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Abstract

This report describes preliminary experience
writing formal specifications for the control
system for a cyclotron and neutron radia-
tion therapy apparatus. This effort is mo-
tivated by high reliability and safety require-
ments, and a need for concise, authoritative
documentation to support coding, user in-
struction, and testing. Software development
practices for therapy machines and physics
reserach acclerators are reviewed. The op-
eration of our machine from the point of
view of the cyclotron operator is described.
Many of the cyclotron operator’s controls are
well-matched to model-based notations such
as Z and VDM. Sample specifications in Z
are presented for representative operations of
the cyclotron control programs. These no-
tations provide no built-in way to represent
the passage of time, and they cannot ex-
press some features of concurrent systems and
event-driven systems. Alternative notations
are discussed, including Petri Nets and Soft-
ware Cost Reduction project (SCR) notation.
We conclude that it is practical to attempt a
comprehensive formal specification of our ap-
plication, and anticipate that this will be a
valuable supplement to traditional develop-
ment practices.

1 Introduction

The Clinical Neutron Therapy System at the Univer-
sity of Washington is a cyclotron and radiation ther-
apy facility that provides cancer treatments with fast
neutrons, production of medical isotopes, and physics
experiments [18]. The control system handles over one
thousand input and output signals.
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Devices under computer control include a 900 amp
electromagnet and a 30 ton rotating gantry. The facil-
ity was installed in 1984 and includes a computer con-
trol system provided by the cyclotron vendor, which
supports a clinically useful subset of radiation therapy
treatment techniques. The University is developing a
successor control system including all new computer
hardware and software and some changes to the periph-
eral control hardware. The new system is motivated by
requirements to support more elaborate treatments.

We have high reliability and safety requirements.
There is growing recognition that the development of
software which controls medical devices is not suffi-
ciently systematic, that this is adversely affecting costs
and safety, and there is much room for improvement
[1]. The urgency of these concerns was illustrated by a
series of incidents between 1985 and 1987 in which at
least three serious injuries and two deaths were caused
by failures of the computer control system in one model
of a commercial radiation therapy machine [12].

We are attempting to achieve high reliability and
safety by applying rigorous software development and
quality assurance practices. We are intrigued by
the possibility that formal software development tech-
niques might result in additional improvements in reli-
ability and safety beyond those achieved through tra-
ditional practices, namely, English-language specifica-
tions, subjective design and code reviews, and lots of
testing. One aim of our control system project is to
determine whether currently available formal devel-
opment techniques will prove useful in our hands, or
whether, as is sometimes claimed, they are “too diffi-
cult,” or “not practical for large projects.”

Other important design goals are improved main-
tainability and adaptability to future hardware and
software modifications. Currently, we are limited by
a paucity of documentation recording high-level design
decisions. We often resort to inspecting wiring dia-
grams and over 60,000 lines of FORTRAN source code.
This is very time-consuming and it is difficult to distin-
guish key requirements from non-essential features of
the implementation (if the code says two events occur
in a particular order, is that a requirement?). A major
product of our effort will be concise and authoritative



documentation.

This report describes initial experiences attempting
to cast our informal specification [13] into formal no-
tations. It is intended to acquaint the formal methods
community with our application, and also to intro-
duce the radiation therapy community to the formal
approach.

2 Review of Software Development
Practices for Accelerator Controls

Our project is apparently the first application of for-
mal methods to an accelerator control system. The
literature on radiation therapy machine control sys-
tems is very scant. A few reviews briefly discuss con-
trol system functionality [4, 14]; a few reports describe
acceptance testing from the customer’s point of view
[17, 20]; none discuss design internals nor development
practices. The commercial vendors do not publish their
practices or experiences.

There is a larger literature is devoted to research ac-
celerators, which share many features with therapy ma-
chines. A typical presentation (e.g., in [16]) emphasizes
hardware organization. Discussion of software is lim-
ited to informal treatment of program structure, for ex-
ample descriptions of important processes and subrou-
tines. There is little interest in development method-
ology; the very concept of “specification” is practically
absent from this literature.

