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Abstract. Statistical tools based on the maximal overlap discrete wavelet transform (MODWT)
are reviewed, and then applied to a dataset of aircraft observations of the atmospheric boundary
layer from the tropical eastern Pacific, which includes quasi-stationary and non-stationary seg-
ments. The wavelet methods provide decompositions of variances and covariances, e.g. fluxes,
between time scales that effectively describe a broadband process like atmospheric turbulence.
Easily understood statistical confidence bounds are discussed and applied to these scale de-
compositions, and results are compared to Fourier methods for quasi-stationary turbulence.
The least asymmetric LA(8) wavelet filter yields coefficients that exhibit better uncorrelat-
edness across scales than the Haar filter and is better suited for decomposition of broadband
turbulent signals. An application to a non-stationary segment of our dataset, namely vertical
profiles of the turbulent dissipation rate, highlights the flexibility of wavelet methods.
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Abbreviations: ANOVA – Analysis of Variance; DWT – Discrete Wavelet Transform; EDOF
– Equivalent Degrees Of Freedom; LA – Least Asymmetric; MODWT – Maximal Overlap
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1. Introduction

Geophysical data can be complex in nature. A typical time series of atmo-
spheric turbulence observations can consist of several components. One is a
broadband signal at scales smaller than most energetic eddies that conforms
to a power law spectral scaling of energy with frequency. Other components
often have non-stationary variability at larger scales. If the measurements
extend across the boundaries of a turbulent layer, the time series will also
include non-turbulent segments.

Various techniques are traditionally used for analyzing such time series. In
the time domain, averaging the series using a fixed smoothing window per-
mits the decomposition of a signal into smooth and fluctuating components
for successive time segments. In the frequency domain, Fourier analysis is
widely used to decompose a series into components at different frequencies.
While the former is a localized decomposition in time but not frequency, the
latter is a global fit of decomposition by frequency based on the assumption
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of stationarity. Both lack the ability to extract localized events occurring over
multiple time scales.

Although time windowing and Fourier analysis techniques are widely used
for turbulence studies due to their familiarity to practitioners, their specific
application may require a priori understanding of the time series and nu-
ances of the particular technique. Applying a windowing technique requires
selecting an averaging time long enough to obtain meaningful statistics yet
short enough that a slowly varying signal appears stationary. Using Fourier
analysis methods may require preprocessing such as mean subtraction, linear
or higher order detrending, and data windowing and tapering. The successful
application of a particular method depends upon the characteristics of the
data under study, which in turn requires the practitioner to make assumptions
about the nature of the underlying phenomenon prior to analysis. In this paper
we present wavelet techniques as robust alternatives for analyzing intermit-
tent and non-stationary series while requiring minimal user specification of
analysis parameters.

In recent years, wavelet analysis has been applied to problems in boundary
layer meteorology and other disciplines in geophysics. The orthogonal dis-
crete wavelet transform (DWT) using the Haar wavelet, and a variant known
as the Fast Wavelet Transform (FWT), have been introduced by several re-
searchers for boundary layer studies (Katul and Parlange, 1994, Katul and
Parlange, 1995 and references within). Analyzing surface-layer turbulent ob-
servations via Fourier and FWT power spectra methods, Katul and Parlange
(1994) observed that FWT spectra are smoother and better suited for re-
vealing energy scaling laws of atmospheric turbulence, and that the global
nature of the Fourier transform distributes energy uniformly across the spec-
trum whereas the wavelet transform better quantifies the nonuniform distri-
bution of energy. Comparing cospectra computed using Fourier and FWT
techniques, Howell and Mahrt (1995) found the decompositions to be qualita-
tively similar, although the peak Fourier spectra were shifted towards longer
wavelengths, which they attributed to differences in averaging lengths be-
tween the two techniques. Howell and Mahrt (1995) noted that using a wavelet-
based multi-resolution analysis (MRA) decomposition in place of Fourier
analysis for examining a quasi-stationary turbulent time series has the advan-
tage of matching the MRA averaging length to the width of a localized event.
The resulting wavelet coefficients can be interpreted as scale-dependent zero-
mean moving averages and are used to compute a variance associated with
each scale.

The DWT is not without its shortcomings, as indicated by several modifi-
cations to the FWT method introduced by Howell and Mahrt (1995). First, to
relax the power of two restriction on the sample size of the DWT, they added
additional sampling points by linear interpolation. While this circumvents
the sample size restriction, it does not provide additional meaningful data for
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resolving larger scales, and the interpretation of the finest scale fluctuations
might be compromised by the interpolation process. Second, they noted that
the MRA decomposition via the orthogonal DWT is sensitive to the starting
position of the time series and depends on whether a given event resides
within or straddles a wavelet averaging window. Howell and Mahrt (1995)
also proposed an approach for circumventing the DWT’s lack of translation-
invariance, but it was fairly complex. They introduced a nonorthogonal cospec-
trum by computing differences between scales within overlapping windows,
which is equivalent to phase shifting or translating a realization of the orthog-
onal MRA. Finally, they applied maximum oversampling to the nonorthog-
onal technique to compute cospectra over a continuous range of averaging
lengths. In the next section we discuss an alternative nonorthogonal wavelet
transform that straightforwardly avoids these DWT shortcomings.

While the Haar filter has been commonly used, other wavelet filters offer
alternative statistical properties. Katul and Parlange (1994) analyzed turbu-
lence data using ten Daubechies wavelet filters (Haar plus filter lengths L =
4,6,. . . ,20) and found no significant difference in computed power spectra but
did find sensitivity in wavelet statistics to filter selection. We will examine the
use of the least asymmetric class of filters to improve wavelet statistics while
decreasing sensitivity to filter form and length.

In this paper we present a statistical analysis of atmospheric boundary
layer turbulence using an nonorthogonal variant of the discrete wavelet trans-
form. In Section 2 we review the maximal overlap discrete wavelet trans-
form (MODWT) following the concepts and notation in Percival and Walden
(2000), and discuss a publicly available comprehensive MODWT software
package we have developed. Sections 3 and 4 describe the aircraft atmo-
spheric boundary layer measurements used in this study. Section 5 applies a
variety of MODWT-based statistical wavelet analysis methods to our dataset,
comparing them to conventional Fourier methods where appropriate. Sec-
tion 6 presents our conclusions.

2. MODWT Transform

The MODWT is a linear filtering operation that transforms a series into coeffi-
cients related to variations over a set of scales. It is similar to the DWT in that
both are linear filtering operations producing a set of time-dependent wavelet
and scaling coefficients. Both have basis vectors associated with a location t
and a unitless scale τ j

� 2 j � 1 for each decomposition level j � 1 ��������� J0. Both
are suitable for analysis of variance (ANOVA) and multi-resolution analysis
(MRA).

The MODWT differs from the DWT in that it is a highly redundant,
nonorthogonal transform (Percival and Walden, 2000, p. 159). The MODWT
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retains downsampled values at each level of the decomposition that would be
otherwise discarded by the DWT. The MODWT is well-defined for all sample
sizes N, whereas for a complete decomposition of J levels the DWT requires
N to be a multiple of 2J .

The MODWT offers several advantages over the DWT. The redundancy
of the MODWT facilitates alignment of the decomposed wavelet and scaling
coefficients at each level with the original time series, thus enabling a ready
comparison between the series and its decomposition. ANOVAs derived using
the MODWT are not influenced by circular shifting of the input time series,
whereas values derived using the DWT depend upon the starting point of
the series (Percival and Walden, 2000, p. 160). Finally, the redundancy of
the MODWT wavelet coefficients modestly increases the effective degrees
of freedom (EDOF) on each scale and thus decreases the variance of certain
wavelet-based statistical estimates. Since the MODWT is energy conserving,
it is well suited for analyzing the scale dependence of variability in ANOVA
studies.

