Modelling, Checking and Implementing
a Control Program for a Radiation Therapy Machine

Jonathan Jacky and Michael Patrick

Radiation Oncology, Box 356043
University of Washington
Seattle, WA 98195-6043

jon@radonc.washington.edu

Abstract

We are developing a control program for a unique
radiation therapy machine. The program is safety-
critical, executes several concurrent tasks, and
must meet real-time deadlines. We have produced
about 250 pages of informal specification and de-
sign description, about 1200 lines of Z and about
6000 lines of code. The Z description includes
an abstract level that expresses overall safety re-
quirements and a concrete level that serves as a
detailed design, where Z paragraphs correspond
to data structures, functions and procedures in
the code. We express requirements in the ab-
stract level that we would like to check in the
concrete level; checking these properties automat-
ically could reveal subtle errors in the detailed de-
sign. We selected a small portion of our design (13
transitions, 227 lines of Z, corresponding to 331
lines of code) and performed a pencil-and-paper
(non-automated) analyses that revealed several er-
rors. We translated this portion of our Z model
to the SMV input language. The translation re-
quires considerable simplification, where Z pred-
icates and numerical, structured variable values
are encoded as small integers. We repeated our
analyses using the SM'V model checker. The auto-
mated analyses detected the known errors (we did
not, detect any additional errors in our corrected
version).

Introduction

We are developing a new control program for a
unique radiation therapy machine. This is not a
pilot study or demonstration project; its purpose
is to develop the program that we will use to ad-
minister therapy at our clinic.

The program is safety-critical; errors could con-
tribute to irradiating the wrong volume within the
patient or delivering the wrong dose. We have pro-
duced about 250 pages of informal specification
and design description, about 1200 lines of Z [9]
and about 6000 lines of code [8].

Our principle assurance method thus far has
been careful (but informal and subjective) review
of documents and code. This has been reason-
ably effective but a few design errors present in
the Z have escaped detection until testing [8] so we
would welcome automated analysis. To determine
whether this could be feasible for us, we consider
the formal description of our system.

Formal description

Our formal description comprises 1137 lines of
Z (207 paragraphs, including 131 schema defini-
tions), presented in a 77 page report [6] (simpli-
fied excerpts appear in [4]). The Z description has
two levels: an abstract level that expresses over-
all safety requirements and a concrete level that
serves as the detailed design. The requirements
level expresses properties that we wish to check or
prove; the design level is the system to be checked.
The abstract level expresses the central idea of
the therapy control program, which is this safety
requirement: the beam can only turn on when the
actual state or setup of the machine is physically
safe, and matches a prescription that the operator
has selected and approved. We must only deliver
setups that are physically consistent and reason-
able or safe. The control program helps ensure
that we can only treat a patient when the mea-
sured machine setup matches a prescribed setup.

[SETTING, VALUE, FIELD]
SETUP == SETTING — VALUE
safe_: P SETUP

match_ : SETUP < SETUP
prescription : FIELD -+ SETUP

_ SafeTreatment
measured, prescribed : SETUP

safe(measured)
match(measured, prescribed)
prescribed € ran prescription

The whole design arises from elaborating this
simple model. The entire purpose of the con-
trol program is to establish and confirm the
Safe Treatment condition. The prescribed setup
must be selected; the measured setup must be
achieved; the safe and match conditions must be
tested.

Most of our Z texts are devoted to the concrete
level, which expresses a design. The design is very
detailed: each X window system event (including
every keystroke) and transmission or receipt of ev-
ery message to or from a controller is modelled by
a 7Z operation schema. The translation to code
is almost obvious. Some excerpts from this level
appear below.

What we wish to check

Critical requirements can be expressed in Z at our
abstract level. Using the SafeTreatment schema
defined above and another schema BeamOn (not
defined here) we can express the central safety re-
quirement that the beam can only be on when the
machine is in a safe condition:

BeamOn = SafeTreatment

Checking this property would be a significant
achievement. It would provide additional evidence
(besides inspection and testing) for the soundess
of our detailed design. It would not be a superfi-
cial exercise; it should reveal even low-level errors
because our design is so detailed.

Checking this property appears to be beyond
the capabilities of any existing checker. Nit-
pick [3] can check single operations on Z data
structures (but not numbers) and temporal logic
model checkers such as the Symbolic Model Ver-
ifier (SMV) [2] can check sequences of operations
on simple data. However we need to check se-
quences of operations on data structures (includ-
ing numbers).