3 A Brief Introduction to Cyclotron
Controls

3.1 What the cyclotron operator does

Our facility is larger and more complex than a com-
mercial accelerator; there are several operators, not
just one. The cyclotron provides beam to two treat-
ment rooms, each with its own therapy control console,
as well as a third beamline devoted to isotope pro-
duction. In commercial therapy machines beam pro-
duction is largely automatic but our facility requires
a cyclotron operator, who works at a control console
similar to those found at research accelerators. The
cyclotron operator is responsible for bringing up and
shutting down the machine, switching the beam be-
tween the two treatment rooms and the isotope pro-
duction line, and restoring normal machine operation
after shutdowns or interruptions caused by faults.

To obtain satisfactory performance, the cyclotron
operator must adjust, or tune, about eighty analog
quantities which the operators call cyclotron control
parameters or just parameters (in this paper we use the
term “parameters” in this sense, not in the program-
ming languages sense). The parameters are physical
quantities such as ion source gas flow, deflector volt-
age, switching magnet current, etc. The cyclotron de-
signers calculated sets of theoretically ideal parameter
values, or tuning tables, for each combination of parti-
cle and energy. In practice these idealized values are

only starting points; variations in beamline character-
istics imposed by experimental or treatment configura-
tions and the vagaries of nature require frequent man-
ual tuning. A few parameters are partially controlled
by automated servo loops in some operating modes,
but the operator’s participation is still essential.

3.2 What the cyclotron control programs do

The cyclotron control programs are the control subsys-
tem dedicated to assisting the cyclotron operator. In-
puts and outputs of this subsystem include a terminal
keyboard, two video dispays, numerous buttons and
lamps on the cyclotron operator’s console, and the dig-
ital and analog interfaces to the controlled parameters.

The cyclotron control programs scale quantities be-
tween the engineering units needed by the operator
(e.g. cc per minute, kilovolts, amps) and the digitally
encoded bit patterns on the input and output con-
verters. They multiplex subsets of parameters into a
smaller number of physical dispays and controls. Early
control consoles provided hard-wired meters, switches
and dials for each parameter, but it is impractical to
place over one hundred parameters within reach of the
operator. Our console provides dedicated indicators
and controls for only a few essential parameters; others
are selected by the operator, singly or in groups, and
assigned to a relatively small bank of meters, dials, and
video displays. The control programs save and restore
collections of parameter settings, so the operator need
not repeatedly write down and individually set each
one. The programs perform automatic startup, shut-
down, and sequencing, so that collections of related pa-
rameters that are usually operated as a group (e.g. the
three collections of magnets that focus the beam down
each of the beamlines) can be operated as a unit, with-
out requiring the operator to throw dozens of switches
in the right order. The programs also perform a cer-
tain amount of fault detection, turning off the beam
or shutting down subsystems when faults occur, and
interlocking, preventing certain subsystems from being
turned on when it might be unsafe to do so. They im-
plement different operating modes, depending on which
beamlines are in use, and whether treatments, isotope
production, or physics experiments are in progress. Fi-
nally, the control programs log operating data and er-
ror reports to disk files for subsequent record keeping,
performance analysis, and troubleshooting.

Patient and operator safety shutdown systems and
interlocks at our facility are nonprogrammable hard-
wired controls, but these functions are backed up, and
are displayed to the operators, through the computer.
In addition, much internal equipment protection is pro-
vided solely by the computer. The cyclotron delivers
up to 3.5 kilowatts in a beam about 5 millimeters wide;
a poorly tuned beam may strike the beamline walls and
can burn through tens of thousands of dollars worth of
fragile components in a few seconds.



4 Model-based formal specifications:
Z and VDM

Many functions of the cyclotron control programs ap-
pear well-suited to formal specifications in notations
based on typed set theory and predicate calculus.
These are called model-based notations because the de-
veloper defines data structures that are supposed to
model the internal state of the system, as opposed to
property-oriented or algebraic approaches which model
only the input-output behavior. The model-based ap-
proach seems best for us because the internal states are
the essential characteristics of the facility; many inputs
and outputs may be changed to suit convenience.

The best-known model-based notations are Z [7, 19]
and VDM [11, 5]. Both have similar expressive power,
but as of this writing Z appears to be gathering more
published tutorials and case studies. The distinguish-
ing feature of Z is the schema calculus, which provides
a convenient way to build up large specifications from
textually separate components called schemas. On the
other hand, publications from the VDM school provide
more guidance for implementing their specifications in
traditional imperative programming languages. We
use Z in this manuscript because we admire the ex-
pository style it encourages.

