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In which a social scientist walks into a wastewater treatment plant.
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Wastewater-based Drug Epidemiology
Looking upstream
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Wastewater-based Drug Epidemiology
Looking upstream

Wastewater treatment plants typically sample
Outflows
Inflows—to see how much of a pollutant is being removed
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Wastewater-based Drug Epidemiology
Looking upstream
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Wastewater-based Drug Epidemiology
Looking upstream

Testing waste as it comes in to wastewater treatment plants
(WWTPs) allows for quantification of:

Exposure to specific chemicals and foods
Markers of oxidative stress and allergic reactions
Levels of drug use
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Wastewater-based Drug Epidemiology
Looking upstream

Using wastewater to identify levels of drug use
Testing waste as it comes in to wastewater treatment plants
Requires assembling a number of pieces, drawing on analytic
chemistry, environmental statistics, population estimation
Project involved 6 drugs, 19 WWTPs in Oregon and Washington

Banta-Green, C.J., Brewer, A.J., Ort, C., Helsel, D.R., Williams, J.R.,
& Field, J.A. (2016). Using wastewater-based epidemiology to
estimate drug consumption—Statistical analyses and data
presentation. Science of the Total Environment, 568, 856–863.
http://dx.doi.org/10.1016/j.scitotenv.2016.06.052

Cannabis in wastewater project: 2 WWTPs serving Tacoma
Burgard, D. A., Williams, J., Westerman, D., Rushing, R., Carpenter,
R., LaRock, A., Sadetsky, J., Clarke, J., Fryhle, H., Pellman, M., &
Banta-Green, C. J. (2019). Using wastewater-based analysis to
monitor the effects of legalized retail sales on cannabis consumption
in Washington State, USA. Addiction, 114, 1582–1590.
https://doi.org/10.1111/add.14641.
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Wastewater-based Drug Epidemiology
Assembling the pieces

Wastewater testing results, substance X
Measured Titration

Conc. Correction Flow
City (ng/L) Factor (L/day)

A 1005.2 1.077 17261424
A 1782.0 1.053 11318346
A <LOD 1.056 15375268
A <LOQ 1.049 15568495
A 1012.5 1.038 15456856
...

...
...

...

=⇒
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Wastewater-based Drug Epidemiology
Assembling the pieces

Estimating yearly average per capita (or index) load

index load =

∑N
i=1 index loadi

N
(1)

index loadi = Ci × Fi ÷ Pi (2)

May be able to multiply by a metabolization factor to estimate
amount ingested
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Wastewater-based Drug Epidemiology
Assembling the pieces
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Wastewater-based Drug Epidemiology
Zuccato et al., 2005

"Our data suggest that actual cocaine consumption may be much
greater than estimated by current methods....If we consider that in the
River Po basin there are about 1.4 million young adults, the official
[survey results] in this area would translate into at least 15,000 cocaine
use events per month. We however found evidence of about 40,000
doses per day, a vastly larger estimate. The economic impact of
trafficking such a large amount of cocaine would be staggering."
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Wastewater-based Drug Epidemiology
Zuccato et al., 2005

"Our data suggest that actual cocaine consumption may be much
greater than estimated by current methods....In agreement with these
findings, cocaine loads determined at WWTPs gave drug consumption
estimates of about 2–7 doses per 1000 people, or 9–26 doses per
day per 1000 young adults."

Jason R Williams (ADAI) Doing WBE 11 March 2020 15 / 55



Wastewater-based Drug Epidemiology
Zuccato et al., 2005, Tables 1 & 2

Levelsa Load Use per 1000 people
Cocaine BE Cocaineb All Young adultsc

ng/liter ng/liter g/day g/day g/day

River Po 1.2 ± 0.2e 25 ± 5e 3800 ± 720e 0.70 ± 0.13e 2.7 ± 0.5e

Cagliari 83 640 130 0.47 1.7
Cuneo 76 420 30 0.21 0.9
Latina 120 750 33 0.73 2.6
Varese 42 390 36 0.32 1.4

0.44 ± 0.23e 1.7 ± 0.7e

aCocaine and BE were analyzed by HPLC-MS/MS
bCocaine-equivalent loads estimated from BE concentrations in the waters
c15–34 yr old
eMean ± SD
River Po sampling: 4 days, 5 samples every 30 min each day
WWTP sampling: Single 24-hour composite, sampled every 20 min
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Wastewater-based Drug Epidemiology
Banta-Green et al., 2009

