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[1] Motionally induced electric fields and electric currents in the ocean depend to first
order solely on the vertical dimension. We investigate the significance of two‐dimensional
(2‐D) perturbations that arise in the presence of sloping topography. The full electric
response is calculated for a schematic geometry that contains a topographic slope, has a
two‐layer ocean with a layer of sediment beneath, and is described by five nondimensional
parameters. When considered over the realistic ranges of topographic aspect ratio (the ratio
of mean water depth to topographic width), topographic relief, sediment thickness,
and sediment conductivity, velocity errors arising from 2‐D perturbations are found to be
less than a few percent of the dominant one‐dimensional (1‐D) signal. All errors depend
on the topographic aspect ratio to the power of 1.9 and have linear dependence on
topographic relief and the depth of the surface jet. Depth‐uniform velocity errors are
roughly proportional to the 1‐D sediment conductance ratio, whereas depth‐varying
velocity errors are independent of sediment thickness or conductivity. Two‐dimensional
perturbations decay with a half width of 0.2–1 times the 1‐D effective water depth. The
magnitude of estimated errors is consistent with those found at a measurement location
with strong 2‐D perturbations. This study extends the first‐order theory to the maximum
expected aspect ratios for topography and finds small perturbations with simple
dependencies. Overall, the 1‐D approximation is found to be adequate for interpreting
observations at all but the most extreme locations.

Citation: Szuts, Z. B. (2010), Relationship between ocean velocity and motionally induced electrical signals: 2. In the presence
of sloping topographic, J. Geophys. Res., 115, C06004, doi:10.1029/2009JC006054.

1. Introduction

[2] Measuring horizontal electromagnetic fields (EM) that
are generated by the motion of seawater through the Earth’s
magnetic field is a convenient way to indirectly measure
ocean velocity. High quality observations have been made
from a variety of platforms (including submarine cables,
bottom‐mounted sensors, vertical profilers, and horizontally
drifting floats) and the availability of commercial EM in-
struments and cables indicate a wide accessibility to the
oceanographic community.
[3] The technique has unique advantages, and in many

cases EM observations are the only practical means for
measuring the desired quantity. Profiling floats measure
high vertical resolution profiles of velocity and can be used
for either ship‐based or autonomous deployments. Station-
ary sensors such as bottom electrometers or submarine
cables measure a quantity dynamically similar to volume

transport [Luther and Chave, 1993], the utility of which is
exemplified by monitoring of the meridional overturning
circulation in the North Atlantic [Cunningham et al., 2007].
The increasing availability of motional induction techni-
ques, however, necessitates a closer inspection of the
underlying theory in a broader range of environments than
considered in the literature.
[4] The theory of motional induction that relates ocean

velocity to electric fields (EF) and electric currents depends
only on the vertical dimension, a one‐dimensional (1‐D)
relationship. This is the form typically used to interpret
observations and to calculate water velocity.
[5] The higher‐order terms of this theory that depend on

velocity or topographic gradients have not yet been directly
calculated or observed in situations where they are expected
to be significant. Although small horizontal perturbations of
velocity and topography were considered by Sanford [1971],
his use of a perturbation technique means that the solution is
strictly valid only for small gradients and cannot be directly
applied to regions such as continental slopes or at edges of
highly energetic eddies.
[6] Here we are concerned with the structure and magni-

tude of oceanic electric fields in the presence of topographic
slopes. Electromagnetic solutions are calculated directly for
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a simplified geometry containing topographic slopes, and
the solutions are then evaluated for the magnitude of per-
turbation from the first‐order theory. In particular, we focus
on the errors that arise in calculating velocity from electric
field observations in the presence of these higher‐order
effects. A companion article [Szuts, 2010, hereafter SzI]
considers the role of horizontal velocity gradients in gen-
erating higher‐order EM perturbations. A complementary
paper (Z. B. Szuts, in preparation, 2010, hereafter Sz10)
analyzes electric field observations collected across the Gulf
Stream at Cape Hatteras, North Carolina, USA and con-
siders the same processes discussed here but for observa-
tions in a specific and complex location.
[7] The theory of motional induction and the physical

basis for higher order terms is presented first in section 2,
after which our method of evaluating the 2‐D perturbations
is presented in section 3. Given that the theory and the
method of analysis are very similar to that of SzI, only the
essential features are reiterated here. The electromagnetic
solutions are described next (section 4). A discussion of
these results follows (section 5), including a synthesis with
the results of SzI, and we conclude with section 6.

2. Theory

[8] Electric fields occur in the ocean due to the motion of
conductive salt water through the Earth’s magnetic field;
this is generally called motional induction. The thin aspect
ratio of the ocean and the assumption of small horizontal
gradients of velocity and topography allow for great sim-
plification of the three‐dimensional (3‐D) governing equa-
tions. Although other analyses focus on additional details of
oceanic electromagnetism, the results of Sanford [1971] are
most appropriate for this investigation because his pertur-
bation technique includes the effect of small horizontal
gradients. Other theoretical analyses offer discussions of
long period waves [Larsen, 1968, 1971; Tyler, 2005], the
influence of deep earth conductivity structure [Chave and
Luther, 1990], and spherical coordinates [Tyler and
Mysak, 1995b] among others.
[9] The principal electric fields (E) and electric currents

(J) generated by ocean flow fall into two modes. The tra-
ditional and generally more important mode restricts E and
J to the vertical plane. This is a toroidal mode that describes,
for instance, electric currents in the surface layer forced by
surface flow with weaker electric currents returning in the
motionless deep ocean. The magnitude of E or J depends on
the strength of the vertically averaged (defined as baro-
tropic) or vertically varying (defined as baroclinic) velocity
signals, respectively. At the simplest, this is exemplified by
two cases of an ocean over a nonconductive seafloor: if
water motion is vertically uniform, E is maximal and J is
zero everywhere, in analogy to the Hall effect of classical
physics; while if water motion is purely baroclinic there is
no E but J is maximal.
[10] The second mode, called poloidal, is characterized by

E that uniformly fill the water column and are directed in the
horizontal plane. This mode only exists in situations where
there are gradients in the downstream direction and thus is a
3‐D effect. Such effects, often called nonlocal currents, will
not be discussed further [Tyler et al., 2003].

