Variable Step Size Methods

These notes introduce a family of procedures that decide by themselves what step
size to use. In all of these procedures the user specifies an acceptable error rate and the
procedure attempts to adjust the step size so that each step introduces error at no more than
that rate.

Suppose that we wish to generate an approximation to the initial value problem

y' = f(t,y), y(to) = o

for some range of t’'s and we want the error introduced per unit increase of ¢ to be no more
than about . Suppose further that we have already produced the approximate solution as
far as t,. The rough strategy is as follows. We do the step from ¢, to ¢, + h twice using
two different algorithms, giving two different answers, that we call A; and A;. The two
algorithms are chosen so that

(1) we can use A; — Ay to compute an approximate local truncation error and

(2) for efficiency, the two algorithms use almost the same evaluations of f.
In the event that the local truncation error, divided by h, (i.e. the error per unit increase of
t) is smaller than ¢, we set t,+1 = t, + h, accept A, (or better still, A5 minus the computed
approximate error in A,) as the approximate value for y(¢,41) and move on to the next step.
Otherwise we pick, using what we have learned from A; — A,, a new trial step size h and
start over again at t,,.

Now for the details. We start with a very simple minded procedure.

Euler and Euler—2step

Denote by ¢(t) the exact solution to y' = f(¢,y) that satisfies the initial condition

¢(trn) = yn. If we apply one step of Euler with step size h, giving

Ay = Yn + hf(tnayn)

we know that

Ay = ¢(tn + h) + Kh? + O(h®)

1

The problem of course is that we don’t know what the error is, even approximately, because
we don’t know what the constant K is. But we can determine K simply by redoing the
step from ¢, to t,, + h using a judiciously chosen second algorithm. There are a number of
different second algorithms that will work. We call the one we use Euler-2step. One step of

Euler-2step with step size h just consists of doing two steps of Euler of size h/2:

Ao =y + 21 (tnyn) + 51 (tn + Boym + BF (1o n))

Here, the first half-step took us from y,, t0 Ymia = yn + %f(tn, yn) and the second half-step
took us from ym,iq t0 Ymia + %f(tn + %,ymid). The local truncation error introduced in the
first half-step is K(h/2)% + O(h3). That for the second half-step is K(h/2)? + O(h?) with
the same K, though a different O(h®).! All together

Ay = ¢(tn + h) + KR + O(R®)

The difference is 2
Ar — Ay = $(ta + h) + Kh? + O(h®) — ¢(tn + h) — TKh* — O(R?)
= 1Kn* + O(r®)

So if we do one step of both Euler and Euler-2step, we can estimate
KR = A1 — Ay + O(R%)

We now know that in the step just completed Euler—2step introduced an error of about
_ |Ai—As]|

%Kh2 ~ A; — Az. That is, the current error rate is about r = ——* =~ %Kh per unit
increase of t. If r > ¢, we reject Ay and repeat the current step with a new trial step size h'
chosen so that %|K\h’ ~ +h' <e. To give ourselves a small safety margin, we could use

“h

r

h'=.9

! Because the two half-steps start at values of ¢ only h/2 apart, it should not be
surprising that we can use the same value of K in both. In case you don’t believe
me, I have included a derivation of the local truncation error for Euler-2step at the
end of these notes. You are not responsible for it.

Recall that every time the symbol O(h3) is used it can stand for a different function
that is bounded by some constant times A% for small h. Thus O(h®) — O(h3) need
not be zero, but is O(h3).

If ‘Al — A2‘/h < ¢ we could accept Ay as an approximate value for y(t,11 = t, + h)
and move on to the next step. But ¢(t,, + h) = Ay — 2 Kh* + O(R®) = 245 — A; + O(h?), so
we do better by setting

Ynt1 = 242 — Ay

For the next step, we would repeat the whole process, starting with a trial step size h' =
9Eh.
™

As a concrete example, suppose that our problem is
y(0)=e% o =8(1—-2t)y, e =.1
and that we have gotten as far as
ty = .33, yr = .75, trial h = .094

Then, using F to denote the estimated local truncation error in A, and r the corresponding

error rate

Fltr,yr) = 8(1 — 2 x .33).75 = 2.04
Ay = yr + hf(tr,yr) = .75 + .094 x 2.04 = .942
Ymid = Y7 + 2f(tr,yr) = .75 + 24 x 2,04 = .846
Fltr + 2 ymia) = 8(1 — 2(.33 + 29%)).846 = 1.66
2 2
Ay =yr+ 2F(tr,yr) + 2 f(tr + 2, ymia) = .75 + 242,04 + -9941.66 = .924
E=A; — Ay = .942 — .924 = 018