Decomposing an infinite sequence
�
Xt � of Gaussian random variables

using the MODWT to J0 levels theoretically involves the application of J0
pairs of filters. The filtering operation at the jth level consists of applying a
wavelet (high-pass) filter

�
h̃ j � l � to yield a set of wavelet coefficients

W j � t � L j � 1

∑
l 	 0

h̃ j � lXt � l (1a)

and a scaling (low-pass) filter
�
g̃ j � l � to yield a set of scaling coefficients

V j � t � L j � 1

∑
l 	 0

g̃ j � lXt � l (1b)

for all times t � ��������
 1 � 0 � 1 ������� (Percival and Walden, 2000, p. 169). The
equivalent wavelet

�
h̃ j � l � and scaling

�
g̃ j � l � filters for the jth level are a set of

scale-dependent localized differencing and averaging operators, respectively,
and can be regarded as stretched versions of the base ( j � 1) filters. The
jth level equivalent filter coefficients have a width L j

��� 2 j 
 1 
 � L 
 1 
�� 1,
where L is the width of the j � 1 base filter. In practice, the filters for j � 1
are not explicitly created because the wavelet and scaling coefficients can be
generated sequentially using an elegant algorithm that involves just the j � 1
filters operating on the jth level scaling coefficients to generate the j � 1 level
wavelet and scaling coefficients (Percival and Walden, 2000, p. 174). The jth
level wavelet coefficients characterize those components of the signal with
fluctuations matching the unitless scale τ j

� 2 j � 1. If
�
Xt � is either a stationary

process or a non-stationary process with stationary backward differences, and
L is suitably chosen, then W j � t is a Gaussian stationary process with zero-
mean and known power spectral density (Percival and Walden, 2000, p. 307).
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In addition, MODWT coefficients for different scales are approximately un-
correlated and are hence useful statistical measures for partitioning variability
by scale.

Real-world geophysical signals are usually sampled over a finite interval
at discrete times. To complete the filtering operation at each level for a finite
time series

�
Xt � � t � 0 ��������� N 
 1, the MODWT treats the series as if it were

periodic, whereby the unobserved samples X � 1 � X � 2 ��������� X � N are assigned the
observed values at XN � 1 � XN � 2 ��������� X0. The MODWT coefficients are thus
given by �

Wj � t � L j � 1

∑
l 	 0

h̃ j � lXt � l mod N (2a)

and �
Vj � t � L j � 1

∑
l 	 0

g̃ j � lXt � l mod N (2b)

for t � 0 ��������� N 
 1. This periodic extension of the time series is known as
analyzing

�
Xt � using ‘circular boundary conditions’. There are L j 
 1 wavelet

and scaling coefficients that are influenced by the extension, which we re-
fer to as ‘the boundary coefficients.’ Since L j increases with j, the number
of boundary coefficients increases with scale. Exclusion of boundary coef-
ficients in ANOVA statistics, e.g. the wavelet variance, provides unbiased
estimates. The subset of

�
Wj � t that are nonboundary coefficients are identical to

W j � t . Inclusion of boundary coefficients can bias certain statistical estimates,
but using the boundary coefficients can decrease the mean squared error, as
discussed in Section 5.2.2.

Circular boundary conditions can be problematic for nonperiodic signals
that display discontinuities between start and end times. The problem can
be diminished by applying an appropriate extension to the series and sub-
sequently calculating the MODWT on the extended series. A common ex-
tension, which we will adopt, is the use of ‘reflection boundary conditions’ to
extend the series to length 2N; i.e., the unobserved samples X � 1 � X � 2 ��������� X � N
are assigned the observed values at X0 � X1 ��������� XN � 1. Formally we define the
extended series

�
X �t � by setting X �t � Xt for t � 0 ��������� N 
 1 and X �t � X2N � 1 � t

for t � N ��������� 2N 
 1. Thus for reflection boundary conditions (2a) and (2b)
can be rewritten as �

Wj � t � L j � 1

∑
l 	 0

h̃ j � lX �t � l mod 2N (3a)

and �
Vj � t � L j � 1

∑
l 	 0

g̃ j � lX �t � l mod 2N (3b)

using the extended series
�
X �t � .
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2.1. MODWT PARAMETERS

In addition to the selection of appropriate boundary conditions, applying the
MODWT to a time series requires specification of a wavelet filter and of the
index J0 for the maximum scale of interest. To make appropriate selections
we must take into account the goals of the analysis and time series being
analyzed.

2.1.1. Wavelet Filter
We first consider the selection of a wavelet filter. The Daubechies class of
wavelets possesses appealing regularity characteristics and produces trans-
forms that are effectively localized differences of adjacent weighted averages
(Daubechies, 1992). The least asymmetric (LA) subclass (aka symmlets) has
approximate linear phase and exhibits near symmetry about the filter mid-
point. This linear phase property means that events and sinusoidal compo-
nents in the wavelet and scaling coefficients at all levels can be aligned with
the original time series. For the MODWT, this alignment is achieved by cir-
cularly shifting the coefficients by an amount dictated by the phase delay
properties of the basic filter.

LA filters are available in even widths L. The optimal filter width is de-
pendent on the characteristics of the signal and problem domain of interest.
A wider filter is smoother in appearance and reduces the possible appear-
ance of artifacts in an MRA due to the filter shape. It also results in better
uncorrelatedness between wavelet coefficients across scales for certain time
series, which is useful for deriving confidence bounds from certain wavelet-
based estimates (Craigmile and Percival, 2005). However, using a wider filter
results in many more boundary coefficients, especially at higher levels.

For the present study we select the LA(8) filter since it yields coefficients
that are approximately uncorrelated between scales while having a filter width
short enough such that the impact of boundary conditions is tolerable. Fig-
ure 1 shows the equivalent wavelet

�
h̃ j � l � and scaling

�
g̃ j � l � filter coefficients

for the LA(8) filter for the first three levels of decomposition. The coefficients
have been translated so that the filter midpoints are aligned. The autocorrela-
tion width for the equivalent scaling filter, wa � j (Percival and Walden, 2000,
p. 174), shown as a horizontal line segment below each equivalent filter, is
a measure of the effective averaging interval and is equal to 2 j. It can be
used to indicate the portion of the time series making the main contribution
to the wavelet and scaling coefficients at a particular location. For the LA(8)
filter, L j � wa � j tends towards a value of 7 with increasing j, and the filtering
operation is effectively localized to a small region near the center. By contrast,
for the Haar filter, since L j

� wa � j for all j, the ratio of equivalent filter width
to autocorrelation width is unity for all j. Thus, although the LA(8) filter
involves some contribution from a sampling window seven times as wide as
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the Haar filter, its output mainly reflects a band of 2 j samples centered on the
filtering time, just like the Haar filter.

