Introduction to Spectral Analysis

Don Percival

Applied Physics Lab, University of Washington

overheads available at

http://www.staff.washington.edu/dbp/talks.html

What is Spectral Analysis?

- one of the most widely used (and lucrative!) methods in data analysis
- can be regarded as
 - analysis of variance of time series using sinusoids
 - sinusoids + statistics
 - Fourier theory + statistics
- today's lecture: introduction to spectral analysis
 - notion of a 'time' series
 - \$0.25 introduction to time series analysis
 - * basics of 'time domain' analysis
 - * subject of Stat 519
 - notion of the spectrum
 - methods for estimating the spectrum
 - * nonparametric
 - * parametric
 - concluding comments
 - Stat/EE 520 has (lots!) more details

Time Series & Time Series Analysis

- what is a time series?
 - 'one damned thing after another' (R. A. Fisher?)
 - $-x_t, t=1,\ldots,N$
 - four examples (Figures 2 and 3)
- goal of time series analysis:

- quantify characteristics of time series

• univariate statistics, e.g., sample mean & variance

$$\bar{x} \equiv \frac{1}{N} \sum_{t=1}^{N} x_t$$
 and $\hat{\sigma}^2 \equiv \frac{1}{N} \sum_{t=1}^{N} (x_t - \bar{x})^2$,

inadequate to say how x_t and x_{t+k} are related

Lagged Scatter Plots

- bivariate distribution of separated pairs
- x_{t+1} versus $x_t, t = 1, \ldots, N 1$: lag 1 scatter plot
- four examples (Figure 4)
- x_{t+k} versus $x_t, t = 1, \ldots, N-k$: lag k scatter plot
- summarize scatter plots using linear model:

$$x_{t+k} = \alpha_k + \beta_k x_t + \epsilon_{t,k}$$

(not always reasonable: see Figure 9)

- Pearson product moment correlation coefficient
 - let y_1, \ldots, y_N & z_1, \ldots, z_N be 2 collections of ordered values
 - $\operatorname{let} \bar{y} \& \bar{z}$ be sample means
 - sample correlation coefficient:

$$\hat{\rho} = \frac{\Sigma(y_t - \bar{y})(z_t - \bar{z})}{\left[\Sigma(y_t - \bar{y})^2 \Sigma(z_t - \bar{z})^2\right]^{1/2}},$$

– measures strength of linearity $(-1 \leq \hat{\rho} \leq 1)$

Sample Autocorrelation Sequence

- let $\{y_t\} = \{x_{t+k} : t = 1, \dots, N-k\}$ and $\{z_t\} = \{x_t : t = 1, \dots, N-k\}$
- for each lag k, plug these into

$$\hat{\rho} = \frac{\Sigma(y_t - \bar{y})(z_t - \bar{z})}{\left[\Sigma(y_t - \bar{y})^2 \Sigma(z_t - \bar{z})^2\right]^{1/2}},$$

and fudge things a bit to get

$$\hat{\rho}_k \equiv \frac{\sum_{t=1}^{N-k} (x_{t+k} - \bar{x})(x_t - \bar{x})}{\sum_{t=1}^{N} (x_t - \bar{x})^2}$$

- $\hat{\rho}_k, k = 0, \dots, N-1$, called sample acs
- four examples (Figures 6 and 7)

Modeling of Time Series

- assume x_t is realization of random variable X_t
- need to specify properties of X_t (i.e., model x_t)
- simplifying assumptions (related to stationarity)
 - $-\hat{\rho}_k$ estimates

 $\rho_k \equiv \operatorname{cov} \left\{ X_t, X_{t+k} \right\} / \sigma^2 \equiv E\left\{ (X_t - \mu)(X_{t+k} - \mu) \right\} / \sigma^2,$ where

- * $\mu \equiv E\{X_t\}$ (note: does not depend on t) * $\sigma^2 = E\{(X_t - \mu)^2\}$ (does not depend on t)
- $-X_t$'s are multivariate Gaussian
- statistics of X_t 's completely determined if we know μ , σ^2 and ρ_k 's
- critique of 'time domain' characterization (μ, σ^2, ρ_k):
 - not easy to visualize x_t from ρ_k 's
 - statistical properties of $\hat{\rho}_k$'s difficult to use

Frequency Domain Modeling: I

- based on idea of expressing X_t in terms of sinusoids
- top five rows of Figure A1 show $\cos(2\pi ft)$ for

$$t = 1, \dots, 128 \& f = \frac{1}{128}, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2},$$

where f is frequency of sinusoid (1/f is period)

• bottom row shows addition of five sinusoids

– highly structured and nonrandom

• Figure A2 shows $\cos(2\pi ft + \phi)$ with ϕ chosen randomly (one for each f)

