
34 This arTicle has been peer-reviewed. Computing in SCienCe & engineering

C l o u d C o m p u t i n g

Large, virtualized pools of computational resources raise the possibility of a new,
advantageous computing paradigm for scientific research. To help achieve this, new tools
make the cloud platform behave virtually like a local homogeneous computer cluster, giving
users access to high-performance clusters without requiring them to purchase or maintain
sophisticated hardware.

Scientific Computing in the Cloud

Modern cloud computing platforms
vary,1–3 but they share two critical
features: they abstract the under-
lying compute components and

they typically charge users incrementally based
on their usage. The “pay-as-you-go” billing
strategy isn’t new, and it has many potential
advantages, especially for scientists who don’t
require 24/7 accessibility. Many academic com-
putational researchers have used shared compute
facilities for decades and are accustomed to being
billed per CPU-hour. What makes cloud archi-
tectures a compelling new product for scientific
computing—and what differentiates them from
existing supercomputing facilities—is the way
they abstract the underlying compute compo-
nents. These components range from hardware
infrastructures to operating systems to software
packages. This approach offers several advantages
for scientists, users, and developers alike. First,
unlike supercomputer centers, cloud hardware
infrastructures give users and developers sweep-
ing control of their clusters. This is useful when
scientists have applications that require particu-
lar pieces of software to be installed at the system
level. For clouds that provide software as a service,
the scientist never has to install a thing. The cloud

provider installs, maintains, and optimizes the
application and the scientist merely conforms to a
specific API.

Here, we focus on a configuration of the
Amazon elastic compute cloud (EC2; see http://
aws.amazon.com) for scientific computation.
The EC2 is part of Amazon Web services
(AWS), which provides hardware infrastructure
as a service. In other words, the hardware itself
is abstracted into compute resources (EC2) and
storage resources (simple storage service, or S3).
Cloud computing services are widely used in
areas such as commercial Web applications—such
as Google Apps (www.google.com/apps/intl/
en/business/index.html) or Microsoft’s Azure
(www.microsoft.com/azure)—but have scarcely
been exploited for scientific computing applica-
tions3 largely because of their differing require-
ments. Scientists often require platforms that
are good number crunchers, for example, and
virtualization software might interfere with this
capability. Second, elastic scientific codes of-
ten require a high-performance network inter-
connect, and no cloud platform yet offers such
capability.

In our study, we set out to assess EC2’s com-
putational and network capabilities for scientific
high-performance computing (HPC). In par-
ticular, we demonstrate EC2’s feasibility for ab
initio electronic structure and x-ray spectroscopy
modeling6,7 using the real-space code FEFF
(http://leonardo.phys.washington.edu/feff), which
is typical of many scientific computing applica-
tions. FEFF is a widely used scientific code that

John J. Rehr, Fernando D. Vila, Jeffrey P. Gardner,
Lucas Svec, and Micah Prange
University of Washington, Seattle

1521-9615/10/$26.00 © 2010 ieee

CopubliShed by the ieee CS and the aip

CISE-12-3-Vila.indd 34 4/9/10 11:31:53 AM

may/June 2010 35

calculates the electronic and optical properties of
arbitrary, complex systems in real-space for large
atom clusters, and runs on a variety of comput-
ing environments. Here, we present results that
benchmark the performance of both serial and
parallel versions of FEFF on EC2 virtual ma-
chines. We also describe a toolset that we de-
veloped that lets users deploy their own virtual
compute-clusters, both for FEFF and other par-
allel codes. Finally, we explore EC2’s intra- and
internode communication performance using a
tightly coupled scientific code and the Intel MPI
Benchmarks.

Our efforts are in two main areas:

Development.•	 We created an environment that
permits the FEFF user community to run
different software versions in their own EC2-
resident compute clusters.
Benchmarking.•	 We tested FEFF and other scien-
tific codes performance on EC2 hardware.

To accomplish these efforts, we first had to
gain an understanding of the EC2 and S3
infrastructure.

EC2 and S3 infrastructure
The Amazon EC2 service hosts Amazon ma-
chine images (AMIs) on generic hardware located
“somewhere” within the Amazon computer net-
work. Amazon offers a set of public AMIs that
users can customize to their needs, as well as sev-
eral types of hardware with various performance
levels. Once users select and configure an AMI,
they can store it in their Amazon S3 accounts for
subsequent reuse. EC2’s “elasticity” denotes users’
ability to spawn an arbitrary number of AMI in-
stances while scaling the computational resources
to match computational demands as needed.
Currently available EC2 instances range from
small (a 32-bit platform with one virtual core and
1.7 Gbytes of memory and 160 Gbytes of storage)
to extra large (64-bit platform with eight virtual
cores, 7 Gbytes of memory and 1,690 Gbytes of
storage). These limits will likely increase in the
future.

toolsets
EC2 and S3 provide three toolsets for creating
and using AMIs:

AMI tools (http://developer.amazonwebservices. •	
com/connect/entry.jspa?externalID=368) are
command-line utilities used to bundle an
image’s current state and upload it to S3 storage.

