
EPICS-BASED CONTROL SYSTEM FOR A RADIATION THERAPY
MACHINE

Jonathan Jacky∗, University of Washington Medical Center, Seattle, WA 98195, USA

Abstract
The clinical neutron therapy system (CNTS) at the Uni-

versity of Washington Medical Center (UWMC) has been
treating patients since 1984. A new EPICS-based ther-
apy control program replaces a locally-developed C pro-
gram used since 1999. The new program retains the orig-
inal safety philosophy and delegation of functions among
nonprogrammable hardware, PLCs, microcomputers with
programs in ROM, and general-purpose computers running
high-level language programs. The latter are used only for
data-intensive, prescription-specific functions. The therapy
control portion uses a single soft IOC for control and a sin-
gle EDM session for the operator’s console. Prescriptions
are retrieved from a PostgreSQL database and loaded into
the IOC by a custom client program. The system remains
safe if the computers or their programs crash or stop pro-
ducing results. Different programs at different stages of the
computation check for invalid data and other faults. De-
velopment activities include formal specifications and au-
tomated testing which avoid, then check for, design and
programming errors.

INTRODUCTION
The Clinical Neutron Therapy System (CNTS) at the

University of Washington Medical Center (UWMC) has
been treating patients and making isotopes since 1984 [1].
The system includes a cyclotron and a treatment room with
an isocentric gantry and leaf collimator operated under
computer control (far ahead of its time in 1984). The sys-
tem was built and installed by a vendor, but since then has
been maintained and upgraded by UWMC staff. In 1999
we replaced the therapy portion of the vendor’s original
control system (a PDP11 programmed in FORTRAN) with
new hardware and our own software (a 68040 in a VME
crate running VxWorks programmed in C) [2].

We are now replacing the therapy control system once
again. The goals are to retain all the present therapy func-
tionality (initially), to avoid obsolescence by using a mod-
ern, supportable hardware/software platform, to accommo-
date changes in the surrounding environment (especially
hospital information systems for treatment planning and
record keeping), and possibly to support new therapy tech-
niques, for example intensity-modulated radiation therapy
(IMRT).

Meanwhile, we have gained several years of experi-
ence programming and running the EPICS control system
framework for non-therapy functions of the cyclotron and

∗ jon@uw.edu. Thanks to the UWMC cyclotron engineering group:
Stefani Banerian, Eric Dorman, Robert Emery, Steven Steininger, and To-
bin Weber

beamlines. We would like to use EPICS for therapy con-
trol as well, in order to take advantage of its many features
and to standardize on a single collection of long-lived and
widely used components and development tools.

EPICS has been used for over twenty years in many de-
manding applications [3, 4, 5]. Nevertheless, experienced
EPICS developers have reported that they do not use EPICS
to implement safety-critical controls, but only to monitor
them [6, 7]. We can find no reports of EPICS used in safety-
critical controls.

Our therapy control system also uses non-EPICS com-
ponents for safety-critical functions nearest the hardware.
However, we do use EPICS to process some of the data
that is input to these functions, and to process output that is
collected for record keeping. So EPICS is on some safety-
critical signal paths. These processing steps are only feasi-
ble for high-level language programs running on general-
purpose computers. They require both careful analysis
and assurance during development and intensive monitor-
ing during operation — whether or not they use EPICS.

EPICS is not an application, it is a framework or toolkit
with many optional components that developers can use to
build applications. It is not meaningful to say that EPICS
itself is safe (or not). It is only possible to evaluate a partic-
ular application (including some EPICS components) that
must satisfy particular requirements running in a particular
environment. In this report we begin to sketch how we do
this for our neutron therapy control application. In order to
do this, we must first describe its function, safety require-
ments, and composition.