- rattier looking, but still highly structured

- Figure A3 shows additions of 64 sinusoids with frequencies ¹/₁₂₈, ²/₁₂₈, ⁶³/₁₂₈, ⁶⁴/₁₂₈ & random phases
 very ratty looking, with no apparent structure
- note: $\cos(2\pi ft + \phi) = A\cos(2\pi ft) + B\sin(2\pi ft)$, where $A = \cos(\phi)$ and $B = -\sin(\phi)$

$$-E\{A\} = E\{B\} = 0$$

- $\operatorname{var} \{A\} = \operatorname{var} \{B\} = \frac{1}{2}$
- $-\cos\{A, B\} = 0$, i.e., uncorrelated (?!)

Frequency Domain Modeling: II

• generalize to following simple model for X_t :

$$X_t = \mu + \sum_{j=1}^{N/2} \left[A_j \cos \left(2\pi f_j t \right) + B_j \sin \left(2\pi f_j t \right) \right]$$

- holds for $t = 1, 2, \ldots, N$, where N is even
- $-f_j \equiv j/N$ fixed frequencies (cycles/unit time) (called Fourier or standard frequencies)
- $-A_j$'s and B_j 's are random variables:

$$* E\{A_j\} = E\{B_j\} = 0$$

$$* \operatorname{var} \{A_j\} = \operatorname{var} \{B_j\} = \sigma_j^2$$

$$* \operatorname{cov} \{A_j, A_k\} = \operatorname{cov} \{B_j, B_k\} = 0 \text{ for } j \neq k$$

$$* \operatorname{cov} \{A_j, B_k\} = 0 \text{ for all } j, k$$

- note: σ_j^2 now allowed to depend on j

The Spectrum

- properties of simple model:
 - $E\{X_t\} = \mu$ - σ_j^2 's decompose population variance:

$$\sigma^2 = E\{(X_t - \mu)^2\} = \sum_{j=1}^{N/2} \sigma_j^2$$

 $-\sigma_j^2$'s determine acs:

$$\rho_k = \frac{\sum_{j=1}^{N/2} \sigma_j^2 \cos{(2\pi f_j k)}}{\sum_{j=1}^{N/2} \sigma_j^2}$$

- define spectrum as $S_j \equiv \sigma_j^2, 1 \le j \le N/2$
- fundamental relationship:

$$\sum_{j=1}^{N/2} S_j = \sigma^2$$

- decomposes σ^2 into components related to f_j
- S_j 's equivalent to acs and σ^2
- easy to simulate x_t 's from simple model
- examples of spectra (in dB), acs's and x_t 's (Figures 12 to 17)

Nonparametric Estimation of S_j : I

- problem: estimate spectrum S_j from X_1, \ldots, X_N
- mine out A_j 's & B_j 's since $S_j = \operatorname{var} \{A_j\} = \operatorname{var} \{B_j\}$
- could use linear algebra (N knowns and N unknowns)
- can get A_j 's via discrete Fourier cosine transform:

$$\sum_{t=1}^{N} X_t \cos(2\pi f_j t) = \mu \sum_{t=1}^{N} \cos(2\pi f_j t) + \sum_{t=1}^{N} \sum_{k=1}^{N/2} A_k \cos(2\pi f_k t) \cos(2\pi f_j t) + \sum_{t=1}^{N} \sum_{k=1}^{N/2} B_k \sin(2\pi f_k t) \cos(2\pi f_j t) = \sum_{k=1}^{N/2} A_k \sum_{t=1}^{N} \cos(2\pi f_k t) \cos(2\pi f_j t) + \sum_{k=1}^{N/2} B_k \sum_{t=1}^{N} \sin(2\pi f_k t) \cos(2\pi f_j t) = \frac{NA_j}{2}$$

• yields (for $1 \le j < N/2$): $A_j = \frac{2}{N} \sum_{t=1}^N X_t \cos(2\pi f_j t)$

• B_j 's from sine transform: $B_j = \frac{2}{N} \sum_{t=1}^N X_t \sin(2\pi f_j t)$

Nonparametric Estimation of S_j : II

• since $S_j = \operatorname{var} \{A_j\} = \operatorname{var} \{B_j\}$, estimate S_j using

$$\hat{S}_{j} \equiv \frac{A_{j}^{2} + B_{j}^{2}}{2} \\ = \frac{2}{N^{2}} \left[\left(\sum_{t=1}^{N} X_{t} \cos\left(2\pi f_{j} t\right) \right)^{2} + \left(\sum_{t=1}^{N} X_{t} \sin\left(2\pi f_{j} t\right) \right)^{2} \right]$$