API tools (http://developer.amazonwebservices.•	
com/connect/entry.jspa?externalID=351) serve
as the client interface to the EC2 services, let-
ting users register, launch, monitor, and termi-
nate AMI instances.
S3 libraries (http://developer.amazonwebservices. •	
com/connect/kbcategory.jspa?categoryID=47)
let developers interact with the S3 server to
manage stored files, such as AMIs.

The toolsets are available in several formats,
including Python, Ruby, and Java. This variety
of coding languages gives developers a range of
options, letting them tailor their implementa-
tions to optimize results. Currently, we use the
Java implementation, supplemented with our
own set of Bash scripts. For developers to use
EC2, they need all three sets of tools. In contrast,
users need only the API tools, unless they want to
modify and store our preconfigured images. We
endeavored to make these tools transparent; users
need neither cloud computing nor HPC expertise
to run sophisticated parallel codes on the EC2
environment.

We also experimented with Elasticfox (http://
developer.amazonwebservices.com/connect/entry.
jspa?externalID=609) and S3fox (http://developer.
amazonwebservices.com/connect/entry.jspa?
externalID=366), two GUIs that provide partial
implementations of the EC2 and S3 tools. Both
are extensions of the Firefox browser and provide a
user-friendly alternative to the EC2 and S3 tools for
AWS users. Elasticfox gives an all-in-one picture
of users’ current AMI states and active instances,
and lets users initiate, monitor, and terminate AMI
instances. S3fox mimics the interface of many com-
monly used FTP programs, letting users create and
delete S3 storage areas. We believe these graphical
browser extensions will prove useful and intuitive
for the scientific-user community. Therefore, we
developed our user environment to accommodate
these tools. Amazon also provides its own graphi-
cal interface, the AWS management console, as
a browser-independent way of managing EC2
instances.

usability
The scientific-user community includes a grow-
ing number of investigators with parallel com-
putation experience who are familiar with Linux
and MPI, but others are virtually helpless in
such HPC environments. Also, while investi-
gators are increasingly using HPC versions of
FEFF to study complex materials, many users
lack access to adequate HPC resources. One of

CISE-12-3-Vila.indd 35 4/6/10 10:35:57 AM

36 Computing in SCienCe & engineering

cloud computing’s advantages is its poten-
tial to provide such access, without requiring
users to buy, maintain, or even understand HPC
hardware.8,9

With this in mind, we adopted a development
strategy that aims to serve users lacking HPC
resources. Our approach provides a complete,
standalone MPI parallel runtime environment.
Users need to know only their AWS account
credentials; they don’t need any experience with
parallel codes, hardware, or the EC2. Our envi-
ronment works well for the FEFF code. However,
it’s also general and can be used to launch any
suitably configured Amazon EC2 Linux image
for parallel computation. This gives users accus-
tomed to using MPI on a workstation or cluster
an immediately useful way to run both our FEFF
MPI software and many other MPI parallel codes
on the EC2.

Configuring EC2 for Serial
Scientific Computing
For simplicity, we begin with an example of se-
rial scientific computing. Starting from a public
AWS AMI with a Fedora 8 Linux operating sys-
tem, we created a FEFF AMI that provides both

the command-line-driven FEFF code (version
8.4) and JFEFF, a Java-based GUI that facilitates
FEFF84 execution. To make these programs
run smoothly, we enhanced the AMI template
with X11 and a Java runtime environment.
JFEFF then functions as if it were running lo-
cally. The resulting AMI occupies approximately
550 Mbytes of S3 storage. The AMI’s boot time
of instances varies depending on EC2 availabil-
ity but, on average, an instance boots in about
two minutes and rarely takes more than three-
and-a-half minutes. Figure 1 shows a screenshot
of JFEFF running on EC2 and the FEFF AMI
console, with the Elasticfox control screen run-
ning in the background. As might be expected,
the only notable limitation we observed is the
GUI’s relatively slow response when running
over a network. To overcome this problem, we
modified the JFEFF GUI so it can be run on a
user’s local machine while the FEFF executables
are resident on the EC2 instances.