[11] The dominant solution found by Sanford [1971] is
now well established [Chave and Luther, 1990; Tyler and
Mysak, 1995a]. The analytical form of his solutions,
though dependent on initial assumptions, remains instructive
as it hints at the underlying physical factors relating the EM
solution to perturbations of velocity and topography.
Among his assumptions are: a horizontal ocean bottom (H)
with small topographic perturbations (h, where h/H � 1),
width scales (L) much larger than bottom depth (H/L � 1),
predominantly horizontal oceanic velocity (v = (u, v, 0)),
distant lateral boundaries, a layer of underlying sediment
that has a uniform electrical conductivity, and a highly
conductive deep earth to approximate the deep but con-
ductive mantle.
[12] Although it is readily shown that time variations of

motionally induced E in turn induce magnetic fields that are
negligible compared to the Earth’s magnetic field, a less
evident process is inductive coupling between the ocean and
the conductive mantle. By considering the frequency and
spatial extent of nontidal oceanic flow, which are generally
low frequency (periods larger than a day) and smaller than
basin scale (<1000 km), the use of a quasi‐static form for
motional induction is accurate to less than 5% [Sanford,
1971; Chave and Luther, 1990].
[13] In general form, the quasi‐static horizontal electric

field Eh is

�Eh ¼ rh� ¼ v� k̂Fz � J h=�; ð1Þ

where rh is the horizontal gradient operator, � is electric
potential, v is oceanic velocity, Fz is the vertical component
of Earth’s magnetic field, k̂ is the vertical unit vector
(pointing upward), s is electrical conductivity, and Jh is
horizontal electric current density. The electromotive driv-
ing force v × k̂Fz is what generates electric field and electric
currents.
[14] A general form for horizontal electric current density

divided by conductivity with the above assumptions is
[Sanford, 1971]

J h

�
¼ ðv� v*Þ � Fzk̂ �rh

1

Hð1þ �Þ
Z�

�H

k̂ � ðv� FÞz0 dz0
8<
:

þ
Zz

�H

k̂ � ðv� FÞ dz0
9=
;; ð2Þ

with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q

D ¼ H þ � � hþ �s

�
ðHs � H þ hÞ

v* ¼
Z �

�Hþh
�v dz0

Z �

�Hs

� dz0
�

;

ð3Þ

where z is the sea surface, −H is the mean position of the
seafloor, h is the perturbation of the seafloor, −Hs is the
bottom of conductive sediment, D is a scaled water depth, ss
is the uniform sediment conductivity, l is the sediment
conductance factor (D/H = 1 + l), and v* is the conductivity‐
weighted vertically averaged velocity. The coordinate
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directions are as follows: x is positive east, y is positive
north, and z is positive upward. The first and second terms on
the right‐hand side of (2) represent first‐order and higher‐
order processes. The addition of a third term caused by 3‐D
effects makes Jh nondivergent to order H2/L2 [Sanford,
1971].

2.1. First‐Order Term

[15] The first term on the right‐hand side of (2) is the
principal toroidal mode. This term is one‐dimensional
because it only depends on the vertical dimension: a vertical
integral of velocity (3) defines the depth‐uniform electric
field v*Fz, while vertical variations of s(v(z) − v*) determine
the electric current density. The 1‐D approximation used to
interpret observations is obtained by keeping only this term,
which is interchangeably called 1‐D or first order.
[16] The quantity v* corresponds physically to the verti-

cally uniform horizontal electric field divided by Fz and is
called the vertically averaged conductivity‐weighted veloc-
ity. In the 1‐D approximation, the constraint that Jh must
vertically integrate to zero to conserve charge leads to the
definition of v*.
[17] The electric current density divided by s is the dif-

ference between that driven by the depth‐uniform electric
field and that generated by local horizontal water motion,
(v(z) − v*) × k̂Fz. In the limiting situation where the flow
field is entirely barotropic and there is no sediment layer,
there will be no electric currents.
[18] A simpler definition of v* is obtained by simplifying

the numerator and denominator of (3). A Reynolds
decomposition of the numerator defines the vertical corre-
lation factor g

1

H � hþ �

Z�

�Hþh

�v dz ¼ �v ¼ � vþ �0v0 ¼ � vð1þ �Þ; ð4Þ

where for the variables v(z) and s(z), v and � indicate a
vertical average in the water column and v′ and s′ indicate
perturbations about the vertical mean.
[19] Dividing the denominator by the vertical conductance

of the water column and rearranging gives

1þ � ¼
Z �

�Hs

�ðzÞ dz
Z �

�Hþh
�ðzÞ dz

�

¼ 1þ ðHs � H þ hÞ�s ðH � hþ �Þ�= ; ð5Þ

where l is the bottom conductance factor, the ratio of the
sediment conductance to the water column conductance.
[20] Combining (4) and (5) yields a simplified form of v*

more suitable for interpreting observed E

v* ¼ v
1þ �

1þ �

� �
: ð6Þ

Although this form has no horizontal dependence because of
the assumption of H/L � 1, Chave and Luther [1990] show
that the variables v*, g, and l are horizontally averaged
within a few times the water depth.
[21] The factor l quantifies the amount of shorting

through the bottom sediment. It is closely related to the
equivalent bottom depth D (defined in (3), or alternatively
D = H (1 + l)), which is the depth of the water column plus

a thickness of seawater with the same conductance as the
sediments. Thus, the barotropic velocity generates an elec-
tric field that is reduced by the additional conductance of the
seafloor. The electric field is the quantity that is measured
by stationary sensors such as seafloor electrometers or
submarine cables [see SzI].
[22] The vertical correlation factor g = �0v0=�v corrects for

correlations of velocity and water conductivity that alter the
electric field v*Fz. For instance, if a layer of fast moving
water (large motional induction source) is also more con-
ductive, then that layer drives a larger electric current at that
depth compared to a uniformly conductive case. The larger
electric current in turn generates a larger electric field. The
sign of g is positive in this case, and v* is accordingly
larger. Measurements of temperature and salinity simulta-
neous with Jh/s allow direct calculation of g, and prior
calculations of g found it to have less than a 10% influence
on v* for open ocean baroclinic modes [Chave and Luther,
1990; Szuts, 2004]. The quantity Jh/s is sensed by vertical
profiling floats (e.g., XCP or EM‐APEX), because they drift
horizontally at the local water velocity and so only sense the
potential across their skin generated by Jh [see SzI].

2.2. Higher‐Order Term: Horizontal Gradients

[23] The second term on the right‐hand side of (2) is a
higher‐order term because it scales as H/L. It is also two‐
dimensional (toroidal) because it couples with a term of
similar form for Jz (not shown). The poloidal mode (not
shown) also scales as H/L but describes 3‐D effects.
[24] The second term is nonzero if there are horizontal

gradients of H, l, F or velocity. It includes both depth‐
uniform and depth‐varying components (the first and second
integrals of term 2, respectively). In analogy with the hori-
zontal averaging of the first‐order term, it is expected that
the higher order terms depends on a region within a few
times the water depth. The H/L scaling explains why the 1‐D
approximation is sufficiently accurate for the small aspect
ratios found in the open ocean.
[25] In highly energetic regions that are often of interest to

physical oceanographers, however, h/H is not necessarily
�1. The perturbation technique used to obtain (2) is not
valid for situations that break the initial assumptions, and
thus to accurately calculate the EM response under such
conditions it is necessary to calculate solutions with alter-
native techniques.

3. Approach for Resolving Higher‐Order
Electric Fields

[26] Because of the difficulty of obtaining general
analytical forms for arbitrarily large gradients of topogra-
phy, we instead consider a schematic geometry that contain
gradients in a two‐dimensional plane. Quantifying the two‐
dimensional (2‐D) perturbations is not straightforward, and
so the analysis methods used must also be specified.