In both notations, specifications consist of two prin-
ciple components: descriptions of abstract data struc-
tures that model the internal state, and definitions of
operations that manipulate the state. The data de-
scriptions resemble data declarations in strongly-typed
programming languages such as Pascal, but are usu-
ally more abstract; one may declare an ordered se-
quence without committing to an array, linked list, or
some other implementation that is directly supported
by an executable programming language. Each opera-
tion definition includes a section that resembles a pro-
cedure declaration in a programming languages. But,
where a programmer would write an executable proce-
dure body, the specifier writes logical assertions that
describe the effects of each operation.

5 Model-based specification of
cyclotron control programs

5.1 Scope

We present sample specifications for some essential op-
erations that are required to run the beam inside the
cyclotron vault. This is sufficient to produce isotopes
but not to perform treatments. Running beam out-
side the vault into either treatment room requires that
several nonprogrammable hardwired interlocks associ-
ated with treatments (including keys controlled by the
therapy technologists) be clear. Therefore, our specifi-
cations here need not consider interaction with therapy
operations and do not have critical human safety impli-
cations. However, they do have equipment protection
implications. The operations specified here are simpli-
fied for purposes of exposition, but several important

issues are considered.

5.2 Caveats

The author is not an experienced Z user. The frag-
ments presented here may seem awkward and naive to
7 experts. Moreover, these samples have not been run
through a type-checker, and may contain errors in Z
usage. They are only intended to show how some of
the control system requirements might be expressed in
Z style, and to reveal some of the difficulties encoun-
tered by self-taught practitioners.

5.3 System state

There are about one hundred and twenty cyclotron
control parameters, whose names were assigned by
the cyclotron vendor: GASFLOW, DFLVOLT, SWT-
MAGN, etc. The names for these parameters consti-
tute a 7Z set:

PNAME = {GASFLOW,DFLVOLT,...}

The system state is composed primarily of several
quantities associated with each parameter. Most pa-
rameters have a quantity called (again following the
vendor’s nomenclature) pset, which is the control pa-
rameter output value most recently written to its
digital-to-analog converter (DAC). The central prob-
lem in specifying the cyclotron controls is to define each
pset as a function of time, the operators’ activities, and
potentially hundreds of other quantities, including the
input values of other parameters, digital inputs such
as interlocks, etc.

An important influence on the value of pset is
psetting, which is the output value most recently re-
quested by the operator; however, pset and psetting in
general are not equal. The quantity pread is the input
value most recently read from the parameter’s analog-
to-digital converter (ADC); phigh and plow define the
upper and lower boundaries of a window of permissible
values for pread, outside of which a fault is considered
to exist.

All of these quantities are described by the Z schema:

CycloParams

pset, psetting, pread, phigh, plow :
PNAME — FIX

This schema says that the collection of cyclotron
control parameters is a collection of functions that
associates each parameter name with a named quan-
tity. This usage of function differs from that encour-
aged by many programming languages, in which “func-
tions” are methods for computing results, given some
arguments. In contrast with that view, but consistent
with ordinary mathematical usage, Z functions may
be thought of as static objects pairing elements in a
domain with elements in a range. The range of each
function is declared as type FIX, the subrange of in-
tegers that can be represented by the hardware device
registers in the ADC’s and DAC’s.



Clearly, much more is needed. We frequently display
the value of a quantity in a form that is useful to the
operator: a decimal number expressed in engineering
units. We need to associate each parameter with its
units and a conversion formula. These are also repre-
sented by Z sets:

UNIT = {Amps, kVolts, cc/ min, mbar, ... }
FORM = {Scale, Offset, Poly, Table, ...}

Now we use Schema inclusion to indicate that the
earlier definition of CycloParams is being extended
with additional components:

— CycloParams
CycloParams
units : PNAME — UNIT
formula : PNAME — FORM
a,b: PNAME - FLOAT
convert : PNAME — (FIX — FLOAT)

units = ug A formula = fy
a = ag N b= by N\ convert = ¢y

dom a = dom formula < { Offset, Poly}
dom b = dom formula <1 {Scale, Offset, Poly}

formula = Scale <
convert = (Az : FIX,b: FLOAT o bz /M)

formula = Offset &
convert = (Ax : FIX a,b: FLOAT o
a+bz/M)

formula = Poly &
convert = (Az : FIX,a,b: FLOAT o
a+ b*z/M)

(ete.)