Benchmarking FEFF84 Serial
performance tests
As part of our overarching goal of achieving high-
performance scientific computing in the cloud, we

Figure 1. Amazon elastic compute cloud (EC2) for serial scientific computing. Components include the FEFF EC2 console in the
upper right; the Java FEFF GUI in the lower right, and a Firefox browser running the Elasticfox extension in the background.

CISE-12-3-Vila.indd 36 4/6/10 10:36:01 AM

may/June 2010 37

first used the FEFF AMI to test the serial per-
formance of FEFF84 on instances with different
computing power.

Figure 2 shows runtime versus cluster-size re-
sults for a typical full multiple-scattering FEFF
calculation— a Boron Nitride crystal—containing
between 29 and 157 atoms. This is realistic, as
finite clusters with about 100 atoms are typically
adequate to obtain bulk systems’ converged spec-
tra. We used two instance types, both running
32-bit operating systems:

a small instance using a 2.6-gigahertz AMD •	
Opteron processor, and
a medium instance using a 2.33-GHz Intel Xeon •	
processor, both including FEFF compiled with
Gnu Fortran without optimization flags.

For comparison, we included results from one
of the University of Washington’s local Linux sys-
tems with a 64-bit 2.0-GHz AMD Athlon proces-
sor. Figure 2 also shows the results we obtained
with a highly optimized version of FEFF84. We
produced the compiled executable on an AMD
Opteron Linux system at UW’s Department of
Physics using the PGI Fortran compiler with the
“-fast” optimization flag. This system is analo-
gous to the one used in the small instance. As
Figure 2 shows, the resulting code makes the
small instance even faster than the medium one.
Consequently, we believe that AMIs should in-
clude well-optimized HPC tools to provide good
performance for scientific applications. Of course,
developers can do this once and for all, so users
won’t have to configure and optimize such codes
for novel compute environments.

Strategies and tools for parallel
Cloud Computing on the EC2
Setting up a virtual cluster on the EC2 is similar
to setting up a physical computer cluster, but cer-
tain aspects of the EC2 infrastructure pose unique
challenges. In most physical clusters, for example,
the administrator typically has complete control
of the node IP addresses, but on the EC2, they’re
dynamically allocated at boot time. So, you must
gather this and other information before you can
configure a virtual cluster. Security is also quite
different. For example, to reduce a cluster’s vul-
nerability, access certificates aren’t stored within
the AMI and are only transferred during setup.

These challenges, together with our desire to
make the compute-cluster setup transparent to
users, steered us toward a cloud-cluster structure
that’s slightly different from most typical physical

compute-clusters in three key ways. First, because
Amazon charges for all instances booted regard-
less of CPU load, we did away with the usual server
head node of physical clusters. Thus cloud clusters
are composed of only compute nodes. However,
we do designate one of the nodes as a common
disk server because many parallel codes (such as
FEFF) require shared disk access for all parallel
processes. Second, we eliminated the multiuser
cluster concept. The cloud clusters have a single
user, specifically set up to run the payload pro-
gram. Finally, users can launch as many clusters
as they need to run several simulations simultane-
ously. Our EC2 cloud-cluster implementation is
homogeneous, thus facilitating parallel task load
balancing. Figure 3 shows the resulting cloud-
cluster scenario.

EC2 Compute-Cluster tools
As we noted earlier, AWS provides Java and
Python tools designed to interact with EC2.
Based on the Python modules, other develop-
ers produced a set of scripts for managing MPI
clusters on EC2 (www.datawrangling.com/mpi-
cluster-with-python-and-amazon-ec2-part-2-of-3).
However, these scripts have many limitations, and
changes in Amazon’s API reporting format have
rendered some unusable.

Given the scripts’ initial success, we developed
a new set of tools10 aimed at typical MPI users
interested in HPC calculations on complex sys-
tems. We tested the tools on the FEFF AMI.

Figure 2. Comparing serial performance (runtime versus cluster
size) of different AMI instance types for typical FEFF84 x-ray spectra
calculations. Overall EC2 virtual performance is similar to that of a
physical system, with the medium instance being about twice as fast
as the small one. Optimized code in the small instance performs better
than non-optimized code on the medium one.

0 50 100 150
Number of atoms

10.0

100.0

Ti
m

e
(m

in
)

2.0 GHz AMD Athlon
2.6 GHz AMD Opteron
2.33 GHz Intel Xeon
2.6 GHz AMD Opteron
(optimized code)

CISE-12-3-Vila.indd 37 4/6/10 10:36:02 AM

38 Computing in SCienCe & engineering

They consist of a set of Bash scripts that per-
form the basic tasks involved in interacting effi-
ciently with the cloud cluster. These tasks include
launching, connecting to, transferring files to and
from, monitoring, and finally terminating a cloud
cluster. The scripts are easy to install and have few
requirements:

the Java EC2 API,•	
the Java runtime environment (RTE), and•	
a *NIX environment with the Bash and secure •	
shells (ssh).