Figure 2 shows the squared gain functions for the LA(8) (solid curve)
wavelet filters for levels 1–3 and the third-level scaling filter as a function of
unitless frequency f , and illustrates the band-pass nature of the MODWT. The
jth level equivalent filter has a nominal octave pass-band 2 ��� j � 1 ��� f � 2 � j

of width wb � j � 2 ��� j � 1 � � 1 � � 2wa � j 
 . These pass-bands are delineated by the
vertical lines in the figure. For reference, the squared gain functions for the
Haar (L � 2) (dashed curve) and LA(16) (dashed-dotted curve) filters are also
plotted in Figure 2. The narrower Haar filter is noticeably less concentrated
within the nominal pass-bands than the other two filters. While the wider
LA(16) filter is slightly more concentrated in the pass-band than the LA(8)
filter, the LA(8) has the practical advantage of having half the width and there-
fore much fewer boundary coefficients. Thus, for shorter filters (e.g. Haar),
the equivalent wavelet filters at the different scales include more leakage from
frequencies outside the octave pass-band compared to longer filters. For a
broadband process with a power law dependence on scale (such as the inertial
subrange of turbulence), this leakage can obscure the true scale dependence
for certain power laws of interest.

2.1.2. Number of levels
A time series can be completely or partially decomposed into a number of
levels. For complete decomposition of a series of length N � 2J using the
DWT, the maximum number of levels in the decomposition is J. In practice,
a partial decomposition of level J0 � J suffices for many applications. A J0
level DWT decomposition requires that N be an integral multiple of 2J0 .
The MODWT can accommodate any sample size N and, in theory, any J0.
In practice, the largest level is commonly selected such that J0 � log2

� N 

in order to preclude decomposition at scales longer than the total length of
the time series. In particular, for alignment of wavelet coefficients with the
original series, the condition LJ0

� N, i.e. the width of the equivalent filter
at the J0th level is less than the sample size, should be satisfied to prevent
multiple wrappings of the time series at level J0. Selection of J0 determines
the number of octave bands and thus the number of scales of resolution in the
decomposition.

For the current study sample sizes N are O � 104 
 , and setting J0
� 10

satisfies the LJ0
� N restriction. In our presentation of statistical estimators

for quasi-stationary turbulence, setting J0
� 13 allows additional scales to

be included in the wavelet decomposition while satisfying the less restrictive
J0 � log2

� N 
 criteria.
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2.2. WMTSA TOOLKIT

For the convenience of potential users of MODWT-based statistical analysis,
we have developed a WMTSA (Wavelet Methods for Time Series Analysis)
toolkit for MATLAB (Cornish et al., 2003) available at

http://www.atmos.washington.edu/ � wmtsa

which implements the MODWT filters and transform documented in Percival
and Walden (2000). The implementation of the MODWT uses a modification
of a pyramid algorithm first proposed for the DWT by Mallat (1989). This
modification is discussed in detail by Percival and Walden (2000, pp. 174–9).
The WMTSA toolkit generated all of the results discussed in this paper.

3. Aircraft Measurements

The dataset used as a case study for our MODWT analysis is an airborne
atmospheric turbulence dataset collected during the East Pacific Investigation
of Climate (EPIC) 2001 field experiment. Raymond et al. (2004) present an
overview of EPIC 2001. One goal of EPIC was to observe the atmospheric
boundary layer structure along 95 � W northward from the equator into the
Pacific Intertropical Convergence Zone (ITCZ) at 10–12 � N. This region en-
compasses some of the strongest gradients in sea-surface temperature (SST)
in the tropical oceans, between cold upwelled water of 18–19 � C near the
equator and SSTs 10 � C warmer in the ITCZ. In boreal fall, strong northward
surface winds blow air rapidly across this SST gradient, producing rapid
northward changes in boundary layer structure and turbulence. De Szoeke
et al. (2005) document the EPIC 95 � W turbulence and boundary layer ob-
servations; we review the salient details here. The experimental campaign in-
cluded numerous flights of the instrumented National Center for Atmospheric
Research (NCAR) C130 aircraft during September and October of 2001. For
the present study, we examine high-resolution (25 Hz) measurements of wind
velocity, temperature, and humidity taken during a representative research
flight (RF03) flown on September 7, 2001 along a 95 � W transect between
14 � N and 1 � S.

The aircraft flew southward along 95 � W at a speed of � 100 ms � 1 in a
"sawtooth" pattern, making continuous in-situ observations that can be sub-
divided into time segments corresponding to legs flown near the sea surface,
ascending or descending profiles through the boundary layer, and above the
boundary layer (Figure 3). During low legs the aircraft flew near the surface
at a nominal altitude of 30 m, and during high legs it flew above the boundary
layer level at a nominal altitude of 1600 m. The vertical aircraft speed during
the profile legs was � 4 m s � 1. Each leg lasted � 6 min, covering � 36 km
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horizontal extent during which O � 104 
 samples were recorded at a frequency
of 25 Hz, corresponding to one sample per four horizontal meters. Our present
analysis is limited to examining low and profile legs near the equator (1 � S to
3 � N), where the boundary layer evolves from a shear-driven to a convective
structure.

For our analysis, we extracted subsets of observations encompassing spe-
cific flight legs of interest. For profile legs, we used a sufficiently broad
segment of the time series such that no wavelet coefficients at times and levels
under consideration were influenced by the choice of boundary conditions.
For the low legs, we truncated the sample at the leg end points and used
reflection boundary conditions to extend the time series. The rationale for
these choices is that the series subsets are nearly statistically stationary for
level legs but are not for the profile legs. Hence extension of a low leg using
data from adjacent profiles would undesirably bias statistical quantities, such
as the wavelet variance, averaged over a low leg.

4. Ambient Conditions

The ambient mean-state conditions during flight RF03 are characterized by a
large SST gradient of 7 � C between 1 � S and 2 � 5 � N (Figure 4). At 1 � S the near-
surface air is slightly warmer than the ocean surface. However, because it
flows northward faster than the atmosphere can respond to a warming ocean,
the air temperature at 2 � 5 � N is roughly 3 � C cooler than the SST. Aircraft pro-
files show a shallow layer of northward mean flow (v � 0) just above the sea
surface flowing from the cold to warm SST region (top panels of Figure 5).
The virtual potential temperature profiles (bottom panels of Figure 5) show
that this high-velocity layer is capped by a strong inversion layer. These SST
and air temperature gradients and mean wind profiles were typical of EPIC
2001 (Raymond et al., 2004, De Szoeke et al., 2005).

We now discuss these structures and their relationship to boundary layer
turbulence in the two SST regimes in more detail. Over the region of cold
SST at 0 � 5 � S, the vertical profile of the northward velocity (top left panel of
Figure 5) shows a shear zone between 30 and 200 m near the surface below a
jet peaking at 10 m s � 1 between 300 and 600 m. The virtual potential temper-
ature profile (bottom left panel of Figure 5) shows a slightly stable boundary
layer near the surface (30–200 m) above which lies a near-neutral residual
layer (300–600 m). A stably stratified inversion layer extends from 600 m to
1200 m. The vertical velocity profile over the cold SST region (middle left
pane of Figure 5) suggests turbulence (marked by high-frequency fluctua-
tions) in several distinct layers. Near the sea surface (30–200 m), the turbulent
fluctuations are associated with the presence of strong vertical shear in the
horizontal flow. Just above the residual layer, turbulence is present within a
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thin stratocumulus cloud layer (600–650 m). Above 1300 m, another layer of
convective turbulence is evident in both the vertical velocity fluctuations and
the nearly adiabatic potential temperature profile. We believe this is driven
by strong radiative cooling of air at the top of a moist layer extending about
1600 m. A wave-like structure is present in the velocity profiles of leg 36
in the stably stratified region above the inversion in the range between 700
and 1300 m. The complexity of the vertical structure in this profile makes it
particularly attractive for wavelet analysis.

