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Calibration Method for ML Estimation of 3D
Interaction Position in a Thick Gamma-Ray Detector
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Abstract—High-energy ( 100 keV) photon detectors are often
made thick relative to their lateral resolution in order to improve
their photon-detection efficiency. To avoid issues of parallax and
increased signal variance that result from random interaction
depth, we must determine the 3D interaction position in the
imaging detector. With this goal in mind, we examine a method of
calibrating response statistics of a thick-detector gamma camera
to produce a maximum-likelihood estimate of 3D interaction po-
sition. We parameterize the mean detector response as a function
of 3D position, and we estimate these parameters by maximizing
their likelihood given prior knowledge of the pathlength distri-
bution and a complete list of camera signals for an ensemble of
gamma-ray interactions. Furthermore, we describe an iterative
method for removing multiple-interaction events from our cali-
bration data and for refining our calibration of the mean detector
response to single interactions. We demonstrate this calibration
method with simulated gamma-camera data. We then show that
the resulting calibration is accurate and can be used to produce
unbiased estimates of 3D interaction position.

Index Terms—3D interaction position, depth of interaction,
gamma-ray imaging, mean detector response calibration, max-
imum likelihood estimation, multiple-hit event filtering.

I. INTRODUCTION

D ETECTORS used for high-energy photon detection are
often made thick in order to improve their photon-detec-

tion efficiency. Use of a thick detector, in turn, motivates depth
of interaction (DOI) estimation for each gamma ray. If we es-
timate only the two-dimensional (2D) position of interaction in
a gamma camera, ambiguity in DOI may result in a loss of de-
tector and/or image resolution [1]. Random DOI can cause in-
creased signal variance, which in turn can degrade the 2D res-
olution of a gamma camera. Additionally, DOI ambiguity for
obliquely incident gamma rays causes parallax, which can sub-
sequently limit image resolution. Random DOI can also degrade
coincidence-timing resolution for a time-of-flight PET system
[2]. For many clinical gamma cameras with moderately thick
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scintillators ( 10 mm), signal-variance and parallax issues are
mitigated by choice of camera geometry and optical proper-
ties. However, to avoid these issues in general for a thicker
gamma-ray detector, we must estimate the three-dimensional
(3D) coordinates of interaction.

A variety of statistical methods for estimating DOI in a thick
monolithic detector have been suggested [1], [3]–[5]. To make
efficient use of information contained by the camera signals

, we determine the 3D interaction position
by maximum likelihood (ML) estimation [1], [6]:

(1)

Here, the operator returns the value of the indicated
parameter that maximizes the operand, and the caret denotes
a parameter estimate. The operand ) is a probability
model of given and energy . However, interpreted as a
function of the parameters and/or for given
is called a likelihood function. An equivalent and often more
convenient method for finding an ML estimate is to maximize
the log likelihood .

To find an ML estimate, we use a fast ML-search algorithm
called a contracting-grid search, which is proposed by [7]. Our
implementation of this search algorithm was on a 2.0-GHz
dual-core AMD Athlon(tm) MP 2400+ processor. We were
able to generate 3D ML estimates with 64 camera signals on a
69-by-69-by-25 grid at a rate of about 500 events/sec per pro-
cessor. Faster implementations of this algorithm are being (or
have been) developed for cell processors, GPUs, and FPGAs.

To simultaneously estimate 3D-position and energy, we cal-
ibrate as a function of both and and then we
find the ML estimate over this 4-dimensional space. However,
as is discussed later [see (10)], the calibration of
is a separable task. In this paper, we assume to be known
and we estimate just ; unlike clinical gamma-ray image ac-
quisitions, we can produce a nearly monoenergetic gamma-ray
beam for calibrating the detector response as a function of just

. We can effectively remove non-photopeak calibration events
using a statistical test (e.g., likelihood threshold) as we do later
in Section I to remove multiple-interaction events. Furthermore,
position estimates of non-photopeak events tend to be isolated at
the boundaries of parameter space, where they are easily iden-
tified and filtered.