3.1. Schematic Geometry

[27] The geometry considered has three layers (Figure 1):
a surface ocean layer moving in slab motion, a motionless
deep ocean with variable thickness because of topography,
and a uniformly thick and mildly conductive sediment layer
at the bottom. It is fully described by seven parameters: the
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half width of the slope Lt, the topographic relief 2 At, the
depth of the surface layer H′, the water depth at the center of
the slope Hmid, the sediment thicknessDHs (= Hs(x) − H(x)),
the electrical conductivity of the water s, and the conduc-
tivity of the sediment sr. The bottom depth H(x) is chosen of
the form

HðxÞ ¼
�Hmid � At x < �Lt

�Hmid þ At sin
�x

2Lt

� �
�Lt � x � Lt

�Hmid þ At Lt < x

8><
>: ; ð7Þ

because it provides a continuous seafloor that has uniform
water depth on either side of the topographic slope.
[28] These seven parameters can be reduced to five non-

dimensional ones: the depth Hmid is used to make four from
the remaining length scales, Lt, At, DHs, and H′, while the
fifth is the relative sediment conductivity sr = ss/s. Note
that the jet depth and the topographic relief limit each other,
such that 0 < H′ < Hmid − At. These nondimensional para-
meters are varied systematically to obtain solutions over the
multidimensional parameter spaces.
[29] Although the results are analyzed based on the non-

dimensionalized parameters, the solutions are calculated
with realistic values for each parameter. The uniform
velocity v0 of the surface layer is set at 1 m s−1, an appro-
priate value for energetic flows in the ocean. The equations
are linear with respect to v0, so this choice is without loss of
generality. The Earth’s magnetic field is set to be repre-
sentative of midlatitude northern hemisphere values: Fz =
−40,000 nT. The horizontal magnetic field is not considered,
because no physically relevant signals are generated by it for
a velocity field of infinite extent.
[30] Implicitly assumed by the three‐layer geometry is a

nonconductive crust underlying the sediment layer. Realis-
tically, the crust has conductivities of 0.0001–0.03 S m−1

[Chave et al., 1992; Simpson and Bahr, 2005], which is at

least an order of magnitude smaller than typical sediment
conductivity and does not support a significant flow of electric
current for the motionally induced signals considered here.

3.2. Calculating Two‐Dimensional Perturbations

[31] The two‐dimensional solutions can be considered as
the sum of the expected signal from the first‐order solution
plus a 2‐D perturbation: the depth‐uniform signal is
contained in E, while the depth‐varying signal is contained
in J/s. The magnitude of the perturbation is the primary
focus, but its shape is also considered by the decay half
width of the perturbations.
3.2.1. Depth‐Uniform Mode
[32] The depth‐uniform mode is the vertically uniform

electric field (v*Fz) defined in (6). In the 1‐D approximation
it is driven by the vertically averaged velocity (v) with
proportionality factors due to sediment conductance (l) and
vertical correlations of conductivity and velocity (g, 0 by
definition).
[33] For 2‐D situations Ex is no longer vertically uniform,

so a 2‐D quantity v2‐D* is calculated by averaging Ex in the
water column and dividing by Fz. Because the conductivity
of the sediment is by necessity fully specified for our
modeling approach, unlike when making measurements in
the ocean, the shorting of conductive bottom sediment is
corrected by multiplying by the 1‐D quantity 1 + l1‐D. The
depth‐uniform perturbation (in m s−1) is then defined as

�ðxÞ ¼ vðxÞ � v2-D* ðxÞ ð1þ �1-DÞ: ð8Þ

To obtain one number that characterizes the magnitude of
the depth‐uniform error for a given set of parameters, we
define a depth‐uniform error 	 by calculating the standard
deviation of � over the region ∣x∣ < Lt. Relative errors are
found by dividing by v, or vH′/H.
3.2.2. Depth‐Varying Mode
[34] The depth‐varying perturbation is the difference

between J/s predicted by the 1‐D approximation and the 2‐D
value. Cast into units of velocity, the 2‐D perturbation is

�0ðx; zÞ ¼ vðx; zÞ � Jxðx; zÞ
�ðzÞFz

� �0ðxÞ: ð9Þ

A vertical mean �0 is subtracted to remove the influence of
the depth‐uniform mode

�0ðxÞ ¼ 1

HðxÞ
Z0

�HðxÞ

vðx; zÞ � Jxðx; zÞ
�Fz

� �
dz; ð10Þ

where H is explicitly shown to vary with x. Relative per-
turbations are obtained by scaling with the maximum
velocity v0 = 1 m s−1.
[35] The vertical dimension of d′ is compressed by taking

the vertical second moment dstd′

�std
0 ðxÞ ¼ 1

H

Z0

�H

�
02 dz

0
@

1
A

1=2

: ð11Þ

The magnitude of depth‐varying perturbations is character-
ized by definition of a depth‐varying error 	′, calculated by
the second moment of dstd′ over ∣x∣ < Lt.

Figure 1. Schematic geometry for which magnetostatic
solutions are calculated. (bottom) There are three layers: a
surface ocean jet in slab motion (region 1), a motionless deep
ocean that contains the changing water depth (region 2), and
a layer of conductive sediment (region 3). (top) The surface
layer moves into the page (positive ŷ) with uniform velocity.
The seven parameters that define the geometry are shown in
bold.
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[36] In practice, the correction to absolute velocity �0 is
usually calculated from reference velocities collected over
less than the full water column, adding a potential bias to the
depth‐varying velocity error. The second moment and
maximum velocities are recalculated using the alternate
expressions

�bias
0 ðx; zÞ ¼ vðx; zÞ � Jxðx; zÞ

�ðzÞFz
� �bias

0 ðxÞ

�0bias ¼ 1

H2 � H1

Z�H2

�H1

vðx; zÞ � Jxðx; zÞ
�ðzÞFz

� �
dz

�std;bias
0 ¼ 1

H

Z0

�H

�
02
bias dz

0
@

1
A

1=2

:

ð12Þ

The integration limits used here are chosen to represent an
XCP referenced with shipboard ADCP, H1 = −300 m and
H2 = −50 m, although similar results are obtained for limits
representative of other methods of referencing [Sanford et
al., 1985; Szuts, 2004].
3.2.3. Horizontal Averaging Scales
[37] Aside from its magnitude, the horizontal distance that

the perturbation � or dstd′ spreads is one way to consider the
shape of the perturbation. Because the perturbations are
forced to follow the width scale of topographic slopes within
∣x∣ < Lt, passive spreading is calculated outside of this
region.
[38] The half width is defined as the distance away from

the origin in which the perturbation at x = ±Lt is reduced by
half. This is denoted L� and Ld′ for the depth‐uniform and
depth‐varying perturbations.

4. Sloping Topography

[39] The geometry is solved with the Model for Ocean
ElectroDynamics (MOED) [Tyler et al., 2004]. It is a three‐
dimensional (3‐D) model that solves Maxwell’s governing
electromagnetic equations in the frequency domain by finite
difference for the electric and magnetic gauge potentials.

