
Modelling, Checking and Implementinga Control Program for a Radiation Therapy MachineJonathan Jacky and Michael PatrickRadiation Oncology, Box 356043University of WashingtonSeattle, WA 98195-6043jon@radonc.washington.eduAbstractWe are developing a control program for a uniqueradiation therapy machine. The program is safety-critical, executes several concurrent tasks, andmust meet real-time deadlines. We have producedabout 250 pages of informal speci�cation and de-sign description, about 1200 lines of Z and about6000 lines of code. The Z description includesan abstract level that expresses overall safety re-quirements and a concrete level that serves as adetailed design, where Z paragraphs correspondto data structures, functions and procedures inthe code. We express requirements in the ab-stract level that we would like to check in theconcrete level; checking these properties automat-ically could reveal subtle errors in the detailed de-sign. We selected a small portion of our design (13transitions, 227 lines of Z, corresponding to 331lines of code) and performed a pencil-and-paper(non-automated) analyses that revealed several er-rors. We translated this portion of our Z modelto the SMV input language. The translation re-quires considerable simpli�cation, where Z pred-icates and numerical, structured variable valuesare encoded as small integers. We repeated ouranalyses using the SMV model checker. The auto-mated analyses detected the known errors (we didnot detect any additional errors in our correctedversion). IntroductionWe are developing a new control program for aunique radiation therapy machine. This is not apilot study or demonstration project; its purposeis to develop the program that we will use to ad-minister therapy at our clinic.

The program is safety-critical; errors could con-tribute to irradiating the wrong volume within thepatient or delivering the wrong dose. We have pro-duced about 250 pages of informal speci�cationand design description, about 1200 lines of Z [9]and about 6000 lines of code [8].Our principle assurance method thus far hasbeen careful (but informal and subjective) reviewof documents and code. This has been reason-ably e�ective but a few design errors present inthe Z have escaped detection until testing [8] so wewould welcome automated analysis. To determinewhether this could be feasible for us, we considerthe formal description of our system.Formal descriptionOur formal description comprises 1137 lines ofZ (207 paragraphs, including 131 schema de�ni-tions), presented in a 77 page report [6] (simpli-�ed excerpts appear in [4]). The Z description hastwo levels: an abstract level that expresses over-all safety requirements and a concrete level thatserves as the detailed design. The requirementslevel expresses properties that we wish to check orprove; the design level is the system to be checked.The abstract level expresses the central idea ofthe therapy control program, which is this safetyrequirement: the beam can only turn on when theactual state or setup of the machine is physicallysafe, and matches a prescription that the operatorhas selected and approved. We must only deliversetups that are physically consistent and reason-able or safe. The control program helps ensurethat we can only treat a patient when the mea-sured machine setup matches a prescribed setup.[SETTING ;VALUE ;FIELD]SETUP == SETTING"VALUEsafe : �SETUPmatch : SETUP# SETUPprescription : FIELD� SETUP

SafeTreatmentmeasured ; prescribed : SETUPsafe(measured)match(measured ; prescribed)prescribed 2 ran prescriptionThe whole design arises from elaborating thissimple model. The entire purpose of the con-trol program is to establish and con�rm theSafeTreatment condition. The prescribed setupmust be selected; the measured setup must beachieved; the safe and match conditions must betested.Most of our Z texts are devoted to the concretelevel, which expresses a design. The design is verydetailed: each X window system event (includingevery keystroke) and transmission or receipt of ev-ery message to or from a controller is modelled bya Z operation schema. The translation to codeis almost obvious. Some excerpts from this levelappear below.What we wish to checkCritical requirements can be expressed in Z at ourabstract level. Using the SafeTreatment schemade�ned above and another schema BeamOn (notde�ned here) we can express the central safety re-quirement that the beam can only be on when themachine is in a safe condition:BeamOn) SafeTreatmentChecking this property would be a signi�cantachievement. It would provide additional evidence(besides inspection and testing) for the soundessof our detailed design. It would not be a super�-cial exercise; it should reveal even low-level errorsbecause our design is so detailed.Checking this property appears to be beyondthe capabilities of any existing checker. Nit-pick [3] can check single operations on Z datastructures (but not numbers) and temporal logicmodel checkers such as the Symbolic Model Ver-i�er (SMV) [2] can check sequences of operationson simple data. However we need to check se-quences of operations on data structures (includ-ing numbers).The requirements we wish to check involverather complicated predicates on the numericalvalues of a large amount of highly structured data.We cannot express these requirements directly inthe input language of contemporary checkers suchas Nitpick or SMV because they are too inexpres-sive and place many restrictions on data (for ex-ample variables cannot have numerical values, orcan have only small integer values).It is possible to translate our requirements fromZ to a checker input language in order to perform