To generate the ML estimate of for given , we must model
, and we must calibrate representative statistics (e.g.,

the mean detector response) of this probability model as a func-
tion of for given . A straightforward procedure for cali-
brating detector-response statistics as a function of event param-
eters is to measure for an ensemble of gamma rays for fixed
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Fig. 1. Diagram of the simulated test camera. In this design, we assume that the entrance and edge surfaces are ideal retroreflectors, that the detector-window
interface is optically diffuse, and that electronic and gain noise are negligible.

event parameters. For instance, the lateral interaction position
and energy of a gamma ray are controlled by tightly collimating
a known source. However, gamma-ray pathlength is beyond our
control and remains a random variable.

In this work, we show how to use prior knowledge of the path-
length distribution and the set of observations for an ensemble
of gamma-ray interactions to calibrate 3D model statistics. We
demonstrate this method by simulation of signal generation and
output from a monolithic-scintillator gamma camera. For this
purpose, we use an open-source photon-transport Monte Carlo
algorithm (SCOUT) described in Chapter 4 of [8].

II. MODELING

Scintillation-camera output signals, , in response to a
gamma ray of energy interacting at the position result
from a sequence of random processes: light production, light
collection, photoelectric conversion, electronic amplification,
and electronic readout. For this work, we consider the detector
response to single-interaction (photoelectric) events in a thick
scintillation camera with multi-anode photomultiplier tube
(MA-PMT) optical readout (Fig. 1).

A. Light Production

The number of optical photons, , that result when a
gamma ray of energy deposits its energy in a scintillator is
random. A general description of the distribution of is
non-trivial (e.g., see [9]). Although there is some insight into
the mechanisms that produce scintillation light [10], a precise
description of the statistics for scintillation light does not exist.
However, one observation that we can make by examining
the energy resolution of a scintillator-based gamma-ray spec-
trometer is that the variance of tends to exceed that of a
Poisson random variable of identical mean value [11].

In the next section, we find that collection and quantum ef-
ficiency of individual photodetectors play a much larger role in
the signal statistics than does the scintillation process. There-
fore, to simulate the detector response, we presently adopt a
probability model for that accounts for the mean light
yield and for the observed excess variance as a function of de-
posited energy. Specifically, we assume an energy-dependent
normal random variable. For a deposited gamma-ray energy ,

the mean number of optical photons produced is , and
the observed variance is . We use a nonnegativity
constraint on this distribution, which rarely is invoked since the
distribution width tends to be much smaller than the mean.

B. Light Collection and Photoelectric Conversion

Scintillation light is collected by an array of photodetec-
tors on the scintillator periphery. The fraction of scintillation
light collected by the th photodetector, , is a product of
the geometric efficiency, , and the quantum efficiency,

, for this photodetector. Even for the photodetector nearest
the interaction site, tends to be small. For example, the
maximum value of for the camera depicted in Fig. 1 is
6%, which occurs when is nearest the center of the th pho-
todetector. From [12], we learn that a low-efficiency binomial
selection of scintillation light results in an independent Poisson
probability model for each of the photodetector inputs (pho-
toelectrons), . Here, is the
number of photoelectrons produced at the input of the th pho-
todetector. This point is clarified further in [13], where we see
that the photoelectron covariance of the and photodetec-
tors is given by:

(2)

where and are the mean and variance
of the scintillator light yield, , respectively, and is a
Kronecker delta. Again, the fraction of scintillation light col-
lected by the th photodetector, , is a product of geo-
metric and quantum efficiencies of this photodetector. If either
the collection or conversion of scintillation light is inefficient,
then and the photo-
electrons in different PMTs are approximately independent and
Poisson distributed. The probability model for the photoelec-
trons in this case is just a product of Poisson distributions (one
for each photodetector). For the simulated test camera, we find
that the average over of the largest collection efficiency at
each is 1% and the maximum over all channels and positions
is 6%. Furthermore, the average over all channels and over all
positions is just 0.1%. For this reason we assume the photode-
tector inputs are independent and Poisson distributed.
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Fig. 2. Acquisition of data for calibrating the detector response statistics as
a function of 3D position of interaction. For the current work, the detector re-
sponse is simulated for an ensemble of gamma rays on a regular 1.52 mm-spaced
2D array of collimator beam positions. Calibration data can also include various
gamma-ray beam angles and energies.