Each parameter now has conversion function
convert. Note that the value of the function convert
for any parameter is itself a function. The values of
the functions formula, a, and b determine the shape
of each parameter’s convert. We declare a, b and the
range of the conversion function to be FLOAT to in-
dicate that they may assume values that may not be
able to be represented in the DAC and ADC device
registers.

This schema has a predicate section (below the hor-
izontal line) which places constraints upon the values
that may be assumed by the objects named in the dec-
laration section, also called the signature (above the
line). The first group of predicates indicates that the
variables units, formula, a, b and convert are supposed
to behave as constants. For example, the function wug
would be defined in Z as follows:

up : PNAME — UNIT

ug = {GASFLOW — cc/min,
DFLVOLT ~ kVolts, ...}

Table 1:
schema,

Tabular representation of CycloParams

In an implementation, the functions wy, fy, ag, by and
¢p might be hard-coded into the program text or (bet-
ter) read from a configuration file at system startup.

The functions ¢ and b are declared with the sym-
bol -+ to indicate that they are partial functions which
are not defined for some values of PNAME. The sec-
ond group of predicates in CycloParams uses the range
restriction symbol < to indicate that they are only de-
fined for parameters associated with certain values of
FORM.

The third group of predicates describe how the con-
version functions are determined by the other compo-
nents. They assume that mixed-mode arithmetic in-
volving FIX and FLOAT is defined, and that the re-
sults can always be represented as a FLOAT (M is
a global constant determined by the word size of the
registers). It may seem that the formula component
is redundant with convert; the intent is to convey that
there are only a few kinds of conversion formulae (cur-
rently there are eight), even though each parameter
has a different conversion function.

The CycloParams schema reveals that a large part
of the task before us is to actually enumerate the ele-
ments of all the sets PNAME, UNIT and FORM , and
assign all the values to wug, fy, ap, by and c¢y. Rather
than include these hundreds of items in the Z text (as
in the definition of up shown above) we maintain the
information in a database so the cyclotron operating
characteristics can be conveniently modified and ex-
amined independently of the Z text [9]. For example,
the predicates in schema CycloParams describe Table
1.

Much of our use of Z so far can be viewed as a
method for documenting the contents and meaning of
our database. This alone is quite valuable; since the
notation is described in the literature and supported
by tools, it saves us from having to invent, explain and
support one ourselves.

5.4 Some essential operations

Z models system behavior as a collection of discrete
operations that are also written as schemas.

We need an operation that displays the value of a
parameter to the user:



__DisplayParam
2 CycloParams
param? : PNAME
displayed_pread! : FLOAT

displayed_pread! =
convert param?(pread param?)

The = indicates that this operation does not change
the state of CycloParams; param? is the input to the
operation (indicated in Z by 7); displayed_pread! is
the output. We chose to make the displayed value an
output, rather than a component of the system state,
to indicate that the implementation is not required to
maintain conversions of all quantities at all times, but
is free to perform only those which are needed. The
predicate says that the output is obtained by selecting
the appropriate element from the range of the conver-
sion function (in most implementations this would be
accomplished by calculating the needed value from the
conversion function). In Z, function application may
be indicated by simple juxtaposition of function name
and argument; in this example we use parentheses to
help make it clear that first the values of convert and
pread associated with param? are found, and then the
resulting conversion function is applied to the value of
pread.

There is a complementary input operation to set the
psetting from an input value expressed in engineering
units:

__ SetParam
A CycloParams
param? : PNAME
new_psetting? : FLOAT

convert param?(psetting’ param?) =
new_psetting?

The A indicates that this operation changes the state
of CycloParams; the ' on psetting’ indicates the value
of that component of the state after the operation has
completed. The predicate says that input conversion
is the inverse of output conversion. It is not necessary
to provide an explicit input conversion formula, in fact
writing out a particular formula, e.g. M(y—a)/b would
not convey the essential property of inverse-ness. This
example illustrates the economy of expression provided
by non-executable notations such as Z.

