Introduction to Spectral Analysis

Don Percival

Applied Physics Lab, University of Washington
overheads available at
http://www.staff.washington.edu/dbp/talks.html

What is Spectral Analysis?

- one of the most widely used (and lucrative!) methods in data analysis
- can be regarded as
- analysis of variance of time series using sinusoids
- sinusoids + statistics
- Fourier theory + statistics
- today's lecture: introduction to spectral analysis
- notion of a 'time' series
- $\$ 0.25$ introduction to time series analysis
* basics of 'time domain' analysis
* subject of Stat 519
- notion of the spectrum
- methods for estimating the spectrum
* nonparametric
* parametric
- concluding comments
- Stat/EE 520 has (lots!) more details

Time Series \& Time Series Analysis

- what is a time series?
- 'one damned thing after another' (R. A. Fisher?)
$-x_{t}, t=1, \ldots, N$
- four examples (Figures 2 and 3)
- goal of time series analysis:
- quantify characteristics of time series
- univariate statistics, e.g., sample mean \& variance

$$
\bar{x} \equiv \frac{1}{N} \sum_{t=1}^{N} x_{t} \text { and } \hat{\sigma}^{2} \equiv \frac{1}{N} \sum_{t=1}^{N}\left(x_{t}-\bar{x}\right)^{2}
$$

inadequate to say how x_{t} and x_{t+k} are related

Lagged Scatter Plots

- bivariate distribution of separated pairs
- x_{t+1} versus $x_{t}, t=1, \ldots, N-1$: lag 1 scatter plot - four examples (Figure 4)
- x_{t+k} versus $x_{t}, t=1, \ldots, N-k$: lag k scatter plot
- summarize scatter plots using linear model:

$$
x_{t+k}=\alpha_{k}+\beta_{k} x_{t}+\epsilon_{t, k}
$$

(not always reasonable: see Figure 9)

- Pearson product moment correlation coefficient
- let $y_{1}, \ldots, y_{N} \& z_{1}, \ldots, z_{N}$ be 2 collections of ordered values
- let $\bar{y} \& \bar{z}$ be sample means
- sample correlation coefficient:

$$
\hat{\rho}=\frac{\Sigma\left(y_{t}-\bar{y}\right)\left(z_{t}-\bar{z}\right)}{\left[\Sigma\left(y_{t}-\bar{y}\right)^{2} \Sigma\left(z_{t}-\bar{z}\right)^{2}\right]^{1 / 2}},
$$

- measures strength of linearity $(-1 \leq \hat{\rho} \leq 1)$

Sample Autocorrelation Sequence

- let $\left\{y_{t}\right\}=\left\{x_{t+k}: t=1, \ldots, N-k\right\}$
and $\left\{z_{t}\right\}=\left\{x_{t}: t=1, \ldots, N-k\right\}$
- for each lag k, plug these into

$$
\hat{\rho}=\frac{\Sigma\left(y_{t}-\bar{y}\right)\left(z_{t}-\bar{z}\right)}{\left[\Sigma\left(y_{t}-\bar{y}\right)^{2} \Sigma\left(z_{t}-\bar{z}\right)^{2}\right]^{1 / 2}},
$$

and fudge things a bit to get

$$
\hat{\rho}_{k} \equiv \frac{\sum_{t=1}^{N-k}\left(x_{t+k}-\bar{x}\right)\left(x_{t}-\bar{x}\right)}{\sum_{t=1}^{N}\left(x_{t}-\bar{x}\right)^{2}}
$$

- $\hat{\rho}_{k}, k=0, \ldots, N-1$, called sample acs
- four examples (Figures 6 and 7)