some particular analysis, but the translation in-volves considerable simpli�cation, where the pred-icates and numerical, highly structured data val-ues we really care about are encoded as small in-tegers or enumeration values.For example, much of our system can be mod-elled by a state transition system with not toomany states, but the states are not given to us apriori; each state in the transition system is ac-tually a (possibly very large) set of states wherethe values of some collection of variables satis�essome predicate. In order to create the checker in-put and interpret the results from the checker, itis necessary to �rst identify the states in a moreexpressive notation such as Z.The relation that exists between the checker in-put and the more expressive Z model can be ex-pressed by the familiar Z re�nement relations [9],except here development proceeds from concreteto abstract rather than vice-versa.An experiment in model checkingTo gain experience in model checking we selecteda small portion of our detailed design (13 transi-tions, 227 lines of Z, corresponding to 331 linesof code) where pencil-and-paper (non-automated)analyses had initially revealed several errors. Wetranslated this portion of our Z model to the SMVinput language and repeated our analyses usingthe SMV model checker. The automated analysesdetected the known errors (we did not detect anyadditional errors in our corrected version). Thefollowing sections describe the experiment in moredetail.System descriptionWe considered one subsystem of our control pro-gram: the process the communicates with a sepa-rate embedded controller called the treatment mo-tion controller (TMC). Our program exchangesmessages with the TMC and several other con-trollers to perform operations speci�c to our appli-cation, such as setting up the the therapy machin-ery to conform to a patient's prescription [5, 7].The TMC controller process handles events (inour implementation these events derive from hard-ware and software interrupts); the process may berunning or waiting for an event. The process andits controller exchange messages. Messages canbe classi�ed into types called commands (from theprocess) and responses (from the controller). Cer-tain events called command events are invoked bythe user to signal the controller process to issuea whole sequence of commands that accomplishsome useful goal, such as automatically setting upmachine components to prepare for a treatment.The process responds by sending that sequence ofcommands to the controller; for each of these com-mands, a particular sequence of responses is ex-

pected. In addition to command events, there is areceive event that occurs when a response messageappears. It is also possible to arrange for a timeoutevent to signal that a deadline has expired.We had to confront several design issues: the�rst is pending commands. The user interface pro-cess that generates command events runs inde-pendently of each controller process, and it cantake appreciable time to execute the sequence ofcommands that can be elicited by a single com-mand event. When a command sequence is still inprogress, several more command events might besignalled. We decided that a command sequencein progress must run to completion; it cannot bepre-empted. However new command events thatoccur while a command sequence is in progress arenot discarded, they are stored and then handledin turn. A command event which has been sig-nalled but not handled is said to be pending. Eachcommand event is assigned a priority, and pend-ing command events are handled in priority order(not arrival order). Moreover, only one instanceof each kind of command event can be pending;if an impatient user repeatedly signals the samepending command event, it will be handled onlyonce.The next issue is polling. In addition to handlingcommand events signalled by the user, the processmust frequently poll its controller: command it toreport the most recently measured values of perti-nent machine settings. We decided that a processwhich is not executing a command sequence andhas no pending commands should request a time-out; if the timeout expires, the controller executesthe polling command sequence. As a result, a pro-cess which is not busy will poll periodically. Alter-natively, if a command event occurs the timeoutis cancelled and polling is deferred while the com-mand event is handled instead. This is acceptablebecause it is not necessary for polling to be strictlyperiodic.A third issue concerns error handling. A con-troller which does not obey its protocol is ex-hibiting erroneous behavior and might present ahazard. It is important for the process to detectcontroller errors quickly, so appropriate protectiveaction can be taken 1. For each command thatthe process issues, the protocol determines whichresponse is expected; if a di�erent (or unintelli-gible) response appears, the process indicates acontroller error. Moreover, every response is asso-ciated with a deadline; if the deadline expires andno response has arrived, a timeout is signalled andthe process indicates a controller error. Finally,the process indicates an error if it receives an un-solicited message from the controller. When a con-1There are also hardware protection mechanismsthat work independently of the control program.