The requirements we wish to check involve
rather complicated predicates on the numerical
values of a large amount of highly structured data.
We cannot express these requirements directly in
the input language of contemporary checkers such
as Nitpick or SMV because they are too inexpres-
sive and place many restrictions on data (for ex-
ample variables cannot have numerical values, or
can have only small integer values).

It is possible to translate our requirements from
Z to a checker input language in order to perform

some particular analysis, but the translation in-
volves considerable simplification, where the pred-
icates and numerical, highly structured data val-
ues we really care about are encoded as small in-
tegers or enumeration values.

For example, much of our system can be mod-
elled by a state transition system with not too
many states, but the states are not given to us a
priori; each state in the transition system is ac-
tually a (possibly very large) set of states where
the values of some collection of variables satisfies
some predicate. In order to create the checker in-
put and interpret the results from the checker, it
is necessary to first identify the states in a more
expressive notation such as Z.

The relation that exists between the checker in-
put and the more expressive Z model can be ex-
pressed by the familiar Z refinement relations [9],
except here development proceeds from concrete
to abstract rather than vice-versa.

An experiment in model checking

To gain experience in model checking we selected
a small portion of our detailed design (13 transi-
tions, 227 lines of Z, corresponding to 331 lines
of code) where pencil-and-paper (non-automated)
analyses had initially revealed several errors. We
translated this portion of our Z model to the SMV
input language and repeated our analyses using
the SM'V model checker. The automated analyses
detected the known errors (we did not detect any
additional errors in our corrected version). The
following sections describe the experiment in more
detail.

System description

We considered one subsystem of our control pro-
gram: the process the communicates with a sepa-
rate embedded controller called the treatment mo-
tion controller (TMC). Our program exchanges
messages with the TMC and several other con-
trollers to perform operations specific to our appli-
cation, such as setting up the the therapy machin-
ery to conform to a patient’s prescription [5, 7].
The TMC controller process handles events (in
our implementation these events derive from hard-
ware and software interrupts); the process may be
running or waiting for an event. The process and
its controller exchange messages. Messages can
be classified into types called commands (from the
process) and responses (from the controller). Cer-
tain events called command events are invoked by
the user to signal the controller process to issue
a whole sequence of commands that accomplish
some useful goal, such as automatically setting up
machine components to prepare for a treatment.
The process responds by sending that sequence of
commands to the controller; for each of these com-
mands, a particular sequence of responses is ex-

pected. In addition to command events, there is a
receive event that occurs when a response message
appears. It is also possible to arrange for a timeout
event to signal that a deadline has expired.

We had to confront several design issues: the
first is pending commands. The user interface pro-
cess that generates command events runs inde-
pendently of each controller process, and it can
take appreciable time to execute the sequence of
commands that can be elicited by a single com-
mand event. When a command sequence is still in
progress, several more command events might be
signalled. We decided that a command sequence
in progress must run to completion; it cannot be
pre-empted. However new command events that
occur while a command sequence is in progress are
not discarded, they are stored and then handled
in turn. A command event which has been sig-
nalled but not handled is said to be pending. Each
command event is assigned a priority, and pend-
ing command events are handled in priority order
(not arrival order). Moreover, only one instance
of each kind of command event can be pending;
if an impatient user repeatedly signals the same
pending command event, it will be handled only
once.

The next issue is polling. In addition to handling
command events signalled by the user, the process
must frequently poll its controller: command it to
report the most recently measured values of perti-
nent machine settings. We decided that a process
which is not executing a command sequence and
has no pending commands should request a time-
out; if the timeout expires, the controller executes
the polling command sequence. As a result, a pro-
cess which is not busy will poll periodically. Alter-
natively, if a command event occurs the timeout
is cancelled and polling is deferred while the com-
mand event is handled instead. This is acceptable
because it is not necessary for polling to be strictly
periodic.