C. Electronic Amplification and Readout

To avoid competing with thermal noise in readout electronics,
the photodetector input is amplified. For photomultiplier tubes
(PMTs), the net gain tends to be large and is approx-
imately constant. If electronic and gain noise are negligible (a
condition that we presently assume), then the probability model
for the output signals, , of a PMT-based scintillation camera is
described well as a multivariate scaled-Poisson:

where

and (3)

Here, is an ensemble average, and is a rounding op-
erator. There are a total of photodetectors (channels). For the

th photodetector, is the channel gain, is the number
of input photoelectrons, and is the mean of

for given and ; we omit the functional dependence on
and here as a notational convenience. We often refer to

the vector as the mean detector
response function (MDRF). Hence, to characterize ,
we only need to determine and for each photodetector.

III. CALIBRATING GAINS

We can include gains, , as ad-
ditional unknown parameters in our calibration of (see
Section IV). Alternatively, we can use a separate method to
calibrate ; for example, we can examine the pulse height
spectrum of one or a few photoelectrons (e.g., see [14]), or we
can use the variance-to-mean ratio for a scaled-Poisson signal
distribution (e.g., see Section 5.2.4 in [8]). We presently choose
unit gains and we assume these gains have been separately
calibrated.

IV. CALIBRATING

To calibrate the 3D MDRF, we choose a parametric represen-
tation such as a set of polynomials (see Section V) and then

Fig. 3. Procedure for calibrating statistics of the detector response (i.e.,
�������������� as a function of 3D interaction position. (a) The detector re-
sponse is measured for an ensemble of gamma rays with known input position,
direction, and energy. Event data are initially filtered to keep only photopeak
events. (b) An ML estimate of 3D position for each photopeak event is
determined. An initial estimate of ���� is made (from 2D MDRF or simulation).
(c) Photopeak event data are filtered further by applying a likelihood threshold
on 3D-position ML estimate and by using prior knowledge of the collimated
beam profile. (d) An ML estimate of � is made. Steps (b)–(d) are repeated
until a steady-state solution is reached.

we estimate the parameters for this representation. Let
be a set of parameters representing the mean

detector response functions for the photodetectors,
. The data from which we want to estimate the pa-

rameters is the set of observations, , for
events produced using a collimated gamma-ray source to con-
trol the position and orientation of incident gamma rays (Fig. 2).
Observations for the th gamma ray consist of the camera sig-
nals and event tags specifying the 2D
beam position , the beam orientation , and the gamma-ray
energy . Thus, we calibrate by estimating the parameters

that maximize for given list-mode data :

(4)

Since the camera signals for different gamma-ray events are
independent, can be factored as:

(5)

From this result, the log-likelihood can conveniently be ex-
pressed as a sum of log-likelihoods for each event. Furthermore,
since , and are known experimentally and is assumed
to be a fixed deposited energy for each event, we can write:

(6)

We now can relate to the 3D prob-
ability model by accounting for the ran-
domness in pathlength, . Given that , and
if we have prior knowledge of the pathlength distribution

, we express as:

(7)
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Fig. 4. Radial distributions about calibration-beam axis of 3D-position esti-
mates for (a) camera center and (b) camera corner. We show these distribu-
tions for three types of interaction events: photoelectric primary (Photoelectric),
Compton primary with one or more secondary interactions (Compton ��), and
Compton primary with secondary escape (Compton 1). The fraction of events
within a 1-mm radial window about the beam axis is 51% and 55%, respectively.

The pathlength distribution here generally depends on the
photon energy, input position, and direction (see Section VII).
Making use of (4)–(7), we can then express as:

(8)

where, for a multivariate scaled-Poisson (3), we have:

and (9)

Fig. 5. We show likelihood distributions for three types of interaction events
whose position estimates are within 1 mm of calibration-beam axis: photoelec-
tric primary (Photoelectric), Compton primary with one or more secondary
interactions (Compton ��), and Compton primary with secondary escape
(Compton 1). Results are shown for a calibration beam at (a) the camera center
and (b) camera corner. The fraction of filtered events that are photoelectric at
these two positions is 60% and 55%, respectively. In each case, less than 1%
of filtered events are Compton primary events with secondary escape (dotted
curves for the Compton-1 case appear near the bottom of each plot).