"The findings suggest a valid, rich data source that is complementary
to other drug surveillance data sources.... Data were presented in
terms of the relative distribution of index drug loads for each
substance. This method of data presentation limits comparisons
across drugs to whether substances were or were not
detectable/quantifiable and precludes direct comparisons of drug
index loads."
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Wastewater-based Drug Epidemiology
Banta-Green et al., 2009

"The findings suggest a valid, rich data source that is complementary
to other drug surveillance data sources.... The ongoing work of the
study team is focused upon quantifying the uncertainty around
computed index loads and the source of index load variability to
inform future sampling campaigns and analyses in order to make more
refined comparisons between substances and locations."
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Wastewater-based Drug Epidemiology
Banta-Green et al., 2009

MDMA Level by Urbanicity
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Figure 1 Number and proportion of single-day
drug index loads by urbanicity in Oregon for
benzoylecgonine (BZE) (cocaine metabolite),
methamphetamine and 3,4-methylenedioxy-
methamphetamine (MDMA)

Drug epidemiology using wastewater testing 1877

© 2009 The Authors. Journal compilation © 2009 Society for the Study of Addiction Addiction, 104, 1874–1880
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Wastewater-based Drug Epidemiology
Banta-Green et al., 2009
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Wastewater-based Drug Epidemiology
Assembling the pieces

Using wastewater to identify levels of drug use
1 Within-year sampling regime
2 Within-day sampling at the WWTP
3 Analytical chemistry (Large volume injection liquid

chromatography/tandem mass spectrometry)
4 Population estimate
5 Excretion (metabolization) rates?

Putting the pieces together: Complete estimates accounting for
measurement error
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Wastewater-based Drug Epidemiology
Assembling the pieces

Meyer, 2014, Anal Bioanal Chem, Fig 3. Schematic overview of the sewage epidemiology
approach
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Wastewater-based Drug Epidemiology
Assembling the pieces

Excretion rates are problematic.
In Burgard et al., 2019, we note that the two most prominent
excretion estimates for THC to THC-COOH are 0.5% and 2.5%.
Like much cannabis research, these estimates are based on
smoking.
Furthermore, the intermediate metabolite THC-OH may also be
excreted, and itself metabolizes to THC-COOH in wastewater
systems.
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Wastewater-based Drug Epidemiology
Assembling the pieces

Estimating yearly average per capita (or index) load

index load =

∑N
i=1 index loadi

N
(3)

index loadi = Ci × Ti × Fi ÷ Pi (4)
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Wastewater-based Drug Epidemiology
Assembling the pieces

index loadi = Ci × Ti × Fi ÷ Pi

Ci is the estimated concentration in the sample
Possibly with censoring (indicated by unique codes to indicate
<LOD or <LOQ)
Additional measurement error estimated by repeated testing 2 to 4
times
From LC/MS results
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Wastewater-based Drug Epidemiology
Assembling the pieces

index loadi = Ci × Ti × Fi ÷ Pi

Ti is a titration factor indicating how the sample was modified to
facilitate chemical analysis

Assumed to be measured without error
Reflects storing and expanding the sample for testing
From LC/MS procedure
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Wastewater-based Drug Epidemiology
Assembling the pieces

index loadi = Ci × Ti × Fi ÷ Pi

Fi is the estimated flow of liquid into the WWTP for that day
Fairly established measurement
Use an estimated measurement error of 5% (RSD) from prior
WWTP testing protocols (Brewer et al., 2012)
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Wastewater-based Drug Epidemiology
Assembling the pieces

index loadi = Ci × Ti × Fi ÷ Pi

Pi is the estimated population of users of the WWTP for that day
Ideally, want number of contributors to the flow

Toilet user-days?

In reality, have estimate of catchment area population from WWTP
itself
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Wastewater-based Drug Epidemiology
Assembling the pieces

index loadi = Ci × Ti × Fi ÷ Pi

Pi is the estimated population of users of the WWTP for that day
We combine, where possible, Census Bureau-based daytime
population correction and estimation error
Otherwise use prior error estimate of 20% (Ort et al., 2014)
Why "for that day"?