Modeling of Time Series

- assume x_{t} is realization of random variable X_{t}
- need to specify properties of X_{t} (i.e., model x_{t})
- simplifying assumptions (related to stationarity)
- $\hat{\rho}_{k}$ estimates
$\rho_{k} \equiv \operatorname{cov}\left\{X_{t}, X_{t+k}\right\} / \sigma^{2} \equiv E\left\{\left(X_{t}-\mu\right)\left(X_{t+k}-\mu\right)\right\} / \sigma^{2}$,
where
* $\mu \equiv E\left\{X_{t}\right\}$ (note: does not depend on t)
* $\sigma^{2}=E\left\{\left(X_{t}-\mu\right)^{2}\right\}$ (does not depend on t)
- X_{t} 's are multivariate Gaussian
- statistics of X_{t} 's completely determined if we know μ, σ^{2} and ρ_{k} 's
- critique of 'time domain' characterization $\left(\mu, \sigma^{2}, \rho_{k}\right)$:
- not easy to visualize x_{t} from ρ_{k} 's
- statistical properties of $\hat{\rho}_{k}$'s difficult to use

Frequency Domain Modeling: I

- based on idea of expressing X_{t} in terms of sinusoids
- top five rows of Figure A1 show $\cos (2 \pi f t)$ for

$$
t=1, \ldots, 128 \& f=\frac{1}{128}, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2},
$$

where f is frequency of sinusoid ($1 / f$ is period)

- bottom row shows addition of five sinusoids
- highly structured and nonrandom
- Figure A2 shows $\cos (2 \pi f t+\phi)$ with ϕ chosen randomly (one for each f)
- rattier looking, but still highly structured
- Figure A3 shows additions of 64 sinusoids with frequencies $\frac{1}{128}, \frac{2}{128} \ldots, \frac{63}{128}, \frac{64}{128} \&$ random phases
- very ratty looking, with no apparent structure
- note: $\cos (2 \pi f t+\phi)=A \cos (2 \pi f t)+B \sin (2 \pi f t)$, where $A=\cos (\phi)$ and $B=-\sin (\phi)$
$-E\{A\}=E\{B\}=0$
$-\operatorname{var}\{A\}=\operatorname{var}\{B\}=\frac{1}{2}$
$-\operatorname{cov}\{A, B\}=0$, i.e., uncorrelated (?!)

Frequency Domain Modeling: II

- generalize to following simple model for X_{t} :

$$
X_{t}=\mu+\sum_{j=1}^{N / 2}\left[A_{j} \cos \left(2 \pi f_{j} t\right)+B_{j} \sin \left(2 \pi f_{j} t\right)\right]
$$

- holds for $t=1,2, \ldots, N$, where N is even
- $f_{j} \equiv j / N$ fixed frequencies (cycles/unit time) (called Fourier or standard frequencies)
- A_{j} 's and B_{j} 's are random variables:

$$
* E\left\{A_{j}\right\}=E\left\{B_{j}\right\}=0
$$

$$
* \operatorname{var}\left\{A_{j}\right\}=\operatorname{var}\left\{B_{j}\right\}=\sigma_{j}^{2}
$$

$$
* \operatorname{cov}\left\{A_{j}, A_{k}\right\}=\operatorname{cov}\left\{B_{j}, B_{k}\right\}=0 \text { for } j \neq k
$$

$$
* \operatorname{cov}\left\{A_{j}, B_{k}\right\}=0 \text { for all } j, k
$$

- note: σ_{j}^{2} now allowed to depend on j

The Spectrum

- properties of simple model:
$-E\left\{X_{t}\right\}=\mu$
$-\sigma_{j}^{2}$'s decompose population variance:

$$
\sigma^{2}=E\left\{\left(X_{t}-\mu\right)^{2}\right\}=\sum_{j=1}^{N / 2} \sigma_{j}^{2}
$$

$-\sigma_{j}^{2}$'s determine acs:

$$
\rho_{k}=\frac{\sum_{j=1}^{N / 2} \sigma_{j}^{2} \cos \left(2 \pi f_{j} k\right)}{\sum_{j=1}^{N / 2} \sigma_{j}^{2}}
$$

