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1 Introduction

The purpose of this note is to derive ray-equations for 2-dimensional acoustic propagation through
range dependent sound speed and current fields. Solutions are sought which can be readily solved
on the computer. The literature on this subject (See References herein) appears to be sorely lacking
in this area.

2 The 2-Dimensional Case

Assume spatially varying but time frozen fields of sound speed and current of the form ¢ = ¢(z, 2)
and 7 = (u(z, 2),0,0). In a moving medium the wave equation becomes,

ViU = C%(at—l—uam)?\IJ (1)
(O +0,)¥ = C%(amu?am+2uam+uawuaw)w 2)

and assuming a wave of fixed frequency ¥ = W exp iwt, Eq. 2 takes the form,

[(1 = 72)0pz + 0s + (2i7k — uOpudy) + k2 ¥ =0 (3)
where £ = w/c and 7 = u/c¢ (the Mach number). Equation 3 is the moving medium equivalent to
the Helmholtz equation.

2.1 Geometrical Acoustics
Next the geometrical acoustics limit is treated. Assume that ¥ is a slowly modulated wave; that is
U = A(z,2) expiwg(z, 2) (4)

where A is a slowly varying function of (z, z) and ¢ is a rapidly varying function of (z, z). Substi-
tuting Eq. 4 into Eq. 3 and taking the real part gives,

(1- 72)[3MA — w2(3z¢)2A] + 0., A — wQ((?qu)QA + (w/c)QA — udpudz A — 27(w2/c)A3Iqb =0. (5)

Since the high frequency limit is of interest and because A is a much more slowly varying function
of (z,z) than ¢ only terms of order w? are retained. The result is,

(1= 7*)(0:0)" + (0:0)* + 2(7/¢)0u0p — (1/*) = 0. (6)



To get the ray solutions a function H(py,p.,,z) is defined as,

H=(1-9"p2+p2+2(v/c)pe— (1/¢*) =0 (7)

where [ have defined p = €qb The function H (Eq. 7), called the Hamiltonian function, is consistent
with the Hamiltonian functions defined by Keller (1954), and Ugin¢ius (1972). The objective is to
obtain a family of curves parameterized by a variable A (i.e. z(X), 2(A), etc.) such that H# =0
along those curves. Mathematically this is,

dH  OH dp; OH dz;
AN T Op dh 0w ax 0 (8)

where z; = (#,z) and p; = (pz,p,) and implicit summation is understood. The condition that
H = 0 along these paths will hold if the following equations are satisfied.

dp; 0H
d\ ~ day (9)
de;  OH
D o (10)

These are Hamiltons equations.

2.1.1 Solution via Hamiltons Equations

A solution for the ray equations is now sought via Hamiltons Equations. Starting first with the
spatial coordinates (z, z) we get,

dz o0H

- = — — 2 -~
dz O0H

These equations can be manipulated to obtain the ray slope, that is

dz P2
— = = tan 4. 1
e (=t e ™ (13)

It is helpful to eliminate the variable p,. This can be done using Eq. 7 which gives,
p, = et V- P19
) (1—=72)

where we have taken the positive solution from the quadratic formula for p, since it reduces to the
solution when w = 0. Therefore we obtain as a solution,

(14)

dz P2
de /e = pH1-77)

Next we need an equation for p, and this equation is,

(15)

(16)

dp, _ _OH dz _ Py — ¢! <iﬁ+ ﬁ)
de 0z d)\ \/6—2 —p2(1 - 42) 202 Pz g
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Next we go to travel time. Recall our formulation of the wave function
U = Aexpiw(¢ —1) (17)

and from stationary phase we see that travel time, T', is simply ¢. Therefore we have,
dr 0¢ 0¢dz ( dz)
— =4+ L 2= ptp— 18
dx 3m+32dx Prtp dz (18)
and with a little manipulation and using Eq. 14 we get
dr 1 c2
i (S . 19
da (1—72>< ’/C+\/C‘2—p§(1—72)) o

To first order in u/c the familiar result is obtained,
ar. _ (d_T) “ (20)
de  \dz /), ¢2

where (dT'/dz)g is the value with w = 0. A better understanding of Eq. 19 can be obtained by

writing it in terms of the ray angle 6. Equation 15 is equal to the tangent of the ray angle (tan#@)
therefore we can solve this equation for p, and the result is,

sin
2

Pz = . 21
¢? —u?sin? 4@ (21)

Substituting Eq. 21 into Eq. 19 gives

dT 0 6
- = % (—u cosf + /¢ — u?sin? 0) = i . (22)
dr c¢*—u wcosh + Ve — u?sin?

It can be seen now that for #=0 we have the appropriate result (d7/dz) = (¢ + u)~'. Equation 22
is consistent with the results of Thompson (1972), Ugincius (1972), and Munk (1995).

3 Putting It All Together

I will summarize by listing the equations to be solved on the computer. Re-writing simply in terms
of ¢ and u the equations are,

a1 ( + 2 ) (23)
dr (e? — u?) “ 1—p2(c? —u?)
dz PaC
-z = 24
dx V1= p2(c? — u?) (24)
dp, pett — 1 (pz ou 1 36)
ap.  _ Pz O (1 _pou)= 26 25
dx V91I—pi(c?—u?)\ ¢ 3z+( P u)0282 (25)
where
— _U‘I‘C ]‘_pg(C?_uQ). (26)



Note that these equations can be solved very efficiently on the computer because they only require
the evaluation of vertical gradients of current and sound speed.
Finally the initial conditions are,

T(0) = 0 (27)
z(0) = source depth (28)
p-(0) = sinfg/y/cd — uksin? 6y (29)

where ¢g and wug are the values of sound speed and current at the source and 6y is the launch angle.

3.1 First Order Effects

It is helpful to write Eqs. 23-25 to first order in u/c. We obtain,

ar 1 c 30
dz ~ 2 \/1—p362_u (30)

e pe (31)
dz V1 —p2c?

dp, 1 de 1 1 /2ude Ou

e ‘5@77\/@*6—2(7@7‘5) (32)

where we see that the ray slope is unaffected to first order in w/c, and the travel time correction
is simply a current head/tail wind. Equation 32 is interesting. Lets try and evaluate the relative
size of the 3 terms. First, the factor 1/4/1 — p2¢? is of order secf = O(1). Therefore, the factors of
interests are % and g—g. The second term in the equation can be neglected because it is less than
the first term by order u/c. Typical sound speed gradients in the main thermocline are roughly 0.06
s7! and typical Garrett-Munk internal wave sound speed gradiants are 0.01 s™!. Current shears
observed from the eastern NPAL mooring are shown in Fig. 1 over a 5 day period. Isotherm depths
are also displayed in Fig. 1 to show the advection of the shear along the isotherms. The current
shear has magnitudes of roughly 6-10 cph or 0.01 to 0.02 s~*. This is comparable to the GM sound
speed gradient effect, but with a different spatial structure.

The conclusion is that current shear in the upper ocean could have a significant effect on acoustic

scattering.
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Figure 1: Shear (color panel) and isotherm depth (yellow lines) from the NPAL eastern mooring.