THERAPY MACHINE DESCRIPTION
The cyclotron produces a proton beam that strikes a

beryllium/copper target, producing a broad neutron beam.
(The control systems for the cyclotron and beamline up-
stream from the target also use EPICS but are not consid-
ered in this report.) The shape of the neutron beam that
reaches the patient is determined by setting forty steel col-
limator leaves (to conform to the shape of the tumor). The
dose within this aperture is modulated radially by inter-
posing one of two flattening filters (always) and may be
further modulated in one direction by interposing one of
several wedge filters (optionally). The entire collimator in-
cluding the leaves and filters is mounted on a gantry that
rotates 360 degrees so the beam can enter the patient from
above, below, or any other angle. The collimator assembly
rotates around the beam central axis so the leaves can be
oriented advantageously. The wedge filters rotate indepen-
dently within the collimator. The patient lies on a couch
with five degrees of freedom (three linear motions and two



rotations) so the beam can enter the patient from almost any
direction.

To treat a patient, the patient and couch are positioned
and all moving components (including the filters and all
forty leaves) are set to their prescribed positions, then all
motions are disabled. The cyclotron RF drive is turned
on, which turns on the proton beam and the neutron beam.
A dosimetry system integrates the accumulating dose from
the neutron beam until the prescribed dose is reached. Then
the dosimetry system turns off the cyclotron RF drive, so
the proton and neutron beams turn off.

A treatment beam prescription is specified by the set-
tings of all moving components (couch, filters, leaves), and
by the daily prescribed dose and the number of daily treat-
ment sessions (which determine a total prescribed dose).
The collection of beam prescriptions for each patient is
stored in a prescription database. (Preparing and check-
ing the prescriptions in this database involve a major qual-
ity assurance effort, not discussed in this report.) There is
also a treatment record database that records the treatments
that are actually delivered, for ongoing patient quality as-
surance, and recovery if a treatment ends prematurely.

Treatments are performed under the control of human
operators, not the cyclotron operators or engineers, but
other hospital staff: radiation therapy technologists. Tech-
nologists identify each patient and select each prescribed
beam from the database. They position the patient on the
couch and manually (by hand and eye) set all external mo-
tions (gantry rotation, collimator rotation, and all five ta-
ble motions). They command the control system to set up
the internal motions (filters and leaves) and initialize the
dosimetry system with the prescribed dose. They command
the beam to turn on.

SAFETY REQUIREMENTS
The primary safety requirement is that the neutron beam

can only turn on or remain on when all the settings conform
to their prescribed values, and the daily dose and total dose
are less than prescribed. The control system enforces this
requirement. For example, if a technologist attempts to turn
on the beam when a motion setting is not in the prescribed
position, the beam will not turn on. If a setting moves out
of the prescribed position (even if the motion just becomes
enabled) when the beam is on, the beam will turn off.

CONTROL SYSTEM COMPONENTS
Wherever possible, therapy controls are implemented

with nonprogrammable elements (relays etc.), pro-
grammable logic controllers (PLCs), or embedded micro-
computers with programs in read-only memory (ROM).
Turning the beam on or off, and moving components un-
der manual control, are implemented in this way.

However, some therapy control functions are only feasi-
ble for high-level language programs running on general-
purpose computers. These functions use the (voluminous,
complex) data in the prescriptions (which are different in

each prescription). These functions include retrieving pre-
scriptions from the database, loading the prescribed set-
tings into the low-level device controllers, comparing the
actual settings read back from the controllers to the pre-
scribed settings, commanding controllers in the proper se-
quence, and storing treatment records in the database.

An EPICS application comprises one or more In-
put/Output Controllers (IOCs) and client programs (that
provide user interfaces and data management), which com-
municate using a network protocol, Channel Access (CA).
An IOC can be a dedicated embedded computer, or a
“soft IOC”, a program running on a general-purpose com-
puter. The application code that runs on an IOC is called
a “database”, actually a data flow program defined by con-
necting predefined processing elements called “records”.