A third issue concerns error handling. A con-
troller which does not obey its protocol is ex-
hibiting erroneous behavior and might present a
hazard. It is important for the process to detect
controller errors quickly, so appropriate protective
action can be taken !. For each command that
the process issues, the protocol determines which
response is expected; if a different (or unintelli-
gible) response appears, the process indicates a
controller error. Moreover, every response is asso-
ciated with a deadline; if the deadline expires and
no response has arrived, a timeout is signalled and
the process indicates a controller error. Finally,
the process indicates an error if it receives an un-
solicited message from the controller. When a con-

!There are also hardware protection mechanisms
that work independently of the control program.

troller error is detected, any command sequence
in progress is abandoned, and pending command
events are cancelled, except for restart events that
are provided to resume normal operations after re-
placing or powering up a controller.

Our prototype implementation of the TMC con-
troller comprised 331 (non-blank, non-comment)
lines of code in a Pascal dialect that provides sup-
port for multitasking and device control (the en-
tire control program contains about 6000 lines of
code). We performed a few successful tests that
confirmed we understood the basic operations of
the controller.

Z model

We modelled the functions provided by our initial
implementation in 227 lines of Z. The Z texts in-
clude thirteen operation schemas that each define
one state transition in the controller process.

The state of each controller process is the set
of unhandled events, the real time clock, a timer
to store the deadline when a timeout is pending,
the (inferred) status of the controller, the process-
ing state, the sequence of pending commands that
have not yet been sent to the controller, and the
sequence of responses expected for the most re-
cently sent command that have not yet been re-
ceived. This is expressed by the Controller state
schema:

STATUS ::= ok | error
PROCESSING ::= wait | run

__Controller
events : P EVENT
clock, timer : TIME
status : STATUS
processing : PROCESSING
pending : seq COMMAND
expected : seq RESPONSE

The environment outside the Controller state
provides different events, which we model as differ-
ent values of the input variable e?. When an event
occurs, it joins the set of unhandled events. Mod-
elling unhandled events as a set ensures there can
be no more than one unhandled event of each kind.
No other state variables change when an event is
signalled. This state transition is expressed by the
Signal operation schema:

_ Signal
A Controller
e?: EVENT

events' = events U {e?}

The two basic controller operations are Wait and
HandleEvent. The controller process executes

Wait to wait for an event. The processing state
switches from run to wast.

_ Wait
A Controller

PToCcessing = run
processing’ = wait

When an awaited event is signalled, the controller
process executes HandleFvent. HandleEvent
changes processing from wait to back to run; the
controller process alternates executing Wait and
HandleFEvent. Specializations of HandleEvent are
called handlers; most of the work of the controller
process is accomplished by handlers.

Each handler waits for a particular event; if this
event appears and the handler’s other precondi-
tions are also satisfied, the handler will remove
this event from the set and execute. Events accu-
mulate in a set, not a queue; if there is more than
one unhandled event, any enabled handler might
run. Determinism can be introduced by restricting
handlers’ preconditions.

__HandleEvent
A Controller
e? : EVENT

e? € events

processing = wail
processing’ = run
events' = events \ {e?}

In the initial state, there are no pending com-
mands or expected responses. The controller pro-
cess waits for a command event.

_ WaitCmd
Controller

pending = ()
expected = ()

After the user causes a command event to be
signalled, HandleCmd loads the appropriate se-
quence of new commands. If the user does not
signal a command event, the timeout itself acts as
a command event: it invokes the polling command
sequence. If the controller is not ok this handler
is disabled, except for certain restart commands
which are provided to recover from the error state.

__ HandleCmd
HandleEvent
c¢c: COMMAND

WaitCmd
e? € emd
status = ok V e? € restart
(let cs == commands e? o
¢ = head cs A pending’ = tail cs)
status’ = status

The Send operation creates a message from the
command and (if appropriate) the data.

__Send

A Controller

¢c: COMMAND

data? : DATA
message! : MESSAGE

message! = ...format msg from ¢ and data?
expected' = responses c

These two operations are combined to send a new
command

NewCommand = HandleCmd A Send

After executing NewCommand the process resets
the timer for the appropriate deadline and waits
for the controller to respond.

WaitReceive = [Controller | expected # ()]

When a handler detects a possible controller error,
it sets the controller state to error and abandons
any command sequence in progress.

__ControllerError
HandleEvent

state’ = error
pending’ = ()
expected’ = ()

Paper-and-pencil analysis

It is necessary to gain understanding of a de-
sign before beginning automated analyses. Sim-
ple paper-and-pencil analyses can be quite effec-
tive at this stage. They revealed the properties we
checked during the automated analyses.