4.1. Solution Method

[40] A 2‐D configuration is used by MOED to solve the
geometry given. Discretizing the analytic geometry with
continuously sloping boundaries to a Cartesian grid requires
some care to avoid numerical difficulties.
[41] The following techniques help to minimize numerical

noise: resolving the thinnest layer (the surface jet or sedi-
ment layer) by >20 grid points in the vertical, extending the
jet far beyond x = ±Lt but before the end of the model
domain, and vertical smoothing of the density interfaces.
For the water/sediment and sediment/crust interfaces the
conductivity over four grid points in the vertical is smoothed
based on the exact interface depth Hi (either −H(x) or
−Hs(x)) according to

�ðziÞ ¼ 1

2
1þ sin

2�ðzi � HiÞ
4�z

� �� �

� �up � �lo
� 	þ �lo;

ð13Þ

where zi is within two grid points of the depth of Hi, Dz is
the vertical grid spacing (Dz depends on At, Hmid and DHs),
and sup and slo are the conductivities of the upper and lower
layers.
[42] If the grid spacing Dx or Dz is too large, such as for

very large width scales or very thin sediment layers, the
perturbations from 1‐D theory are dominated by grid scale
noise. Practically, computational limitations on the maxi-
mum grid size prevent aspect ratios smaller than Hmid/Lt =
0.03 or sediment thinner than DHs/Hmid = 0.03. In partic-
ular, the lowest and leftmost two data points in Figures 3a
and 3c require larger grid sizes (smaller grid spacing) than
is solvable with the computing resources available.
[43] Validation of MOED itself is demonstrated by Tyler

et al. [2004] for 1‐D, 2‐D, and 3‐D cases that have ana-
lytical solutions. The particular 2‐D implementation used
here is cross validated with the cosine jet solution using a
finite Fourier expansion [SzI, Appendix B]. The RMS dif-
ference between Ex calculated by MOED and by the Fourier
expansion is 0.37% of the maximum electric field for a set
of parameters that generates a strong 2‐D perturbation.

4.2. Representative Example

[44] The example in Figure 2 has the parameters Lt =
3.2 km, At = 350 m, Hmid = 1000 m, H′ = 325 m, DHs =
1000 m, and sr = 0.1. The sloping bottom is 10° over the
central portion of the topographic relief. The bottom slope
results in electric currents flowing down the slope in the
water column, as seen by how Jx isolines bend from vertical
to intersect H(x) closer to parallel. With a shallower slope,
the 1‐D approximation would be more accurate along the
slope and Jx would approach horizontal.
[45] The depth‐averaged velocity (black line, Figure 2b)

varies in tandem with H(x), and l2‐D is larger on the shal-
lower side because the sediment layer is thicker relative to
water depth.
[46] Smoothing s vertically across conductivity interfaces

introduces ambiguity in the vertical limits of the integrals
that define v* and derived quantities. The physical
requirement that v2‐D* attain a constant value far from
topography is met on either side of the slope. In order to not
introduce errors arising from the improper representation of
the geometry on the model grid, the reference quantity v1‐D*
necessary for defining 2‐D perturbations is defined heuris-
tically from the model solution. The numerical v1‐D* is set
to the asymptote of v2‐D* on either side, and the variation of
v1‐D* across the slope is calculated from the prescribed shape
of H(x).
[47] The quantities v2‐D* and v1‐D* are very close, their

difference as � (Figure 2c, solid line) is at most 0.001 m s−1.
v2‐D* is larger (smaller) than v1‐D* on the upper (lower) part of
the slope. The depth‐uniform error is 0.00068 m s−1.
[48] For comparison, the transport error from a submarine

cable is also shown (dash‐dotted line, Figure 2c). Submarine
cables integrate the electric field on the seafloor across their
length. The cable error is calculated as the difference
between the horizontal integrals of Ex(1 + l1‐D)/Fz and the
exact quantity v(x), normalized by the total transport of the
jet and divided by 10 for display purposes. The near‐seafloor
Ex is not symmetric for this geometry, such that a 1% error
results for a cable that fully spans the slope.
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[49] As with the cosine jet geometry of SzI, the depth‐
varying errors are intensified near the water surface and
near the seafloor (Figure 2e), with a little spreading of the
velocity error beyond the slope (Figure 2f). The magnitude
of dstd′ is below 0.004 m s−1 (thin solid thin), and the error
	′ is 0.0024 m s−1. The biased quantities for surface‐
referenced profiling floats are 50% larger but remain below
0.005 m s−1.

4.3. Parameter Space

[50] Because of the difficulty of visualizing a five‐
dimensional parameter space, three 2‐D spaces are chosen
with the remaining 3 scales fixed (Figures 3 and 4). The
remaining nondimensional parameters are selected to be in
the middle of their range (see caption). The description
focuses on the realistic range of Hmid/Lt discussed later, or
Hmid/Lt < 10−0.5.

[51] The depth‐uniform error is most dependent on Lt,
with remarkably constant dependencies on the sediment
thickness DHs (Figure 3a), jet depth H′ (Figure 3c), and
topographic relief At (Figure 3e) over the range of Hmid/Lt.
[52] The depth‐uniform error increases by factors of 3–6 if

DHs/Hmid increases by a factor of 10, while the error
increases by less than a factor of 3 if the jet depth (H′/Hmid)
or topographic relief (At/Hmid) increase from 0.4 to their
maximum value. The dependence on sr (not shown) is
nearly linear.
[53] The depth‐uniform error can also be quantified for a

cable (not shown), where the value considered is the dif-
ference between the cable error (Figure 2c) at x of Lt and
−Lt. The dependence on DHs/Hmid is very similar to that in
Figure 3b except that the cable errors are 3–10 times
smaller, which implies an unexpectedly weak dependence
on DHs for this depth‐uniform response. There is weak

Figure 2. Solution induced by Fz for a representative case of the geometry with sloping topography with
Hmid/Lt = 0.31. The (left) depth‐uniform and (right) depth‐varying components are shown. (a) Electric
field Ex, contours every 0.25 mV m−1. (b) Depth‐averaged velocity v (solid black), v1‐D* (thick gray),
and v* (dashed black). (c) Velocity perturbation � (thin solid) and error 	 (thick solid), and the cable error
divided by 10 (see text, dash‐dotted). (d) Electric current density Jx, contours every 1 mA m−2. (e) Depth‐
varying perturbation d′, contours every 0.0005 m s−1. (f) For the depth‐varying perturbations dstd′ (solid)
and the biased perturbations (dashed), the vertical second moment dstd′ (x) (thin) and depth‐varying error 	′
(thick). Dots in Figures 2c and 2f show the end points of the half‐width decay length. The solution is for
a small width slope defined by Lt = 3.2 km, At = 350m,Hmid = 1000m,H′ = 325m,DHs = 1000 m, and sr =
0.1, which has a maximum bottom slope of 9.8°. The dashed vertical lines show the edges of the topo-
graphic slope.
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dependence on H′, and the cable error is roughly 3 times
larger than shown in Figure 3c. The largest dependence of
the cable error is to At/Hmid; the errors are similar to those in
Figure 3e except roughly 10 times larger.
[54] The depth‐varying velocity error 	′ (Figures 3b, 3d,

and 3f) is only weakly influenced by DHs, except for very
large thickness (DHs/Hmid ≥ 30). Jet depth H′ and topo-
graphic relief At change 	′ by less than a factor of 3 when
they occupy more than 40% of Hmid. For any resolved value
of H′/Hmid, errors vary by at most a factor of 3, while for any
resolved value of At/Hmid the errors vary by less than a
factor of 10.