Our therapy control program runs on a single soft IOC,
the only application program on a dedicated x86 PC run-
ning Linux. Its database includes records to store all the
prescribed settings and all the actual settings read back
from the attached device controllers, and records to com-
pute the readiness to turn on the beam, broken down by
subsystem and setting. This database also includes records
to command the controllers and sequence their activities.

During normal operation the therapy control computer
uses TCP/IP over Ethernet to communicate with just four
other components: the database server, the therapy technol-
ogist’s console, a PLC, and a serial port server.

The database server is a Linux PC running the Post-
greSQL database [8], which stores both the prescription
database and the treatment record database.

The technologist’s console is a Linux PC running an
EPICS client program, the Extensible Display Manager
(EDM) [9], attached to a large touch-screen display. EDM
provides the graphical user interface (GUI) to the therapy
control program, that technologists use to select prescrip-
tions, to monitor therapy machine status (its readiness to
turn the beam on, etc.), and to command the control sys-
tem to automatically set up leaves, filters, and dosime-
ters. When a technologist selects a prescription, EDM in-
vokes a client we wrote, a Python program that uses the
psycopg2 library [10] to retrieve the prescribed settings
from the database server and then uses the pyepics CA
library [11] to load them into the IOC.

The PLC handles most single-bit digital input/output
(mostly relays) including sensing a nonprogrammable
Hardware Safety Interlock System (HSIS). The PLC and
HSIS include safety and consistency checking that are in-
dependent of the therapy control computer. The therapy
control computer communicates with the PLC over the Eth-
ernet using the EPICS asyn device support [12] with the
modbus driver [13].

The serial port server connects via RS232 to three mi-
crocomputers programmed in ROM, which provide device
control: the Treatment Motion Controller (TMC), Leaf
Collimator Controller (LCC), and Dose Monitor Controller
(DMC). These in turn connect to nonprogrammable hard-
ware with built-in safety mechanisms. For example, once



the prescribed dose is loaded into the dosimetry system, the
dose is integrated and the beam is turned off by hardware
(not the microprocessor program). The therapy control
computer communicates with the these controllers through
the serial port server using the EPICS asyn device sup-
port with the StreamDevice driver [14].

ASSURANCE DURING DEVELOPMENT
A safety-critical system requires both careful analysis

and assurance during development and intensive monitor-
ing during operation. In this section we discuss develop-
ment.

Safety analysis
The facility has operated without mishap for almost

thirty years. Although some components are new, the over-
all control system functionality and design including the
delegation of functions among the therapy control com-
puter, PLC, HSIS, TMC, LCC and DMC remains the same.
The strongest evidence for its soundness is its successful
performance history.

A safety analysis is an explicit description of potential
hazards and countermeasures. The original vendor did not
provide one to us. We did do some post hoc analysis, in
effect justifying the rationale for the system as built (sum-
marized in [2]). This should help prevent us from inad-
vertantly introducing new hazards. The most important
findings are that the system exhibits a conservative design
which eliminates some hazards and removes others from
computer control. For example:

The system can always achieve a safe state without any
computers by turning off the beam and disabling motions.
There is no need for redundancy to ensure the computers
keep running.

Guiding external motions and avoiding collisions is en-
tirely delegated to human operators. External motions are
disabled by nonprogrammable hardware except when ex-
plicitly commanded by an operator.

Only one type of radiation (neutrons) at one energy can
be produced in the treatment room. The dose rate is low
enough so that negligible dose is delivered after the beam
is commanded to turn off.

The therapy control program has no hard real-time dead-
lines, those are all delegated to the HSIS, PLC, and micro-
computers.

The HSIS, PLC, and each controller can maintain or
achieve a safe state for the components they control, even
if other computers are not running.

If a computer or controller stops or behaves erratically, a
watchdog timer detects this and places the system in a safe
state.

And so on. Most hazards that implicate the therapy con-
trol program are limited to loading the prescribed settings
and checking that the actual settings conform. We concen-
trate on these in the rest of this report.