Each of our thirteen Z operations defines one
state transition. To show how the operations work
together we collect the pertinent formulas in one
place. Table 1 is a state transition table, similar to
the mode transition tables of the SCR notation [1].

There is one entry in the table for each Z op-
eration schema. The four columns in the table
show the operation name, the conjuncts of the
precondition that only involve the state variables,

| Z operation name

State precondition |

Input precondition

Progress postcondition

| Wait | processing = run_| true | processing” = wait |
StartTimer WaitCmd true timer’ = clock + period
RestartTimer WaitReceive true timer’ = clock + deadline
HandleEvent processing = wait | e? € events processing’ = run
events' = events \ {e?}
NewCommand WaitCmd A p e? € emd WaitReceive'
(HandleCmd A Send) expected’ = responses c
pending’ = tail cs
CommandError WaitCmd N — p e? € emd status' = error
ReceiveUnsolicited WaitCmd e? = receive status' = error
ReceiveAck WaitReceive e? = receive N q status’ = ok
tail expected # () expected' = tail expected
NeztCommand WaitReceive e? = receive N\ q status' = ok
(ReceivePending N Send) | tail expected = () expected' = responses c
pending # () pending' = tail pending
ReceiveComplete WaitReceive e? = receive A q WaitCmd' N status' = ok
tail expected = () expected’ = tail expected
pending = ()
ReceiveError WaitReceive e? = receive A - q | WaitCmd' A status' = error
Receive Timeout WaitReceive e? = timeout WaitCmd' A status' = error
| Signal | true | true | events’ = events U {e?} |
SignalEvent true e? # timeout
Signal Timeout clock > timer true timer' = stopped
| Tick | true | true | clock” > clock

WaitReceive < expected # ()

WaitCmd < pending = () A expected = ()
WaitCmd VvV WaitReceive is invariant; pending # () A ezpected = () is forbidden.

¢ = head pending A cs = tail(commands e?)
p & status = ok V e? € restart; (cmd, {receive}) partition EVENT
q < message? € dom response A response message? = head expected

Table 1: Controller operations, preconditions, and progress postconditions

the conjuncts of the precondition that only in-
volve input variables, and conjuncts from the post-
condition that indicate a change of state (post-
conditions of the form z’ = z indicating that z
does not change are not shown). In addition to
the thirteen top-level operations, there are en-
tries for three building-block operations. FEach
group of top-level operations is headed by the
building-block operation whose predicates are con-
joined with theirs. For example, Wait appears
above StartTimer so the full state precondition of
StartTimer is processing = run A WaitCmd.

Many properties of our protocol can be con-
firmed by inspecting Table 1:

Invariance: Every operation has either
WaitCmd or WaitReceive in its precondition. If
the controller process entered a state where nei-
ther predicate were true, no operations would be
enabled; the process would deadlock. Therefore
WaitCmd vV WaitReceive must be an invariant.
The negation of the invariant is the forbidden state
where an unsent command is pending but no reply
is expected.

Completeness: The protocol definition is com-
plete if the response to all events is defined in
all states permitted by the invariant. The ta-
ble shows this is true: the disjunction of all the
preconditions forms a tautology. For example in
the second column, there are two large sections
for processing = run and processing = wait, to-
gether these cover all values of processing. Within
each section there are subsections for WaitCmd
and WaitReceive, together these cover the invari-
ant WaitCmd vV WaitReceive, etc.

Determinism: The protocol is determinis-
tic if only one operation is enabled for each
input in each state. The table shows that
all the preconditions are disjoint. For exam-
ple in the second column we find the disjoint
pairs processing = run and processing = wait,
WaitCmd and WaitReceive, etc.

Progress (liveness): To make progress, it
is necessary to make state transitions from one
table entry to another. For example unhan-
dled command events can accumulate in the
WaitReceive state. However all the operations
that begin in WaitReceive either end in WaitCmd
or make progress toward WaitCmd by estab-
lishing ezpected’ = tail expected or pending’ =
tail pending. Therefore the system will eventually
reach WaitCmd and pending command events will
be handled.

Errors

In this study we consider three errors we dis-
covered in early versions of our Z model, while
we were preparing Table 1. There were two
missing operations: we forgot RestartTimer,
and we only provided a single Receive opera-

tion instead of ReceiveAck, ReceiveComplete and
NextCommand. There was also a displaced precon-
dition: pending = (), intended to prevent a new
command event from pre-empting a command se-
quence that is already in progress, appeared in
HandleEvent not WaitCmd.