- define spectrum as $S_{j} \equiv \sigma_{j}^{2}, 1 \leq j \leq N / 2$
- fundamental relationship:

$$
\sum_{j=1}^{N / 2} S_{j}=\sigma^{2}
$$

- decomposes σ^{2} into components related to f_{j}
- S_{j} 's equivalent to acs and σ^{2}
- easy to simulate x_{t} 's from simple model
- examples of spectra (in dB), acs's and x_{t} 's (Figures 12 to 17)

Nonparametric Estimation of $S_{j}: \mathbf{I}$

- problem: estimate spectrum S_{j} from X_{1}, \ldots, X_{N}
- mine out A_{j} 's \& B_{j} 's since $S_{j}=\operatorname{var}\left\{A_{j}\right\}=\operatorname{var}\left\{B_{j}\right\}$
- could use linear algebra (N knowns and N unknowns)
- can get A_{j} 's via discrete Fourier cosine transform:

$$
\begin{aligned}
\sum_{t=1}^{N} X_{t} \cos \left(2 \pi f_{j} t\right)= & \mu \sum_{t=1}^{N} \cos \left(2 \pi f_{j} t\right) \\
& +\sum_{t=1}^{N} \sum_{k=1}^{N / 2} A_{k} \cos \left(2 \pi f_{k} t\right) \cos \left(2 \pi f_{j} t\right) \\
& +\sum_{t=1}^{N} \sum_{k=1}^{N / 2} B_{k} \sin \left(2 \pi f_{k} t\right) \cos \left(2 \pi f_{j} t\right) \\
= & \sum_{k=1}^{N / 2} A_{k} \sum_{t=1}^{N} \cos \left(2 \pi f_{k} t\right) \cos \left(2 \pi f_{j} t\right) \\
& +\sum_{k=1}^{N / 2} B_{k} \sum_{t=1}^{N} \sin \left(2 \pi f_{k} t\right) \cos \left(2 \pi f_{j} t\right) \\
= & \frac{N A_{j}}{2}
\end{aligned}
$$

- yields (for $1 \leq j<N / 2$): $A_{j}=\frac{2}{N} \sum_{t=1}^{N} X_{t} \cos \left(2 \pi f_{j} t\right)$
- B_{j} 's from sine transform: $B_{j}=\frac{2}{N} \sum_{t=1}^{N} X_{t} \sin \left(2 \pi f_{j} t\right)$

Nonparametric Estimation of S_{j} : II

- $\operatorname{since} S_{j}=\operatorname{var}\left\{A_{j}\right\}=\operatorname{var}\left\{B_{j}\right\}$, estimate S_{j} using

$$
\begin{aligned}
\hat{S}_{j} & \equiv \frac{A_{j}^{2}+B_{j}^{2}}{2} \\
& =\frac{2}{N^{2}}\left[\left(\sum_{t=1}^{N} X_{t} \cos \left(2 \pi f_{j} t\right)\right)^{2}+\left(\sum_{t=1}^{N} X_{t} \sin \left(2 \pi f_{j} t\right)\right)^{2}\right]
\end{aligned}
$$

- examples: Figures 20 and 21
- points about \hat{S}_{j}
- uncorrelatedness of A_{j} 's and B_{j} 's implies \hat{S}_{j} 's approximately uncorrelated (exact under Gaussian assumption)
- easy to test hypothesis using \hat{S}_{j} 's (difficult for sample acs)
- \hat{S}_{j} is ' 2 degrees of freedom' estimate; if S_{j} 's slowly varying, can average \hat{S}_{j} 's locally
- $\log \left(\hat{S}_{j}\right)$ stabilizes variance (rationale for dB 's)

Parametric Estimation of S_{j}

- assume S_{j} 's depend on small number of parameters
- simple model:

$$
S_{j}(\alpha, \beta)=\frac{\beta}{1+\alpha^{2}-2 \alpha \cos \left(2 \pi f_{j}\right)}
$$

(related to first-order autoregressive process)

- estimate S_{j} 's by estimating α, β :

$$
\hat{S}_{j}(\hat{\alpha}, \hat{\beta})=\frac{\hat{\beta}}{1+\hat{\alpha}^{2}-2 \hat{\alpha} \cos \left(2 \pi f_{j}\right)}
$$

