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Other Runge Kutta Methods

! Runge Kutta Fehlberg
"Computes yn+1 by 2 methods 

simultaneously
"Different orders so h size is validated

#4th and 5th

" Improvement on extrapolation
! Runge Kutta Merson

"Variant 4th order

Runge Kutta Merson
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Comparison of Methods

6O(h6)O(h5)Runge Kutta 
Fehlberg

5O(h5)O(h4)Runge Kutta 
Merson

4O(h5)O(h4)Runge Kutta
2O(h3)O(h2)Modified Euler
1O(h2)O(h)Euler

f(x,y) 
Evaluations

Local 
Error

Globa
l Error

Method

Multi-Step Methods

! Apply more information
"Use more than just initial conditions

! Apply data from more previous iterations
! Combination of

" Interpolation
"Diff.EQ solving

Adam’s Method (1)
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Consider a rearrangement
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Use an interpolation form
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Adam’s Method (2)

Final Form
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At higher orders
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Milne’s Method

Working through the math
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Poorer error overcome by prediction-correction
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Also include integration methods

Use predicted yn+1

Adams-Moulton Method
More stable than Milne using Undetermined Coefficients

Predict ( ) ( )5
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Mid-step Interpolations (Nice for halving h)
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Fewer f evaluations than Runge Kutta methods!
First steps require other methods!
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Convergence Criteria (1)
! How small should h be?
! Definitions

" yp = predicted value of yn+1
" yc = corrected value of yn+1
" D = yc – yp
" N = number of decimal digits required

! Approach
" Continue to correct corrections until 

convergence
" Examine the math [not shown]

Convergence Criteria (2)
Adams-Moulton

Accuracy: D x 10N < 14.2










<×

<

n

N

y

fh
9/2410D

f
9/24h

Criteria










<×

<

n

N

y

fh
310D

f
3h

Criteria

Milne
Accuracy: D x 10N < 29

Monitor the 
iterations to 
verify that D 

isn’t too 
large!

Multi-Valued Methods

1. Start with 3rd-order Taylor approximation
2. Predict values for y derivatives by 

differentiating f
3. Correct predictions using secant 

information
! Bonus

" Future steps are already partially 
computed


