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What is Spectral Analysis?

e one of the most widely used (and lucrative!) methods
in data analysis

e can be regarded as

— analysis of variance of time series using sinusoids
— sinusoids + statistics

— Fourier theory + statistics
e today’s lecture: introduction to spectral analysis

— notion of a ‘time’ series
— $0.25 introduction to time series analysis

* basics of ‘time domain’ analysis
x subject of Stat 519

— notion of the spectrum
— methods for estimating the spectrum

* nonparametric

* parametric

— concluding comments

— Stat/EE 520 has (lots!) more details



Time Series & Time Series Analysis

e what is a time series?

— ‘one damned thing after another’ (R. A. Fisher?)
—xt,tzl,...,N

— four examples (Figures 2 and 3)
e goal of time series analysis:
— quantify characteristics of time series

e univariate statistics, e.g., sample mean & variance

F= L 5 g and 2= — 3 (2, — 7)°
T= =) ¥y and 0° = — Ty — )7,
N N =

inadequate to say how x; and x;. are related



Lagged Scatter Plots

e bivariate distribution of separated pairs
e 1, q versus oy, t = 1,..., N — 1. lag 1 scatter plot
e four examples (Figure 4)
o 1, . versus xy, t =1,..., N — k: lag k scatter plot
e summarize scatter plots using linear model:
Tpik = Ok + Brxy + €

(not always reasonable: see Figure 9)

e Pearson product moment correlation coefficient

—let y1,...,yn & z1,...,2xy be 2 collections of
ordered values
— let y & Z be sample means
— sample correlation coefficient:
(v — y)(z — 2)
Sy = 9)2 Sz — 27

0=

— measures strength of linearity (—1 < p < 1)



Sample Autocorrelation Sequence

o let {y;}={zpp:t=1,...,N—k}
and {z;} ={z:t=1,...,N — k}

e for each lag k, plug these into

S(yr — y)(z — 2)
(e — 9 (2 — 2)7]
and fudge things a bit to get

/5: 1/2°

s S M@ — o) (2 — )
g (2 — )

e 0., k=0,...,N — 1, called sample acs

e four examples (Figures 6 and 7)



Modeling of Time Series

e assume x; is realization of random variable X,
e need to specify properties of X; (i.e., model x;)
e simplifying assumptions (related to stationarity)

— py. estimates

pr = cov { Xy, Xt+k}/02 = E{(Xt_ﬂ)(XHk—M)}/UQa
where

x 1 = F{X;} (note: does not depend on t)
x 02 = E{(X; — p)*} (does not depend on t)

— X,’s are multivariate Gaussian

— statistics of X;’s completely determined if we know
u, o2 and pp’s

e critique of ‘time domain’ characterization (u, o2, py):

— not easy to visualize x; from pg’s

— statistical properties of p;’s difficult to use



Frequency Domain Modeling: 1

e based on idea of expressing X; in terms of sinusoids
e top five rows of Figure Al show cos(27 ft) for
t=1,...,128& f=-1 L1131
where f is frequency of sinusoid (1/f is period)
e bottom row shows addition of five sinusoids
— highly structured and nonrandom

e Figure A2 shows cos(2m ft + ¢) with ¢ chosen ran-
domly (one for each f)

— rattier looking, but still highly structured

e Figure A3 shows additions of 64 sinusoids with fre-

1 2 63 64

1287 198 " * 7 1987 128 & I’andom phaSGS

quencies
— very ratty looking, with no apparent structure
e note: cos(2mwft + ¢) = Acos(2mft) + Bsin(2w ft),
where A = cos(¢) and B = — sin(¢)
— E{A} =FE{B} =0
—var {A} =var{B} = ;
— cov{A, B} =0, i.e., uncorrelated (?!)
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Frequency Domain Modeling: 11

e generalize to following simple model for X;:

N/2
Xy =pu+ > [Ajcos(2mft) + B;sin (27 f;t)]
=1

— holds for t =1,2,..., N, where N is even

— f; = j/N fixed frequencies (cycles/unit time)
(called Fourier or standard frequencies)

— Aj’s and B,’s are random variables:
* B{A;} = E{B;} =0
« var {A;} = var {B;} = o7
x cov{A;, Ay} = cov{B,, By} =0for j #k
x cov{A;, By} =0forall j, k
2

— note: o5 now allowed to depend on j



The Spectrum

e properties of simple model:

- E{Xi} =p

— UJQ»’S decompose population variance:

2 2 N/2 2
o :E{(Xt—ﬂ) }: Zlaj
]:

— UJQ»’S determine acs:

B Z?Zf o5 cos (27 f;k)
Pk = N/2 o
2j=10]

o define spectrum as S; = 092-, 1<j<N/2

e fundamental relationship:
Z Sj = O'2
j=1
— decomposes o into components related to f;
— S}’s equivalent to acs and o

e casy to simulate x;’s from simple model

e examples of spectra (in dB), acs’s and x;’s
(Figures 12 to 17)



Nonparametric Estimation of S;: I

e problem: estimate spectrum 5; from Xy, ..., Xy
e mineout A,’s & Bj’ssince S; = var{A4,} = var{B;}
e could use linear algebra (/N knowns and /N unknowns)

e can get A;’s via discrete Fourier cosine transform:

g: Xicos(2mfit) = gj cos (27 f;t)
=1 (=1

N N/2

+ > > Apcos (2 fit) cos (27 f;t)
=1 k=1

N N/2

+ > > Bysin (27 fit) cos (27 ft)
t=1 k=1

N2 N
= > Ap Y cos (2w fit) cos (27 f;t)
k=1 t=1

N/2 N
+ > By, Y sin (27 fiit) cos (27 ft)
k=1

t=1
NA;
2

9 N
o yields (for 1 < j < N/2): A; = N > Xy cos (2w fjt)
i=1

2 N
e B;’s from sine transform: B; = N > Xisin (27 f;t)
=1



Nonparametric Estimation of S;: II

o since S; = var {A;} = var {B,}, estimate S; using
2 | 2
¢ = 4+5
’ 2
2
N2

(sz: X cos (27Tfjt)) : + (té X;sin (27Tfjt))2]

t=1

e examples: Figures 20 and 21
e points about Sj

— uncorrelatedness of A;’s and B;’s implies
S;’s approximately uncorrelated
(exact under Gaussian assumption)

— easy to test hypothesis using Sj’s
(difficult for sample acs)

— Sj is ‘2 degrees of freedom’ estimate;
if S;’s slowly varying, can average S;’s locally

A

— log (.5;) stabilizes variance (rationale for dB’s)
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Parametric Estimation of .5

e assume S;’s depend on small number of parameters

e simple model:
s

Si(a, B) = 1+ a? — 2accos (27 f;)

(related to first-order autoregressive process)

e cstimate S;’s by estimating a, [

A

o B
Sila, B) = 1+ &% —2acos (2 f;)

— can show that p; = «, so let & = p;

— requiring

N/2 | . 1 N - 5
> Sia, )= =X (Xi—X)" =0
j=1 N =1

yields estimator

. N/2 1 -
22

p=o (jzl 1 4+ a? — 2& cos (27Tfj))

e examples: thicks curves on Figures 20 and 21

e need to be careful about parameterization
(model here poor for Willamette River spectrum)
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‘Industrial Strength’ Theory: I

e simple model not adequate in practice

— frequencies in model tied to sample size N

— time series treated as if it were ‘circular’; i.e.,
Xy Xpaty ooy Xno1, Xy, X1, Xo, oo, X
has same spectrum as Xy, Xo, ..., Xy.
e under assumption of stationarity, i.e.,
E{X)} = pu, var{X;} = 0% and cov {Xy, Xipp} = ppo”

simple model extends to become

X, = M+/_11//22 eIt 47 ( f) ~ S A(f) cos(2m 1) + B(f)sin2r )]

where dZ(f) yields A(f) and B(f), and we now use
eI = cos(2m ft) +isin(2n ft), i=+—1

e analogous to simple model, we use

var{dZ(f)} = S(f)df
to define a spectral density function S(f)
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‘Industrial Strength’ Theory: II

e fundamental relationship now becomes
1/2

~1/2 S(f) df = o’

e S(f) and pyo? related via

12 i2m - —i27
o = [ SN and S(f) = o T g
e basic estimator of S(f) is periodogram:
. N 2 W
S<p)(f) = Z(Xt—X)e_lzﬁft , where X = — Y X,
t=1 N =1

e ideally it would be nice if

L B{SW(f)} = S(f)
2. var {S®(f)} = 0as N — oo

but, alas,

1. periodogram can be badly biased for finite N
(can correct using data tapers)

2. var {SW(f)} = S%(f) as N — oo if 0 < f<3

(can correct using smoothing windows)
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Uses of Spectral Analysis

e analysis of variance technique for time series
® some uses

— testing theories (e.g., wind data)

— exploratory data analysis (e.g., rainfall data)
— discriminating data (e.g., neonates)

— diagnostic tests (e.g., ARIMA modeling)

— assessing predictability (e.g., atomic clocks)
e applications

— tout le monde!
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