Since scales with the average amount of light produced
by a gamma-ray interaction, we are able to relate the MDRF at
different energies. With knowledge of the average energy de-
pendence of scintillator light yield (as in [15]), we can
separate the energy dependence of :

(10)

We can then use multiple gamma-ray energies to calibrate
just the spatial dependence of the MDRF, . Different
gamma-ray energies result in different gamma-ray pathlength
distributions, , and hence result in different
contributions to the likelihood for the list-mode data (i.e., see
(8)). By including multiple gamma-ray energies as part of our
list-mode data, , we increase the information available for
calibrating just the spatial dependence of the MDRF, .
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Fig. 6. Probability density of pathlength for normally incident gamma rays at the test camera center: (left) all gamma rays, and (right) filtered gamma rays. Events
are filtered using a radial window of 1 mm about the beam axis and a likelihood threshold that retains a constant fraction of events equal to the photoelectric
branching ratio.

V. PARAMETRIC REPRESENTATION OF

Various choices of exist. For example, we can use a regular
array of discrete samples (voxels). Another approach is to use
a physical model for light propagation with several free param-
eters. Alternatively, since should vary smoothly with

, we may choose as the set of parameters for an analytic
form (e.g., see [16]).

For the results that follow, we use a hybrid representation, fit-
ting the mean detector response continuously as a function of
depth for a discrete set of lateral positions. For the th pho-
todetector and a lateral position , we fit the response as a
function of depth with a cubic polynomial:

(11)

where parameters, , describe the coefficients, , as a
function of lateral position. As will become apparent, we sim-
plify the task of optimizing in (8) by representing
with a regular 2D-array of samples. We choose these lateral po-
sitions such that the 3D-MDRF can be accurately interpolated
at any point in the detector volume.

To estimate parameters in this representation, we assume
normally oriented calibration-beam positions. The parameters
for each beam position, , form a set of matrices,

each, where is the number of photodetectors. ML
estimation of in this case conveniently separates into op-
timization problems of 4 parameters each:

(12)

To maintain separability of parameters for the optimization task,
we choose not to use multiple calibration-beam angles.

VI. FILTERING MULTIPLE INTERACTIONS

We must filter multiple-interaction events to calibrate for
single interactions. We do so by using prior knowledge of the
calibration beam position and beam profile and by applying a
threshold on the prior-weighted likelihood of the 3D-position
ML estimate for each gamma ray.

The estimated position of a photoelectric primary is likely to
be closer to the beam axis than is the position estimate for a
Compton interaction. The Compton secondary interaction often
occurs away from the beam axis, which similarly affects the
position estimate. Making use of this information, we weight the

likelihood of the ML position estimate for an event by the prior
of its radial offset from the calibration beam axis. Events are
then filtered using a threshold on this prior-weighted likelihood.
For this work, we assume the beam profile is a uniform circular
disk. The event filter in this case is equivalent to keeping events
that are estimated within a distance , of the beam center

and that pass a likelihood threshold; see step (c) in Fig. 3.
To produce a 3D-position estimate for each event, we need an

initial estimate of the 3D MDRF, . For an experimental cali-
bration, a simulated 3D MDRF can serve as an initial estimate
of . However, to avoid biasing our results for this simulation
study, we use the 2D MDRF, which is marginalized over depth,
and we assume no depth sensitivity. In either case, we then refine
our estimate of by maximizing given the remaining
events after filtering multiple-interaction events. We iterate this
process of event filtering and estimation of until a steady-state
solution is reached (Fig. 3).

In this work, we assume a uniform radial density out to a
radius of 1.0 mm; events that are estimated to be beyond 1.0
mm of the calibration beam axis are removed. In addition, we
choose a likelihood threshold for each beam position such that
the fraction of events kept is equal to the photoelectric branching
ratio for a gamma-ray interaction of known energy. Figs. 4 and
5 give an example of this filtration process for 511-keV gamma
rays.

VII. PATHLENGTH DISTRIBUTION

In a homogeneous detector, we expect gamma-ray pathlength
to be exponentially distributed. However, due to imperfect fil-
tering of multiple interaction events, the pathlength distribution
of the calibration data is not given by Beer’s law as expected.
Rather, this distribution depends on the detector geometry, the
gamma-ray energy, direction and entrance position, and the spe-
cific event filter being used. We rely on simulation to determine

for a specific detector and filter; see Fig. 6.