SMYV model

We expressed our model in the input language of
the SMV checker, obtaining 124 (nonblank, non-
comment) lines of SMV code. SMV is less expres-
sive than Z so we had to create a simpler model
that still represents the interesting behaviors. For
example we modelled message contents (data) in Z
but in SMV we only modelled message type; valid-
ity of message contents was modelled by a separate
nondeterministic boolean input. In Z we modelled
pending commands and expected responses by se-
quences; in SMV we only modelled the lengths of
the sequences. In SMV we modelled time very
coarsely; the clock is reset on each Wait operation
and operations time out if the expected response
does not appear on the next tick.

Once we determined how to simplify our model,
translating from Z to SMV was not difficult. We
declared SMV variables corresponding to each
Z state variable. Using Table 1 as a guide,
we defined SMV symbols corresponding to use-
ful Z state schemas: WaitC'md becomes WaitCmd
:= pending = 0 & expected = 0. Then we de-
fined an SMV symbol for the precondition of
each operation, not forgetting to conjoin the pre-
conditions from the heading: for StartTimer we
obtain preStartTimer := preWait & WaitCmd.
Finally, we wrote SMV assignment statements to
accomplish the state changes that appear in the
rightmost column of the table. For each state
variable there is a case statement. For each op-
eration where the variable changes value, there is
a case branch that assigns the new value, guarded
by that operation’s precondition. For example
StartTimer is implemented by next(timer) :=
case ... preStartTimer: period;

A model expressed in the SMV input language is
called an SMV program. Figure 1 shows excerpts
from our SMV program that deal with the two
state variables pending and expected.

SMYV analysis

An SMV program is analyzed by submitting it to
the checker, along with claims expressed as formu-
las in Computation Tree Logic (CTL). The checker
either verifies each claim or produces a counterex-
ample: a sequence of states generated by the pro-
gram that violates the claim.

First we checked our translation into SMV
by the method of Atlee and Gannon [1]. For
each of our thirteen operations, we submitted
two claims: EF (precondition) checks that states

MODULE main

VAR
pending: {0,1,2}; -— length of seq. of pending commands
expected: {0,1,2}; -- length of seq. of expected responses
DEFINE
WaitReceive := expected > 0; —-- expected \neq <>
WaitCmd := pending = O & expected = 0; -- pending = <> /\ expected = <>
preReceive := preHandleEvent & WaitReceive & ReceiveEvent;
preReceiveAck := preReceive & expected > 1 & q;

preNextCommand := preReceive & expected = 1 & pending > 0 & q;
preReceiveComplete := preReceive & expected = 1 & pending = 0 & q;

preReceiveError := preReceive & !q;

preReceiveTimeout := preHandleEvent & WaitReceive & TimeoutEvent;
ASSIGN

init (pending) := 0; -- pending = <>

init (expected) := 0; -- expected = <>

next (pending) := case

-- Model command sequences of differing lengths in this simple way:
-- timeout event elicits sequence of one command, setup elicits two.

-- The new value of pending is the length of the *tail* of the sequence

preNewCommand & TimeoutEvent: O; -- NewCommand: pending’ = tail cs
preNewCommand & SetupEvent: 1; -- NewCommand: pending’ = tail cs
preNextCommand: pending - 1; -- NextCommand: pending’ = tail pending
preReceiveError: O; -- ReceiveError: WaitCmd’
preReceiveTimeout: O; -— ReceiveTimeout: WaitCmd’
1: pending; -- otherwise, no change

esac;

next (expected) := case
preNewCommand: 1; -- NewCommand: expected’ = responses c
preNextCommand: 2; -— NextCommand: expected’ = responses c
preReceiveAck: expected - 1; -- ReceiveAck: expected’ = tail expected
preReceiveComplete: expected - 1;

-- ReceiveComplete: expected’ = tail expected
preReceiveError: 0; -— ReceiveError: WaitCmd’
preReceiveTimeout: O; -- ReceiveTimeout: WaitCmd’

1: expected; -- otherwise, no change
esac;

Figure 1: Excerpts from SMV program based on Table 1.

that satisfy the operation’s precondition are reach-
able, and AG (precondition -> AF (postcondition))
checks that executing the operation results in the
intended postcondition. It is necessary to check
both claims; if the EF “liveness” claim is false,
the AG claim will be vacuously true. At first the
checker found counterexamples to several of these
claims, which we traced to several trivial transla-
tion errors. After we corrected the errors, all these
claims were verified.