In the region of warmer SST at 1 � 1 � N, the meridional wind and virtual
potential temperature profiles (top and bottom center panels of Figure 5) show
that the residual layer and northward jet have disappeared and the inversion
layer has weakened, while a mixed layer has developed between 30 m and
700 m. The corresponding vertical velocity profile (middle center panel of
Figure 5) shows enhanced turbulence from 30 to 700 m associated with con-
vection forced by the underlying warm sea surface. Over the warmest SST at
2 � 7 � N, the velocity and temperature profiles (right panels of Figure 5) show
that the convective mixed layer thickens to 850 m while the inversion layer
has further weakened.

5. Application of Wavelet Analysis

5.1. WAVELET COEFFICIENTS

Using the MODWT transform (2), we calculate wavelet and scaling coeffi-
cients for observations taken during low and profile legs. We select a partial
level of decomposition of J0 = 10 to provide an ample number of nonbound-
ary coefficients at the higher levels. Figure 6 shows the resultant decomposi-
tion of the vertical velocity for the descent leg 36, corresponding to the profile
shown in the left middle panel of Figure 5. The bottom panel of Figure 6
shows the time series of the vertical velocity (jagged solid curve). The aircraft
altitude (dotted curve) and the ambient air temperature (smooth dashed curve)
are also plotted for reference. The top panel shows the wavelet coefficients
�
Wj � t for levels j � 1–10 and the

�
V10 scaling coefficients plotted on the same

vertical scale as the lower panel. Labels to the left indicate the associated
physical scale τ  j � τ jU0∆t � 2 � j � 1 � U0∆t, where U0 is the mean aircraft speed
of 100 ms � 1 and ∆t is the sampling period of 0.04 s. Vertical dashed lines
across both panels indicate the start and stop points of the aircraft descent.
Vertical dotted lines indicate the aircraft altitude at 250 m intervals. For each
level (but discernible only for j ! 5) solid vertical lines near the end points
demarcate the boundaries outside of which the coefficients are influenced by
boundary conditions. The sampled time series for the descent profile leg was
extended into adjacent high and low legs so that the coefficients within the
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profile leg are influenced more by data in the adjacent legs than by boundary
conditions.

The coefficients in Figure 6 have been plotted after circular shifting of
the wavelet coefficients

�
Wj � t for alignment with the original time series. The

shifted vector is denoted by T � ν j

�
Wj , where ν j indicates the number of time

points the coefficients have been shifted. These shifts are a function of the
filter class, filter length and level. For LA filters, when L � 2 is even (as is the
case for the LA(8) filter), the shift is expressed as

ν � G �j
� � L j 
 1 
 � L 
 2 


2 � L 
 1 
 (4a)

for scaling coefficients, and

ν � H �j
� 
 L j

2
(4b)

for wavelet coefficients (Percival and Walden, 2000, pp. 112–4). Aligning
the coefficients with the original time series allows us to examine co-located
events across a range of scales.

The broadband nature of turbulence is evident in the wavelet decomposi-
tion. As the aircraft starts its descent profile, the turbulent layers identified in
Figure 5 at 1300–1500 m (radiation-driven convection), 600–700 m (cloud),
and � 250 m (shear driven) are readily evident in Figure 6 by the simi-
larly enhanced amplitudes of the wavelet coefficients across levels j � 1–6
corresponding to physical scales τ  j � 4–128 m. Between 700 and 1250 m
wave-like variations are evident at levels 7, 8 and 9 (corresponding to 256,
512 and 1024 m scales). These are non-turbulent fluctuations, since they do
not show the enhanced variability in the wavelet coefficients at smaller scales
that one would expect in a turbulent energy cascade. As the aircraft leveled
off at � 35 m into the adjacent low leg for flight time � 17510 s, it entered a
region of quasi-stationary shear-produced turbulence near the surface, which
is evident from the enhanced wavelet coefficient amplitudes over level range
j � 1–7.

5.2. WAVELET VARIANCE

The decomposition of a time series into scale-dependent coefficients using
the MODWT permits the statistical analysis of a signal as a function of scale.
The MODWT is energy conserving:"

X
" 2 � J0

∑
j 	 1

###%$W j

### 2 � ### �VJ0

### 2 � (5)
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From (5) we can derive a scale-dependent ANOVA from the wavelet and
scaling coefficients:

σ̂2
X
� "

X
" 2 
 X̄2 � 1

N

J0

∑
j 	 1

### $W j

### 2 � 1
N

### �VJ0

### 2 
 X̄2 � (6)

Considering only the nonboundary coefficients, the wavelet variance ν2
X
� τ j 


is defined as the expected value of

�
W 2

j � t . The wavelet variance will be time
independent only if the time series is stationary or has stationary increments;
this can be assumed for the low-level legs but not the profiles. When it is time
independent, the true wavelet variance ν2

X
� τ j 
 represents the contribution to

the (possibly infinite) variance of
�
Xt � at the unitless scale τ j

� 2 j � 1 and can
be estimated by the unbiased estimator

ν̂2
X � u � τ j 
 � 1

M j

N � 1

∑
t 	 L j � 1

�
W 2

j � t � (7)

where M j
� N 
 L j � 1 is the number of nonboundary coefficients at the jth

level.
We also consider a biased estimator of ν2

X
� τ j 
 that makes use of reflection

boundary conditions and includes all 2N wavelet coefficients resulting from
applying the MODWT to the reflected series

�
X �t � . The biased estimator takes

the form

ν̂2
X � b � τ j 
 � 1

2N

2N � 1

∑
t 	 0

�
W 2

j � t � (8)

Under appropriate conditions, the large scale sample distributions of both
estimators take analogous forms and can be used to establish confidence in-
tervals for the true wavelet variance. Recent work by Aldrich (2005) indicates
that ν̂2

X � b � τ j 
 has a significantly smaller mean-squared error than ν̂2
X � u � τ j 
 for

small sample sizes, but the two estimators become indistinguishable as N
becomes large. This theory lends to an approximation to the distribution of
both estimators in terms of a scaled χ2 distribution with η j equivalent degrees
of freedom (EDOF), which accounts for correlation between the

�
Wj � t . Percival

and Walden (2000, pp. 313–5) present several methods for calculating η j. The
simplest but somewhat conservative method is to set

η j
� max

� �
N j � 2 j � 1 � � (9)

where Ñ j
� M j for the unbiased estimator, and Ñ j

� N for the biased estima-
tor. Using these EDOFs, � 1 
 2p 
�& 100% confidence intervals for ν2

X
� τ j 
 can

be approximated by '
η jν̂2

X
� τ j 


Qη j
� 1 
 p 
 � η jν̂2

X
� τ j 


Qη j
� p 
)( � (10)
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where ν̂2
X
� τ j 
 stands for either ν̂2

X � u � τ j 
 or ν̂2
X � b � τ j 
 , and Qη j

� p 
 is the p & 100%
percentage point for the χ2 distribution with η j EDOF (Percival and Walden,
2000, p. 313). While this conservative method for calculating the EDOF
yields the same value for η j for both the MODWT and DWT, the MODWT
actually provides a slightly better estimate of ν2

X
� τ j 
 , with a variance that

can be up to a factor of two smaller than that of the DWT-based estimator.
A more complicated method for calculating the EDOF that is asymptotically
correct as N * ∞ is described by Percival and Walden (2000, p. 313). In the
following analysis we stick with the simple formula (9), and set p = 0.025 to
establish 95% confidence intervals.