The DisplayParam operation is usually not applied
to just one quantity at a time; instead, it is usual to
display groups of related quantities on one of the cy-
clotron operator’s video screens. The Status Display
Screen is repetitively updated in (almost) real time; it
is the computer-age replacement for a bank of analog
meters. This schema says that the control system pro-
vides a pre-defined set of named screen designs, each
showing a collection of related parameters:

DNAME = {RFSystem, VacuumSystem, ...}

_ StatusDisplay
screen : P PNAME
designs : DNAME — P PNAME

designs = dy

A typical operation is to select a named screen design
and display it on the status display screen (replacing
whatever was previously displayed there):

_SelectStatus
AStatusDisplay
design? : DNAME
background! : PNAME + UNIT

screen’ = designs design?

background! = dom screen’ > ug

Here design? is the input from the operator request-
ing a particular named collection of parameters. This
operation also sends output background! to the display,
painting the fixed background that persists through
successive display updates. This background usu-
ally includes text depicting the names and engineering
units of each parameter. We represent this as a func-
tion pairing parameter names with units. The func-
tion is partial because not all parameters are present
in any one design. The first expression in the pred-
icate says that the requested design is stored in the
status display’s state. The latter predicate says that
the parameters whose names and units are depicted on
the display background are the very ones in the screen
design requested in the input, and that the correct as-
sociation of parameter names and units is made by
using the domain restriction operator [> to select the
appropriate subset of the previously defined function
Up.
Then we need a similar operation to update the
display with the current values of all the associated
quantities, using the appropriate conversion formulae,
something like:

_ UpdateStatus
2StatusDisplay
updates! : PNAME - FLOAT

updates! = dom screen > pread g
A DisplayParam e displayed_pread!

Here again, the output is a function, to indicate
that the correct pairing of values with parameters
must be maintained (e.g., by positioning the values
next to the corresponding labels and units on the dis-
play screen). The predicate is supposed to convey
that the values displayed by this operation are ex-
actly those that would be obtained by applying the
DisplayParam operation to each of the parameters in
the set screen. The g indicates function composition,
and A DisplayParam e displayed_pread indicates the
projection function that extracts the displayed_pread!



component from the DisplayParam schema (The pred-
icate is not quite right because the range of pread is
not the same type as the domain of A...).

It is useful to remark what is not stated in the pre-
vious two schemas. SelectStatus does not say how
the operator actually performs the selection; neither
schema describes what the screen actually looks like.
It is implicitly understood, but not expressed in Z, that
the DisplayStatus operation is repetitively applied, and
the results are somehow portrayed on the screen, until
some other display is selected.

There are analogous schemas  TUModule,
SelectTUM , and ScanTUM to connect groups of pa-
rameters to a bank of input dials called Tuning Modules
which are repetitively sampled at a high rate.

5.5 Ordering constraints

Our specification thus far models each parameter as a
box (like a lab bench power supply) that has a dial
(psetting), a meter (pread) and an output terminal
(pset). We still can’t control the cyclotron because we
haven’t defined any operations that change the pset’s.
We need an an ON/OFF switch, and an operation to
turn on the switch. An obvious solution is:

_ ChangeParam
A CycloParams
param? : PNAME

pset’ param? = psetting param?

However, naive implementation of this schema could
destroy the equipment! About forty of the parameters
represent power supplies that deliver current, often 50
amps or more, to the magnets that steer and focus the
beam: Power supply switching is implemented by relay
contactors at the output of each supply. If these relays
should close when the pset demands a high current, the
resulting sudden rush of current creates an inductive
transient that could damage the magnets and/or the
supplies. We include this information in the relevant
schemas:

PS = {MAINFLD, SWTMAG, ...}
switch_state = {OPEN, CLOSED}

— Cycloparams
CycloParams
switch : PNAME -+ switch_state

dom switch = PS

We need to specify a software interlock that allows
the contactors to close only when the pset is near zero.
Our solution is to specify two separate operations. This
operation closes the contactors:

_ NormalSwitchPS
A CycloParams
param? : PNAME

param? € PS
pset param? < small
switch’ param? = CLOSED

The predicate says that this operation is meaningful
only for power supplies, and that the switch is closed
only if the power supply output is low. For the case
where the output is too high, there is another schema:

_ TooHighPS
ZCycloParams
param? : PNAME
error! : MESSAGE

param? € PS
pset param? > small
error! = ”0utput too high;
power supply param? not switched”

It is understood that the error message is displayed
and logged somehow. The two schemas are combined:

SwitchPS = NormalSwitchPS vV TooHighPS

This example illustrates a use of the schema calculus.
It is customary Z style to separate error handling in
this way. The operation to change the power supply
current is handled similarly:

— NormalChangePS
ChangeParam
param? € PS
switch param? = CLOSED

(Note the inclusion of the ChangeParam schema)

— OpenedPS
ZCycloParams
param? : PNAME
error! : MESSAGE

param? € PS
switch param? = OPEN
error! = "Contactor open;

current param? not changed”

ChangePS = NormalChangePS V OpenedPS
Now we combine these operations:
TurnOnPS = SwitchPS g ChangePS

The g indicates schema composition, and captures
the effect of SwitchPS then ChangePS. This operation
closes the contactors and then sets the output current
to the most recently requested value of psetting.



5.6 Timing constraints: timeouts

Schema TurnOnPS does not yet capture all the essen-
tial features. It is possible that the ChangePS opera-
tion may not succeed, even if its preconditions are met.
Some parameters are driven by mechanical mechanisms
(e.g., sliders on variacs); the mechanism may jam or
perhaps the drive belt falls off. The control program
detects such occurences by noting that the correspond-
ing pread has not approached its expected value after
appreciable time has passed. We say that such an op-
eration has timed out; an error should be indicated. Z
and VDM do not provide any built-in way to express
the passage of time. Other authors have noted the
difficulties of representing time in Z [6] and VDM [2].
Bowen proposed a technique for dealing with timeouts
in Z [3], which is outlined (as we understand it) here:

Define a type INTERVAL to represent time inter-
vals, and use a variable duration which is understood
to represent the amount of time elapsed since the op-
eration begins:

— TimelyChangeParam
ChangeParam
duration : INTERVAL

plow < pread’' < phigh

duration < timelimit

and

_ TimeOQOut
ChangeParam
duration : INTERVAL
error! : MESSAGE

duration > timelimit
(pread’ < plow) V (pread’ > phigh)

error! = "Operation timed out”

obtaining

TimedChangeParam =
TimelyChangeParam V TimeOut

This is just a sketch; we actually require a differ-
ent time limit for each combination of parameter and
operation.

5.7 Timing constraints: time-varying
functions

There are additional complications: If the power sup-
ply output current should change abruptly even while
the relays are closed, damage from inductive transients
may still occur. Internal circuitry protects some sup-
plies, but others depend on the control system to grad-
ually change, or ramp the output current to the new
value. In other words, the time course of the transition
of pset is constrained.

Here we approach the limits of notations such as Z
that model systems as collections of discreet operations

and provide no built-in way to represent the intervals
while operations are in progress. One might propose
adding to operation schemas a variable called history
which is the time-course of the change in the output.
For ChangeParam The function history is the sequence
of pairs (t;, pset;) observed at a set of times ¢; while the
operation is in progress. One could imagine predicates
like:

— RampPS

Vi, t - INTERVAL |
ti, t; € dom history ANt; #t; ®
| history(t;) — history(t;)/(t: — t;) |
< ratelimit

The constraint on history is simple: the rate of
change observed between any two intervals cannot be
too large. This must be combined with a timeout con-
straint to ensure that the rate of change is not too
slow.

On the other hand, it might be better to consider
whether time-varying outputs should be modelled by
some other technique entirely.

5.8 Combined operations with serial and
parallel components

Usually the operator selects values for all of the param-
eters while the system is in a power-conserving quies-
cent state called Standby 1, in which most power sup-
plies are turned off. The operator turns them all on
at once by pressing a button labelled, Standby 2. The
intent is that all the contactors will close, and then all
of the supplies will ramp up. The operation is consid-
ered complete when every parameter’s pread is within
the window determined by its phigh and plow. The
machine is then in the Standby 2 state, in which it is
ready to produce beam. Alternatively, the transition
fails if any of the parameters times out or reports other
errors.