• examples: Figures 20 and 21

• points about
$$\hat{S}_j$$

- uncorrelatedness of A_j 's and B_j 's implies \hat{S}_j 's approximately uncorrelated (exact under Gaussian assumption)
- easy to test hypothesis using \hat{S}_j 's (difficult for sample acs)
- $-\hat{S}_j$ is '2 degrees of freedom' estimate; if S_j 's slowly varying, can average \hat{S}_j 's locally
- $-\log(\hat{S}_j)$ stabilizes variance (rationale for dB's)

Parametric Estimation of S_j

- assume S_j 's depend on small number of parameters
- simple model:

$$S_j(\alpha,\beta) = \frac{\beta}{1 + \alpha^2 - 2\alpha\cos\left(2\pi f_j\right)}$$

(related to first-order autoregressive process)

• estimate S_j 's by estimating α , β :

$$\hat{S}_j(\hat{\alpha}, \hat{\beta}) = \frac{\hat{\beta}}{1 + \hat{\alpha}^2 - 2\hat{\alpha}\cos\left(2\pi f_j\right)}$$

- can show that $\rho_1 \approx \alpha$, so let $\hat{\alpha} = \hat{\rho}_1$
- requiring

$$\sum_{j=1}^{N/2} \hat{S}_j(\hat{\alpha}, \hat{\beta}) = \frac{1}{N} \sum_{t=1}^N (X_t - \bar{X})^2 \equiv \hat{\sigma}^2$$

yields estimator

$$\hat{\beta} = \hat{\sigma}^2 \left(\sum_{j=1}^{N/2} \frac{1}{1 + \hat{\alpha}^2 - 2\hat{\alpha}\cos(2\pi f_j)} \right)^{-1}$$

- examples: thicks curves on Figures 20 and 21
- need to be careful about parameterization (model here poor for Willamette River spectrum)

'Industrial Strength' Theory: I

- simple model not adequate in practice
 - frequencies in model tied to sample size N
 - time series treated as if it were 'circular'; i.e.,

$$X_k, X_{k+1}, \ldots, X_{N-1}, X_N, X_1, X_2, \ldots, X_{k-1}$$

has same spectrum as X_1, X_2, \ldots, X_N .

• under assumption of stationarity, i.e.,

$$E\{X_t\} = \mu$$
, var $\{X_t\} = \sigma^2$ and cov $\{X_t, X_{t+k}\} = \rho_k \sigma^2$

simple model extends to become

$$X_t = \mu + \int_{-1/2}^{1/2} e^{i2\pi ft} dZ(f) \approx \sum_f \left[A(f) \cos(2\pi ft) + B(f) \sin(2\pi ft) \right],$$

where $dZ(f)$ yields $A(f)$ and $B(f)$, and we now use
 $e^{i2\pi ft} \equiv \cos(2\pi ft) + i\sin(2\pi ft), \quad i \equiv \sqrt{-1}$

• analogous to simple model, we use

$$\operatorname{var} \left\{ dZ(f) \right\} = S(f) \, df$$

to define a spectral density function S(f)

'Industrial Strength' Theory: II

• fundamental relationship now becomes

$$\int_{-1/2}^{1/2} S(f) \, df = \sigma^2$$

- S(f) and $\rho_k \sigma^2$ related via $\rho_k \sigma^2 = \int_{-1/2}^{1/2} S(f) e^{i2\pi fk} df$ and $S(f) = \sigma^2 \sum_{k=-\infty}^{\infty} \rho_k e^{-i2\pi fk}$
- basic estimator of S(f) is periodogram:

$$\hat{S}^{(p)}(f) \equiv \frac{1}{N} \left| \sum_{t=1}^{N} (X_t - \overline{X}) e^{-i2\pi f t} \right|^2, \text{ where } \overline{X} \equiv \frac{1}{N} \sum_{t=1}^{N} X_t$$

- ideally it would be nice if
 - 1. $E\{\hat{S}^{(p)}(f)\} = S(f)$ 2. var $\{\hat{S}^{(p)}(f)\} \rightarrow 0$ as $N \rightarrow \infty$

but, alas,

- 1. periodogram can be badly biased for finite N (can correct using data tapers)
- 2. var $\{\hat{S}^{(p)}(f)\} = S^2(f)$ as $N \to \infty$ if $0 < f < \frac{1}{2}$ (can correct using smoothing windows)

Uses of Spectral Analysis

- analysis of variance technique for time series
- some uses
 - testing theories (e.g., wind data)
 - exploratory data analysis (e.g., rainfall data)
 - discriminating data (e.g., neonates)
 - diagnostic tests (e.g., ARIMA modeling)
 - assessing predictability (e.g., atomic clocks)
- applications
 - tout le monde!