5.2.1. Filter comparison of wavelet variance estimates
Figure 7 shows the resulting unbiased estimates and confidence intervals for
the wavelet variance using the LA(8) (solid curve) and Haar (dotted curve)
filters for the vertical velocity observations of low leg 32, in a rapidly develop-
ing convective boundary layer about 500 m deep in the region of rapid north-
ward SST rise. For reference we have plotted a line on Figure 7 with a slope
of 2/3 for levels j � 2–6, which represents the expected shape of the variance
curve within the inertial subrange for isotropic turbulence, assuming a perfect
octave bandpass filter. Labeled below the horizontal axis are the physical
scales τ  j in meters associated with the non-dimensional levels. Assuming
Taylor’s frozen turbulence hypothesis to be valid as the aircraft transverses
through the atmosphere, we can associate observed temporal fluctuations to
spatial variations. Using a nominal aircraft speed of U0

� 100 m s � 1 and
sampling period ∆t of 0.04 s, the smallest level ( j � 1) corresponds to a
spatial scale τ  1 � U0∆t = 4 m and the largest level ( j � 10) corresponds to
τ  10

� 210 � 1 & 4 m = 2048 m. For leg 32 (N � 12575), the M j
� N 
 L j 
 1 �

0 restriction at all levels dictates the maximum level of wavelet variance
decomposition for the unbiased estimator to be J0

� 10.
Both curves in Figure 7 show general agreement in form and peak at level

6 corresponding to a scale of 128 m, which is about one-quarter of the mixed
layer depth. While the confidence intervals overlap for levels 5 and higher,
the curves and their confidence intervals diverge for j � 5. Compared to the
LA(8), the Haar wavelet variance estimates are systematically larger at the
smaller scales and have a flatter slope in the inertial subrange levels. As seen
in Figure 2, the Haar filter is less perfect than the LA(8) as an octave band
filter and yields a scale-dependent variance that suffers from energy leakage
at smaller scales. The drop in the wavelet variance at level j � 1 below the
linear trend for the level range j = 2 to 6 is due to a drop-off in instrument
sensitivity above 10 Hz and low-pass filtering prior to recording the data.
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5.2.2. Biased wavelet variance estimates
The unbiased estimator of the wavelet variance includes only contributions
from N 
 L j � 1 nonboundary coefficients, and is restricted to levels where
L j 
 1 � N, i.e. J0

� log2
� N � � L 
 1 
+
 1 
 . The biased estimator can be com-

puted for any level as it uses all N coefficients at all scales. However to obtain
statistically significant results, we need to limit J0 to a level where at least
some of the wavelet coefficients are not heavily influenced by the boundary
conditions.

The calculation of a MODWT wavelet coefficient for a given time t and
level j is the convolution of the equivalent wavelet filter with L j adjacent
time points centered at t. However, most of the contribution to this coefficient
comes from the adjacent times within a half autocorrelation width, i.e., the
wa � j time points centered at t. Recognizing this, we restrict J0 to a level that
includes at least some boundary wavelet coefficients that are weakly influ-
enced by contributions by the series end points. Quantitatively we require
N 
 wa � j � 1 � 0 weakly influenced wavelet coefficients. Since for the Haar
filter L j

� wa � j for all j, this constraint is equivalent to selecting the maxi-
mum level for the unbiased estimator for the Haar for a given sample size.
Setting J0

� log2
� N 
 satisfies this requirement. For the present study, using

the biased estimator allows us to extend the wavelet variance to larger scales
from J0

� 10 to J0
� 13 for time series of length N � O � 104 
 .

A comparison of the two wavelet variance estimators using the LA(8)
filter is shown in Figure 8 for low leg 32. The wavelet variance estimates
for both estimators agree well for all scales except for j � 10, for which
the unbiased estimate is lower than the biased. The confidence bounds of
the unbiased estimator (solid lines) become noticeably wider than those for
the biased estimator (dotted lines) as j increases. For the leg 32 data series,
the maximum level of decomposition for the unbiased estimator is J � 10,
while the less restrictive biased estimator allows decomposition to J � 13.
For j � 11–13, a minimum in the biased wavelet variance estimate occurs at
j � 12, but note that the confidence intervals broaden with greater uncertainty
at these scales.

Using the biased estimator, we calculate the wavelet variance of the ver-
tical velocity and virtual potential temperature for three low legs at latitudes
spanning the region of transition from cold to warm SST. Figure 9 shows the
wavelet variance (solid curves) and 95% confidence intervals (dotted curves)
for levels j = 1–13 corresponding to spatial scales τ  j � 4–16384 m. The con-
fidence bounds computed using (10) widen with level as the EDOFs decrease
with scale. We can readily identify localized maxima in the wavelet variances
at smaller scales ( j , 5–7) due to turbulent fluctuations, enhanced variability
at larger scales ( j = 11–13) due to mesoscale circulations, and a gap between
the two where energy sources are absent. Using the biased estimator to extend
J0 to 13 allows us to observe the ‘mesoscale gap’ in variability in Figure 9 that
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was not readily apparent in Figure 7 because the unbiased estimator cannot
be computed for levels j � 10.

Over the region of cold SST at 
 0 � 82 � S (leg 37), the peak in wavelet vari-
ance at small scales for the vertical velocity occurs at level 5, corresponding
to a scale of 64 m, while that for the virtual potential temperature peaks at
level 3. Northward over the regions of warmer SST (legs 32 and 27), the
peak in the wavelet variance at small scales for the vertical velocity shifts
towards level 7, corresponding to a scale of 256 m, and the peak magnitude
of the wavelet variance increases by a factor of 5. The wavelet variance of
the virtual potential temperature shows a similar shift in its peak towards
larger scales, while its magnitude is enhanced by a factor of 10. These vertical
velocity variance results are consistent with other observations of enhanced
variance at scales of hundreds of meters for convective conditions compared
to neutrally stratified conditions (Grossman, 1982) and a large increase in the
the variance in the transition from cold to warm waters across a SST front
(Kwon et al., 1998).

5.3. COMPARISON OF WAVELET TO FOURIER POWER SPECTRUM

The MODWT transform is an approximate octave-band decomposition with
each band corresponding to a particular scale. The jth level wavelet variance
is approximately equal to twice the integral of the power spectral density
(PSD), SX

� f 
 , over the corresponding octave band:

ν2
X
� τ j 
�, 2 - 1 .�� 2 j∆t �

1 .�� 2 j / 1∆t � SX
� f 
 d f � (11)

The factor of 2 arises because SX
� f 
 is two-sided and symmetric about zero.

Recall that the average value of a function F over the interval � a � b 
 is defined
as

1
b 
 a

- b

a
F � x 
 dx � (12)

Let C j be the average value of SX
� f 
 over the interval 1

2 j / 1∆t
� f � 1

2 j∆t :

C j
� 2 j � 1∆t - 1 .�� 2 j∆t �

1 .�� 2 j / 1∆t � SX
� f 
 d f � (13)

From (11) and (13) we can define an estimator of the average PSD in the jth
octave band from the wavelet variance;0

C j
� 2 jν̂2

X
� τ j 
 ∆t � (14)

From (10) and (14), we can obtain a confidence interval for C j'
2 jη jν̂2

X
� τ j 
 ∆t

Qη j
� 1 
 p 
 � 2 jη jν̂2

X
� τ j 
 ∆t

Qη j
� p 
 ( � (15)
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16 C. R. CORNISH ET AL.

using the EDOF η j defined in (9).
Using (14), we estimate the band-average PSD using the LA(8) filter for

the vertical velocity time series of low leg 32. For comparison we also com-
pute an estimate of the PSD using a Fourier multitaper window method with
7 data tapers (Percival and Walden, 1993, Chapter 7). The results are plotted
in Figure 10 using a factor of 10 offset between spectra. Also plotted for
comparison is a line with 
 5 � 3 slope illustrating the expected slope of spec-
tra conforming to a Kolmogorov power law for isotropic turbulence in the
inertial subrange. The octave-band average wavelet power spectrum is plotted
at the geometric center of the band using an ‘*’. The height of surrounding
boxes indicates the 95% confidence interval for C j, and the width indicates
the nominal octave-band.

