An Introduction to the Wavelet Analysis of Time Series

Don Percival

Applied Physics Lab, University of Washington, Seattle Dept. of Statistics, University of Washington, Seattle MathSoft, Inc., Seattle

Overview

- wavelets are analysis tools mainly for
 - time series analysis (focus of this tutorial)
 - image analysis (will not cover)
- as a subject, wavelets are
 - relatively new (1983 to present)
 - synthesis of many new/old ideas
 - keyword in 10, 558+ articles & books since 1989
 (2000+ in the last year alone)
- broadly speaking, have been two waves of wavelets
 - continuous wavelet transform (1983 and on)
 - discrete wavelet transform (1988 and on)

Game Plan

- introduce subject via CWT
- describe DWT and its main 'products'
 - multiresolution analysis (additive decomposition)
 - analysis of variance ('power' decomposition)
- \bullet describe selected uses for DWT
 - wavelet variance (related to Allan variance)
 - decorrelation of fractionally differenced processes (closely related to power law processes)
 - signal extraction (denoising)

What is a Wavelet?

- wavelet is a 'small wave' (sinusoids are 'big waves')
- real-valued $\psi(t)$ is a wavelet if
 - 1. integral of $\psi(t)$ is zero: $\int_{-\infty}^{\infty} \psi(t) dt = 0$
 - 2. integral of $\psi^2(t)$ is unity: $\int_{-\infty}^{\infty} \psi^2(t) dt = 1$ (called 'unit energy' property)
- wavelets so defined deserve their name because

- #2 says we have, for every small $\epsilon > 0$,

$$\int_{-T}^{T} \psi^2(t) \, dt < 1 - \epsilon,$$

for some finite T (might be quite large!)

- length of [-T, T] small compare to $[-\infty, \infty]$
- #2 says $\psi(t)$ must be nonzero somewhere
- -#1 says $\psi(t)$ balances itself above/below 0
- Fig. 1: three wavelets
- Fig. 2: examples of complex-valued wavelets

Basics of Wavelet Analysis: I

- wavelets tell us about variations in local averages
- to quantify this description, let x(t) be a 'signal'
 - real-valued function of t
 - will refer to t as time (but can be, e.g., depth)
- consider average value of x(t) over [a, b]:

$$\frac{1}{b-a} \int_{a}^{b} x(u) \, du \equiv \alpha(a,b)$$

• reparameterize in terms of $\lambda \& t$

$$A(\lambda,t) \equiv \alpha(t-\frac{\lambda}{2},t+\frac{\lambda}{2}) = \frac{1}{\lambda} \int_{t-\frac{\lambda}{2}}^{t+\frac{\lambda}{2}} x(u) \, du$$

- $-\lambda \equiv b-a$ is called scale
- -t = (a+b)/2 is center time of interval
- $A(\lambda, t)$ is average value of x(t) over scale λ at t

Basics of Wavelet Analysis: II

- average values of signals are of wide-spread interest
 - hourly rainfall rates
 - monthly mean sea surface temperatures
 - yearly average temperatures over central England
 - etc., etc., etc. (Rogers & Hammerstein, 1951)
- Fig. 3: fractional frequency deviates in clock 571
 - can regard as averages of form $\left[t \frac{1}{2}, t + \frac{1}{2}\right]$
 - -t is measured in days (one measurment per day)
 - plot shows A(1,t) versus integer t
 - $-A(1,t) = 0 \Rightarrow$ master clock & 571 agree perfectly
 - $-A(1,t) < 0 \Rightarrow$ clock 571 is losing time
 - can easily correct if A(1,t) constant
 - quality of clock related to changes in A(1,t)

Basics of Wavelet Analysis: III

• can quantify changes in A(1,t) via

$$\begin{split} D(1,t-\frac{1}{2}) &\equiv A(1,t) - A(1,t-1) \\ &= \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} x(u) \, du - \int_{t-\frac{3}{2}}^{t-\frac{1}{2}} x(u) \, du, \end{split}$$

or, equivalently,

$$D(1,t) = A(1,t+\frac{1}{2}) - A(1,t-\frac{1}{2})$$

= $\int_{t}^{t+1} x(u) \, du - \int_{t-1}^{t} x(u) \, du$

• generalizing to scales other than unity yields

$$\begin{array}{lll} D(\lambda,t) &\equiv & A(\lambda,t+\frac{\lambda}{2}) - A(\lambda,t-\frac{\lambda}{2}) \\ &= & \frac{1}{\lambda} \int_{t}^{t+\lambda} x(u) \, du - \frac{1}{\lambda} \int_{t-\lambda}^{t} x(u) \, du \end{array}$$