_ & .018 __
r=g ‘004 — 19

Since r = .19 > ¢ = .1, the current step size is unacceptable and we have to recompute with

step size h' = .95h = .9%.094 = .045 to give
Ftr,y7) = 8(1 — 2 x .33).75 = 2.04
Ay = yr + hf(tr,yr) = .75 + 045 x 2.04 = .842
Ymid = Y7 + 2F(tr,y7) = .75 + 25 x 2.04 = .796
Fltr+ 2, ymia) = 8(1 — 2(.33 + %22)).796 = 1.88

3

Ay =yr+ Bf(tr,yr) + 2F(tr + 2, ymia) = .75 + 2282.04 + 251,88 = .838
E=A; — Ay = .842 — 838 = .004

— @ _ .004 __ .09

r R~ 045

This time r = .09 < € = .1, is acceptable so we set tg = .33+ .045 = .375 and yg = A; — F =
.838 — .004 = .834. The trial step size from tg to tg is A' = .9 % .045 = .045.

Error Behaviour

We have been referring loosely to ¢ as the desired rate for introduction of error, by
our variable step size method, as ¢t advances. If the rate of increase of error were exactly
g, then at final time ¢ the error would be exactly e(ty — tp). But our algorithm actually
chooses the step size h for each step so that the estimated local truncation error in A, for that
step is about ch. We have seen that, once some local truncation error has been introduced,
its contribution to the global truncation error can grow exponentially with ¢;. Here are the
results of an experiment that illustrate this effect. In the experiment, the method of the
last section is modified by setting y,11 to Ay (the quantity whose local truncation error is

estimated) rather than Ay — E. This modified method is applied to 3y’ =1t — 2y, y(0) =3

for € = 11—6, 31—2, -+« (ten different values) and for ty = 0.2, 0.4, ---, 3.8. Here is a plot of the
error(ty)
€ ;fo — Error in the y(ts) generated by Euler/2 x %*Euler
" 1 with error rate € modified to set y,4+1 = A2 and

8.0 - applied to y' =y — 2¢t, y(0) = 3 i

7.0 - i

6.0 - i

5.0 i

4.0 | -

3.0 - g

2.0 - Lo

1.0 « ']

“"‘““\“"‘““\“‘“““\““““‘\tf
1 2 3 4

resulting actual crror at =ty against ty. There is a small square on the graph for each different

ety
pair €,t¢. So for each value of {; there are ten squares on the line z = ¢;. This numerical

actual error at t=iy
Etf

experiment suggests that is relatively independent of € and starts at about

4

one, as we want, but grows (perhaps exponentially) with ¢ .
Here are the results of a second experiment, similar to the first but using the real
Euler/Euler—2step algorithm, with y,,; set to Ay — E = 245, — A;. Now, the step size is

chosen based on an O(h?) local truncation error while the value of y, 1 is chosen using an

actual error at t=i;
ety

O(h?) local truncation error. So one would expect the ratio to decrease by
a factor of two each time ¢ is decreased by a factor of two. This is indeed what happens in

the following data.

error(t)
€% | Brror in the y(ts) generated by Euler/2 x %—Euler

0.9 7 with error rate € and y, 11 = 2 x Ay — A; applied
0.8 7 toy' =y—2t, y(0)=3 cE=1g
0.7 -
0.6 -
0.5 : . C e — L
0.4 - . . 32
0.3 - _ '

_ . . 1
0.2 - e L ore=g
0-]_ : . : . : . . - . . : . . - . : . . .

] . - , ! H ! . . = i ! . tf

1 2 3 4
Note that the scale of the y—axis has been expanded by a factor of ten. Here is a plot of

actual error at t=t
pEr L for the same data.

error(tys)
g2 tf

12

\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘tf
1 2 3 4

Fehlberg’s Method

Of course, in practice more accurate methods than Euler and Euler—2step are used.
Fehlberg’s method uses improved Euler and a second more accurate method. Each step

involves three calculations of f:

fi= f(t'myn)
fo=f(tn+ h,yn + hf1)
f3 = f(t'n—l_ %ayn + %[fl + fZ])

Once these three evaluations have been made, the method generates two approximations for

Y(tn +y):
AL =yu+ 2 [f1 + f]

Ay = yn + % [f1+ f2 + 4F3]
The local truncation error in A; (which is just the improved Euler’s method) is Kh® + O(h*)
while that in A, is O(h*). The error in A4; is

E = Kh* + O(h*) = A1 — Ay + O(h*)

and our estimate for rate at which error is introduced in A; is

_ A1 — 4y
r= —

~ Kh?
h

If r > ¢ we try again with step size A’ chosen so that Kh'? ~ #h’z < ¢. With our traditional

h’:.g\/gh

If r < e wesett,y; =t,+hand y,11 = Ay (since Ay should be considerably more accurate

safety factor

than A;) and move on to the next step with trial step size h' = 9\/§ h.
Reference E. Fehlberg, NASA Technical Report R315 (1969) and NASA Technical Report
R287 (1968).