The wavelet and multitaper power spectra curves of Figure 10 agree well
with a 
 5 � 3 slope power law for f � 0 � 5 Hz, which corresponds to wavelet
level j � 6 and a physical scale of 128m. Both flatten at the lower frequencies
below the inertial subrange. The major difference between the two methods
is the degree of variability in the resultant spectra. The multitaper method,
like other unsmoothed Fourier power spectral estimates, exhibits considerable
variability between adjacent frequencies. The octave-averaging of the wavelet
variance estimate greatly reduces variability, especially at high frequencies,
giving a very accurate PSD estimate for a broad-band process.

One can achieve the same octave-band averaging effect of the wavelet
variance from power spectral estimates by integrating and plotting the power
spectral density from highest to lowest frequencies, which yields an ogive
curve. A wavelet-based equivalent to an ogive curve can be obtained by
plotting 0

Om
� m

∑
j 	 1

ν̂2
X
� τ j 
 (16)

vs. fm
�1� 2m � 1∆t 
 � 1, where

0
Om and fm are, respectively, the cumulative sum

of wavelet variances and the frequency at the lower limit of the octave band
for ν̂2

X
� τm 
 . An advantage of the wavelet-based ogive estimator is that we

can estimate confidence intervals for it, as follows. If the wavelet spectral
estimates are approximately uncorrelated between scales, the random variable0
Om has approximately a χ2 distribution with EDOF ζm given by

ζm
� 2

m
∑
j 	 1

ν2
X
� τ j 
43 2

m
∑
j 	 1

ν4
X
� τ j 
 � η j

� (17)
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By using estimates for ν2
X
� τ j 
 in the above to form an estimate ζ̂m for ζm, we

obtain an approximate confidence interval for Om using5
ζ̂m

0
Om

Qζ̂m

� 1 
 p 
 � ζ̂m

0
Om

Qζ̂m

� p 
76 � (18)

Figure 11 shows the ogive curves corresponding to the PSD estimates for
the wavelet and multitaper methods of Figure 10 (asterisks and solid curve,
respectively). The two curves are in agreement and converge at the lowest
frequency to a value close to the sample variance of the original time se-
ries. The confidence intervals of the ogive derived via the wavelet method
(dashed curves) become wider as j increases (frequency decreases) due to
the increased uncertainty in the wavelet variance estimates at large scales.

The confidence intervals for the wavelet-based spectral estimates follow
directly from the statistical properties of the wavelet variance, which take into
account the covariance structure of the MODWT wavelet coefficients within
a given octave band. Corresponding confidence intervals for the multitaper-
based octave-band estimates are more difficult to obtain because we would
need to determine some sort of model for the structure of the PSD within
the octave-band. A crude approximation would be to assume that the PSD
is locally flat, but this approach is not particularly appealing for spectra like
those conforming to a Kolmogorov power law.

The wavelet and multitaper methods for power spectral estimation yield
the same basic information for time series that are well modeled locally in
frequency or scale by a power law. The wavelet method offers the advan-
tages of straightforward estimation of the power spectrum and confidence
intervals. By contrast, the multitaper and other Fourier methods require the
practitioner to deal explicitly with detrending, windowing, data tapers and av-
eraging procedures to reduce bias and variability. On the other hand, for a pro-
cess with narrow spectral peaks, the enhanced spectral resolution of Fourier
power spectral methods makes them clearly preferable over octave-averaging
wavelet methods.

5.4. WAVELET COVARIANCE

The wavelet covariance is a measure of the degree of simultaneous correlation
between two sets of observations (X and Y ) as a function of scale. Including
only the nonboundary wavelet coefficients and again assuming time indepen-
dence, the true wavelet covariance νXY

� τ j 
 is defined as the expected value
of

�
WX � j � t �WY � j � t , and an unbiased estimator for it is given by

ν̂XY
� τ j 
 � 1

M j

N � 1

∑
t 	 L j � 1

�
WX � j � t �WY � j � t � (19)

WaveTechAnalAtmosTurb.tex; 1/07/2005; 13:11; p.17



18 C. R. CORNISH ET AL.

As was true for the wavelet variance, we can form a biased covariance esti-
mator using the obvious analog of Equation (7). To simplify our discussion,
we concentrate on just the unbiased estimator of the wavelet covariance in
what follows.

A method for calculating confidence intervals for the true covariance at
the jth level based upon the wavelet covariance estimate and a Gaussian
assumption is presented by Whitcher et al. (2000) and described here briefly.
The unbiased estimator of the auto-covariance sequence for the MODWT
coefficients

�
WX � j � t of the series

�
Xt � at the jth level and the lag τ is defined as

ŝX � j � τ � 1
M j

N ��8 τ 8 � 1

∑
t 	 L j � 1

�
WX � j � t �WX � j � t ��8 τ 8 � (20)

A similar estimator is defined for the MODWT coefficients of the series
�
Yt � .

The cross-covariance sequence of the MODWT coefficients for the X and Y
series at the j level is defined as

ŝXY � j � τ � 1
M j

∑
t

�
WX � j � t �WY � j � t � τ � (21)

where the summation is over t � L j 
 1 ��������� N 
 τ 
 1 for τ ! 0 and over
t � L j 
 τ 
 1 ��������� N 
 1 for τ � 0. Whitcher et al. (2000) show that ν̃XY

� τ j 
 is
asymptotically Gaussian distributed, allowing us to construct an approximate
confidence interval for the true wavelet covariance via5

ν̂XY
� τ j 
+
 Φ � 1 � 1 
 p 
 σ̂XY � j9

M j
� ν̂XY

� τ j 
:� Φ � 1 � 1 
 p 
 σ̂XY � j9
M j 6 � (22)

where Φ � 1 � 1 
 p 
 is the p & 100% percentage point for the standard Gaus-
sian distribution, and

σ̂2
XY � j � ŝX � j � 0ŝY � j � 0

2
� M j � 1

∑
τ 	 1

ŝX � j � τŝY � j � τ � 1
2

M j � 1

∑
τ 	;��� M j � 1 � ŝ2

XY � j � τ � (23)

Expressions for the wavelet covariance and confidence intervals using the
biased estimator are readily derived by substituting

�
N j

� N for M j in (22)
and by making appropriate adjustments to (19–21) and (23).

Figure 12 shows the biased wavelet covariance estimates with 95% confi-
dence bounds (p = 0.025) between the vertical velocity and virtual potential
temperature for three low legs. At 0.82 � S in the region of cold SST the
wavelet covariance is near zero for all scales. North of the equator the wavelet
covariance is nonzero and increases in magnitude and level with increasing
latitude. It has a peak at level 7 (scale = 256 m) for leg 27. Positive values
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of the wavelet covariance indicate buoyancy flux due to convection-driven
turbulence near the sea surface.