troller error is detected, any command sequencein progress is abandoned, and pending commandevents are cancelled, except for restart events thatare provided to resume normal operations after re-placing or powering up a controller.Our prototype implementation of the TMC con-troller comprised 331 (non-blank, non-comment)lines of code in a Pascal dialect that provides sup-port for multitasking and device control (the en-tire control program contains about 6000 lines ofcode). We performed a few successful tests thatcon�rmed we understood the basic operations ofthe controller.Z modelWe modelled the functions provided by our initialimplementation in 227 lines of Z. The Z texts in-clude thirteen operation schemas that each de�neone state transition in the controller process.The state of each controller process is the setof unhandled events, the real time clock, a timerto store the deadline when a timeout is pending,the (inferred) status of the controller, the process-ing state, the sequence of pending commands thathave not yet been sent to the controller, and thesequence of responses expected for the most re-cently sent command that have not yet been re-ceived. This is expressed by the Controller stateschema:STATUS ::= ok j errorPROCESSING ::= wait j runControllerevents : �EVENTclock ; timer : TIMEstatus : STATUSprocessing : PROCESSINGpending : seqCOMMANDexpected : seqRESPONSEThe environment outside the Controller stateprovides di�erent events, which we model as di�er-ent values of the input variable e?. When an eventoccurs, it joins the set of unhandled events. Mod-elling unhandled events as a set ensures there canbe no more than one unhandled event of each kind.No other state variables change when an event issignalled. This state transition is expressed by theSignal operation schema:Signal�Controllere? : EVENTevents 0 = events [fe?g: : :The two basic controller operations are Wait andHandleEvent . The controller process executes

Wait to wait for an event. The processing stateswitches from run to wait .Wait�Controllerprocessing = runprocessing 0 = wait: : :When an awaited event is signalled, the controllerprocess executes HandleEvent . HandleEventchanges processing from wait to back to run; thecontroller process alternates executing Wait andHandleEvent . Specializations of HandleEvent arecalled handlers; most of the work of the controllerprocess is accomplished by handlers.Each handler waits for a particular event; if thisevent appears and the handler's other precondi-tions are also satis�ed, the handler will removethis event from the set and execute. Events accu-mulate in a set, not a queue; if there is more thanone unhandled event, any enabled handler mightrun. Determinism can be introduced by restrictinghandlers' preconditions.HandleEvent�Controllere? : EVENTe? 2 eventsprocessing = waitprocessing 0 = runevents 0 = events n fe?g: : :In the initial state, there are no pending com-mands or expected responses. The controller pro-cess waits for a command event.WaitCmdControllerpending = hiexpected = hiAfter the user causes a command event to besignalled, HandleCmd loads the appropriate se-quence of new commands. If the user does notsignal a command event, the timeout itself acts asa command event: it invokes the polling commandsequence. If the controller is not ok this handleris disabled, except for certain restart commandswhich are provided to recover from the error state.

HandleCmdHandleEventc : COMMANDWaitCmde? 2 cmdstatus = ok _ e? 2 restart(let cs == commands e? �c = head cs ^ pending 0 = tail cs)status 0 = statusThe Send operation creates a message from thecommand and (if appropriate) the data.Send�Controllerc : COMMANDdata? : DATAmessage! : MESSAGEmessage! = : : : format msg from c and data?expected 0 = responses cThese two operations are combined to send a newcommandNewCommand b= HandleCmd ^ SendAfter executing NewCommand the process resetsthe timer for the appropriate deadline and waitsfor the controller to respond.WaitReceive b= [Controller j expected 6= hi]When a handler detects a possible controller error,it sets the controller state to error and abandonsany command sequence in progress.ControllerErrorHandleEventstate 0 = errorpending 0 = hiexpected 0 = hiPaper-and-pencil analysisIt is necessary to gain understanding of a de-sign before beginning automated analyses. Sim-ple paper-and-pencil analyses can be quite e�ec-tive at this stage. They revealed the properties wechecked during the automated analyses.Each of our thirteen Z operations de�nes onestate transition. To show how the operations worktogether we collect the pertinent formulas in oneplace. Table 1 is a state transition table, similar tothe mode transition tables of the SCR notation [1].There is one entry in the table for each Z op-eration schema. The four columns in the tableshow the operation name, the conjuncts of theprecondition that only involve the state variables,