- $D(\lambda, t)$ often of more interest than $A(\lambda, t)$
- can connect to Haar wavelet: write

$$D(\lambda, t) = \int_{-\infty}^{\infty} \tilde{\psi}_{\lambda, t}(u) x(u) \, du$$

with

$$\tilde{\psi}_{\lambda,t}(u) \equiv \begin{cases} -1/\lambda, & t - \lambda \leq u < t; \\ 1/\lambda, & t \leq u < t + \lambda; \\ 0, & \text{otherwise.} \end{cases}$$

Basics of Wavelet Analysis: IV

• specialize to case
$$\lambda = 1$$
 and $t = 0$:

$$\tilde{\psi}_{1,0}(u) \equiv \begin{cases} -1, & -1 \le u < 0; \\ 1, & 0 \le u < 1; \\ 0, & \text{otherwise.} \end{cases}$$

comparison to $\psi^{\mathrm{H}}(u)$ yields $\tilde{\psi}_{1,0}(u) = \sqrt{2}\psi^{\mathrm{H}}(u)$

• Haar wavelet mines out info on difference between unit scale averages at t = 0 via

$$\int_{-\infty}^{\infty} \psi^{\mathrm{H}}(u) x(u) \, du \equiv W^{\mathrm{H}}(1,0)$$

• to mine out info at other t's, just shift $\psi^{H}(u)$:

$$\psi_{1,t}^{\mathrm{H}}(u) \equiv \psi^{\mathrm{H}}(u-t); \text{ i.e., } \psi_{1,t}^{\mathrm{H}}(u) = \begin{cases} -\frac{1}{\sqrt{2}}, & t-1 \leq u < t; \\ \frac{1}{\sqrt{2}}, & t \leq u < t+1; \\ 0, & \text{otherwise} \end{cases}$$

Fig. 4: top row of plots

• to mine out info about other λ 's, form

$$\psi_{\lambda,t}^{\mathrm{H}}(u) \equiv \frac{1}{\sqrt{\lambda}} \psi^{\mathrm{H}}\left(\frac{u-t}{\lambda}\right) = \begin{cases} -\frac{1}{\sqrt{2\lambda}}, & t-\lambda \leq u < t; \\ \frac{1}{\sqrt{2\lambda}}, & t \leq u < t+\lambda; \\ 0, & \text{otherwise.} \end{cases}$$

Fig. 4: bottom row of plots

Basics of Wavelet Analysis: V

- \bullet can check that $\psi^{\mathrm{H}}_{\lambda,t}(u)$ is a wavelet for all λ & t
- use $\psi^{\mathrm{H}}_{\lambda,t}(u)$ to obtain

$$W^{\mathrm{H}}(\lambda,t) \equiv \int_{-\infty}^{\infty} \psi_{\lambda,t}^{\mathrm{H}}(u) x(u) \, du \propto D(\lambda,t)$$

left-hand side is Haar CWT

• can do the same with other wavelets:

$$W(\lambda,t) \equiv \int_{-\infty}^{\infty} \psi_{\lambda,t}(u) x(u) \, du$$
, where $\psi_{\lambda,t}(u) \equiv \frac{1}{\sqrt{\lambda}} \psi\left(\frac{u-t}{\lambda}\right)$

left-hand side is CWT based on $\psi(u)$

• interpretation for $\psi^{\text{fdG}}(u)$ and $\psi^{\text{Mh}}(u)$ (Fig. 1): differences of adjacent weighted averages

Basics of Wavelet Analysis: VI

• basic CWT result: if $\psi(u)$ satisfies admissibility condition, can recover x(t) from its CWT:

$$x(t) = \frac{1}{C_{\psi}} \int_0^{\infty} \left[\int_{-\infty}^{\infty} W(\lambda, t) \frac{1}{\sqrt{\lambda}} \psi\left(\frac{t-u}{\lambda}\right) \, du \right] \, \frac{d\lambda}{\lambda^2},$$

where C_{ψ} is constant depending just on ψ

- conclusion: $W(\lambda, t)$ equivalent to x(t)
- can also show that

$$\int_{-\infty}^{\infty} x^2(t) \, dt = \frac{1}{C_{\psi}} \left[\int_0^{\infty} \int_{-\infty}^{\infty} W^2(\lambda, t) \, dt \right] \, \frac{d\lambda}{\lambda^2}$$

- LHS called energy in x(t)
- RHS integrand is energy density over $\lambda \& t$
- Fig. 3: Mexican hat CWT of clock 571 data

Beyond the CWT: the DWT

- critique: have transformed signal into an image
- can often get by with subsamples of $W(\lambda, t)$
- leads to notion of discrete wavelet transform (DWT)
 - can regard as dyadic 'slices' through CWT
 - can further subsample slices at various t's
- DWT has appeal in its own right
 - most time series are sampled as discrete values (can be tricky to implement CWT)
 - can formulate as orthonormal transform (facilitates statistical analysis)
 - approximately decorrelates certain time series (including power law processes)
 - standardization to dyadic scales often adequate
 - can be faster than the fast Fourier transform!
- will concentrate on DWT for remainder of tutorial

