W. Chamberlin’s trimetric projection
by Prof. Kurt Bretterbauer, 
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1. Introduction
When designing small-scale maps one is concerned less about making them conformal or equivalent, more in reducing the variations of scale.  Many years ago I came across a projection that promised to minimize all distortions.  In spite of the very simple basic idea behind this projection, I ignored it because the construction appeared to be laborious.  Since the advent of computer-controlled plotters, this objection has lost its relevance.

The projection was described in a few words and sketches by its inventor Wellman Chamberlin in a booklet The Round Earth on Flat Paper that first appeared in 1947 (National Geographical Society, Washington, DC).  It seems that several maps have appeared with this projection: Canada, Alaska, and Greenland (1 : 8 million, 1947), Australia (1 : 6 million, 1948), Europe and the Near East (1 : 7.5 million, 1949), 
and Africa with the Arabian peninsula (1 : 12 million, 1950).

Though I studied the literature and asked several geographers and cartographers, 
this has remained the only reference to the projection that I have found, with no mathematical treatment.  In fact the mathematics are elementary and are given below.  
I also investigated the distortions for one practical example.  The outstanding properties of the trimetric projection mean that it deserves to be remembered.

2. Chamberlin’s basic idea
The idea is based on the old surveying principle of fixing a point by the intersection of arcs – in this case a triple intersection, which provides the name for the projection.  First, we select three base points A (a, a), B (b, b), C (c, c) at the vertices of a spherical triangle enclosing most of the area to be mapped.  The method is thus particularly suited to countries or continents that are roughly triangular in shape, such as Africa, South America, the Indian subcontinent, or the whole of North and Central America.

We then calculate the great-circle distances AB, AC, BC on the sphere and transfer them – at an appropriate scale – to the paper so that they form a triangle ABC.  However, the sides of this plane triangle do not represent the three great circles 
(if they did, we would have a gnomonic projection); those will fall outside the triangle.

Now we calculate the great-circle distances from A, B, and C to a selected graticule intersection.  We set our compasses to each distance in turn, and, placing the compass point on the appropriate base point, mark out circular arcs on the paper.  On a plane map, of course, the three arcs do not intersect at a point but form a small triangle with curved sides.  Once this has been done for a number of points along a meridian or parallel, we join up the centres of the triangles by means of a spline curve, judging things more or less by eye (Fig. 1).
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	Fig. 1
	


This procedure is not very satisfying in the computer age.  However, although there is no unambiguous relationship between points on the sphere and the plane, in the form of simple projection equations, it turns out to be relatively simple to plot the grid lines and calculate the distortions with a PC.

3. The algorithm
The mathematics are simple enough, so it has not been thought necessary to provide a program here.

The great-circle distance sij between any two points Pi (i, i) and Pj (j, j) on a sphere of radius R follows from the cosine rule:


[image: image2.wmf](

)

)

cos(

cos

cos

sin

sin

arccos

j

i

j

i

j

i

ij

R

s

l

l

f

f

f

f

p

-

+

°

=

180





[1]

The little triangles formed by marking off the great-circle distances take various forms.  Inside the base triangle ABC, all three sides are convex and have genuine intersections (Fig. 2a).  If the point happens to lie precisely on one of the sides of the base triangle, two arcs are tangent while the third arc intersects them (Fig. 2b).  Outside the base triangle there are again three intersections, but two sides are concave (Fig. 2c).
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	Fig. 2a

Fig. 2b

    Fig. 2c
	


Chamberlin did not define what he meant by the centres of the triangles: there are several possible interpretations.  I have taken the simplest definition, the arithmetic mean of the coordinates of the three intersections:
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The first task is to orient the base triangle on the map.  In the general case, the trimetric projection does not possess a defined prime meridian that maps to a straight line; therefore there is no clear-cut procedure that applies in all cases.  
I chose the following method:

The lower left corner of the sheet is defined as the origin of coordinates, as in Fig. 3.  One base point (e.g. A) is placed at a convenient position near a corner, 
thus defining its coordinates (a, a).  
The position of B is now determined by defining an ‘azimuth’   for the side AB:
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the coordinates of B follow:
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	Fig. 3
	


The point C is then the intersection of the arcs sac and sbc.  This standard surveying procedure also applies to all the individual points P in the projection.  
The problem is solved by marking off distances from the pole.  For C we have
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so that  
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The coordinates xi , yi (i = 1, 2, 3) in equations [2] are calculated in just the same way.  However, for each intersection we have to decide whether the point falls inside or outside the base triangle.  That involves testing where the meridian or parallel being plotted cuts the great circles AB, AC, and BC.

The equation of a great circle through two points Pi (i, i) and Pj (j, j) is obtained by setting to zero the scalar triple product of the radius vectors to Pi and Pj and a general point P.  This is the condition that the three vectors are coplanar:
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If we now plot a meridian  = constant, to find its intersection with the given great circle we must solve equation [7] for :
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where 
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It is slightly more complicated to calculate the intersection with a parallel  = constant since we cannot then solve equation [7] explicitly for .  We therefore introduce two auxiliary variables M and   satisfying C = M cos , S = M sin 
so that 
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The desired longitude then follows as 
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In this way I plotted the graticules for North America (Fig. 4) and South America (Fig. 5) at intervals of 1°.  That meant solving several thousand sets of equations, but with a modern PC it took less than three minutes.  
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	Fig. 4
	
	Fig. 5


4. Scale factors and distortions
A stringent treatment of the distortions in accordance with Tissot’s method is not possible, since there are no projection equations that we can differentiate.  However, with a computer they can be investigated numerically, taking differences in place of differentials.  In this way I calculated the scale factors along the meridians (h) and parallels (k), the amount by which the angle between meridians and parallels differs from a right angle (J), and the area scale factors (s) at the 10° graticule intersections.  
As is well known, the relationship between them is

s = h k cos J
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The table shows these values for North America.  The surprisingly good values confirm that Chamberlin was right in supposing that his projection exhibits low distortions.  Within the base triangle it is almost conformal and almost equal-area.  Of course the linear scale factors apply only at a point: to find the average scale over an appreciable distance one must integrate them along the path.  For each pair of graticule intersections I calculated the distances on the sphere and on the plane (they vary between 300 and 8000 km) and expressed the difference as a percentage.  
The standard deviations are

for North America

 = ±1.89%

for South America

 = ±2.03%

These results would seem to justify including Chamberlin’s projection in the cartographer’s toolbox for small-scale maps.
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Scale factors and angular distortion for the map of North America

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Translated by Hugh Casement
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