready to produce beam. Alternatively, the transitionfails if any of the parameters times out or reports othererrors.It is desirable that as many supplies as possible rampup at the same time, so that the operation may becompleted as quickly as possible. In other words, theStandby 1 to Standby 2 operation proceeds in par-allel. However, a few of the parallel threads includesequential constraints. For example, the high-voltagede
ector supply must not be turned on until the mainmagnet current exceeds a certain value; otherwise, inthe absence of the magnetic �eld, high voltage sparkscan occur that may damage the equipment.The Z schema composition operator o9 does providea built-in way to build up sequential operations fromschemas. For our application we would like to de�neoperations that mostly consist of multiple instances of(something like) our TurnOnPS schema running in se-ries and in parallel, with each instance instantiatedwith di�erent values for its variables. This is anotherarea where other notations may be more suitable thanZ.



5.9 Event-driven OperationsEvery operation described so far is invoked by the cy-clotron operator. The speci�cation must also describeactions that are triggered by events internal to the ma-chinery. These events may occur asynchronously withrespect to the operator's actions. For example, thereare many hardware and software interlocks that mustturn o� the beam rapidly if faults occur.The beam is actually created by turning on radio fre-quency (RF) power ampli�ers that pump ions aroundthe cyclotron. The computer only allows the RF driveto be turned on if the system has reached Standby2. The RF drive signal from the computer reachesthe RF power ampli�ers through a hardwired, non-programmable interlock chain. This is equivalent to aseries of switches in series; each switch is opened bya di�erent fault condition; if any switch is open, thedrive signal is interrupted and the ampli�ers cannotturn on. The condition of each switch is visible to thecontrol computer, but cannot be changed by it:STANDBY STATE = fSB1;SB2; : : :gINTLK = fVaultdoor ;TreatKey ; : : :gOFF ON = fOFF ;ON gCycloStateCycloParamsStandby : STANDBY STATEInterlocks : P INTLKRF : OFF ONRF = ON )Standby = SB2 ^ Interlocks = ?There is an operation to turn on the beam:TurnOnBeam�CycloStateRFDrive 0 = ONThese two schemas convey that the beam can only beturned on if all the interlocks are clear and the systemis in Standby 2. They even convey that the beam willturn o� if any interlock is set or any parameter exceedsits windows. However, we need to say more: when anyinterlock is set, or any parameter exceeds its windows,that is an event which is logged in an error �le andwhich also causes the RF drive to turn o�:OutsideWindows�CycloStateerror ! : MESSAGE ;RFDrive = ON9 p : PNAME �((pread 0 p < plow p)_(pread 0 p > phigh p))RFDrive 0 = OFFerror ! = "Parameter p outside window"

The �rst line in the predicate indicate that an erroris logged only if the RF drive is on when the windowis exceeded. The second line describes the conditionthat triggers the operation and the last two lines de-scribe the consequences of this condition. However,this schema doesn't really convey that it is the eventof the pread crossing the window limit that triggersthis operation, and that the state of RFDrive has tobe changed as soon as possible after this happens.5.10 ConcurrencyThe Z and VDM notations do not provide any wayto express concurrency; however, they do not precludedescribing concurrent activities. It can be understoodthat di�erent operations which do not depend on thesame components of the system state may proceed atthe the same time.Di�culties arise only when concurrent operationsmust interact (because they use the same compo-nents of the system state). This is a serious practi-cal limitation. Some of the operations described byChangeParam can take several minutes. It is some-times necessary for the operator to cancel or mod-ify these operations while they are in progress. Forexample, the operation SetParam may occur whileChangeParam is in progress, and the new valueof psetting determined by SetParam must immedi-ately supercede the �nal value being approached byChangeParam. There is no way to express this in Z orVDM.6 Alternatives to Z and VDMWe encounter di�culties using Z notation to representinterdependent collections of serial and parallel opera-tions, event-driven operations, and concurrency. Otherformal notations are designed to handle those.6.1 Petri NetsPetri nets are well-suited to concurrent activities.They have an intuitively appealing graphic representa-tion, which we have found useful in discussing require-ments with physicists and engineers. A Petri net repre-sentation of the transition from Standby 1 to Standby2 appears in Fig. 1. Conditions are represented bycircles called places and operations are shown as hori-zontal lines called transitions. A Petri net is executedby placing dots called tokens in the place or places rep-resenting the initial conditions. Any transition whoseantecedent places are all marked with tokens may �re;one token is removed from each antecedent place andone token is put on every successor place. Each com-bination of tokens and places is called a marking andrepresents a possible state of the system.In Fig. 1 the marking in which the entire upperrow of places contains tokens represents Standby 1,and the entire lower row represents Standby 2. The�gure clearly shows that most transitions may occurin parallel but the main �eld current must precede the