Although not essential, we also encourage users
to install the Elasticfox extension of the Mozilla
Firefox browser. This extension provides a user-
friendly monitor of the user’s instances on the
cloud, which might help avoid unnecessary charges
for runaway instances. Currently, the EC2 cloud-
cluster tools can be installed either per user or on
server mode. In the near future, we plan to offer
a specially configured EC2 AMI containing all
the software required to launch a cloud cluster.
This will eliminate tool and security certificate
installation, thus further simplifying cloud-
cluster interactions.

The toolset’s main starting script is ec2_
clust_launch, which sets up an EC2-cluster
with N nodes. Figure 4 shows a typical launch
sequence log for a cluster with two instances.
First, this script requests N instances, parsing and
storing the EC2 reservation’s information. Then,
ec2_clust_launch monitors the reservation’s

status until all instances have booted. Once the
full reservation is running, we gather the required
internal EC2 IP addresses, create the configura-
tion files required to run MPI applications, and
distribute them to all nodes. On most physical
clusters, all the nodes share storage, which is usu-
ally mounted from a designated file server node.
Here, we assign the instance with boot index 0 as
this server and export and mount a scratch area
on all nodes. We accomplish this using the stan-
dard network file system (NFS). In the final step,
we transfer the secure shell (ssh) key files, used to
connect to the cluster for computing purposes.
We store all information about the cluster in a per-
user database, which contains information that the
other cluster tools will use. Several clusters can be
launched simultaneously, each having a unique
identifier given by the EC2 reservation ID or a
user-assigned label. All scripts can be directed at a
specific cluster by using the user-assigned label or
the reservation ID. If neither is given, the scripts
default to the last cloud cluster created. Users can
access a list of active cloud clusters through the
ec2_clust_list command.

Once the cluster is fully booted and ready,
users can connect to the master node—that is,
the node with the boot index 0—using either
the ec2_clust_connect or the ec2_clust_
connect_root scripts. These scripts are wrap-
pers of the ssh command; the former is intended
for computing purposes and the latter for admin-
istration purposes only. These administration
tasks might be required for simple session adjust-
ments. Because all configuration changes are lost
upon cluster termination, users should perform
any complicated image configuration changes
on the master image and then save it using the
AMI tools. From within the master node, users
can access slave nodes with a password-less ssh
command. Files and directories can be recursive-
ly transferred to and from the cluster using the
scp wrapper scripts ec2_clust_put and ec2_
clust_get, respectively. We’ve transparently
included all security certificates and IP addresses
that the connection and file transfer scripts re-
quire, thus hiding all security exchanges. Finally,
the ec2_clust_terminate script shuts down all
instances associated with a cluster.

We illustrate the process using the parallel
code FEFF84 MPI. Once users log in to a given
cluster, the FEFF MPI runtime environment is
ready to use. They can access NFS shared stor-
age through /mnt/share, and a simple script
that specifies the executable code (rfeff84g77mpi)
launches all the daemons that the MPI

Figure 3. A typical cloud cluster generated by the EC2 cluster tools.
Lacking a head node and using a single user-configured script to
run the payload program, this cluster differs from typical clusters.
Many copies of these cloud clusters can be used to run simultaneous
simulations.

User interacts with
ec2_clust_* scripts
installed in control
workstation

1. Start cluster
2. Configure nodes

EC2 compute instances

Control workstation

MPI thread

MPI master MPI master

MPI thread

MPI master

MPI thread

ec2_clust_*

CISE-12-3-Vila.indd 38 4/6/10 10:36:04 AM

may/June 2010 39

implementation requires. A cluster includes two
other scripts: ec2_clust_usage is intended to
monitor processes using more than 5 percent of
the CPU on each node; ec2_clust_load reports
the CPU load averages.

Although we originally designed these scripts
for the parallel FEFF AMI, many MPI pro-
grams share a runtime infrastructure similar to
that of FEFF; hence, users can easily modify the
tools for use with other parallel codes. These
tools let us turn a conventional laptop into a
machine and console that controls a virtual
supercomputer.