VIII. RESULTS OF A SIMULATED CALIBRATION

We performed Monte-Carlo (MC) simulations of gamma-ray
interaction, light yield, and optical transport in the test camera
design shown in Fig. 1 using the SCOUT simulation tool re-
ported in [8]. A 25-mm-thick, 52-mm-wide square block of
NaI(Tl) is optically coupled to the borosilicate window of a
Hamamatsu H8500 (an 8-by-8 MA-PMT) [17]. The NaI(Tl)
entrance and edge surfaces are treated as ideal retroreflectors
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Fig. 7. Profile of true vs. ML estimate of ���� as a function of depth ��� for sev-
eral anodes with interactions through the camera center �� � � � ��. The
position of these anodes and the lateral interaction position in this case are in-
dicated in the anode grid shown near the top of this figure. The accuracy of fit
is similar for other anodes and other positions. The estimate of ���� approximates
the cubic least squares fit in each case.

with 95% reflectance. The NaI(Tl) interface with the MA-PMT
window is treated as a micro-faceted diffuse interface; the slopes

Fig. 8. Cross section �� � �� of 3D ML-estimate distribution for a perfectly
collimated 45 -slanted 511 keV gamma-ray beam using the 4-energy ML
estimate for ���� : (top) estimate distribution for all events, (bottom) a likelihood
threshold is used to remove events not likely to be primary photoelectric
interactions.

of individual facets of this surface are normally distributed about
the surface mean with a variance of 0.01. The H8500 MA-PMT
has a bialkali photocathode that we model as having a com-
plex refractive index of for wavelengths near 410 nm
and we model a spectrally averaged quantum efficiency (QE) of
23.1%. We use the scintillation spectrum for NaI(Tl) reported
by [18] to weight the spectral QE for this photodetector. The
refractive indices of NaI(Tl) and borosilicate glass are taken to
be 1.850 and 1.469, respectively. Amplification noise and elec-
tronic noise were assumed negligible for this simulation.

Making use of the filtering and calibration methods described
above, we produced an estimate of for this simulated camera
design. We examined two cases: use of just 511 keV gamma
rays and use of a combination of 4 energies: 140, 171, 245, and
511 keV. All gamma rays are assumed to be at normal inci-
dence. For each case, we sought the ML estimate of using
a conjugate gradient search algorithm.

Representative results for these calibrations of are shown
in Fig. 7. The 3D-MDRF was calibrated on a 1.52-mm grid
of beam positions. Interpolating the calibrated 3D-MDRF to a
0.76-mm lateral grid, we then generated 3D-position estimates
for simulated 511 keV gamma-ray interactions of a perfectly
collimated 45 -slanted beam (shown in Fig. 8). To reject events
not likely to have been produced under the assumed signal prob-
ability model and to improve estimate variance, we applied a
threshold on the estimate likelihood. For the simulated test-
camera, resolution of interaction position is on the order of the
estimate grid size (0.76 mm).

To measure detector spatial resolution as a function of posi-
tion, we can interpolate the MDRF and image a slant-beam at
different positions in the detector. Alternatively, for an ML es-
timator, we can compute bounds on detector spatial-resolution
predicted by Fisher information theory [6]–[8]. In Fig. 9, we
show Cramér-Rao (CR) bounds on lateral resolution and depth
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Fig. 9. Vertical cross section �� � �� of the Cramér-Rao (CR) bound on de-
tector resolution of (top) depth and (bottom) lateral position for a single 511
keV gamma interaction in the test camera (Fig. 1). Our measure of resolution is
the full-width at half-max computed as 2 �� ��������� 	 	 , where ���� 	
is the CR bound on variance for the jth parameter estimate.

resolution of 511 keV gamma rays interacting in the test camera.
Our measure of resolution is the full-width at half-max com-
puted as 2 , where is the CR bound
on variance for the jth parameter estimate. We compute CR
bounds here, as is done in [19], using a multivariate Poisson
probability model conditioned on interaction position and en-
ergy for the number of detected optical photons in each of the
photodetectors.