Z operation name State precondition Input precondition Progress postconditionWait processing = run true processing 0 = waitStartTimer WaitCmd true timer 0 = clock + periodRestartTimer WaitReceive true timer 0 = clock + deadlineHandleEvent processing = wait e? 2 events processing 0 = runevents 0 = events n fe?gNewCommand WaitCmd ^ p e? 2 cmd WaitReceive 0(HandleCmd ^ Send) expected 0 = responses cpending 0 = tail csCommandError WaitCmd ^ : p e? 2 cmd status 0 = errorReceiveUnsolicited WaitCmd e? = receive status 0 = errorReceiveAck WaitReceive e? = receive ^ q status 0 = oktail expected 6= hi expected 0 = tail expectedNextCommand WaitReceive e? = receive ^ q status 0 = ok(ReceivePending ^ Send) tail expected = hi expected 0 = responses cpending 6= hi pending 0 = tail pendingReceiveComplete WaitReceive e? = receive ^ q WaitCmd 0 ^ status 0 = oktail expected = hi expected 0 = tail expectedpending = hiReceiveError WaitReceive e? = receive ^ : q WaitCmd 0 ^ status 0 = errorReceiveTimeout WaitReceive e? = timeout WaitCmd 0 ^ status 0 = errorSignal true true events 0 = events [fe?gSignalEvent true e? 6= timeoutSignalTimeout clock > timer true timer 0 = stoppedTick true true clock 0 > clockWaitReceive , expected 6= hiWaitCmd , pending = hi ^ expected = hiWaitCmd _WaitReceive is invariant; pending 6= hi ^ expected = hi is forbidden.c = head pending ^ cs = tail(commands e?)p , status = ok _ e? 2 restart ; hcmd ; freceivegi partition EVENTq , message? 2 dom response ^ response message? = head expectedTable 1: Controller operations, preconditions, and progress postconditions

the conjuncts of the precondition that only in-volve input variables, and conjuncts from the post-condition that indicate a change of state (post-conditions of the form x 0 = x indicating that xdoes not change are not shown). In addition tothe thirteen top-level operations, there are en-tries for three building-block operations. Eachgroup of top-level operations is headed by thebuilding-block operation whose predicates are con-joined with theirs. For example, Wait appearsabove StartTimer so the full state precondition ofStartTimer is processing = run ^WaitCmd .Many properties of our protocol can be con-�rmed by inspecting Table 1:Invariance: Every operation has eitherWaitCmd or WaitReceive in its precondition. Ifthe controller process entered a state where nei-ther predicate were true, no operations would beenabled; the process would deadlock. ThereforeWaitCmd _ WaitReceive must be an invariant.The negation of the invariant is the forbidden statewhere an unsent command is pending but no replyis expected.Completeness: The protocol de�nition is com-plete if the response to all events is de�ned inall states permitted by the invariant. The ta-ble shows this is true: the disjunction of all thepreconditions forms a tautology. For example inthe second column, there are two large sectionsfor processing = run and processing = wait , to-gether these cover all values of processing . Withineach section there are subsections for WaitCmdand WaitReceive, together these cover the invari-ant WaitCmd _WaitReceive, etc.Determinism: The protocol is determinis-tic if only one operation is enabled for eachinput in each state. The table shows thatall the preconditions are disjoint. For exam-ple in the second column we �nd the disjointpairs processing = run and processing = wait ,WaitCmd and WaitReceive, etc.Progress (liveness): To make progress, itis necessary to make state transitions from onetable entry to another. For example unhan-dled command events can accumulate in theWaitReceive state. However all the operationsthat begin in WaitReceive either end in WaitCmdor make progress toward WaitCmd by estab-lishing expected 0 = tail expected or pending 0 =tail pending . Therefore the system will eventuallyreachWaitCmd and pending command events willbe handled.ErrorsIn this study we consider three errors we dis-covered in early versions of our Z model, whilewe were preparing Table 1. There were twomissing operations: we forgot RestartTimer ,and we only provided a single Receive opera-