Cumulative cospectrum or ogive curves provide a ready comparison of
wavelet covariance and Fourier cospectra methods. In analogy to Equation
(16), the ogive estimator for the cumulative wavelet covariance is given by0

OXY �m � m

∑
j 	 1

ν̂XY
� τ j 
<� (24)

Assuming that ν̂XY
� τ j 
 and ν̂XY

� τ j = 
 are independent when j >� j � , the vari-
ance of the ogive estimator is

var
� 0
OXY �m � � m

∑
j 	 1

var
�
ν̂XY

� τ j 
 � � (25)

If
0
OXY �m is approximately normally distributed with a mean OXY �m and a

variance var
� 0
OXY �m � , we can establish an approximate confidence interval

for OXY �m using:?
ÔXY �m 
 Φ � 1 � 1 
 p 
�@ var

�
ÔXY �m �BA 1 . 2 � ÔXY �m � Φ � 1 � 1 
 p 
�@ var

�
ÔXY �m �BA 1 . 2 C �

(26)
Setting p � 0 � 025 for 95% confidence bounds, we calculate the ogive

estimate using the vertical velocity and virtual potential temperature data
of low leg 32 with multitaper and wavelet covariance methods (Figure 13).
While both methods yield the same information, the wavelet method is more
amenable for providing confidence bounds. Based on the wavelet method,
one can read off from Figure 13 that w � θ �v � 0 � 027 D 0 � 003 K m s � 1, with
essentially all the flux coming from levels j � 11 (physical scales less than 4
km).

5.5. ENERGY DISSIPATION RATE PROFILES

The magnitude of the variability in the velocity field is an indicator of the
intensity of turbulence. For scales within the inertial subrange, kinetic energy
present in wavelet coefficients is dissipated by a cascade of turbulent energy
from larger to smaller scales. The typical squared magnitude of the wavelet
coefficients

�
W 2

j � t at small scales allows the examination of variability in kinetic
energy dissipation as a function of location in a non-stationary time series. For
our example, level 2 rather than level 1 wavelet coefficients are used since the
latter are damped by the finite instrument response time and low pass filter
preprocessing.

Figure 14 shows profiles of the squared wavelet coefficients for the vertical
velocity for legs 36 and 34. Individual points are the square of the level 2
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wavelet coefficients and are indicators of the instantaneous turbulent energy
at the 8 m scale as observed by the aircraft. For leg 36, boundary layer turbu-
lence is confined to the lowest 300 m associated with the shear zone. Within
the boundary layer of leg 34 (altitude < 1000 m), small-scale turbulence is
highly variable, with an overall magnitude slowly decreasing with altitude.
In both profiles, above the boundary layer turbulence drops off rapidly and is
minimal except in isolated layers.

To estimate the true wavelet variance profile sampled in each leg, we cal-
culate the running wavelet variance profiles, which are running averages of
the squared wavelet coefficients at fixed height increments. The solid lines
shown in Figure 14 are a 400-point running averages corresponding to a level
2 running wavelet variance over 64 m height intervals at 16 m increments.
Over the cold SST region (leg 36) shown in the left panel, the running wavelet
variance highlights turbulent activity, which is confined to a few discrete
layers. Below 200 m is the shear-produced boundary layer. The previously
identified turbulent cloud layers at 600 m and above 1350 m are evident as
well. Over the warm SST region (leg 34, right panel of Figure 14), the 400-
point running wavelet variance (solid line) indicates a 1 km deep turbulent
layer.

The 64 m running wavelet variance is still somewhat erratic below 600 m,
suggesting a more stable estimate can be obtained by using a longer running
average. The dot-dashed line of Figure 14 shows a 1600-point running aver-
age corresponding to a running wavelet variance over a height range 256 m
at 16 m increments. The 256 m running wavelet variance drops off mono-
tonically with height as one might anticipate for turbulence driven mainly by
surface fluxes. For this deeper boundary layer, the 256 m averaging interval
appears to be a good compromise, supplying a statistically stable estimate
while being short enough to adequately resolve the variance profile. In gen-
eral, the best choice of average interval will depend on the depth of the
turbulence layer and the rate at which it is profiled. During an averaging in-
terval, one should sample across several large eddies to get a reliable variance
estimate. The scale of the largest eddies is roughly 1.5 times the depth of the
boundary layer (Kaimal et al., 1976). A 1600-point sample spans a 6.4 km
horizontal range, which is over four times the estimated large-eddy scale, and
thus is arguably sufficient for stably estimating the wavelet variance profile
in this case.

Combining our profiles of running wavelet variance of vertical veloc-
ity, our previous discussion on the relation between wavelet variance and
the octave-band averaged power spectrum, and turbulence theory, wavelet
methods provide a convenient and accurate estimate of profiles of local turbu-
lent kinetic energy dissipation ε, another useful measure of turbulence inten-
sity. According to Kolmogorov’s similarity theory of turbulence, an inertial
subrange of wavenumbers exists between energy-containing and dissipation

WaveTechAnalAtmosTurb.tex; 1/07/2005; 13:11; p.20



MODWT STATISTICAL ANALYSIS OF TURBULENCE 21

scales, and contains eddies whose average energy depends only of the rate of
viscous dissipation. Within the inertial subrange the one-dimensional power
spectrum for velocity components is given by

S � k 
 � cαε2 . 3k � 5 . 3 � (27)

where α is the Kolmogorov constant , 0 � 6, ε is the rate of viscous dissipation
of energy, and the constant c has a value of 1 for the longitudinal velocity
component and a value of 4/3 for the transverse and vertical velocity com-
ponents measured with respect to the aircraft’s frame of reference (Garratt,
1992, p. 71). Noting that velocity fluctuations are observed from the aircraft
moving through the boundary layer at a speed U0

� 100 m s � 1, and using
Taylor’s hypothesis

f S � f 
 � kS � k 
�� (28)

where k � 2π f � U0, we can express (27) as a velocity frequency spectrum

S � f 
 � cα � 2π
U0


 2 . 3ε2 . 3 f � 5 . 3 � (29)

Substituting the estimate (14) of the band-averaged PSD for S � f 
 into (29)
and solving for ε yields an estimate of the energy dissipation rate, namely,

ε̂ � 2π
U0

0
C3 . 2

j fc
5 . 2� cα 
 3 . 2 � (30)

where fc
�E� 2 j � 1 . 2∆t 
 � 1 is the geometric mean of the frequency f over of

the jth octave band. Confidence levels for ε can be established from the
confidence levels for C j. Since the velocity frequency spectrum within the
inertial subrange depends on the energy dissipation rate, the estimate for ε
should be similar in magnitude across levels corresponding to the inertial
subrange. As previously noted the j = 1 wavelet variances are impacted by
instrumental biases, so we select the j = 2 level values of Ĉ j for estimating ε.

Figure 15 shows profiles of the energy dissipation profiles for legs 36
and 34 using the results of the 256 m running wavelet variance shown in
Figure 14. Error bars indicating the 95% confidence interval are derived from
wavelet variance statistics for each 1600-point interval. Over the cold SST
region (leg 36) turbulent energy dissipation in the boundary layer is strongest
in the lowest 200 m where shear production is strongest. Interestingly, the
values for ε are as strong in the layer of radiatively-driven free tropospheric
turbulence at the top of the profile as in the shear-layer near the surface. Over
the warm SST region (leg 34), the energy dissipation rate shows a 7–10 fold
increase compared to leg 36 near the surface due to buoyancy-driven turbu-
lence, and drops monotonically to zero at the top of the boundary layer. Other
measurements of the marine boundary layer (Réchou et al., 1995) indicate
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that ε above the mixed layer is constant for stable conditions but continues to
drop off for convective conditions in agreement with our observations.

5.6. ENERGY BALANCE: ENERGY DISSIPATION VS. BUOYANCY FLUX
IN SURFACE LAYER

The overall kinetic energy budget of a turbulent boundary layer is a balance
between (1) buoyancy and shear generation of turbulent energy and (2) sinks
of turbulent energy dissipation. As a final application of wavelet statistics, we
compare buoyancy production and turbulent eddy dissipation in the low legs
over the cold and warm SST regions.