Overview of DWT

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be observed time series (for convenience, assume N integer multiple of 2^{J_0})
- let \mathcal{W} be $N \times N$ orthonormal DWT matrix
- $\mathbf{W} = \mathcal{W}\mathbf{X}$ is vector of DWT coefficients
- orthonormality says $\mathbf{X} = \mathcal{W}^T \mathbf{W}$, so $\mathbf{X} \Leftrightarrow \mathbf{W}$
- can partition **W** as follows:

$$\mathbf{W} = egin{bmatrix} \mathbf{W}_1 \ dots \ \mathbf{W}_{J_0} \ \mathbf{V}_{J_0} \end{bmatrix}$$

- \mathbf{W}_j contains $N_j = N/2^j$ wavelet coefficients
 - related to changes of averages at scale $\tau_j = 2^{j-1}$ (τ_j is *j*th 'dyadic' scale)
 - related to times spaced 2^j units apart
- \mathbf{V}_{J_0} contains $N_{J_0} = N/2^{J_0}$ scaling coefficients
 - related to averages at scale $\lambda_{J_0} = 2^{J_0}$
 - related to times spaced 2^{J_0} units apart

Example: Haar DWT

- Fig. 5: \mathcal{W} for Haar DWT with N = 16
 - first 8 rows yield $\mathbf{W}_1 \propto changes$ on scale 1
 - next 4 rows yield $\mathbf{W}_2 \propto changes$ on scale 2
 - next 2 rows yield $\mathbf{W}_3 \propto changes$ on scale 4
 - next to last row yields $\mathbf{W}_4 \propto change$ on scale 8
 - last row yields $\mathbf{V}_4 \propto average$ on scale 16
- Fig. 6: Haar DWT coefficients for clock 571

DWT in Terms of Filters

• filter $X_0, X_1, \ldots, X_{N-1}$ to obtain

$$2^{j/2}\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N-1$$

where $h_{j,l}$ is *j*th level wavelet filter

- note: circular filtering

• subsample to obtain wavelet coefficients:

 $W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^{j}(t+1)-1}, \quad t = 0, 1, \dots, N_{j} - 1,$

where $W_{j,t}$ is the element of \mathbf{W}_j

- Figs. 7 & 8: Haar, D(4), C(6) & LA(8) wavelet filters
- *j*th wavelet filter is band-pass with pass-band $\left[\frac{1}{2^{j+1}}, \frac{1}{2^{j}}\right]$
- note: jth scale related to interval of frequencies
- similarly, scaling filters yield \mathbf{V}_{J_0}
- Figs. 9 & 10: Haar, D(4), C(6) & LA(8) scaling filters
- J_0 th scaling filter is low-pass with pass-band $[0, \frac{1}{2^{J_0+1}}]$

Pyramid Algorithm: I

- can formulate DWT via 'pyramid algorithm'
 - elegant iterative algorithm for computing DWT
 - implicitly defines ${\cal W}$
 - computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
 - * 'brute force' method uses $O(N^2)$
 - * FFT algorithm uses $O(N \log_2 N)$
- algorithm makes use of two basic filters
 - wavelet filter h_l of unit scale $h_l \equiv h_{1,l}$
 - associated scaling filter g_l

The Wavelet Filter: I

- let $h_l, l = 0, \ldots, L 1$, be a real-valued filter
 - -L is filter width so $h_0 \neq 0 \& h_{L-1} \neq 0$
 - -L must be even
 - assume $h_l = 0$ for $l < 0 \& l \ge L$
- h_l called a wavelet filter if it has these 3 properties
 - 1. summation to zero:

$$\sum_{l=0}^{L-1} h_l = 0$$

2. unit energy:

$$\sum_{l=0}^{L-1} h_l^2 = 1$$

3. orthogonality to even shifts:

$$\sum_{l=0}^{L-1} h_l h_{l+2n} = \sum_{l=-\infty}^{\infty} h_l h_{l+2n} = 0$$

for all nonzero integers n

• 2 & 3 together called orthonormality property

The Wavelet Filter: II

• transfer & squared gain functions for h_l :

$$H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i2\pi f l} \& \mathcal{H}(f) \equiv |H(f)|^2$$

• can argue that orthonormality property equivalent to

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$
 for all f

- Fig. 11: $\mathcal{H}(f)$ for Daubechies wavelet filters
 - -L = 2 case is Haar wavelet filter
 - filter cascade with averaging & differencing filters
 - high-pass filter with pass-band $\left[\frac{1}{4}, \frac{1}{2}\right]$
 - can regard as half-band filter