Figure 1: Petri net representation of Standby 1 toStandby 2 transitionde
ector voltage (note interlock I between MAINFLDand DFLVOLT ). The �gure is incomplete because itonly shows successful transitions. Petri nets can alsorepresent failures, including timeouts, and have beenapplied in safety analyses [15].6.2 SCR and RTLThe notation developed by the Naval Research Labora-tory's Software Cost Reduction project (SCR) is well-suited to event-driven operations [8]. To express theevent that occurs when a particular parameter passesoutside its window limits while the beam is on, onewrites:@T(!DFLVOLT outside window!)WHEN (*BEAM ON*)Where ! and * are delimiters indicating conditionsand modes de�ned formally elswhere. Events de�nedin this way can be used as triggers for event-driven de-mand functions, which in this case would include WriteError Log and Turn Off Beam.Speci�cations expressed in an SCR-like notation canbe transformed into a formal logic called Real TimeLogic (RTL) [10]. This enables formal timing andsafety analyses to be performed.7 ConclusionsThe sample speci�cations presented here address a sig-ni�cant portion of the cyclotron control programs. Weconclude that writing comprehensive formal speci�ca-tions for our application is feasible.However, unsolved problems remain. This study in-dicates that several formal speci�cation notations ap-pear promising for our application, but none will com-pletely su�ce. Di�erent notations each deal with dif-

ferent parts of the problem and there is not much guid-ance about how to integrate them. Z deals with in-put/output relations but not concurrency and timing;Petri nets deal with concurrency but not timing con-straints; RTL deals with timing constraints but is weakon input/output relations, and so on. An obvious ap-proach is to use two or more notations, but the seman-tics of such combinations is not clear.In addition, the large size of our system confrontsus with problems of style and organization whose so-lutions are not apparent from the small case studiesfound in the literature.7.1 The Z notationWe anticipate using the Z speci�cation notation to ex-press most requirements that do not include timingconstraints nor interaction of concurrent processes.Much of the e�ort in specifying large applicationslike ours is devoted to enumerating the objects andvalues that comprise the system, and listing the oper-ations that must be provided, taking care that nothingis omitted and no inconsistencies in naming or usageare introduced. Z provides a well-de�ned discipline fordoing this, that is explained in good textbooks andsupported by document preparation tools. Even whenused in such an unambitious way, Z promises to be auseful supplement to the usual speci�cations in Englishprose plus tables and diagrams.The Z speci�cations also suggest (though they neednot dictate) an implementation strategy. The dataschemas CycloParams , StatusDisplay , and CycloStatecan be seen as models of regions of computer memory,or of data structures in the implementation language.The various operation schemas can be seen as speci�-cations for procedures that operate on one or anotherof these data structures. The schema signatures canbe readily translated to prodedure declarations in anyimplementation language, and the predicates can serveas guides for programming and test case selection evenif they are not used to perform a full-blown formal ver-i�cation.We anticipate considerable e�ort developing a nota-tional style in Z for presenting compact, easily under-stood speci�cations for complex process control sys-tems. Although our system is large, we believe itsspeci�cation may be concise because much of its sizederives from repetition of similar elements. Almost halfthe total signals are contributed by about forty high-current power supplies. These are not identical butshare many features in common. The Z schema cal-culus should permit common features to be describedwith texts that apply to all, supplemented with brieftexts that address the di�erences.7.2 Other notationsIn addition to Z, we will require a di�erent notation ornotations to express timing requirements and interac-tion of concurrent processes. Other notations may alsoo�er advantages of style or clarity. Candidates include