[55] Over the resolved parameter space, both depth‐
uniform and depth‐varying errors are ≤0.001 m s−1 solely if
Hmid/Lt ≤ 0.1.
[56] The errors 	 and 	′ for sloping topography are fit to

functions of the form

Hmid

Lt

� �a Y

Hmid

� �b

c ð14Þ

over the region of the parameter space shown by gray
shading in Figure 3, where Y is one of DHs, H′, or At

(Table 1). Generally, all errors depend on Hmid/Lt to the
power of 1.9. The sediment thickness has less of an effect

Figure 3. Parameter space representation of velocity errors induced by Fz from the geometry with slop-
ing topography. The (left) depth‐uniform error and (right) depth‐varying error plotted against Hmid/Lt for
(top) DHs/Hmid (with H′/Hmid = 1/3, At/Hmid = 1/3, sr = 0.1), (middle) for H′/Hmid (with DHs/Hmid = 1,
At/Hmid = 0.15, sr = 0.1), and (bottom) for At/Hmid (with DHs/Hmid = 1, H′/Hmid = 0.25, sr = 0.1). In
Figure 3 (middle) and Figure 3 (bottom), the upper limit of H′/Hmid and At/Hmid is shown by the long
dashed line, as constrained by At/Hmid = 0.15 or H′/Hmid = 0.25. Figure 3 (bottom) also include the
maximum slope angle in degrees (dotted). Data points not shown are biased by numerical noise. Shading
indicates the region over which the error is fit (see Table 1).
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(b < 1) on the depth‐uniform error, but has almost no effect
on the depth‐uniform error. For H′ and At the dependence is
roughly linear (a power of 1).
[57] The half width of depth‐uniform perturbations L�

(Figure 4) depends on the aspect ratio, the sediment thick-
ness, and the topographic amplitude in order of importance.
Like for the cosine jet [SzI], for thin (thick) sediment L�
varies most with Hmid/Lt (DHs/Hmid), except that the
demarcation line is where they are inversely related (power
of −1). There is no dependence on H′, and L� varies by only
2–3 over the full range of At. For narrow slopes the values
are tenths of D1‐D, whereas for wider slopes the widths are
1–2 D1‐D.
[58] The half width of depth‐varying perturbations Ld′ is

very similar to the cosine jet case [SzI, Figure 6b], except
that slightly larger values (1 D1‐D) are reached at Hmid/Lt =
10−1.5. There is still no dependence on H′, and that of At

remains a factor of 2–3 over the full range of At. As with L�,
Ld′ only obtains a maximum of 1–2 D1‐D at the smallest

resolved aspect ratios and doesn’t appear to approach an
asymptote.

5. Discussion

[59] Overall, this study aims to address the relative
importance of 2‐D perturbations in motionally induced
signals that arise in the presence of sloping topography. Our
approach isolates the 2‐D errors in calculating velocity from
E and J on the basis of nondimensional scales. Additional
context is necessary for understanding the physical implica-
tions of these results and their extension to different situa-
tions. Before the results are generalized, the nondimensional
parameters must be constrained to realistic ranges and
salient features of the geometry are discussed as a guide for
extrapolating our results to different geometries.
[60] The discussion seeks the general nature of the results

and their implications for observations. This is done by
discussing: the physical explanation, the sensitivity, and the

Figure 4. Half‐widths (left) L� and (right) Ld′ normalized by the D1‐D that is calculated on the shallower
side of the slope. Other aspects are the same as in Figure 3.
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magnitude of 2‐D perturbations; how to apply the errors
defined here for different observational techniques; and
lastly how velocity gradients [SzI] and topographic slopes
interact in the generation of 2‐D perturbations by applica-
tion of our results to specific observations.

5.1. Constraints on Aspect Ratios and Other
Parameters

[61] The schematic geometries were chosen to facilitate a
parameter‐space analysis and were not constrained to be
realistic a priori. Limitations from geological observations
are discussed next to define the realistic region of the
parameter space.
[62] Geophysically stable slopes can be constrained by

observations, or perhaps by stability arguments. Most
instabilities that limit the slope are hard to generalize due to
their infrequent occurrence and spatial heterogeneity, how-
ever, e.g., elevated pore pressure, turbidity currents, earth-
quakes, or internal wave critical reflection [see Cacchione et
al., 2002; Lee et al., 2007], so it is easier to consider slopes
that occur in nature. Because the slope has to have a sig-
nificant vertical extent compared to the water depth to
appreciably change the EM response, only topographic
features that are a significant fraction of the water depth are
considered. The geologic literature discusses slope angle 
 =
tan−1(Dz/Dx) instead of Dz/Dx or At/Lt . For reference,
contours of the angle at x = 0, or tan−1(pAt/2Lt), are shown
in Figures 3e and 3f (dotted line).
[63] Sedimented continental slopes typically have slopes

from 5° for unstable margins (tectonically active or salt
tectonized) to 8° for passive margins [Pratson and Haxby,
1996]. For volcanic topographic features, median slopes of
4–5° are found around the Hawaii Ridge, with maxima of 8–
12°, while the Mendocino Escarpment transform fault has a
mean and maximum slope of 11° and 15° (from bathymetry
with 3 km resolution) [Smith and Sandwell, 1997].
[64] There are two other geologic parameters, sediment

thickness and sediment electrical conductivity, for which
observed values are briefly presented. Total sediment depths
from a global composite [Laske and Masters, 1997] range
from 0 over newly formed oceanic crust to up to 10 km deep
in old sedimentary basins. Passive sedimented margins
typically have sediment thicknesses of 4–8 kmwithin 100 km
of the continental slope, while subducting margins have
thicknesses of 1–4 km.
[65] Sediment conductivity is largely determined by

porosity, because saltwater is the most common pore fluid

(for more detailed treatment see Simpson and Bahr [2005]
and Szuts [2008]). Conductivities of specific sediment
types and layers can vary from sr ∼ 0.025 (ss = 0.1 S m−1) for
low‐porosity consolidated silt to sr ∼ 0.5 (ss = 1.5 S m−1) for
sandy unconsolidated deposits. In general, conductivity
decreases exponentially with depth in the sediment via
Archie’s Law [Flosadóttir et al., 1997]. Thus, the influence
of the sediment layer on the electric field through l1‐D is
through an apparent conductivity that is a vertical weighting
of the depth‐varying conductivity. In the presence of 2‐D
perturbations, conductive surficial sediment layers will act
to increase the sediment shorting more than homogeneous
sediment.