Benchmarking FEFF84 parallel performance
Most HPC platforms offer a high-performance
network interconnect to increase the parallel
codes’ ability to scale to numerous nodes. In
contrast, EC2’s nodes have only a basic ethernet
connection. Consequently, we began our study
of parallel scalability with a code that doesn’t
place great demands on the network in terms
of either latency or bandwidth. The parallel-
ized FEFF84 code (“FEFF84 MPI”) is largely

a data-parallel computation, where the messages
passed between nodes are for coarse-grained
synchronization of tasks. The sizes of the mes-
sages are quite small, meaning that any depar-
ture from linearity is due to issues of latency and
load balancing. This gives EC2 the best chance
of successfully achieving scalability on a compu-
tational physics code, and it also lets us investi-
gate the infrastructure required to automatically
launch and administer parallel MPI calculations
in the cloud.

Figure 5 shows scaling versus the number
of CPUs observed in EC2 compared to a local
1.8-GHz AMD Opteron HPC cluster with
gigabit ethernet in UW’s Department of Phys-
ics. The comparable behavior shows that using a
virtual EC2 cluster doesn’t significantly degrade
FEFF84’s parallel performance compared to that
of a conventional physical computer cluster with
standard networking. In fact, the cloud-cluster
performance is slightly better due to the larger
memory per processor available in the EC2 in-
stances. This is especially noticeable for the values
with 48 processors.

Figure 4. Output example showing the boot and configuration sequence of a representative cloud cluster
with two instances run from a local machine (latte). The script launches the required instances and waits
until they have booted. Then it gathers the information needed to setup file-sharing and configures MPI.
Finally, it transfers the security certificates used to access the cluster.

CISE-12-3-Vila.indd 39 4/6/10 10:36:23 AM

40 Computing in SCienCe & engineering

Additional Benchmarks:
tightly Coupled Calculations
To better quantify EC2’s performance charac-
teristics, we also used an existing benchmarking
code from astrophysics. This let us compare EC2
to other high-end computing (HEC) systems.
The benchmark is based on Gasoline,11 an n-body
gravitational code used to simulate large-scale
structure, galaxy evolution, and planet formation.

Because the force of gravity is long range, calcu-
lating the gravitational force exerted on a single
object in the simulation requires knowledge of
the entire simulation dataset. Also, because this
dataset is typically spread across thousands of
computational nodes, considerable message pass-
ing is required for this kind of calculation. Given
this, gravity codes like Gasoline perform best on
systems with high-performance networks. The
message patterns are largely random and asyn-
chronous, with messages several kilobytes in size.
Therefore, Gasoline’s parallel performance is
greatly affected by network latency, but relatively
insensitive to bandwidth. Its serial performance is
also driven largely by memory latency (not band-
width, like most scientific codes), which could be
affected by a virtual machine hosting the applica-
tion’s increasing layers of indirection.

We conducted tests on several sets of EC2 com-
pute instances as well as on current HEC plat-
forms. Our main test system was the Department
of Physics’ local Athena Linux cluster, a 10-teraflops
(Tflops) cluster consisting of 140 compute nodes
connected via a 4-gigabits-per-second InfiniBand
Double Data Rate (DDR) fabric. Each compute
node has two quad core Intel 2.33-GHz E5345
Xeon processors and 8 Gbytes of RAM. We
also compared benchmarks to the Cray XT3 at
the Pittsburgh Supercomputing Center, a clas-
sic HEC-capability platform designed to provide
maximum performance and scalability to thou-
sands of processors. At the time we performed our
benchmarks, the Cray had 2,048 2.4-GHz AMD
Opteron processors connected by a Cray SeaStar
fabric.

serial performance. Figure 6 shows Gasoline’s se-
rial performance on the local Athena cluster and
three different EC2 instance types. All tests used
the same version of the Gnu C compiler. By ex-
amining /proc/cpuinfo on each instance at the
time of the benchmark, we could discover the un-
derlying hardware for that run. Amazon doesn’t
guarantee physical specifications for instance
hosts, so the hardware on which our instances
were running probably represents a subset of what
could have been allocated. EC2 assigned

the small instance, half a core of a 2.6-GHz •	
dual-core AMD Opteron 2218HE processor;
the medium high-CPU instance (c1.medium), •	
two of the four cores of a 2.33-GHz quad-core
Intel Xeon E5345 system; and
the extra-large high-CPU instance (c1.large), •	
an entire node with two quad-core E5345s.

Figure 5. The scalability of FEFF84MPI for the EC2 compared to a local
1.8 GHz Opteron cluster at the University of Washington. The scaling
for the virtual and physical clusters is very similar, showing that the
virtualization doesn’t degrade FEFF84MPI performance. Overall, the
EC2 cluster provides better performance largely due to better memory
availability.