(but are not limited to) Petri nets, SCR notation andRTL.7.3 Future workThe work presented here represents the simplest partof the system. Treatment operations, and the inter-action between the treatment operations and the cy-clotron controls, will be more di�cult. There are muchgraver safety implications, and many potential faults,where safe and graceful recovery must be provided. Weanticipate that these developments will provide moreopportunities to investigate formal methods in a largeand important application.8 AcknowledgementsThe author thanks Stan Brossard, J�uri Eenmaa, LeeHutter, Ira Kalet, Peter Wootton, and especially RuediRisler for sharing their knowledge of cyclotrons.References[1] H. Bassen, J. Silberberg, F. Houston, W. Knight,C. Christman, and M. Greberman. Computer-ized medical devices: Usage trends, problems,and safety technology. In James C. Lin andBarry N. Feinberg, editors, Frontiers of Engi-neering and Computing in Health Care: Proceed-ings of the Seventh Annual Conference of theIEEE/Engineering in Medicine and Biology So-ciety, pages 180{185, 1985.[2] R. E. Bloom�eld and P. K. D. Froome. The ap-plication of formal methods to high integrity soft-ware. IEEE Transactions on Software Engineer-ing, SE-12(9):988{993, 1986.[3] Jonathan Bowen. Speci�cation of timing con-straints. Z Forum, 1(6), 1986. June 3.[4] Anders Brahme. Optimization of conformationand general moving beam radiation therapy tech-niques. In I. A. D. Bruinvis, P. H. van der Giessen,H. J. van Kle�ens, and F. W. Wittk�amper,editors, Proceedings of the Ninth InternationalConference on Computers in Radiation Therapy,pages 227{230, Amsterdam, 1987. North-Holland.[5] B. Cohen, W. T. Harwood, and M. I. Jackson.The Speci�ciation of Complex Systems. AddisonWesley, 1986.[6] Norman Delisle and David Garlan. Formally spec-ifying electronic instruments. In Proceedings of theFifth International Workshop on Software Speci�-cation and Design, Washington, DC, 1989. IEEEComputer Society Press. (also ACM Software En-gineering Notes 14(3), May 1989).[7] Ian Hayes, editor. Speci�cation Case Studies.Prentice Hall International, Englewood Ci�s, NJ,1987.

[8] K.L. Heninger. Specifying software requirementsfor complex systems: new techniques and theirapplication. IEEE Transactions on Software En-gineering, SE-6(1):2{13, 1980.[9] J. Jacky, R. Risler, S. Brossard, and I. Kalet. Rela-tional database: a radiation therapy machine con-trol software development tool. In Yongmin Kimand Francis A. Spelman, editors, Images of theTwenty-First Century: Proceedings of the AnnualInternational Conference of the IEEE Engineer-ing in Medicine and Biology Society, Volume 11,pages Part 6, 1918{1919, 1989.[10] Farnam Jahanian and Aloysius Ka-Lau Mok.Safety analysis of timing properties in real-timesystems. IEEE Transactions on Software Engi-neering, SE-12(9):890{904, 1986.[11] Cli� B. Jones. Systematic Software DevelopmentUsing VDM. Prentice-Hall, Englewood Cli�s, NJ,1986.[12] E. J. Joyce. Malfunction 54: Unraveling deadlymedical mystery of computerized accelerator goneawry. American Medical News, 1986. Oct. 3, page1.[13] Ira J. Kalet. Radiotherapy treatment planningtools technical progress report 1a. Technical re-port, Radiation Oncology Department, Universityof Washington, Seattle, Washington, 1989.[14] C. J. Karzmark and Neil C. Pering. Electron linearaccelerators for radiation therapy: History, princi-ples and contemporary developments. Physics inMedicine and Biology, 18(3):321{354, May 1973.[15] Nancy G. Leveson and Janice L. Stolzy. Safetyanalysis using Petri nets. IEEE Transactions onSoftware Engineering, SE-13(3):386{397, 1987.[16] Eric R. Lindstrom and Louise S. Naylor, editors.Proceedings of the 1987 IEEE Particle AcceleratorConference: Accelerator Engineering and Tech-nology. IEEE, 1987.[17] M. Loyd, H. Chow, J. Laxton, I. Rosen, andR. Lane. Dose delivery error detection by acomputer-controlled linear accelerator. MedicalPhysics, 16(1):137{139, 1989.[18] Ruedi Risler, J�uri Eenmaa, Jonathan P. Jacky,Ira J. Kalet, Peter Wootton, and S. Lindbaeck.Installation of the cyclotron based clinical neutrontherapy system in Seattle. In Proceedings of theTenth International Conference on Cyclotrons andtheir Applications, pages 428{430, East Lansing,Michigan, May 1984. IEEE.[19] J. M. Spivey. The Z Notation: A Reference Man-ual. Prentice-Hall, New York, 1989.[20] Martin S. Weinhous, James A. Purdy, and Con-rad O. Granda. Testing of a medical linear acceler-ator's computer-control system. Medical Physics,17(1):95{102, Jan/Feb 1990.