The Scaling Filter: I

- scaling filter: $g_l \equiv (-1)^{l+1} h_{L-1-l}$
 - reverse h_l & flip sign of every other coefficient

- e.g.:
$$h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}} \Rightarrow g_0 = g_1 = \frac{1}{\sqrt{2}}$$

- g_l is 'quadrature mirror' filter for h_l

- properties of h_l imply g_l has these properties:
 - 1. summation to $\pm \sqrt{2}$, so will assume

$$\sum_{l=0}^{L-1} g_l = \sqrt{2}$$

2. unit energy:

$$\sum_{l=0}^{L-1} g_l^2 = 1$$

3. orthogonality to even shifts:

$$\sum_{l=0}^{L-1} g_l g_{l+2n} = \sum_{l=-\infty}^{\infty} g_l g_{l+2n} = 0$$

for all nonzero integers n

4. orthogonality to wavelet filter at even shifts:

$$\sum_{l=0}^{L-1} g_l h_{l+2n} = \sum_{l=-\infty}^{\infty} g_l h_{l+2n} = 0$$

for all integers n

The Scaling Filter: II

• transfer & squared gain functions for g_l :

$$G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi f l} \& \mathcal{G}(f) \equiv |G(f)|^2$$

• can argue that
$$\mathcal{G}(f) = \mathcal{H}(f - \frac{1}{2})$$

- have $\mathcal{G}(0) = \mathcal{H}(-\frac{1}{2}) = \mathcal{H}(\frac{1}{2}) \& \mathcal{G}(\frac{1}{2}) = \mathcal{H}(0)$
- since h_l is high-pass, g_l must be low-pass
- low-pass filter with pass-band $[0, \frac{1}{4}]$
- can also regard as half-band filter
- orthonormality property equivalent to

$$\mathcal{G}(f) + \mathcal{G}(f + \frac{1}{2}) = 2 \text{ or } \mathcal{H}(f) + \mathcal{G}(f) = 2 \text{ for all } f$$

Pyramid Algorithm: II

- define $\mathbf{V}_0 \equiv \mathbf{X}$ and set j = 1
- input to *j*th stage of pyramid algorithm is \mathbf{V}_{j-1}
 - $-\mathbf{V}_{j-1}$ is full-band
 - related to frequencies $[0, \frac{1}{2^j}]$ in **X**
- filter with half-band filters and downsample:

$$W_{j,t} \equiv \sum_{l=0}^{L-1} h_l V_{j-1,2t+1-l \mod N_{j-1}}$$
$$V_{j,t} \equiv \sum_{l=0}^{L-1} g_l V_{j-1,2t+1-l \mod N_{j-1}},$$

 $t=0,\ldots,N_j-1$

- place these in vectors \mathbf{W}_j & \mathbf{V}_j
 - $-\mathbf{W}_j$ are wavelet coefficients for scale $\tau_j = 2^{j-1}$
 - $-\mathbf{V}_j$ are scaling coefficients for scale $\lambda_j = 2^j$
- increment j and repeat above until $j = J_0$
- yields DWT coefficients $\mathbf{W}_1, \ldots, \mathbf{W}_{J_0}, \mathbf{V}_{J_0}$

Pyramid Algorithm: III

- can formulate inverse pyramid algorithm (recovers \mathbf{V}_{j-1} from \mathbf{W}_j and \mathbf{V}_j)
- \bullet algorithm implicitly defines transform matrix ${\cal W}$
- partition \mathcal{W} commensurate with \mathbf{W}_j :

$$\mathcal{W} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \vdots \\ \mathcal{W}_{J_0} \\ \mathcal{V}_{J_0} \end{bmatrix} \text{ parallels } \mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_{J_0} \\ \mathbf{V}_{J_0} \end{bmatrix}$$

• rows of \mathcal{W}_j use *j*th level filter $h_{j,l}$ with DFT

$$H(2^{j-1}f)\prod_{l=0}^{j-2}G(2^lf)$$

 $(h_{j,l} \text{ has } L_j = (2^j - 1)(L - 1) + 1 \text{ nonzero elements})$

• \mathcal{W}_j is $N_j \times N$ matrix such that

 $\mathbf{W}_j = \mathcal{W}_j \mathbf{X}$ and $\mathcal{W}_j \mathcal{W}_j^T = I_{N_j}$

Two Consequences of Orthonormality

• multiresolution analysis (MRA)

$$\mathbf{X} = \mathcal{W}^T \mathbf{W} = \sum_{j=1}^{J_0} \mathcal{W}_j^T \mathbf{W}_j + \mathcal{V}_{J_0}^T \mathbf{V}_{J_0} \equiv \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