5.2. Limitations of Resolved Geometries

[66] Although the geometry was chosen to be broadly
applicable, there are a four limitations to note for applying
our results to other situations and geometries.
[67] 1. A surface layer in slab motion is unrealistic. This

choice was made to allow a parameter space analysis, but in
reality the interaction of topography and velocity is much
more complex (see section 5.5).
[68] 2. The two layer ocean flow describes a vertical step

change in velocity. This sharp boundary maximizes the
vertical second moment of velocity error. Smoother vertical
structure will generate smaller depth‐varying errors.
[69] 3. The choice of uniform conductivity in the ocean

layers ignores salinity stratification. The small range of
conductivity in the open ocean leads to a small distortion
that is corrected with the factor g (<10% for open ocean
modes [Chave and Luther, 1990]).
[70] 4. The geometry chosen has a nonzero depth‐averaged

velocity, so care needs to be taken when extending these
results to the predominantly depth‐varying (or baroclinic)
flow often measured with profiling floats. In particular, this
analysis can’t distinguish the relative contributions of the
depth‐averaged and depth‐varying velocity forcing to the
depth‐varying response Jx. It is difficult to generalize bar-
oclinic flows because internal modes or waves have small
vertical structure, propagate at an angle in the vertical, and
have a wide range of horizontal coherence (whether a mode
or beam), implying that length scales in both horizontal
directions must be considered.

5.3. Physical Meaning, Sensitivity, and Magnitude
of 2‐D Perturbations

[71] The example shown in Figure 2 uses an aspect ratio
representative of continental shelves. To illustrate the 2‐D
perturbations in general, however, unrealistically narrow
width scales are necessary to accentuate the changes. The
perturbations induced by Fz are illustrated in Figure 5 with
an electric current stream function y (Figure 5, top, defined
as r × |̂|||y = J) and by the electric potential � (Figure 5,
bottom). The stream function is calculated numerically in
Matlab.
[72] When the sea floor is not horizontal but the topo-

graphic aspect ratio is small (nearly 1‐D case), the electric
currents follow the slope (Figure 5a). Streamlines enter the
sediment smoothly via the 1‐D approximation in close
relation to how v increases as the bottom shoals. Vertical
isopotentials demonstrate that electric currents are almost
entirely horizontal (Figure 5c). In the presence of a steep

Table 1. Fits of the Velocity Errors 	 or 	′ to (14) Over the
Regions in Figure 3 Indicated by Gray Shadinga

Error Y a b c
Relative

RMS Error

	 DHs 1.87 0.68 0.026 0.15
	 H′ 1.89 0.99 0.033 0.04
	 At 1.92 1.14 0.069 0.08
	′ DHs 1.95 −0.08 0.023 0.03
	′ H′ 1.94 0.99 0.028 0.02
	′ At 1.95 1.23 0.066 0.02

aY stands for the nondimensional parameter listed. The relative RMS
error of the fit is calculated as RMS (	/	fit − 1). The coefficients are
accurate to a few percent or less, a and b are dimensionless, c has the
dimensions of velocity, and all fits have R2 ≥ 0.994.
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slope, electric currents refract when they enter the sediment
and don’t uniformly fill the water or sediment layers near
x/Lt = ±0.5 according to the 1‐D approximation (Figure 5b).
This effect can be seen more clearly in Figure 2, where
negative (positive) velocity perturbations d′ at the seafloor
correspond to positive (negative) depth‐uniform error �. In
the bottom of the water column isopotentials are tilted to
intersect the seafloor closer to perpendicular (Figure 5d),
resulting in a weakening of Ex close to the sediment.
Extrema in the depth‐uniform and depth‐varying errors
occur at the upper and lower parts of the slope.
[73] The parameter space analyses show that there is a

transition point in the velocity errors below Hmid/Lt of 0.5–1,
which is also a transition point for velocity aspect ratios
[SzI]. That the realistic range of topographic slopes occurs
for Hmid/Lt ≤ 1 allows the errors to be described as powers of
the nondimensional parameters.
[74] All errors depend on Hmid/Lt to the power of 1.9. As a

point of comparison, the dependence suggested by Sanford
[1971] for topographic aspect ratios is less specific as it is a

mix of topographic and velocity scales. His perturbation
analysis assumed that perturbations scale as At/L in our
notation (L being the oceanic or velocity width scale) and
then found that terms involving rH scale as the oceanic
aspect ratio H/L. Depth‐uniform errors depend on the sedi-
ment conductivity to the power of one and on sediment
thickness to the power of 0.7. The dependence is thus pro-
portional to l1‐D to a power slightly less than one, in contrast
to the near‐linear proportionality on l1‐D for perturbations
generated by velocity gradients [SzI]. On the other hand,
depth‐varying errors are nearly independent of sediment
thickness and conductivity. Lastly, the depth of the jet and
the topographic amplitude both lead to a power one propor-
tionality for both depth‐uniform and depth‐varying errors.
[75] For the same aspect ratio (H/L = 0.1 or Hmid/Lt = 0.1),

depth‐varying errors generated by topography (0.00015m s−1)
are an order of magnitude smaller than those generated by
velocity gradients (0.003–0.015 m s−1). For steeper conti-
nental slopes (Hmid/Lt = 0.3 and At = 1/3, or 8°) the errors are
less than 0.01 m s−1.
[76] The effective horizontal averaging distance is 0.2–

1.2 D1‐D for all parameter spaces considered. Consistent
with the findings of SzI, the half widths do not approach an
upper asymptote at the lowest resolved values Hmid/Lt. This
reflects the dominance of the forcing width scale at small
aspect ratio, is consistent with Chave and Luther [1990],
and suggests that D1‐D is the scale over which motionally
induced signals are horizontally averaged in the ocean.

5.4. Application to In Situ Observations

[77] The definition of the velocity errors as either depth‐
uniform 	 or depth‐varying 	0 decouples these two modes
from each other for the analyses performed here and in the
work of SzI. Full water column averaging was used to
calculate v* and 	0 from the 2‐D solutions, but full water
column averages are not typically used for measurements.
Stationary electrodes measure Ex at one point in the vertical,
or vertical profiling floats are referenced to absolute velocity
over some fraction of the water column. In general, the
perturbation at the depth of the sensor is Ex(z)/Fz − v1‐D* ,
which is equivalent to � + d′(z). In the center of the water
column the in situ observations are in error by 	, whereas
close to the sea surface or the seafloor there is an addi-
tional contribution from the depth‐varying perturbation.
Referencing vertical profilers over a fraction of the water
column increases the velocity errors by 25–60%. Biased
errors caused by midlevel or near‐bottom referencing have
similar dependencies.
[78] Further difficulties arise in practice due to a lack of

sediment knowledge. The perturbations calculated here
presuppose complete knowledge of l1‐D, which is generally
poorly known. Although velocity errors are very small if l
is calculated heuristically with �emp, the smooth geometries
and noise‐free analysis is not appropriate for quantifying
such errors. Sz10 investigates the issue of unknown sedi-
ment electrical properties at a complex location.