12 4 4832168

Number of processors

0.0

10.0

20.0

30.0

40.0

50.0

Sp
ee

du
p

Perfect scaling
EC2 2.6 GHz AMD Opteron
UW 1.8 GHz AMD Opteron

Figure 6. Gasoline’s serial performance on the Amazon high-CPU
extra-large (c1.large), medium (c1.medium), and small instances.
Athena is a local HPC Linux cluster at the University of Washington.

0 200 400 600 800 1,000 1,200 1,400

Megaflops

c1.xlarge

c1.medium

small

Athena

Gasoline performance

CISE-12-3-Vila.indd 40 4/6/10 10:36:25 AM

may/June 2010 41

The Athena cluster had the exact same CPUs
as the EC2 instance hosts. As Figure 6 shows,
Gasoline’s serial performance on the c1.medium
and c1.xlarge instances was comparable to the
“bare-metal” runs on Athena. In fact, the c1.xlarge
instance actually performed slightly better than
an Athena node. The Xeon E5345 has been de-
ployed with a variety of (DDR2) memory speeds,
and it’s possible that the c1.xlarge instance might
have had faster memory than the Athena nodes.
At the time we measured it, Amazon described
the small instance as having performance compa-
rable to “a 1.0–1.2 GHz 2007 Opteron or Xeon”
class processor. Because neither the Opteron nor
the Xeon was produced with clock rates as slow
as 1.0 or 1.2 in 2007, we surmise that Amazon
really means performance comparable to half of
a 2.0- to 2.4-GHz processor. This seems to be
the case, as the small instance performs at a level
of about what we’d expect from 50 percent of a
2.4-GHz core, even though it’s hosted by a
2.6-GHz CPU. Consequently, it seems that some
overhead is introduced by the virtualization pro-
cess when processor cores are shared, less over-
head is introduced if only nodes are shared (but
cores aren’t), and almost no overhead is present
given an entire physical node. From a serial per-
spective, EC2 instances appear to offer perfor-
mance comparable to bare metal for scientific
HEC applications.

parallel performance. We also conducted strong
scaling tests—both within a single compute node
to test memory contention, and between mul-
tiple nodes as a test of network performance. In
all cases, we assigned each core exactly one MPI
process. Figure 7 shows results of both tests. The
solid blue and red lines show the scaling up to
eight cores within a single Athena node and the
c1.xlarge instance, respectively. Performance is
comparable, indicating that the virtual machine
hosting environment introduced little overhead,
even when all eight cores were running at full
capacity. Gasoline achieves similar scalability on
the Cray XT3 (blue line), although this system is
using a high-performance network interconnect.
The dashed lines indicate runs performed across
multiple Athena and EC2 nodes. In this case, we
see a definite advantage of an HEC system over
EC2. Scalability is already beginning to suffer at
eight EC2 nodes.

network Characteristics
Our further investigations with Gasoline and the
Intel MPI Benchmarks (http://software.intel.com/

en-us/articles/intel-mpi-benchmarks) showed
latency and bandwidth characteristics consistent
with the network performance achievable when
running across workstations in a building, con-
nected by typical 100-Mbps or 1-Gbps networks.

For example, we used the PingPong benchmark
to measure both bandwidth and latency between
two nodes. The UW HPC Athena cluster, which
has a high-performance InfiniBand DDR inter-
connect, achieves a latency of 3 to 4 microsec-
onds and a bandwidth in excess of 1 Gbps on this
benchmark. A typical modern academic building
wired with a 100-Mbps or gigabit network will
see latencies between approximately 50 and 150 µs
and a bandwidth between 10 and 100 Mbytes per
second. We tried four different pairs of small in-
stances in the EC2 availability zone “us-east-1a”
and found best-case latencies—that is, the small-
est latency reported by any packet size during
any PingPong run between two instance pairs—
ranging from 160 to 220 µs. This is about what we’d
expect for instances in a large building separated
by several network hops. Best-case bandwidth
ranged from 35 to 45 Mbytes per second, indicat-
ing the likely presence of a gigabit network.

All things considered, it’s comforting to note
that EC2’s network performance wasn’t worse.
Although we ensured that all instances were
in the same AWS “availability zone,” it’s pos-
sible that they could’ve been spread across differ-
ent buildings or even separate sites. So, as far as

Figure 7. Strong scaling on EC2 and high-end computing platforms. The
similar behavior of the Athena system and the c1.xlarge instance indicates
that virtualization introduces little overhead. Performance degradation
appears when the simulations are run over the network (dashed lines).