It is desirable that as many supplies as possible ramp
up at the same time, so that the operation may be
completed as quickly as possible. In other words, the
Standby 1 to Standby 2 operation proceeds in par-
allel. However, a few of the parallel threads include
sequential constraints. For example, the high-voltage
deflector supply must not be turned on until the main
magnet current exceeds a certain value; otherwise, in
the absence of the magnetic field, high voltage sparks
can occur that may damage the equipment.

The Z schema composition operator g does provide
a built-in way to build up sequential operations from
schemas. For our application we would like to define
operations that mostly consist of multiple instances of
(something like) our TurnOnPS schema running in se-
ries and in parallel, with each instance instantiated
with different values for its variables. This is another
area where other notations may be more suitable than
7.



5.9 Event-driven Operations

Every operation described so far is invoked by the cy-
clotron operator. The specification must also describe
actions that are triggered by events internal to the ma-
chinery. These events may occur asynchronously with
respect to the operator’s actions. For example, there
are many hardware and software interlocks that must
turn off the beam rapidly if faults occur.

The beam is actually created by turning on radio fre-
quency (RF) power amplifiers that pump ions around
the cyclotron. The computer only allows the RF drive
to be turned on if the system has reached Standby
2. The RF drive signal from the computer reaches
the RF power amplifiers through a hardwired, non-
programmable interlock chain. This is equivalent to a
series of switches in series; each switch is opened by
a different fault condition; if any switch is open, the
drive signal is interrupted and the amplifiers cannot
turn on. The condition of each switch is visible to the
control computer, but cannot be changed by it:

STANDBY_STATE = {SB1,5B2,...}
INTLK = {Vaultdoor, TreatKey, ...}
OFF_ON = {OFF,ON}

— CycloState
CycloParams

Standby : STANDBY _STATE
Interlocks : PINTLK

RF : OFF_ON

RF = ON =
Standby = SB2 A Interlocks = @

There is an operation to turn on the beam:

_ TurnOnBeam
A CycloState

RFDrive'! = ON

These two schemas convey that the beam can only be
turned on if all the interlocks are clear and the system
is in Standby 2. They even convey that the beam will
turn off if any interlock is set or any parameter exceeds
its windows. However, we need to say more: when any
interlock is set, or any parameter exceeds its windows,
that is an event which is logged in an error file and
which also causes the RF drive to turn off:

_ Qutside Windows
A CycloState
error! : MESSAGE;

RFDrive = ON

3p : PNAME o
((pread’ p < plow p)V
(pread’ p > phigh p))

RFDrive'! = OFF

error! = "Parameter p outside window”

The first line in the predicate indicate that an error
is logged only if the RF drive is on when the window
is exceeded. The second line describes the condition
that triggers the operation and the last two lines de-
scribe the consequences of this condition. However,
this schema doesn’t really convey that it is the event
of the pread crossing the window limit that triggers
this operation, and that the state of RFDrive has to
be changed as soon as possible after this happens.

5.10 Concurrency

The Z and VDM notations do not provide any way
to express concurrency; however, they do not preclude
describing concurrent activities. It can be understood
that different operations which do not depend on the
same components of the system state may proceed at
the the same time.

Difficulties arise only when concurrent operations
must interact (because they use the same compo-
nents of the system state). This is a serious practi-
cal limitation. Some of the operations described by
ChangeParam can take several minutes. It is some-
times necessary for the operator to cancel or mod-
ify these operations while they are in progress. For
example, the operation SetParam may occur while
ChangeParam is in progress, and the new value
of psetting determined by SetParam must immedi-
ately supercede the final value being approached by
ChangeParam. There is no way to express this in Z or
VDM.

6 Alternatives to Z and VDM

We encounter difficulties using Z notation to represent
interdependent collections of serial and parallel opera-
tions, event-driven operations, and concurrency. Other
formal notations are designed to handle those.

6.1 Petri Nets

Petri nets are well-suited to concurrent activities.
They have an intuitively appealing graphic representa-
tion, which we have found useful in discussing require-
ments with physicists and engineers. A Petri net repre-
sentation of the transition from Standby 1 to Standby
2 appears in Fig. 1. Conditions are represented by
circles called places and operations are shown as hori-
zontal lines called transitions. A Petri net is executed
by placing dots called tokens in the place or places rep-
resenting the initial conditions. Any transition whose
antecedent places are all marked with tokens may fire;
one token is removed from each antecedent place and
one token is put on every successor place. Each com-
bination of tokens and places is called a marking and
represents a possible state of the system.