Daytime population correction is for weekdays.
Renton and Seattle WWTPs serve different catchments depending on
rain and flow.
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Wastewater-based Drug Epidemiology
Assembling the pieces

index loadi = Ci × Ti × Fi ÷ Pi

Pi is the estimated population of users of the WWTP for that day
We combine, where possible, Census Bureau-based daytime
population correction and estimation error
Otherwise use prior error estimate of 20% (Ort et al., 2014)
Why "for that day"?

Daytime population correction is for weekdays.
Renton and Seattle WWTPs serve different catchments depending on
rain and flow.
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Wastewater-based Drug Epidemiology
Assembling the pieces

Combining uncertainties
Easier:

UT =
√

U2
S + U2

C + U2
F + U2

P (5)

More advanced: Monte Carlo

Jason R Williams (ADAI) Doing WBE 11 March 2020 32 / 55



Outline

1 Wastewater-based drug epidemiology
WBE: Looking upstream to find hidden behaviors

2 From testing results to estimates
Assembling the pieces
Multiple pieces, multiple uncertainties
Estimation in the presence of censored data
Apply tools from other fields to generate a sample estimate

3 Visualization and results
Examples

4 Summary
Your take-aways

Jason R Williams (ADAI) Doing WBE 11 March 2020 33 / 55



Wastewater-based Drug Epidemiology
Estimation in presence of censored data

Wastewater testing results, substance X
Measured Titration

Conc. Correction Flow
City (ng/L) Factor (L/day)

1 1005.2 1.077 17261424
1 1782.0 1.053 11318346
1 <LOD 1.056 15375268
1 <LOQ 1.049 15568495
1 1012.5 1.038 15456856
...

...
...

...
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Censored measures
Multiple samples to generate more precise measure

ng/L
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Censored measures
When measurement is less precise at lower levels

<LOD Below limit of detection ("non-detects")
Left-censored: x < LOD
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Censored measures
Below limit of detection
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Censored measures
When measurement is less precise at lower levels

<LOD Below limit of detection ("non-detects")
Left-censored: x < LOD

<LOQ Below limit of quantification
Interval-censored: LOD < x < LOQ
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Censored measures
Below limit of quantification
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Estimation in the presence of censorship
How do we generate a mean?

Wastewater testing results, substance X
Measured Titration

Conc. Correction Flow
City (ng/L) Factor (L/day)

A 1005.2 1.077 17261424
A 1782.0 1.053 11318346
A <LOD 1.056 15375268
A <LOQ 1.049 15568495
A 1012.5 1.038 15456856
...

...
...

...

=⇒
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Estimation in presence of censored data
Less robust solutions

Dealing with censored data: Ignore censored observations
<LOD Below limit of detection→ NA
<LOQ Below limit of quantification→ NA
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Estimation in the presence of censorship
True mean
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Estimation in the presence of censorship
na.rm = T
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Estimation in presence of censored data
Less robust solutions

Dealing with censored data: Substitution
<LOD Below limit of detection→ plug in 0
<LOQ Below limit of quantification→ plug in 1

2 LOQ
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Estimation in the presence of censorship
Substitution
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Outline

1 Wastewater-based drug epidemiology
WBE: Looking upstream to find hidden behaviors

2 From testing results to estimates
Assembling the pieces
Multiple pieces, multiple uncertainties
Estimation in the presence of censored data
Apply tools from other fields to generate a sample estimate

3 Visualization and results
Examples

4 Summary
Your take-aways
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Wastewater-based Drug Epidemiology
Estimation in presence of censored data

In Statistics for censored environmental data using Minitab and R,
Helsel gives guidelines for how to deal with censored observations
to create a mean estimate

< 50% Kaplan-Meier
50–80% robust Maximum Likelihood Estimation
> 80% report censoring and perhaps a valid percentile of

interest
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Wastewater-based Drug Epidemiology
Results

Focus on two drugs: methamphetamine and MDMA (Ecstasy)
Meth: 1 censored observation (Pasco)
MDMA: 3.7% (Bend) to 94.2% (Hermiston), all 19 WWTPs had at
least 1 <LOD
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Wastewater-based Drug Epidemiology

Renton Lakota Bend Corvallis Portland Klamath Falls Eugene Port Angeles Everett Aberdeen
Seattle Olympia Redondo Tri−City Pasco Ontario Grants Pass Hermiston Tacoma
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Wastewater-based Drug Epidemiology

>80%
censoring
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What We Have Added

We lay out:
Building blocks and error components for estimates
How to combine them to create estimates with confidence intervals
for comparison across place and time

We improve upon:
Population error estimation and accounting for daytime population
changes
Handling censored data
Visualization
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How Can You Use This?