Next we considered how to detect errors. Usu-
ally we do not know which errors are present, so
how can we form claims that will detect them?
We reasoned that it is best to begin with simple
claims about system invariants or progress prop-
erties because these claims probe every operation,
not just a few.

Our paper-and-pencil analysis revealed that
WaitCmd vV WaitReceive should be true in ev-
ery state. In CTL this invariant is expressed AG
(WaitCmd | WaitReceive). If any of our thirteen
operations ever fails to maintain the invariant, this
claim is false. The simplest progress property is
that a waiting process will eventually run. In CTL
this is AG ('run -> AF run). Ifit is ever possible
for the process to deadlock, this claim is false. Nei-
ther claim is explicit in the model; both were dis-
covered during the pencil-and-paper analysis. The
checker verified both claims for our SMV program.

We produced three erroneous versions of our
SMYV program, each seeded with one of the errors
we discovered in our early Z models. The checker
found counterexamples to the progress claim for
all three versions (all three deadlocked). The
checker verified the invariance claim for two of the
erroneous versions, but found a counterexample in
the version where the NextCommmand operation
was missing.

The checker consumed negligible resources
checking these claims, using at most 0.16 seconds
of system time, 10201 BDD nodes, and 983040
bytes (on an HP 715/50 workstation with 32MB
of memory). The longest counterexample was a
sequence of 18 states.

Conclusion

Model checking promises to be more conclusive
than trial-and-error methods such as testing or
experimenting with prototypes. In order to ful-
fil this potential it is necessary to have meaning-
ful claims to check. Claims should express the
central requirements of the application, should be
easy to validate against an intuitive understand-
ing of the requirements, and errors anywhere in
the model should be likely to generate counterex-
amples. Safety requirements, global invariants and
progress properties are examples of such claims.

[1]

[2]

[6]

References

Joanne M. Atlee and John Gannon. State-
based model checking of event-driven system

requirements. IEEE Transactions on Software
Engineering, 19(1):24-40, January 1993.

E. Clarke, O. Grumberg, and D. Long. Verifi-
cation tools for finite-state concurrent systems.
In J. W. De Bakker, W.-P. de Roever, and
G. Rozenberg, editors, A Decade of Concur-
rency, pages 124 — 175, Noordwijkerhout, The
Netherlands, 1993. REX School/Symposium,
Springer-Verlag. Lecture Notes in Computer
Science, vol. 803.

Daniel Jackson and Craig A. Damon. Elements
of style: Analyzing a software design feature
with a counterexample detector. IEEE Trans-
actions on Software Engineering, 22(7):484—
495, July 1996.

Jonathan Jacky. The Way of Z: Practical Pro-
gramming with Formal Methods. Cambridge
University Press, 1997.

Jonathan Jacky, Michael Patrick, and Ruedi
Risler. Clinical neutron therapy system, con-
trol system specification, Part III: Therapy
console internals. Technical Report 95-08-03,
Radiation Oncology Department, University of
Washington, Seattle, WA, August 1995.

Jonathan Jacky,
Michael Patrick, and Jonathan Unger. Formal
specification of control software for a radiation
therapy machine. Technical Report 95-12-01,
Radiation Oncology Department, University of
Washington, Seattle, WA, December 1995.

Jonathan Jacky, Ruedi Risler, Ira Kalet, and
Peter Wootton. Clinical neutron therapy
system, control system specification, Part I:
System overview and hardware organization.
Technical Report 90-12-01, Radiation Oncol-
ogy Department, University of Washington,
Seattle, WA, December 1990.

Jonathan Jacky, Jonathan Unger, Michael
Patrick, David Reid, and Ruedi Risler. Experi-
ence with Z developing a control program for a
radiation therapy machine. In M. G. Hinchey,
editor, ZUM ’97. Tenth International Confer-
ence of Z Users, Springer-Verlag, 1997. Lecture
Notes in Computer Science (in press).

J. M. Spivey. The Z Notation: A Reference
Manual. Prentice-Hall, New York, second edi-
tion, 1992.