In Fig. 1 the marking in which the entire upper
row of places contains tokens represents Standby 1,
and the entire lower row represents Standby 2. The
figure clearly shows that most transitions may occur
in parallel but the main field current must precede the



Figure 1: Petri net representation of Standby 1 to
Standby 2 transition

deflector voltage (note interlock I between MAINFLD
and DFLVOLT). The figure is incomplete because it
only shows successful transitions. Petri nets can also
represent failures, including timeouts, and have been
applied in safety analyses [15].

6.2 SCR and RTL

The notation developed by the Naval Research Labora-
tory’s Software Cost Reduction project (SCR) is well-
suited to event-driven operations [8]. To express the
event that occurs when a particular parameter passes
outside its window limits while the beam is on, one
writes:

QT (!DFLVOLT outside window!)

WHEN (*BEAM ON*)

Where ! and * are delimiters indicating conditions
and modes defined formally elswhere. Events defined
in this way can be used as triggers for event-driven de-
mand functions, which in this case would include Write
Error Log and Turn 0ff Beam.

Specifications expressed in an SCR-like notation can
be transformed into a formal logic called Real Time
Logic (RTL) [10]. This enables formal timing and
safety analyses to be performed.

7 Conclusions

The sample specifications presented here address a sig-
nificant portion of the cyclotron control programs. We
conclude that writing comprehensive formal specifica-
tions for our application is feasible.

However, unsolved problems remain. This study in-
dicates that several formal specification notations ap-
pear promising for our application, but none will com-
pletely suffice. Different notations each deal with dif-

ferent parts of the problem and there is not much guid-
ance about how to integrate them. Z deals with in-
put/output relations but not concurrency and timing;
Petri nets deal with concurrency but not timing con-
straints; RTL deals with timing constraints but is weak
on input/output relations, and so on. An obvious ap-
proach is to use two or more notations, but the seman-
tics of such combinations is not clear.

In addition, the large size of our system confronts
us with problems of style and organization whose so-
lutions are not apparent from the small case studies
found in the literature.

7.1 The Z notation

We anticipate using the Z specification notation to ex-
press most requirements that do not include timing
constraints nor interaction of concurrent processes.

Much of the effort in specifying large applications
like ours is devoted to enumerating the objects and
values that comprise the system, and listing the oper-
ations that must be provided, taking care that nothing
is omitted and no inconsistencies in naming or usage
are introduced. Z provides a well-defined discipline for
doing this, that is explained in good textbooks and
supported by document preparation tools. Even when
used in such an unambitious way, Z promises to be a
useful supplement to the usual specifications in English
prose plus tables and diagrams.

The Z specifications also suggest (though they need
not dictate) an implementation strategy. The data
schemas CycloParams, StatusDisplay, and CycloState
can be seen as models of regions of computer memory,
or of data structures in the implementation language.
The various operation schemas can be seen as specifi-
cations for procedures that operate on one or another
of these data structures. The schema signatures can
be readily translated to prodedure declarations in any
implementation language, and the predicates can serve
as guides for programming and test case selection even
if they are not used to perform a full-blown formal ver-
ification.

We anticipate considerable effort developing a nota-
tional style in Z for presenting compact, easily under-
stood specifications for complex process control sys-
tems. Although our system is large, we believe its
specification may be concise because much of its size
derives from repetition of similar elements. Almost half
the total signals are contributed by about forty high-
current power supplies. These are not identical but
share many features in common. The Z schema cal-
culus should permit common features to be described
with texts that apply to all, supplemented with brief
texts that address the differences.

7.2 Other notations

In addition to Z, we will require a different notation or
notations to express timing requirements and interac-
tion of concurrent processes. Other notations may also
offer advantages of style or clarity. Candidates include



(but are not limited to) Petri nets, SCR notation and
RTL.

7.3 Future work

The work presented here represents the simplest part
of the system. Treatment operations, and the inter-
action between the treatment operations and the cy-
clotron controls, will be more difficult. There are much
graver safety implications, and many potential faults,
where safe and graceful recovery must be provided. We
anticipate that these developments will provide more
opportunities to investigate formal methods in a large
and important application.
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