Functional specification
It is necessary to have a comprehensive description of the

intended behavior to guide coding, test planning, and safety
analysis. The internals are new, but the behavior of the new
EPICS program is almost identical to our 1999 program [2]
so some of the products of that development are still valid.
These include a 240-page reference manual that now serves
as our functional specification [15], and a formal specifica-
tion in a mathematical notation, that describes the program
as a collection of state transitions and expresses the safety
invariants that must be maintained by each transition [16].

EPICS programming style
We use as few EPICS features and mechanisms as pos-

sible, in order to keep our program easy to understand and
(we hope) reliable. The entire therapy control program runs
on a single soft IOC, the only application program on its
computer. The IOC is self-contained in the sense that it
does not need to communicate with any clients to achieve
or maintain a safe state. The entire IOC program is ex-
pressed by EPICS database records, StreamDevice proto-
col files, and the IOC startup command file st.cmd. There
is no custom device support nor any other custom code, not
even subroutine records. We do not use the EPICS State
Notation Language or the sequencer. The IOC only uses
the EPICS Channel Access (CA) network protocol to load
prescribed settings when a prescription is selected, and to
communicate with the EDM client. The database itself uses
no CA links, only local database links. All control flow in
the database is “pushed” from input to output, using SCAN

PASSIVE, OUT PP, and FLNK fields.
We use these record types: acalcout, ai,

ao, asyn, bi, bo, calc, calcout, fanout,

longin, longout, mbbo, scalcout, stringin,

stringout, seq.

Inspection and review
Two kinds assurance activities can be done during de-

velopment: static analyses where the code is not executed
(including reviews and inspections) and dynamic analyses
(testing).

To help us review our own code, we created a tool based
on the dot graph layout package [17] that generates an-
notated data-flow and control-flow diagrams from EPICS
databases.

We study the available documentation for all the EPICS
components we use (enumerated in the preceding sections),
including discussion on the Tech-talk mailing list.

It would be salutary to look at the EPICS core code and
device support code that we use, along the complete signal
path from input through the database to output. We limited
our use of EPICS components to make this more feasible.

Testing
We use the Python unittest module [18] to script au-

tomated tests for the therapy control program. Most test



scripts use the pyepics library [11] to read and write pro-
cess variables (PVs) in the IOC, so they bypass the device
support but test the program logic.

Some scripts perform stress tests. For example, we
tested the signal path from the prescription database to the
IOC, through psycopg2 and pyepics. In about thirty min-
utes, we retrieved different sets of prescribed settings from
from the database ten thousand times, each time compar-
ing the resulting IOC contents against the original database
contents. (A typical rate is less than ten.) There were no
errors.

MONITORING DURING OPERATION
Development activities including code reviews and tests

provide confidence that the therapy control program is log-
ically correct. But perhaps it is possible for disturbances in
the environment or rare transient conditions to interrupt or
delay program execution in ways that might be difficult to
detect (despite the watchdog timers). What if some, but not
all, settings are updated when a prescription is retrieved?
What if some, but not all, database calculation records stop
processing when prescribed settings and actual settings do
not agree?

We are considering various run-time checks for such oc-
curences. For example, to guard against corruption of re-
trieved prescriptions, we could store a checksum of the pre-
scription in the database, and compare it to the same check-
sum computed by the IOC from the retrieved settings.

PROJECT STATUS
At this writing, the new therapy control system is not

complete and has not yet begun clinical operation, but
enough is working to permit some preliminary conclusions.

CONCLUSION
We expected that the greatest risk of switching from C on

VxWorks to EPICS on Linux would arise from the size and
complexity of the latter [19, 20], which we feared might
reduce reliability and make behavior more difficult to ana-
lyze and predict. Our experience so far indicates that in our
application, EPICS is as trustworthy as our previous plat-
form, and provides other advantages as well. Additional
inspection, testing, and runtime monitoring remain to be
done to confirm this impression.