You might improve upon:
Error estimation
Population estimation for WWTP catchment

Mobile phone data? Requires shapefile for catchment.

Estimates of metabolism rates and usual doses for given drugs
Applying censored data methods in other areas with imperfect
measurement:

HIV viremia counts
Population lead levels
Other ideas?
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How Can You Use This?

You might improve upon:
Population estimation for WWTP catchment

Lai, F. Y., et al. (2015). Systematic and Day-to-Day Effects of
Chemical-Derived Population Estimates on Wastewater-Based Drug
Epidemiology. Environmental Science & Technology, 49, 999–1008.
https://doi.org/10.1021/es503474d
O’Brien, et al. (2019). A National Wastewater Monitoring Program for
a better understanding of public health: A case study using the
Australian Census. Environment International, 122, 400–411.
https://doi.org/10.1016/J.ENVINT.2018.12.003
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Wastewater-based Drug Epidemiology
Robust MLE

Literature suggests using 3 distributions—normal, log, square
root—and selecting best fit
Problem: Retransformation bias is an issue with log
transformations, as “the means and variances of the transformed
variables are related nonlinearly to the original means and
variances, and the process of transforming back gives estimators
that often are quite severely biased” (Shumway et al., 2002, p.
3345)
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Wastewater-based Drug Epidemiology
Robust MLE

Problem: Retransformation bias
Solution: Robust retransformation

Step 1 Take the estimated distribution of the transformed data and place
the censored data in appropriate places on the lower part of the
distribution. These plotting positions or percentiles are essentially
evenly spaced in the lower end of the distribution, on the
transformed scale.

Specifically, for each censored observation i among all c censored
observations within the N observations, the plotting position p is
given by

p =
c
N

×
i − 3

8

c + 1
4

(6)

where the i for observations below LOD come before the i for
observations above LOD but below LOQ.
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Wastewater-based Drug Epidemiology
Robust MLE

Problem: Retransformation bias
Solution: Robust retransformation

Step 1 Take the estimated distribution of the transformed data and place
the censored data in appropriate places on the lower part of the
distribution. These plotting positions or percentiles are essentially
evenly spaced in the lower end of the distribution, on the
transformed scale.

Step 2 Translate the percentiles into values on the transformed scale via
the normal distribution quantile function.

Step 3 Individually re-transform these predicted values on the transformed
scale to the original scale.

Step 4 Combine these predicted values with the original observed values
(i.e. the uncensored values) into a new set of data.

Step 5 Calculate the mean of this hypothetical data.
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Wastewater-based Drug Epidemiology
Finding an opportunity

Data exploration with censored data: Say you wanted to do a
scatter plot or box plot, what do you do with the censored
observations?

Could just assign them arbitrary values (e.g., 0 and one-half the
LOQ)
But avoiding that is why we use censored data methods

Jason R Williams (ADAI) Doing WBE 11 March 2020 4 / 7



Wastewater-based Drug Epidemiology
Finding an opportunity

Goal: Data exploration with censored data
Solution: Use the robust retransformation process to simulate
censored data:

Step 1 Take the estimated distribution of the transformed data and place
the censored data in appropriate places on the lower part of the
distribution. These plotting positions or percentiles are essentially
evenly spaced in the lower end of the distribution, on the
transformed scale.

Step 2 Translate the percentiles into values on the transformed (or normal)
scale via the normal distribution quantile function.

Step 3 Individually re-transform these predicted values on the transformed
scale to the original scale (if necessary).

Step 4 Combine these predicted values with the original observed values
(i.e. the uncensored values) into a new set of data.
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Wastewater-based Drug Epidemiology
Exploration: Meth

KM Complete
Pasco Bend Eugene Grants Pass Klamath Falls Olympia Port Angeles Redondo Seattle Tri−City

Aberdeen Corvallis Everett Hermiston Lakota Ontario Portland Renton Tacoma

0.
15

0.
77

1.
5

2.
3

2.
9

m
g/

pe
rs

on
/d

ay

 box shading: 80% censored 50% censored No censoring

Meth index load (mg/person/day) distribution summary
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Wastewater-based Drug Epidemiology
Exploration: MDMA

Report censoring MLE KM
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