- scale-based additive decomposition
- $-\mathcal{D}_{j}$'s & $\mathcal{S}_{J_{0}}$ called details & smooth
- analysis of variance
 - consider 'energy' in time series:

$$\|\mathbf{X}\|^2 = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1} X_t^2$$

- energy preserved in DWT coefficients:

$$\|\mathbf{W}\|^2 = \|\mathcal{W}\mathbf{X}\|^2 = \mathbf{X}^T \mathcal{W}^T \mathcal{W}\mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2$$

- since $\mathbf{W}_1, \ldots, \mathbf{W}_{J_0}, \mathbf{V}_{J_0}$ partitions \mathbf{W} , have

$$\|\mathbf{W}\|^2 = \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_{J_0}\|^2,$$

leading to analysis of sample variance:

$$\hat{\sigma}^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \left(\frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2 \right)$$

- scale-based decomposition (cf. frequency-based)

Variation: Maximal Overlap DWT

• can eliminate downsampling and use

$$\widetilde{W}_{j,t} \equiv \frac{1}{2^{j/2}} \sum_{l=0}^{L_j - 1} h_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N - 1$$

to define MODWT coefficients $\widetilde{\mathbf{W}}_j$ (& also $\widetilde{\mathbf{V}}_j$)

- unlike DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- like DWT, can do MRA & analysis of variance:

$$\|\mathbf{X}\|^{2} = \sum_{j=1}^{J_{0}} \|\widetilde{\mathbf{W}}_{j}\|^{2} + \|\widetilde{\mathbf{V}}_{J_{0}}\|^{2}$$

- unlike DWT, MODWT works for all samples sizes N (i.e., power of 2 assumption is not required)
 - if N is power of 2, can compute MODWT using $O(N \log_2 N)$ operations (i.e., same as FFT algorithm)
 - contrast to DWT, which uses O(N) operations
- Fig. 12: Haar MODWT coefficients for clock 571 (cf. Fig. 6 with DWT coefficients)

Definition of Wavelet Variance

- let $X_t, t = \ldots, -1, 0, 1, \ldots$, be a stochastic process
- run X_t through *j*th level wavelet filter:

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l}, \quad t = \dots, -1, 0, 1, \dots,$$

which should be contrasted with

$$\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \widetilde{h}_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N-1$$

• definition of time dependent wavelet variance (also called wavelet spectrum):

$$\nu_{X,t}^2(\tau_j) \equiv \operatorname{var} \{ \overline{W}_{j,t} \},\,$$

assuming var $\{\overline{W}_{j,t}\}$ exists and is finite

- $\nu_{X,t}^2(\tau_j)$ depends on τ_j and t
- will consider time independent wavelet variance:

$$\nu_X^2(\tau_j) \equiv \operatorname{var}\left\{\overline{W}_{j,t}\right\}$$

(can be easily adapted to time varying situation)

Rationale for Wavelet Variance

- decomposes variance on scale by scale basis
- useful substitute/complement for spectrum
- useful substitute for process/sample variance

Variance Decomposition

• suppose X_t has power spectrum $S_X(f)$:

$$\int_{-1/2}^{1/2} S_X(f) \, df = \operatorname{var} \{ X_t \};$$

i.e., decomposes var $\{X_t\}$ across frequencies f

- involves uncountably infinite number of f's
- $-S_X(f)\Delta f \approx \text{contribution to var} \{X_t\} \text{ due to } f \text{'s}$ in interval of length Δf centered at f
- wavelet variance analog to fundamental result:

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \operatorname{var} \{X_t\}$$

i.e., decomposes var $\{X_t\}$ across scales τ_j

- recall DWT/MODWT and sample variance
- involves countably infinite number of τ_j 's
- $-\nu_X^2(\tau_j)$ contribution to var $\{X_t\}$ due to scale τ_j
- $-\nu_X(\tau_j)$ has same units as X_t (easier to interpret)

Spectrum Substitute/Complement

• because $\tilde{h}_{j,l} \approx$ bandpass over $[1/2^{j+1}, 1/2^j]$,

$$\nu_X^2(\tau_j) \approx 2 \int_{1/2^{j+1}}^{1/2^j} S_X(f) \, df$$

- if $S_X(f)$ 'featureless', info in $\nu_X^2(\tau_j) \Leftrightarrow \inf S_X(f)$
- $\nu_X^2(\tau_j)$ more succinct: only 1 value per octave band
- example: $S_X(f) \propto |f|^{\alpha}$, i.e., power law process
 - can deduce α from slope of log $S_X(f)$ vs. log f
 - implies $\nu_X^2(\tau_j) \propto \tau_j^{-\alpha-1}$ approximately
 - can deduce α from slope of log $\nu_X^2(\tau_j)$ vs. log τ_j
 - no loss of 'info' using $\nu_X^2(\tau_j)$ rather than $S_X(f)$
- with Haar wavelet, obtain pilot spectrum estimate proposed in Blackman & Tukey (1958)

