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What is Spectral Analysis?

• one of the most widely used (and lucrative!) methods

in data analysis

• can be regarded as

– analysis of variance of time series using sinusoids

– sinusoids + statistics

– Fourier theory + statistics

• today’s lecture: introduction to spectral analysis

– notion of a ‘time’ series

– $0.25 introduction to time series analysis

∗ basics of ‘time domain’ analysis

∗ subject of Stat 519

– notion of the spectrum

– methods for estimating the spectrum

∗ nonparametric

∗ parametric

– concluding comments

– Stat/EE 520 has (lots!) more details
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Time Series & Time Series Analysis

• what is a time series?

– ‘one damned thing after another’ (R. A. Fisher?)

– xt, t = 1, . . . , N

– four examples (Figures 2 and 3)

• goal of time series analysis:

– quantify characteristics of time series

• univariate statistics, e.g., sample mean & variance

x̄ ≡ 1

N

N∑
t=1

xt and σ̂2 ≡ 1

N

N∑
t=1

(xt − x̄)2,

inadequate to say how xt and xt+k are related
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Lagged Scatter Plots

• bivariate distribution of separated pairs

• xt+1 versus xt, t = 1, . . . , N − 1: lag 1 scatter plot

• four examples (Figure 4)

• xt+k versus xt, t = 1, . . . , N − k: lag k scatter plot

• summarize scatter plots using linear model:

xt+k = αk + βkxt + εt,k

(not always reasonable: see Figure 9)

• Pearson product moment correlation coefficient

– let y1, . . . , yN & z1, . . . , zN be 2 collections of

ordered values

– let ȳ & z̄ be sample means

– sample correlation coefficient:

ρ̂ =
∑

(yt − ȳ)(zt − z̄)

[
∑

(yt − ȳ)2
∑

(zt − z̄)2]1/2
,

– measures strength of linearity (−1 ≤ ρ̂ ≤ 1)
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Sample Autocorrelation Sequence

• let {yt} = {xt+k : t = 1, . . . , N − k}
and {zt} = {xt : t = 1, . . . , N − k}

• for each lag k, plug these into

ρ̂ =
∑

(yt − ȳ)(zt − z̄)

[
∑

(yt − ȳ)2
∑

(zt − z̄)2]1/2
,

and fudge things a bit to get

ρ̂k ≡
∑N−k

t=1 (xt+k − x̄)(xt − x̄)
∑N

t=1(xt − x̄)2

• ρ̂k, k = 0, . . . , N − 1, called sample acs

• four examples (Figures 6 and 7)
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Modeling of Time Series

• assume xt is realization of random variable Xt

• need to specify properties of Xt (i.e., model xt)

• simplifying assumptions (related to stationarity)

– ρ̂k estimates

ρk ≡ cov {Xt, Xt+k}/σ2 ≡ E{(Xt−µ)(Xt+k−µ)}/σ2,

where

∗ µ ≡ E{Xt} (note: does not depend on t)

∗ σ2 = E{(Xt − µ)2} (does not depend on t)

– Xt’s are multivariate Gaussian

– statistics of Xt’s completely determined if we know

µ, σ2 and ρk’s

• critique of ‘time domain’ characterization (µ, σ2, ρk):

– not easy to visualize xt from ρk’s

– statistical properties of ρ̂k’s difficult to use
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Frequency Domain Modeling: I

• based on idea of expressing Xt in terms of sinusoids

• top five rows of Figure A1 show cos(2πft) for

t = 1, . . . , 128 & f = 1
128,

1
8,

1
4,

3
8,

1
2,

where f is frequency of sinusoid (1/f is period)

• bottom row shows addition of five sinusoids

– highly structured and nonrandom

• Figure A2 shows cos(2πft + φ) with φ chosen ran-

domly (one for each f )

– rattier looking, but still highly structured

• Figure A3 shows additions of 64 sinusoids with fre-

quencies 1
128,

2
128 . . . , 63

128,
64
128 & random phases

– very ratty looking, with no apparent structure

• note: cos(2πft + φ) = A cos(2πft) + B sin(2πft),

where A = cos(φ) and B = − sin(φ)

– E{A} = E{B} = 0

– var {A} = var {B} = 1
2

– cov{A, B} = 0, i.e., uncorrelated (?!)
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Frequency Domain Modeling: II

• generalize to following simple model for Xt:

Xt = µ +
N/2∑
j=1

[Aj cos (2πfjt) + Bj sin (2πfjt)]

– holds for t = 1, 2, . . . , N , where N is even

– fj ≡ j/N fixed frequencies (cycles/unit time)

(called Fourier or standard frequencies)

– Aj’s and Bj’s are random variables:

∗ E{Aj} = E{Bj} = 0

∗ var {Aj} = var {Bj} = σ2
j

∗ cov {Aj, Ak} = cov {Bj, Bk} = 0 for j �= k

∗ cov {Aj, Bk} = 0 for all j, k

– note: σ2
j now allowed to depend on j
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The Spectrum

• properties of simple model:

– E{Xt} = µ

– σ2
j ’s decompose population variance:

σ2 = E{(Xt − µ)2} =
N/2∑
j=1

σ2
j

– σ2
j ’s determine acs:

ρk =

∑N/2
j=1 σ2

j cos (2πfjk)
∑N/2

j=1 σ2
j

• define spectrum as Sj ≡ σ2
j , 1 ≤ j ≤ N/2

• fundamental relationship:
N/2∑
j=1

Sj = σ2

– decomposes σ2 into components related to fj

– Sj’s equivalent to acs and σ2

• easy to simulate xt’s from simple model

• examples of spectra (in dB), acs’s and xt’s

(Figures 12 to 17)
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Nonparametric Estimation of Sj: I

• problem: estimate spectrum Sj from X1, . . . , XN

• mine out Aj’s & Bj’s since Sj = var {Aj} = var {Bj}
• could use linear algebra (N knowns and N unknowns)

• can get Aj’s via discrete Fourier cosine transform:
N∑

t=1
Xt cos (2πfjt) = µ

N∑
t=1

cos (2πfjt)

+
N∑

t=1

N/2∑
k=1

Ak cos (2πfkt) cos (2πfjt)

+
N∑

t=1

N/2∑
k=1

Bk sin (2πfkt) cos (2πfjt)

=
N/2∑
k=1

Ak

N∑
t=1

cos (2πfkt) cos (2πfjt)

+
N/2∑
k=1

Bk

N∑
t=1

sin (2πfkt) cos (2πfjt)

=
NAj

2

• yields (for 1 ≤ j < N/2): Aj =
2

N

N∑
t=1

Xt cos (2πfjt)

• Bj’s from sine transform: Bj =
2

N

N∑
t=1

Xt sin (2πfjt)
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Nonparametric Estimation of Sj: II

• since Sj = var {Aj} = var {Bj}, estimate Sj using

Ŝj ≡ A2
j + B2

j

2

=
2

N 2





 N∑

t=1
Xt cos (2πfjt)




2

+


 N∑

t=1
Xt sin (2πfjt)




2



• examples: Figures 20 and 21

• points about Ŝj

– uncorrelatedness of Aj’s and Bj’s implies

Ŝj’s approximately uncorrelated

(exact under Gaussian assumption)

– easy to test hypothesis using Ŝj’s

(difficult for sample acs)

– Ŝj is ‘2 degrees of freedom’ estimate;

if Sj’s slowly varying, can average Ŝj’s locally

– log (Ŝj) stabilizes variance (rationale for dB’s)
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Parametric Estimation of Sj

• assume Sj’s depend on small number of parameters

• simple model:

Sj(α, β) =
β

1 + α2 − 2α cos (2πfj)

(related to first-order autoregressive process)

• estimate Sj’s by estimating α, β:

Ŝj(α̂, β̂) =
β̂

1 + α̂2 − 2α̂ cos (2πfj)

– can show that ρ1 ≈ α, so let α̂ = ρ̂1

– requiring
N/2∑
j=1

Ŝj(α̂, β̂) =
1

N

N∑
t=1

(Xt − X̄)2 ≡ σ̂2

yields estimator

β̂ = σ̂2




N/2∑
j=1

1

1 + α̂2 − 2α̂ cos (2πfj)



−1

• examples: thicks curves on Figures 20 and 21

• need to be careful about parameterization

(model here poor for Willamette River spectrum)
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‘Industrial Strength’ Theory: I

• simple model not adequate in practice

– frequencies in model tied to sample size N

– time series treated as if it were ‘circular’; i.e.,

Xk, Xk+1, . . . , XN−1, XN, X1, X2, . . . , Xk−1

has same spectrum as X1, X2, . . . , XN .

• under assumption of stationarity, i.e.,

E{Xt} = µ, var {Xt} = σ2 and cov {Xt, Xt+k} = ρkσ
2

simple model extends to become

Xt = µ+
∫ 1/2

−1/2
ei2πft dZ(f ) ≈ ∑

f
[A(f ) cos(2πft) + B(f ) sin(2πft)] ,

where dZ(f ) yields A(f ) and B(f ), and we now use

ei2πft ≡ cos(2πft) + i sin(2πft), i ≡
√
−1

• analogous to simple model, we use

var {dZ(f )} = S(f ) df

to define a spectral density function S(f )
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‘Industrial Strength’ Theory: II

• fundamental relationship now becomes
∫ 1/2

−1/2
S(f ) df = σ2

• S(f ) and ρkσ
2 related via

ρkσ
2 =

∫ 1/2

−1/2
S(f )ei2πfk df and S(f ) = σ2

∞∑
k=−∞

ρke
−i2πfk

• basic estimator of S(f ) is periodogram:

Ŝ(p)(f ) ≡ 1

N

∣∣∣∣∣∣
N∑

t=1
(Xt − X)e−i2πft

∣∣∣∣∣∣
2

, where X ≡ 1

N

N∑
t=1

Xt

• ideally it would be nice if

1. E{Ŝ(p)(f )} = S(f )

2. var {Ŝ(p)(f )} → 0 as N → ∞
but, alas,

1. periodogram can be badly biased for finite N

(can correct using data tapers)

2. var {Ŝ(p)(f )} = S2(f ) as N → ∞ if 0 < f < 1
2

(can correct using smoothing windows)
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Uses of Spectral Analysis

• analysis of variance technique for time series

• some uses

– testing theories (e.g., wind data)

– exploratory data analysis (e.g., rainfall data)

– discriminating data (e.g., neonates)

– diagnostic tests (e.g., ARIMA modeling)

– assessing predictability (e.g., atomic clocks)

• applications

– tout le monde!
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