REFERENCES
[1] R. Risler, S. Banerian, J.G. Douglas, R.C. Emery, I. Kalet,

G.E. Laramore, and D. Reid. 25 years of continuous op-
eration of the Seattle clinical cyclotron facility. In Youjin
Yuan, Lina Sheng, and Lijun Mao, editors, Proceedings of
the Nineteenth International Conference on Cyclotrons and
Their Applications, pages 68–70, 2010.

[2] Jonathan Jacky, Ruedi Risler, David Reid, Robert Emery,
Jonathan Unger, and Michael Patrick. A control system
for a radiation therapy machine. Technical Report 2001-
05-01, Department of Radiation Oncology, University of

Washington, Box 356043, Seattle, Washington 98195-6043,
USA, May 2001. http://staff.washington.edu/jon/
cnts/cnts-report.html.

[3] L. R. Dalesio, M. R. Kraimer, and A. J. Kozubal. EPICS
architecture. In C. O. Pak, S. Kurokawa, and T. Katoh, ed-
itors, Proceedings of the International Conference on Ac-
celerator and Large Experimental Physics Control Systems,
pages 278–282, 1991. ICALEPCS, KEK, Tsukuba, Japan.

[4] Matthias Clausen and Leo Dalesio. EPICS - Experimen-
tal Physics and Industrial Control System. Beam Dynam-
ics Newsletter, (47):56–66, Dec 2008. http://www-bd.

fnal.gov/icfabd/Newsletter47.pdf.

[5] http://www.aps.anl.gov/epics/.

[6] Simon Rees and Andrew Johnson. Re: Is there anyone us-
ing EPICS for a FDA approved device? Tech-talk mailing
list. Tue, 19 Aug 2008 10:56:21 +0200, http://www.aps.
anl.gov/epics/tech-talk/2008/msg00803.php.

[7] Andrew Johnson. Re: Doubt regarding standards fol-
lowed by EPICS. Tech-talk mailing list. Mon, 10
Sep 2012 16:52:29 -0500, http://www.aps.anl.gov/

epics/tech-talk/2012/msg01836.php.

[8] http://www.postgresql.org/.

[9] http://ics-web.sns.ornl.gov/edm/.

[10] http://initd.org/psycopg/.

[11] http://cars.uchicago.edu/software/python/

pyepics3/.

[12] http://www.aps.anl.gov/epics/modules/soft/

asyn/.

[13] http://cars9.uchicago.edu/software/epics/

modbusDoc.html.

[14] http://epics.web.psi.ch/software/

streamdevice/doc/.

[15] Jonathan Jacky and Ruedi Risler. Clinical neutron therapy
system reference manual. Technical Report 99-10-01, De-
partment of Radiation Oncology, University of Washington,
Box 356043, Seattle, Washington 98195-6043, USA, Octo-
ber 1999. http://staff.washington.edu/jon/cnts/

refman.html.

[16] Jonathan Jacky. Formal safety analysis of the control
program for a radiation therapy machine. In Wolfgang
Schlegel and Thomas Bortfeld, editors, The Use of Com-
puters in Radiation Therapy: XIIIth International Confer-
ence, pages 68–70, Berlin, Heidelberg, New York, 2000.
Springer. http://staff.washington.edu/jon/cnts/

iccr.html.

[17] http://www.graphviz.org/.

[18] http://docs.python.org/2/library/unittest.

html.

[19] Nick Rees. EPICS internals. Slide deck, 2010.
http://controls.diamond.ac.uk/downloads/

other/files/EpicsInternals.pdf.

[20] Mark Rivers, Marty Kraimer, and Eric Norum. asyn:
An interface between EPICS drivers and clients.
EPICS Collaboration Meeting, April 2012. https:

//portal.slac.stanford.edu/sites/conf_public/

epics_2012_04/presentations/asynTalk.pdf.