Substitute for Variance: I

- can be difficult to estimate process variance
- $\nu_X^2(\tau_j)$ useful substitute: easy to estimate & finite

• let
$$\mu = E\{X_t\}$$
 be known, $\sigma^2 = \operatorname{var}\{X_t\}$ unknown

• can estimate σ^2 using

$$\tilde{\sigma}^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \mu)^2$$

• estimator above is unbiased: $E\{\tilde{\sigma}^2\} = \sigma^2$

• if μ is unknown, can estimate σ^2 using

$$\hat{\sigma}^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2$$

• there is some (non-pathological!) X_t such that

$$\frac{E\{\hat{\sigma}^2\}}{\sigma^2} < \epsilon$$

for any gvien $\epsilon > 0$ & $N \ge 1$

- $\hat{\sigma}^2$ can badly underestimate σ^2 !
- example: power law process with $-1 < \alpha < 0$

Substitute for Variance: II

- Q: why is wavelet variance useful when σ^2 is not?
- replaces 'global' variability with variability over scales
- if X_t stationary with mean μ , then

$$E\{\overline{W}_{j,t}\} = \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} E\{X_{t-l}\} = \mu \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} = 0$$

because $\Sigma_l \tilde{h}_{j,l} = 0$

- $E{\overline{W}_{j,t}}$ known, so can get unbiased estimator of var ${\overline{W}_{j,t}} = \nu_X^2(\tau_j)$
- certain nonstationary X_t have well-defined $\nu_X^2(\tau_j)$
- example: power law processes with $\alpha \leq -1$ (example of process with stationary increments)

Estimation of Wavelet Variance: I

• can base estimator on MODWT of $X_0, X_1, \ldots, X_{N-1}$:

$$\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \widetilde{h}_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \dots, N-1$$

(DWT-based estimator possible, but less efficient)

• recall that

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l}, \quad t = 0, \pm 1, \pm 2, \dots$$

so $\widetilde{W}_{j,t} = \overline{W}_{j,t}$ if mod not needed: $L_j - 1 \le t < N$

• if $N - L_j \ge 0$, unbiased estimator of $\nu_X^2(\tau_j)$ is

$$\hat{\nu}_X^2(\tau_j) \equiv \frac{1}{N - L_j + 1} \sum_{t=L_j - 1}^{N-1} \widetilde{W}_{j,t}^2 = \frac{1}{M_j} \sum_{t=L_j - 1}^{N-1} \overline{W}_{j,t}^2,$$

where $M_j \equiv N - L_j + 1$

• can also construct biased estimator of $\nu_X^2(\tau_j)$:

$$\tilde{\nu}_X^2(\tau_j) \equiv \frac{1}{N} \sum_{t=0}^{N-1} \widetilde{W}_{j,t}^2 = \frac{1}{N} \Big(\sum_{t=0}^{L_j-2} \widetilde{W}_{j,t}^2 + \sum_{t=L_j-1}^{N-1} \overline{W}_{j,t}^2 \Big)$$

1st sum in parentheses influenced by circularity

Estimation of Wavelet Variance: II

- biased estimator unbiased if $\{X_t\}$ white noise
- biased estimator offers exact analysis of $\hat{\sigma}^2$; unbiased estimator need not
- biased estimator can have better mean square error (Greenhall *et al.*, 1999; need to 'reflect' X_t)

Statistical Properties of $\hat{\nu}_X^2(\tau_j)$

- suppose $\{\overline{W}_{j,t}\}$ Gaussian, mean 0 & spectrum $S_j(f)$
- suppose square integrability condition holds:

$$A_j \equiv \int_{-1/2}^{1/2} S_j^2(f) \, df < \infty \& S_j(f) > 0$$

(holds for power law processes if L large enough)

- can show $\hat{\nu}_X^2(\tau_j)$ asymptotically normal with mean $\nu_X^2(\tau_j)$ & large sample variance $2A_j/M_j$
- can estimate A_j and use with $\hat{\nu}_X^2(\tau_j)$ to construct confidence interval for $\nu_X^2(\tau_j)$
- example
 - Fig. 13: clock errors $X_t \equiv X_t^{(0)}$ along with differences $X_t^{(i)} \equiv X_t^{(i-1)} X_{t-1}^{(i-1)}$ for i = 1, 2
 - Fig. 14: $\hat{\nu}_X^2(\tau_j)$ for clock errors
 - Fig. 15: $\hat{\nu}_{\overline{Y}}^2(\tau_j)$ for $\overline{Y}_t \propto X_t^{(1)}$
 - Haar $\hat{\nu}_{\overline{Y}}^2(\tau_j)$ related to Allan variance $\sigma_{\overline{Y}}^2(2,\tau_j)$:

$$\nu_{\overline{Y}}^2(\tau_j) = \frac{1}{2}\sigma_{\overline{Y}}^2(2,\tau_j)$$

Decorrelation of FD Processes

• X_t 'fractionally differenced' if its spectrum is

$$S_X(f) = \frac{\sigma_\epsilon^2}{|2\sin(\pi f)|^{2\delta}},$$

where $\sigma_{\epsilon}^2 > 0$ and $-\frac{1}{2} < \delta < \frac{1}{2}$

- note: for small f, have $S_X(f) \approx C/|f|^{2\delta}$; i.e., power law with $\alpha = -2\delta$
- if $\delta = 0$, FD process is white noise
- if $0 < \delta < \frac{1}{2}$, FD stationary with 'long memory'
- can extend definition to $\delta \geq \frac{1}{2}$
 - nonstationary 1/f type process
 - also called ARFIMA($0,\delta,0$) process
- Fig. 16: DWT of simulated FD process, $\delta = 0.4$ (sample autocorrelation sequences (ACSs) on right)

DWT as Whitening Transform

- sample ACSs suggest $\mathbf{W}_j \approx$ uncorrelated
- since FD process is stationary, so are \mathbf{W}_j (ignoring terms influenced by circularity)
- Fig. 17: spectra for \mathbf{W}_j , j = 1, 2, 3, 4
- \mathbf{W}_{j} & $\mathbf{W}_{j'}, j \neq j'$, approximately uncorrelated (approximation improves as L increases)
- DWT thus acts as a whitening transform
- lots of uses for whitening property, including:
 - 1. testing for variance changes
 - 2. bootstrapping time series statistics
 - 3. estimating δ for stationary/nonstationary fractional difference processes with trend

Estimation for FD Processes: I

- extension of work by Wornell; McCoy & Walden
- problem: estimate δ from time series U_t such that

$$U_t = T_t + X_t$$

where

- $-T_t \equiv \sum_{j=0}^r a_j t^j$ is polynomial trend
- $-X_t$ is FD process, but can have $\delta \geq \frac{1}{2}$
- DWT wavelet filter of width L has embedded differencing operation of order L/2
- if $\frac{L}{2} \ge r+1$, reduces polynomial trend to 0
- can partition DWT coefficients as

$$\mathbf{W} = \mathbf{W}_s + \mathbf{W}_b + \mathbf{W}_w$$

where

- $-\mathbf{W}_s$ has scaling coefficients and 0s elsewhere
- $-\mathbf{W}_s$ has boundary-dependent wavelet coefficients
- $-\mathbf{W}_w$ has boundary-independent wavelet coefficients

Estimation for FD Processes: II

• since $\mathbf{U} = \mathcal{W}^T \mathbf{W}$, can write

$$\mathbf{U} = \mathcal{W}^T(\mathbf{W}_s + \mathbf{W}_b) + \mathcal{W}^T\mathbf{W}_w \equiv \widehat{\mathbf{T}} + \widehat{\mathbf{X}}$$

- Fig. 18: example with fractional frequency deviates
- can use values in \mathbf{W}_w to form likelihood:

$$L(\delta, \sigma_{\epsilon}^{2}) \equiv \prod_{j=1}^{J_{0}} \prod_{t=1}^{N'_{j}} \frac{1}{\left(2\pi\sigma_{j}^{2}\right)^{1/2}} e^{-W_{j,t+L'_{j}-1}^{2}/(2\sigma_{j}^{2})}$$

where

$$\sigma_j^2 \equiv \int_{-1/2}^{1/2} \mathcal{H}_j(f) \frac{\sigma_\epsilon^2}{|2\sin(\pi f)|^{2\delta}} df;$$

and $\mathcal{H}_j(f)$ is squared gain for $h_{j,l}$

- leads to maximum likelihood estimator $\hat{\delta}$ for δ
- works well in Monte Carlo simulations
- get $\hat{\delta} \doteq 0.39 \pm 0.03$ for fractional frequency deviates

DWT-based Signal Extraction: I

- DWT analysis of \mathbf{X} yields $\mathbf{W} = \mathcal{W}\mathbf{X}$
- DWT synthesis $\mathbf{X} = \mathcal{W}^T \mathbf{W}$ yields
 - multiresolution analysis (MRA)
 - -estimator of 'signal' ${\bf D}$ hidden in ${\bf X}:$
 - * modify **W** to get **W**'
 - \ast use \mathbf{W}' to form signal estimate:

$$\widehat{\mathbf{D}} \equiv \mathcal{W}^T \mathbf{W}'$$

- key ideas behind wavelet-based signal estimation
 - DWT can isolate signals in small number of W_n 's
 - can 'threshold' or 'shrink' W_n 's
- key ideas lead to 'waveshrink' (Donoho and Johnstone, 1995)