5.5. Combined Effect of Velocity and Topographic
Gradients

[79] Between this article and SzI the independent roles
of velocity gradients and sloping topography on generating
2‐D EM perturbations are analyzed, but this separation is

Figure 5. The 2‐D perturbations in (top) the electric
current stream function y and (bottom) the electric potential
� induced by Fz for small and large topographic aspect
ratios. (left) A nearly 1‐D response (Hmid/Lt = 0.002, vertical
exaggeration of 500) contrasts with (right) a strongly 2‐D
response (Hmid/Lt = 1, no vertical exaggeration). (a and b)
The quantity y is calculated numerically in Matlab and
is not exactly evenly spaced, while (c and d) � calculated
with MOED has contour spacings of 0.2 V (Figure 5c)
and 0.0025 V (Figure 5d). Unspecified nondimensional
parameters are the same as in Figure 7 from SzI, which
describes 2‐D perturbations caused by horizontal velocity
gradients.
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often not possible in the real ocean. Represented graphically
(Figure 6), our results only apply along each axis separately.
The regions where depth‐uniform and depth‐varying
velocity errors are less than 0.01 m s−1 are shaded, assuming
typical values of (Hs − H)/H ≤ 1, sr = 0.1, H′/H = 0.5, and
At/Hmid = 0.5. Thick lines show the expected upper limits
from the discussions, where dashed lines indicate the qual-
itative nature of the discussion when both steep topography
and sharp velocity features are present. For small gradients,
the combined velocity errors in the presence of both gra-
dients may be described by linear addition, but in general
topographic and velocity gradients will interact nonlinearly
both in setting the flow field and in the magnetostatic
response. Not only does topography impose strong con-
straints on geostrophic flow, but it also separates regions of
different dynamics (e.g., shelf circulation and ocean‐basin
boundary currents).
[80] The extrapolation of our generalized results to

situations with both topography and velocity gradients, that
is, the real ocean, is not straightforward. Two separate
examples serve as a guideline to do so: the Florida Straits, a
location of long‐standing cable measurements [Larsen and
Sanford, 1985]; and the Cape Hatteras region studied by
Sz10.
[81] In the Florida Straits, the voltage across a seafloor

cable provides a highly accurate proxy for transport [Larsen
and Sanford, 1985; Shoosmith et al., 2005]. Because the
local sediment properties, the removal of geomagnetic and
tidal signals, and the implications of how the cable
integrates horizontally along its length have been well

treated by previous work [Spain and Sanford, 1987; Larsen,
1992], here we simply add the implications of our result for
interpretation of the cable voltage in terms of the time‐
averaged velocity structure of the Florida Current. Meanders
of the current axis, eddies close to the Florida coastline, or
other fine scale and quickly evolving variability fall outside
of our treatment.
[82] Two‐dimensional perturbations should be largest

along the sloping west side of the channel, which is
approximately linear over 50 km to the maximum depth of
750 m (a slope of 0.8°). The thick sediment results in a
factor 2 reduction of v* compared to v, also implying that
the vertical governing scale D1‐D is roughly twice the (local)
water depth, or always ≤1.5 km. The topographic aspect
ratio of the strait is 750 m/90 km = 0.008, while the velocity
aspect ratio is roughly twice this value (0.015) because the
main transport occurs in the central part of the strait.
[83] For the depth‐uniform signal that the cable responds

to, the local 2‐D perturbation is expected thus to be very
small due to either topography (≤10−5 relative error) or due
to velocity gradients (≤10−4 relative error). Since the cable
integrates perturbations along its length and extends entirely
across the strait, 2‐D errors due to velocity gradients are
expected to largely cancel. Cable errors due to the sloping
topography, though nonzero when integrated across one
slope, are also expected to cancel given that the channel can
be considered as two slopes of opposite relief.
[84] The observations at Cape Hatteras analyzed by Sz10

were collected to test the 1‐D approximation of motional
induction [Sanford et al., 1996]. This data was collected
across the Gulf Stream at Cape Hatteras, where velocity is
strong and subject to sharp fronts, the continental slope is
unusually steep, and sediments are thick and heterogeneous.
[85] First, the nondimensional parameters at the 500 m

station are needed: local approximations are made to the
parameters defined for the schematic geometries. The width
scale is the width of the velocity maximum on the upper
continental shelf (L = 5 km), the effective sediment con-
ductivity comes from the best‐fit forward electric field
numerical calculation (ss = 0.58 S m−1), and the other scales
are evident from transect geometry, velocity, and CTD data:
H = 500 m, depth of Gulf Stream H′ = 400 m, center of
continental slope Hmid = 1250 m, width of slope Lt = 10 km,
sediment thickness DHs = 5 km, half the topographic relief
At = 1200, and average water conductivity � = 4.2 S m−1.
The nondimensional scales are thus H/L = 0.1, H′/H = 0.8,
Hmid/Lt = 0.125, (Hs − H)/H = 10, sr = 0.14, and At/Hmid =
0.96.
[86] With these parameters, it is seen that the 500 m station

is indeed in an extreme corner of the parameter space (circled
points in Figure 6). By a similar analysis, the remaining
4 stations (labeled CH) are also in the extreme 2‐D part of
the parameter space. The barotropic aspect ratios at Cape
Hatteras are larger than expected from the discussion of
velocity aspect ratios in the work of SzI, which is attributed
to the incongruence between the definition of nondimen-
sional parameters from the schematic geometries, the actual
geometry at Cape Hatteras, and the simplified discussion of
geophysical dynamic constraints.
[87] As the sediment thickness is outside the range fit with

powers of the nondimensional parameters (Table 1 and
Table 1 of SzI), the errors graphed need to be corrected

Figure 6. Schematic representation of the parameter space.
The abscissa summarizes the geometry with velocity gradi-
ents [SzI], while the ordinate summarizes the geometry
with topography (section 4). In each, aspect ratios yielding
errors smaller than 1 cm s−1 are shown with crosshatching
for (Hs − H)/H ≤ 1, DHs/H < 1, and sr = 0.1. The nominal
limits for aspect ratios are shown with thick lines labeled
BT (depth‐averaged velocity), BC (depth‐varying velocity)
or topo (topographic). For reference, the parameter space
location of the Florida Straits cable (denoted FS) and of
5 stations in the Gulf Stream at Cape Hatteras (denoted CH)
are also plotted. The Cape Hatteras stations differentiate
between the baroclinic component (gray pluses) and the
barotropic component (black crosses, two points are iden-
tical) at which 2‐D electric fields are investigated by Sz10.
Values for the station at 500 m are circled.
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using the fit sensitivities. Note that the errors shown for the
500 m station are not equivalent to the spatial RMS errors
discussed here, instead they are single values (maximum
values) of the depth‐uniform (depth‐varying) errors.
[88] The expected error generated by velocity gradients is