- can show that $\rho_{1} \approx \alpha$, so let $\hat{\alpha}=\hat{\rho}_{1}$
- requiring

$$
\sum_{j=1}^{N / 2} \hat{S}_{j}(\hat{\alpha}, \hat{\beta})=\frac{1}{N} \sum_{t=1}^{N}\left(X_{t}-\bar{X}\right)^{2} \equiv \hat{\sigma}^{2}
$$

yields estimator

$$
\hat{\beta}=\hat{\sigma}^{2}\left(\sum_{j=1}^{N / 2} \frac{1}{1+\hat{\alpha}^{2}-2 \hat{\alpha} \cos \left(2 \pi f_{j}\right)}\right)^{-1}
$$

- examples: thicks curves on Figures 20 and 21
- need to be careful about parameterization (model here poor for Willamette River spectrum)

'Industrial Strength' Theory: I

- simple model not adequate in practice
- frequencies in model tied to sample size N
- time series treated as if it were 'circular'; i.e.,

$$
X_{k}, X_{k+1}, \ldots, X_{N-1}, X_{N}, X_{1}, X_{2}, \ldots, X_{k-1}
$$

has same spectrum as $X_{1}, X_{2}, \ldots, X_{N}$.

- under assumption of stationarity, i.e.,
$E\left\{X_{t}\right\}=\mu, \operatorname{var}\left\{X_{t}\right\}=\sigma^{2}$ and $\operatorname{cov}\left\{X_{t}, X_{t+k}\right\}=\rho_{k} \sigma^{2}$
simple model extends to become

$$
X_{t}=\mu+\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f t} d Z(f) \approx \sum_{f}[A(f) \cos (2 \pi f t)+B(f) \sin (2 \pi f t)]
$$

where $d Z(f)$ yields $A(f)$ and $B(f)$, and we now use

$$
e^{i 2 \pi f t} \equiv \cos (2 \pi f t)+i \sin (2 \pi f t), \quad i \equiv \sqrt{-1}
$$

- analogous to simple model, we use

$$
\operatorname{var}\{d Z(f)\}=S(f) d f
$$

to define a spectral density function $S(f)$

'Industrial Strength' Theory: II

- fundamental relationship now becomes

$$
\int_{-1 / 2}^{1 / 2} S(f) d f=\sigma^{2}
$$

- $S(f)$ and $\rho_{k} \sigma^{2}$ related via

$$
\rho_{k} \sigma^{2}=\int_{-1 / 2}^{1 / 2} S(f) e^{i 2 \pi f k} d f \text { and } S(f)=\sigma^{2} \sum_{k=-\infty}^{\infty} \rho_{k} e^{-i 2 \pi f k}
$$

- basic estimator of $S(f)$ is periodogram:

$$
\hat{S}^{(p)}(f) \equiv \frac{1}{N}\left|\sum_{t=1}^{N}\left(X_{t}-\bar{X}\right) e^{-i 2 \pi f t}\right|^{2}, \text { where } \bar{X} \equiv \frac{1}{N} \sum_{t=1}^{N} X_{t}
$$

- ideally it would be nice if

1. $E\left\{\hat{S}^{(p)}(f)\right\}=S(f)$
2. $\operatorname{var}\left\{\hat{S}^{(p)}(f)\right\} \rightarrow 0$ as $N \rightarrow \infty$
but, alas,
3. periodogram can be badly biased for finite N (can correct using data tapers)
4. $\operatorname{var}\left\{\hat{S}^{(p)}(f)\right\}=S^{2}(f)$ as $N \rightarrow \infty$ if $0<f<\frac{1}{2}$
(can correct using smoothing windows)

Uses of Spectral Analysis

- analysis of variance technique for time series
- some uses
- testing theories (e.g., wind data)
- exploratory data analysis (e.g., rainfall data)
- discriminating data (e.g., neonates)
- diagnostic tests (e.g., ARIMA modeling)
- assessing predictability (e.g., atomic clocks)
- applications
- tout le monde!