tion instead of ReceiveAck , ReceiveComplete andNextCommand . There was also a displaced precon-dition: pending = hi, intended to prevent a newcommand event from pre-empting a command se-quence that is already in progress, appeared inHandleEvent not WaitCmd .SMV modelWe expressed our model in the input language ofthe SMV checker, obtaining 124 (nonblank, non-comment) lines of SMV code. SMV is less expres-sive than Z so we had to create a simpler modelthat still represents the interesting behaviors. Forexample we modelled message contents (data) in Zbut in SMV we only modelled message type; valid-ity of message contents was modelled by a separatenondeterministic boolean input. In Z we modelledpending commands and expected responses by se-quences; in SMV we only modelled the lengths ofthe sequences. In SMV we modelled time verycoarsely; the clock is reset on eachWait operationand operations time out if the expected responsedoes not appear on the next tick.Once we determined how to simplify our model,translating from Z to SMV was not di�cult. Wedeclared SMV variables corresponding to eachZ state variable. Using Table 1 as a guide,we de�ned SMV symbols corresponding to use-ful Z state schemas: WaitCmd becomes WaitCmd:= pending = 0 & expected = 0. Then we de-�ned an SMV symbol for the precondition ofeach operation, not forgetting to conjoin the pre-conditions from the heading: for StartTimer weobtain preStartTimer := preWait & WaitCmd.Finally, we wrote SMV assignment statements toaccomplish the state changes that appear in therightmost column of the table. For each statevariable there is a case statement. For each op-eration where the variable changes value, there isa case branch that assigns the new value, guardedby that operation's precondition. For exampleStartTimer is implemented by next(timer) :=case : : : preStartTimer: period; : : :.A model expressed in the SMV input language iscalled an SMV program. Figure 1 shows excerptsfrom our SMV program that deal with the twostate variables pending and expected .SMV analysisAn SMV program is analyzed by submitting it tothe checker, along with claims expressed as formu-las in Computation Tree Logic (CTL). The checkereither veri�es each claim or produces a counterex-ample: a sequence of states generated by the pro-gram that violates the claim.First we checked our translation into SMVby the method of Atlee and Gannon [1]. Foreach of our thirteen operations, we submittedtwo claims: EF(precondition) checks that states

MODULE mainVAR...pending: {0,1,2}; -- length of seq. of pending commandsexpected: {0,1,2}; -- length of seq. of expected responsesDEFINE...WaitReceive := expected > 0; -- expected \neq <>WaitCmd := pending = 0 & expected = 0; -- pending = <> /\ expected = <>...preReceive := preHandleEvent & WaitReceive & ReceiveEvent;preReceiveAck := preReceive & expected > 1 & q;preNextCommand := preReceive & expected = 1 & pending > 0 & q;preReceiveComplete := preReceive & expected = 1 & pending = 0 & q;preReceiveError := preReceive & !q;preReceiveTimeout := preHandleEvent & WaitReceive & TimeoutEvent;ASSIGN...init(pending) := 0; -- pending = <>init(expected) := 0; -- expected = <>...next(pending) := case-- Model command sequences of differing lengths in this simple way:-- timeout event elicits sequence of one command, setup elicits two.-- The new value of pending is the length of the *tail* of the sequencepreNewCommand & TimeoutEvent: 0; -- NewCommand: pending' = tail cspreNewCommand & SetupEvent: 1; -- NewCommand: pending' = tail cspreNextCommand: pending - 1; -- NextCommand: pending' = tail pendingpreReceiveError: 0; -- ReceiveError: WaitCmd'preReceiveTimeout: 0; -- ReceiveTimeout: WaitCmd'1: pending; -- otherwise, no changeesac;next(expected) := casepreNewCommand: 1; -- NewCommand: expected' = responses cpreNextCommand: 2; -- NextCommand: expected' = responses cpreReceiveAck: expected - 1; -- ReceiveAck: expected' = tail expectedpreReceiveComplete: expected - 1;-- ReceiveComplete: expected' = tail expectedpreReceiveError: 0; -- ReceiveError: WaitCmd'preReceiveTimeout: 0; -- ReceiveTimeout: WaitCmd'1: expected; -- otherwise, no changeesac; Figure 1: Excerpts from SMV program based on Table 1.