0 1 2 3 4 5 6 7 8 9

Threads

9

8

7

6

5

4

3

2

1

0

Sc
al

in
g

Gasoline scaling

Athena 1-node
Athena 1c/node (IB 1xDDR)
Cray XT3 (Seastar 1)
EC2 c1.xlarge 1-node
EC2 small 1c/node

CISE-12-3-Vila.indd 41 4/6/10 10:36:26 AM

42 Computing in SCienCe & engineering

on-node performance is concerned, EC2 is appar-
ently a viable platform for hosting many scientific
applications. It can also host parallel applications,
provided their performance isn’t degraded by
network performance similar to that in a generic
building-wide research computing scenario.

Remaining Challenges
Our results show that scientific cloud computing
is generally feasible and has advantages for many
users, such as those with moderate computational
requirements that aren’t satisfied with a simple
workstation, but lack access to large supercomputer
facilities. Nevertheless, several issues remain.
For instance, it can be difficult to assess a priori
whether it’s more efficient to use a cloud cluster
than to acquire and maintain the hardware to
fulfill those requirements.12 The choice depends
on several parameters—including, among oth-
ers, the accounting system’s granularity for vari-
ous EC2 instances, the target software’s parallel
coupling level and single processor performance,
and the typical turnaround time at supercomputer
centers.

With these challenges in mind, several as-
pects of scientific cloud computing remain to be
addressed. It would be especially interesting to
develop even higher performance computing
AMIs that would use 64-bit operating systems
and include high-performance compilers and
numerical libraries. Fortunately, cloud comput-
ing is developing rapidly and steady improve-
ments along these lines are being made, as in the
AWS High-CPU extra-large instance. These
images could provide a representative produc-
tion environment to assess the overall economic
feasibility of high-performance scientific cloud
computing. The automated cluster tools should
also facilitate further tests aimed at optimizing
interprocess communications. As we described
earlier, this is a minor issue for a moderately
coupled program like FEFF, but is likely to be
important for many other high-performance
scientific codes.

One of the main lessons learned from our
attempts at scientific cloud computing is that,
heretofore, the main roadblock to using cloud
computing effectively for many scientific users
is the rather alien environment presented by the
cloud compared to typical local clusters. The
need to overcome this roadblock was our pri-
mary motivation for developing a set of cluster
tools that hide as much of the cloud environment
as possible and turn it transparently into a sys-
tem that is more familiar to many computational

physicists. In the future, we can extend these
simplifications by modifying the tools to run
from a special control AMI. Within this setup,
users wouldn’t have to download the scripts to
their workstations. Instead, they’d simply request
a control instance, and then launch and manage
their MPI clusters from it. This extension would
require the development of additional easy-to-
use tools to transfer files both to and from the
control instance, as well as special care regard-
ing access security. Finally, we envision a unified
front end to manage MPI clusters on the EC2,
similar to Elasticfox. Such a front end would
have the double advantage of removing the need
for command-line utilities and making the tools
more platform-independent.

T he AWS EC2 is reasonably adap-
tive to our goal of making high-
performance scientific computation
readily available to the scientific

community. We’ve explored a variety of promis-
ing methods that let users interact with custom
AMIs—ranging from predefined scripts that
manage AMIs locally to tools that let users re-
motely ssh into the instances and control them
directly. This virtualization lets code developers
optimize and preinstall scientific codes on AMIs,
thus facilitating control over the computational
environment.

In terms of performance, we’ve demonstrated
that the EC2 cloud clusters can provide access to
reliable, high-performance computation for gen-
eral scientific users without requiring that they
purchase and maintain hardware on their own,
provided that their application doesn’t demand
high-performance network interconnects. Serial
performance of scientific codes was comparable
to bare-metal runs on similar hardware. How-
ever, the network that connects the EC2 compute
hardware in the same Amazon availability zone
has similar latency and bandwidth characteris-
tics to a gigabit Ethernet network in a large office
building. Although network performance could’ve
been even worse (Amazon offers no guarantees),
it’s still a far cry from the capability of the high-
performance interconnects found on most aca-
demic high-end computing clusters.

Acknowledgments
The US National Science Foundation grant DMR-
0848950 and NSF CDI grant PHY-0835543 (JG and
FV) support this work, and the US Department of
Energy grant DE-FG03-97ER45623 supports the FEFF

CISE-12-3-Vila.indd 42 4/6/10 10:36:27 AM

may/June 2010 43

project. We thank Chuck Bouldin, Richard Coffey, Ed
Lazowska, and Chance Reschke for comments, and
especially Deepak Singh and Werner Vogels for their
support of this project and for providing initial AWS
resources. Some of the tools developed in this project
were inspired by the MPI Cluster Tools developed by
Peter Skomoroch (Datawrangling); the JFEFF GUI was
adapted from that of David Bitseff. Cray XT3 bench-
marks were produced using allocations of advanced
NSF-supported computing resources operated by the
Pittsburgh Supercomputing Center.