read off of Figure 5 of SzI forH/L = 0.1 and (Hs −H)/H = 10,
which is 0.10 m s−1. This value then needs to be corrected
for the different values of H′ and sr, yielding (0.10 m s−1)
(0.8/0.5)0.44 (0.14/0.1)1.02 = 0.17 m s−1.
[89] The expected error from sloping topography are

calculated in a similar fashion. The same sr dependence is
used as found for the velocity gradients. The topographic
relief of 0.96 is well outside of the resolved range, for which
it is clear that the power dependence on At/Hmid increases
beyond the value of 1.2 found for 0.23 ≤ At/Hmid ≤ 0.6.
Because the actual geometry of the Gulf Stream is too
complex to be compared directly to the slab motion in the
topographic schematic geometry, a value of 2 is used for
application to the 500 m station at Cape Hatters.
[90] The same procedure is used to calculate the expected

depth‐varying errors. A further correction necessary is that
the profiling instrument used in Sz10 is only referenced
within 200 m of the bottom, not over the full water column.
Biased depth‐varying errors are 20–50% larger, so the
depth‐varying errors enumerated above are further increased
by a factor of 1.35.
[91] The largest anticipated errors from the schematic

geometries (Table 2) are within 30% of the 2‐D errors
calculated from high resolution numerical modeling of the
region assuming a time‐averaged velocity structure. These
results are surprisingly consistent given that the simplified
geometries are far from analogous to the range of nondi-
mensional scales present at the 500 m station.
[92] It is unclear how to combine the 3 anticipated errors

further: although there is a clear relationship between the
sign of the errors in the simple geometries, it is not apparent
how to estimate whether the errors are in phase or not at the
500 m station. In the absence of a way to estimate the joint
2‐D error generated by velocity gradients and sloping
topography, these results suggest that Fz‐induced perturba-
tions from velocity gradients are mostly responsible for the
depth‐uniform error from Sz10, whereas Fh‐induced per-
turbations from velocity gradients are mostly responsible for
the depth‐varying error. Although the 500 m isobath station
occupies the most extreme set of parameters and has the
largest modeled 2‐D errors, at other stations the errors are a
few cm s−1.

[93] There are two other ways in which the 1‐D approx-
imation can be perturbed that are beyond the scope of the
the 2‐D parameter space investigated here: depth‐uniform
nonlocal currents generated by 3‐D geometries, and large‐
scale tidal velocities. The former require high resolution
numerical models to resolve the steep topography and fast
mesoscale activity that will generate the largest nonlocal
currents. Lower limits are suggested by 1° resolution
numerical models with monthly averaged velocities [Tyler et
al., 2004; Vivier et al., 2004; R. H. Tyler et al., personal
communication, 2007]. Given the similar dependence of
non‐1‐D perturbations on velocity and topographic aspect
ratios, nonlocal currents are expected to have a similar
dependence when the length scales are small in both hori-
zontal directions. The periodic forcing of tidal velocities is
measurable on a large scale by satellite magnetometers
[Tyler et al., 2003] and is treated generally by Chave and
Luther [1990]. Both processes, however, have not yet
been investigated with in situ observations.

6. Conclusion

[94] In regions with steep topography there can be 2‐D
perturbations on top of the dominant 1‐D motionally
induced signals. This article addresses the extent to which
these perturbations depend on the surrounding geometrical
and electrical nondimensional parameters. More specifi-
cally, we characterize the magnitude and sensitivity of 2‐D
perturbations generated by sloping topography. The
parameter with the greatest influence on 2‐D perturbations
is the topographic aspect ratio, the mean water depth across
the slope divided by the width of the slope, but there are
additional contributions from the remaining parameters of
sediment thickness, sediment conductivity, and the thick-
ness of the oceanic flow.
[95] For typical values of the nondimensional parameters,

the maximum errors introduced by a 1‐D interpretation of
the 2‐D solution are less than a few percent. Over the
realistic range of the parameter space (topographic slopes
less than 10°, topographic relief a significant fraction of the
water depth, topographic aspect ratios less than 0.3, sedi-
ments thinner than 10 times the water depth, and sediments
on average 10 times less conductive than seawater) the
simple shape of the 2‐D velocity errors enables their
sensitivity to the nondimensional parameters to be readily
calculated.
[96] Both depth‐uniform and depth‐varying velocity

errors depend on aspect ratio to the power of 1.9, depth jet to
the power of 1, and topographic relief to the power of 1.2.
Depth‐uniform errors depend on the sediment thickness to
the power of 0.7 and linearly on the sediment conductivity,
which together are roughly proportional to l1‐D, while
depth‐varying errors are nearly independent of sediment
thickness. The 2‐D perturbations decay away from the
topography over a half width of 0.2–1 D1‐D, suggesting that
this scale is a good approximation of the horizontal aver-
aging distance for the motionally induced signal.
[97] The role of velocity gradients and topographic slope

are considered separately, but if both gradients are present
the resulting errors may combine nonlinearly in a manner
best considered case by case. Estimates of the expected error
at a field site are in good agreement with those estimated

Table 2. Expected Velocity Errors at the 500 m Station in a
Transect SE of Cape Hatterasa

Depth
Uniform (m s−1)

Depth
Varying (m s−1)

Velocity gradient, Fz 0.17 0.0089
Velocity gradient, Fx 0.018 0.038
Topographic gradient, Fz 0.013 0.0012
Cape Hatteras, 500 m isobath 0.20 0.03
Cape Hatteras, other isobaths 0.01–0.05 0.01–0.02

aSee text. The Cape Hatteras values (Sz10) are not RMS errors as are the
velocity and topographic gradients, instead they are the single‐value
(maximum) errors for the depth‐uniform (depth‐varying) signals.
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from a detailed analysis of the site. Depth‐uniform errors
come predominantly from perturbations generated by
velocity gradients and induced by the vertical component of
the Earth’s magnetic field; while depth‐varying errors come
predominantly from perturbations generated by velocity
gradients and induced by the horizontal component of the
Earth’s magnetic field. Despite the steep continental slope,
perturbations generated by topography are estimated to be
an order of magnitude smaller.
[98] The application of these results to observations

depends on the platform used to collect measurements.
Stationary sensors will be subject to a depth‐uniform error
plus the depth‐varying error at that depth, while horizontally
drifting instruments such as vertical profilers will be subject
to a depth‐varying error whose magnitude depends on the
method used for absolute referencing. The estimated errors
for any particular study site can be estimated with these
results prior to sampling. The order of magnitude (less than
a few 0.01 m s−1) of perturbations at typical locations,
however, are equivalent to the accuracies of most instru-
ments that measure velocity, whether they do so directly or
using EM fields. Direct observations of 2‐D perturbations
are necessary to confirm the practical implications of this
study.
[99] This analysis of 2‐D perturbations extends existing

theories from the small aspect ratio limits of both oceanic
flow or topographic slope to the maximum values expected
in reality. Except for sites that occupy an extreme part of the
parameter space, the 1‐D approximation is found to be
adequate within a few percent for interpreting observations.
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