DWT-based Signal Extraction: II

- thresholding schemes involve
 - 1. computing $\mathbf{W} \equiv \mathcal{W} \mathbf{X}$
 - 2. defining $\mathbf{W}^{(t)}$ as vector with *n*th element $W_n^{(t)} = \begin{cases} 0, & \text{if } |W_n| \le \delta; \\ \text{some nonzero value, otherwise,} \end{cases}$

where nonzero values are yet to be defined

3. estimating \mathbf{D} via $\widehat{\mathbf{D}}^{(t)} \equiv \mathcal{W}^T \mathbf{W}^{(t)}$

• simplest scheme is 'hard thresholding:'

$$W_n^{(ht)} = \begin{cases} 0, & \text{if } |W_n| \le \delta; \\ W_n, & \text{otherwise.} \end{cases}$$

Fig. 19: solid line ('kill/keep' strategy)

• alterative scheme is 'soft thresholding:'

$$W_n^{(st)} = \text{sign} \{W_n\} (|W_n| - \delta)_+,$$

where

sign
$$\{W_n\} \equiv \begin{cases} +1, & \text{if } W_n > 0; \\ 0, & \text{if } W_n = 0; \\ -1, & \text{if } W_n < 0. \end{cases}$$
 and $(x)_+ \equiv \begin{cases} x, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$

Fig. 19: dashed line

DWT-based Signal Extraction: III

• third scheme is 'mid thresholding:'

$$W_n^{(mt)} = \operatorname{sign} \{W_n\} (|W_n| - \delta)_{++},$$

where

$$(|W_n| - \delta)_{++} \equiv \begin{cases} 2(|W_n| - \delta)_+, & \text{if } |W_n| < 2\delta; \\ |W_n|, & \text{otherwise} \end{cases}$$

Fig. 19: dotted line

- Q: how should δ be set?
- A: universal' threshold (Donoho & Johnstone, 1995) (lots of other answers have been proposed)
 - specialize to model $\mathbf{X} = \mathbf{D} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon}$ is Gaussian white noise with variance σ_{ϵ}^2
 - 'universal' threshold: $\delta_U \equiv \sqrt{[2\sigma_\epsilon^2 \log(N)]}$
 - rationale for $\delta_{\mathbf{U}}$:
 - * suppose $\mathbf{D} = \mathbf{0}$ & hence \mathbf{W} is white noise also * as $N \to \infty$, have

$$\mathbf{P}\left[\max_{n}|W_{n}|\leq\delta_{\mathbf{U}}\right]\rightarrow1$$

so all $\mathbf{W}^{(ht)} = 0$ with high probability

* will estimate correct **D** with high probability

DWT-based Signal Extraction: IV

• can estimate σ_{ϵ}^2 using median absolute deviation (MAD):

$$\hat{\sigma}_{(\text{MAD})} \equiv \frac{\text{median}\left\{|W_{1,0}|, |W_{1,1}|, \dots, |W_{1,\frac{N}{2}-1}|\right\}}{0.6745},$$

where $W_{1,t}$'s are elements of \mathbf{W}_1

- Fig. 20: application to NMR series
- has potential application in dejamming GPS signals (with roles of 'signal' and 'noise' swapped!)

Web Material and Books

• Wavelet Digest

```
http://www.wavelet.org/
```

• MathSoft's wavelet resource page

http://www.mathsoft.com/wavelets.html

- books
 - R. Carmona, W.–L. Hwang & B. Torrésani (1998), *Practical Time-Frequency Analysis*, Academic Press
 - S. G. Mallat (1999), A Wavelet Tour of Signal Processing (Second Edition), Academic Press
 - R. T. Ogden (1997), Essential Wavelets for Statistical Applications and Data Analysis, Birkhäuser
 - D. B. Percival & A. T. Walden (2000), Wavelet Methods for Time Series Analysis, Cambridge University Press (will appear in July/August) http://www.staff.washington.edu/dbp/wmtsa.html
 - B. Vidakovic (1999), Statistical Modeling by Wavelets, John Wiley & Sons.

Software

• Matlab

- WAVELAB (free):

http://www-stat.stanford.edu/~wavelab

- WAVEBOX (commercial):

http://www.toolsmiths.com/

• Mathcad Wavelets Extension Pack (commercial):

http://www.mathsoft.com/mathcad/ebooks/wavelets.asp

- S-Plus software
 - WAVETHRESH (free):

http://lib.stat.cmu.edu/S/wavethresh

- S+WAVELETS (commercial):

http://www.mathsoft.com/splsprod/wavelets.html