The kinematic buoyancy flux is defined as

B � g
θ̄v

w � θ �v (31)

(Stull, 1988, p. 118). We calculate B directly from the summation over all
levels of the wavelet covariance between θ �v and w � . Figure 16 shows the
computed buoyancy flux (‘*’ in both panels) for low legs 37, 32, and 27.
Error bars indicate the 95% confidence intervals.

We calculate turbulent energy dissipation for each of the low legs via the
method described in Section 5.5 using the level 2 and level 4 wavelet vari-
ances. The left panel of Figure 16 shows the leg-mean energy dissipation rates
calculated from the level 2 wavelet variance. The displayed energy dissipation
rates εu � εv � εw are, respectively, calculated for the longitudinal, transverse
and vertical components of the observed velocity field in the aircraft ref-
erence frame. The transverse and vertical estimates of ε are comparable in
magnitude, but the longitudinal component (which is in the direction of the
aircraft motion) is enhanced by a factor of 2–3. A potential source for this
discrepancy is noise in the air pressure measurement system used to sense the
winds. For comparison, the right panel of Figure 16 shows the estimates of ε
using the level 4 wavelet variance. Comparing the level 2 and 4 estimates, ε
derived using the transverse and vertical velocity components are comparable
in magnitude, which is expected for the dissipation of turbulent kinetic energy
within the inertial subrange. However, estimates of εu derived from the level
4 wavelet variance of longitudinal velocity component are less than half of
the level 2 estimates, yet 50% larger than the level 4 estimates of εv and εw.
Noting that the air motions in the longitudinal aircraft direction are measured
with a slightly different pressure sensing system than the transverse wind
components, the change in variability of the longitudinal estimates of ε as a
function of scale suggests the presence of instrumental noise.

Over the region of cold SST (0 � 5 � S), the buoyancy flux is much less than
the corresponding energy dissipation, as expected in a nearly neutrally strati-
fied, shear-driven boundary layer. Over regions of warm SST ( � 0 � 5 � N), the
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buoyancy flux at the surface BS is large. For a dry convective mixed layer of
depth H with a linear buoyancy flux profile B � z 
 � BS

� 1 
 1 � 2z � H 
 (Stull,
1988, p. 349), the energy dissipation is observed to be fairly constant above

the surface layer, with magnitude ε , H � 1
HF
0

B � z 
 dz � 0 � 4BS. At 30 m, the

aircraft is not quite above the surface layer, but one still might expect 0.4 BS
to be a good predictor of ε. Estimates of εv and εw are somewhat smaller by
30–50% than this prediction. The estimates of εu, while closer to predicted
values, are suspect due to instrumental noise. Despite considerable effort, we
do not yet understand this discrepancy.

6. Conclusions

Using a challenging boundary layer turbulence dataset that is typical of those
encountered in geophysics, wavelet-based methods are demonstrated to be
an attractive alternative to traditional Fourier-based methods for analysis of
broadband and non-stationary time series. While almost any wavelet-based
method can be mimicked by a cleverly constructed Fourier method, the wavelet
approach invokes fewer user choices and provides confidence bounds on many
commonly estimated quantities such as second-order moments. A publicly
available toolkit for MATLAB developed by the authors is designed to help
popularize wavelet methods for time series analysis by providing a power-
ful yet simple to use set of functions. The functions as implemented in the
toolkit have input parameter (e.g., filter, J0, boundary conditions, estima-
tors, etc.) defaults set to reasonable values, allowing the novice user to get
started and the experienced user complete control. We plan future work on
the development of wavelet methods and enhancements to the toolkit, in-
cluding multidimensional transforms for application to meteorological and
geophysical datasets.
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Figure 2. Squared gain functions of Haar (dashed), LA(8) (solid) and LA(16) (dash-dotted)
filters for level 1-3 wavelet and third level scaling equivalent filters showing the band pass
nature of the MODWT transform. Vertical lines delineate the nominal pass-bands.
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Figure 3. Aircraft altitude profile for portion of flight RF03.
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Figure 4. Observed sea surface and near surface air temperatures for three low level legs
during flight RF03.
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Figure 5. Profiles of meridional velocity (v, top row), vertical velocity (w, middle row) and
virtual potential temperature (θv, bottom row) for three different latitudes near the equator.
Profiles in leftmost column are over the cold SST ocean; profiles in rightmost column over the
warm SST ocean.
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Figure 6. MODWT wavelet (levels 1–10) and scaling (J0 J 10) coefficients (top panel) and
original time series (bottom panel) of vertical velocity for leg 36 descent profile. Aircraft
altitude (dotted curve) and ambient air temperature (dashed curve) are overlaid on time series.
Vertical dotted lines show aircraft altitude at 250m intervals. Vertical dashed lines show start
and stop times of descent profile. Solid vertical lines (top panel) indicate the boundaries
outside of which coefficients are influenced by circular shifting. These are only discernible
starting at level j = 5.
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puted using LA(8) (solid curve) and Haar (dotted curve) filters. Error bars indicate the 95%
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subrange.
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noticeably lower. Confidence intervals are tighter for the biased estimator than for the unbiased
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Figure 9. Biased wavelet variance (solid curve) of vertical velocity (w) and virtual potential
temperature (θv) near the surface ( K 30m) for three low flight legs at different latitudes near
the equator. Dotted curves are the 95% confidence intervals. Vertical velocity wavelet variance
is enhanced in regions warmer SST and increasing convective activity.
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Figure 10. Power spectra of vertical velocities observed during low leg 32 calculated via
Fourier multitaper method (bottom curve) and wavelet method using LA(8) filter (*) plot-
ted using factor of 10 offsets. Line with L 5 M 3 slope references Kolmogorov spectral shape
for isotropic turbulence in the inertial subrange. Boxes indicate the confidence intervals for
wavelet spectra for each pass-band.
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Figure 11. Ogive curves of cumulative power spectra for vertical velocity for leg 32 via
Fourier multitaper (solid curve) and LA(8) wavelet (*) methods. Dashed curves are confidence
bounds for wavelet method.
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Figure 12. Biased wavelet covariance estimates (solid curve) and confidence intervals (dashed
curves) of the vertical velocity (w) and virtual potential temperature (θv) near the surface
( K 30m) for three low flight legs at different latitudes near the equator.
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Figure 13. Ogive curves of cumulative cospectra for vertical velocity and virtual potential
temperature for leg 32 via Fourier multitaper (solid curve) and LA(8) wavelet (*) methods.
Dashed curves are confidence bounds for wavelet method.
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Figure 14. Running vertical velocity wavelet variance profiles for j = 2 level for legs 36 (cold
SST) and leg 34 (warm SST). Points indicate squares of individual wavelet coefficients. Solid
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Figure 15. Profiles of energy dissipation with 95% confidence intervals derived using power
spectra estimates from the level j = 2 wavelet variance. Values are computed from averages
of 1600 adjacent coefficients corresponding to a height interval of 64 m. The dissipation of
turbulent energy is significantly greater in the lower altitudes over the warm SST region (leg
36 labeled with asterisk) compared to the cold SST region (leg 34 labeled with diamond).
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Figure 16. Buoyancy flux (BS) derived from wavelet covariance and energy dissipation rates
(ε) deduced from components of wavelet velocity power spectrum in surface layer for legs 37,
32, and 27. Estimates of ε are calculated from the j J 2 (left panel) and j J 4 (right panel)
wavelet variance.
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