that satisfy the operation's precondition are reach-able, and AG(precondition -> AF(postcondition))checks that executing the operation results in theintended postcondition. It is necessary to checkboth claims; if the EF \liveness" claim is false,the AG claim will be vacuously true. At �rst thechecker found counterexamples to several of theseclaims, which we traced to several trivial transla-tion errors. After we corrected the errors, all theseclaims were veri�ed.Next we considered how to detect errors. Usu-ally we do not know which errors are present, sohow can we form claims that will detect them?We reasoned that it is best to begin with simpleclaims about system invariants or progress prop-erties because these claims probe every operation,not just a few.Our paper-and-pencil analysis revealed thatWaitCmd _ WaitReceive should be true in ev-ery state. In CTL this invariant is expressed AG(WaitCmd | WaitReceive). If any of our thirteenoperations ever fails to maintain the invariant, thisclaim is false. The simplest progress property isthat a waiting process will eventually run. In CTLthis is AG (!run -> AF run). If it is ever possiblefor the process to deadlock, this claim is false. Nei-ther claim is explicit in the model; both were dis-covered during the pencil-and-paper analysis. Thechecker veri�ed both claims for our SMV program.We produced three erroneous versions of ourSMV program, each seeded with one of the errorswe discovered in our early Z models. The checkerfound counterexamples to the progress claim forall three versions (all three deadlocked). Thechecker veri�ed the invariance claim for two of theerroneous versions, but found a counterexample inthe version where the NextCommmand operationwas missing.The checker consumed negligible resourceschecking these claims, using at most 0.16 secondsof system time, 10201 BDD nodes, and 983040bytes (on an HP 715/50 workstation with 32MBof memory). The longest counterexample was asequence of 18 states.ConclusionModel checking promises to be more conclusivethan trial-and-error methods such as testing orexperimenting with prototypes. In order to ful-�l this potential it is necessary to have meaning-ful claims to check. Claims should express thecentral requirements of the application, should beeasy to validate against an intuitive understand-ing of the requirements, and errors anywhere inthe model should be likely to generate counterex-amples. Safety requirements, global invariants andprogress properties are examples of such claims.

References[1] Joanne M. Atlee and John Gannon. State-based model checking of event-driven systemrequirements. IEEE Transactions on SoftwareEngineering, 19(1):24{40, January 1993.[2] E. Clarke, O. Grumberg, and D. Long. Veri�-cation tools for �nite-state concurrent systems.In J. W. De Bakker, W.-P. de Roever, andG. Rozenberg, editors, A Decade of Concur-rency, pages 124 { 175, Noordwijkerhout, TheNetherlands, 1993. REX School/Symposium,Springer-Verlag. Lecture Notes in ComputerScience, vol. 803.[3] Daniel Jackson and Craig A. Damon. Elementsof style: Analyzing a software design featurewith a counterexample detector. IEEE Trans-actions on Software Engineering, 22(7):484{495, July 1996.[4] Jonathan Jacky. The Way of Z: Practical Pro-gramming with Formal Methods. CambridgeUniversity Press, 1997.[5] Jonathan Jacky, Michael Patrick, and RuediRisler. Clinical neutron therapy system, con-trol system speci�cation, Part III: Therapyconsole internals. Technical Report 95-08-03,Radiation Oncology Department, University ofWashington, Seattle, WA, August 1995.[6] Jonathan Jacky,Michael Patrick, and Jonathan Unger. Formalspeci�cation of control software for a radiationtherapy machine. Technical Report 95-12-01,Radiation Oncology Department, University ofWashington, Seattle, WA, December 1995.[7] Jonathan Jacky, Ruedi Risler, Ira Kalet, andPeter Wootton. Clinical neutron therapysystem, control system speci�cation, Part I:System overview and hardware organization.Technical Report 90-12-01, Radiation Oncol-ogy Department, University of Washington,Seattle, WA, December 1990.[8] Jonathan Jacky, Jonathan Unger, MichaelPatrick, David Reid, and Ruedi Risler. Experi-ence with Z developing a control program for aradiation therapy machine. In M. G. Hinchey,editor, ZUM '97. Tenth International Confer-ence of Z Users, Springer-Verlag, 1997. LectureNotes in Computer Science (in press).[9] J. M. Spivey. The Z Notation: A ReferenceManual. Prentice-Hall, New York, second edi-tion, 1992.