The Kutta—Merson Process

The Kutta—Merson process uses two variations of the Runge—Kutta method. Each

step involves five calculations of f:

f(tn,¥n)

f tn + %hvyn + %hkl)

k1
ko
ks
ks = f(tn 4+ 3h,yn + 5hk1 + Shks)
ks

(
(
f(tn + $hyyn + 5hky + Fhks)
(
(

f(tn + h,yn + Lhky — 3hks + 2hky)

Once these five evaluations have been made, the process generates two approximations for

y(tn + h):
Ay = yn + 3k — k3 + 2k4]

Ao = b 1[4 et B
The error in A; is 1357° K+ O(h%) while that in A, is 1% K + O(h®) with the same constant

K. This unknown constant can be determined, to within an error O(h), by
K = 23(A; — A,)

and the approximate error in A, and its corresponding rate are

E =K = 1(A; — Ay)

r=2h'K = & (A — Ay)

If » > ¢ we try again with step size h' chosen so that 7;—0h’4K s %h"l < e. With our

traditional safety factor

=9 (=) h

If r <ewesettyr1 =t,+hand y,p1 = Ay — E (since E is our estimate of the error in A,)
. . . 1/4
and move on to the next step with trial step size h' =.9 (%) / h.

Reference L. Fox, Numerical Solution of Ordinary and Partial Differential Equations.

The Local Truncation Error for Euler—2step

Recall that, by definition, the local truncation error for an algorithm is the error
generated by a single step of the algorithm, under the assumptions that we start the step
with the exact solution and that there is no roundoff error. Denote by ¢(t) the exact solution

to
y’(t) = f(tvy)

y(tn) = Yn
In other words, ¢(t) obeys

¢'(t) = f(t,¢(t)) forallt
P(tn) = Yn

In particular ¢'(t,) = f(tn,gb(tn)) = f(tn,yn) and
(1) = 51 (6 00) |,y = et 000) + 7, (6 6OV O]y = Felbws 3)+ Foltas v Fltra)

By definition, the local truncation error for Euler is

El(h) = ¢(tn + h) —Yn—hf (tnvyn)

while that for Euler—2step is

Ey(h) = $(tn + h) — yn — 2f(tnsyn) — %f(tn + oyt %f(tmyn))

We just use Taylor’s Theorem, f(h) = f(0)+ f'(0)h + %f”(O)h2 + O(h3), to expand both
Ei(h) and E;(h) in powers of h to order h?. For Euler

El(h) = ¢(tn + h) —Yn — hf (tnayn) EI(O) = ¢(tn) —Yn = 0

E:Il(h) = ¢I(tn +h) — f(tmyn) E:Il(o) = ¢,(tn) - f(tnvyn) =0

Ey(h) = ¢"(tn + D) E{(0) = ¢"(ta)

By Taylor’s Theorem, the local truncation error for Euler obeys

Eqi(h) = %qﬁ”(tn)hz + O(h3) = Kh? + O(h?) with K = %qﬁ”(tn)

8

For Euler—2step

By (k) = ¢(tn +h) = yn = 21 (tnsyn) = 25 (tn + 5o9m + 2 F(tn,90))
By(h) = ¢/(tn +) = 3/ (tns) = 37 (tn + 5,90 + 5 F(tarva)
Bt (t+ B + 2 (b))
By(h) = ¢"(tn+ 1) =2 X 4 F (tn + &, 90 + £ (tn)
B (bt By B ()

so that

Ey(0) = ¢'(ta) = 3 f(tnsYn) = 3 (tn;yn) = 0
B(0) = ¢"(ta) = % (tn + 5.0 + 5 (tasvn))
= @"(ta) = 2e(tn+ By + B (tnya))|

— 3 f(tn,yn) fy (tn + 2+ %f(tnvyn))’
= ¢"(tn) = fitnsYn) g — Fy(tn,Yn)5f (s Yn)
= 36" (tn)

and the local truncation error for Euler-2step obeys

h=0

By(h) = L¢"(t,)h? + O(h?) = LKW2 + O(h?) with K = 1¢"(t,)