References
L.M. Vaquero et al., “A Break in the Clouds: Towards 1.

a Cloud Definition,” ACM Sigcomm Computer Comm.

Rev., vol. 39, no. 1, 2009, pp. 50–55.

F. Sullivan, “Cloud Computing for the Sciences,” 2.

special issue, Computing in Science & Eng., vol. 11,

no. 4, 2009, pp. 10–11.

M. Armbrust et al., 3. Above the Clouds: A Berkeley View

of Cloud Computing, tech. report UCB/EECS-2009-28,

Electrical Eng. and Computer Sciences Dept., Univ.

of California, Berkeley, 10 Feb. 2009; www.eecs.

berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.

html.

C. Hoffa et al., “On the Use of Cloud Computing 4.

for Scientific Workflows,” Proc. 4th IEEE Int’l Conf.

on eScience, IEEE CS Press, 2008, pp. 640–645.

C. Evangelinos and C.N. Hill, “Cloud Computing 5.

for Parallel Scientific HPC Applications: Feasibility

of Running Coupled Atmosphere-Ocean Climate

Models on Amazon’s EC2,” Proc. Cloud Computing

and Its Applications, 2008; http://cca08.org/

papers.php.

A.L. Ankudinov et al., “Real Space Multiple Scatter-6.

ing Calculation and Interpretation of X-Ray Absorp-

tion Near Edge Structure,” Physical Review B, vol. 58,

no. 12, 1998, pp. 7565–7576.

A.L. Ankudinov et al., “Parallel Calculation of 7.

Electron Multiple Scattering Using Lanczos Algo-

rithms,” Physical Review B, vol. 65, no. 10, 2002,

pp. 104107–104118.

J. Napper and P. Bientinesi, “Can Cloud Computing 8.

Reach the TOP 500?” Proc. Workshop Unconventional

High-Performance Computing, ACM Press, 2009,

pp. 17–20.

E. Walker, “Benchmarking Amazon EC2 for High-9.

Performance Scientific Computing,” ;login:, vol. 33,

no. 5, 2008, pp. 18–23.

F. Vila, J.J. Rehr, and J. Gardner, “Bash Scripts for 10.

Scientific CC,” tech. report, Dept. of Physics, Univ.

Washington, forthcoming, 2010.

J.G. Stadel, 11. Cosmological N-body Simulations and Their

Analysis, doctoral thesis, Dept. of Astronomy, Univ.

Washington, 2001.

D. Kondo et al., “Cost-Benefit Analysis of Cloud 12.

Computing Versus Desktop Grids,” Proc. Int’l Parallel

and Distributed Processing Symp, IEEE CS Press, 2009,

pp. 1–12.

John J. rehr is a professor of physics at the Univer-
sity of Washington, Seattle. His research interests
include condensed-matter theory, theoretical spec-
troscopy, excited states and response functions, and
scientific computing. Rehr has a PhD in theoretical
physics from Cornell University. He’s a member of the
American Physical Society and the International
XAFS Society. Contact him at jjr@uw.edu.

Fernando d. vila is a research associate professor
of physics at the University of Washington, Seattle.
His research interests include quantum chemis-
try, theoretical spectroscopy, electronic structure of
molecular systems, intermolecular interactions, and
scientific computing. Vila has a PhD in chemistry
from the University of Pittsburgh. He is a member of
the American Physical Society. Contact him at fdv@
uw.edu.

Jeffrey p. Gardner is a senior research scientist for
high-performance computing in the Department of
Physics, University of Washington. His research inter-
ests include parallel computing, data-intensive scal-
able computing, cosmology, large-scale structure,
scientific cloud computing, scalable data analysis,
and parallel programming paradigms. Gardner
received a PhD in astronomy from the University
of Washington. Contact him at gardnerj@phys.
washington.edu.

lucas svec is a physics graduate student at the
University of Washington. His research interests in-
clude quantum computation and scientific comput-
ing. Svec has a BS in physics and math from the
University of Washington. Contact him at svecl@
u.washington.edu.

Micah prange is currently a research associate in the
Department of Physics and Astronomy at Vanderbilt
University, Nashville. His research interests include
theoretical electron scattering theory and scientific
computing spectroscopy. Prange received a PhD in
physics from the University of Washington. He is a
member of the American Physical Society. Contact
him at micah.prange@gmail.com.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-12-3-Vila.indd 43 4/6/10 10:36:28 AM