IX. DISCUSSION

By maximizing the list-mode likelihood, , with prior
knowledge of pathlength distribution, we are able to accurately
calibrate detector-response statistics as a function of 3D position
of interaction in a gamma camera. Accuracy of the 3D-MDRF
calibration for the case considered was limited primarily by the
parametric representation chosen; we see in Fig. 7 that the least
squares fit of a cubic polynomial to the known MDRF is closely
reproduced by the ML fit. Finally, we found that use of multiple
gamma-ray energies did not significantly improve calibration
accuracy. However, this latter conclusion may depend on the
number of events used to perform the calibration.

Making use of the calibrated 3D-position likelihood model,
we have then shown how to estimate the 3D interaction position.
We reject events not likely to have been produced under the as-
sumed signal probability model by applying a threshold on es-
timate likelihood. An optimal choice of likelihood threshold for
imaging a living patient is best determined by task-based assess-
ment of image quality (a topic left for future work). However, for
simulated imaging, we can choose a fairly restrictive likelihood
threshold. In Fig. 8, we find the resulting 3D-position estimates
to be unbiased, which suggests that the ML fit of the 3D-MDRF
is sufficiently accurate for this purpose. The Cramér-Rao bound

on spatial resolution at 511 keV for the simulated test-camera
design (Fig. 1) was determined to be sub-millimeter for most of
the detector volume in both lateral and depth dimensions.

The detector model we have used to illustrate the list-mode
maximum likelihood (LMML) calibration method is inaccurate
in some ways that may affect the detector resolution shown in
Fig. 9. Specifically, we recognize that the retroreflector model
we used is ideal. We have since developed more detailed models
for real retroreflectors, but we did not implement these for the
purposes of this paper, which are to illustrate and validate the
LMML calibration procedure. Furthermore, we find that the ad-
vantage gained by an ideal (as opposed to real) retroreflector can
be realized equivalently by using newer scintillators with more
light output or newer photocathodes with higher QE; these two
advances suggest that even better performance should be attain-
able even without retroreflectors.

Another place where the simulated detector might be inaccu-
rate is in modeling scintillator-PMT interface reflections [20].
For this work, we have used a spatially invariant micro-faceted
surface model with normally distributed slopes [8]. If we ad-
dress this point more accurately, then we might slightly change
our prediction of real-world performance in an undetermined
way (for better or for worse). Either way, we are likely to see
better performance (in terms of estimate resolution and bias)
when using the calculated response function for position estima-
tion. To this end, we have successfully demonstrated a method
for calibrating detector response as a function of 3D interaction
position, independent of the simulation model.

The LMML calibration method we have examined for cali-
brating detector response as a function of 3D interaction posi-
tion can be used with an arbitrary detector design. However, we
find the LMML method of particular importance for monolithic
(continuous) detectors. Use of side illumination to directly con-
trol interaction depth may be more appropriate for calibrating
the 3D response function of arrayed scintillation detectors with
one-to-one photodetector coupling (e.g., see [2]), but is less ef-
fective for a monolithic detector (e.g., see [3]). Several methods
exist for encoding more depth information in a detector’s re-
sponse such as phoswich [21], 3D arrays [22], [23], or dMiCE
[24], but all require more complex detector fabrication and most
of these are capable of only a few depth-resolution elements.

We finish by contrasting the method we’ve examined to an-
other ML calibration method examined by Ling, et al. [5]; a
direct comparison of these methods requires knowledge of the
calibration bias resulting from each method, but this information
is not available directly from [5]. Instead, we elucidate several
fundamental distinctions of these methods. First, the LMML
method makes no assumption regarding how detector response
varies with depth in order to partition interaction depth of indi-
vidual events; the LMML method relies only on prior knowl-
edge of pathlength distribution. Second, we represent response
as a function of depth continuously and we estimate parame-
ters of this representation using events from all depths. Finally,
we filter multiple-interaction events from the calibration data by
windowing the likelihood of their position estimates weighted
by the prior on the calibration beam profile.
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X. OUTLOOK

Experimental calibration of detector-response statistics as a
function of 3D interaction position is an area of future work. Pre-
liminary experimental results using a related calibration method
are reported in [25]. In this related work, a locally scaled solid-
angle model is used to parametrically represent the 3D MDRF;
scaling coefficients are then chosen to fit the observed spectra
for normal calibration-beam data.

The use of list-mode likelihood for calibration of response
statistics as a function of 3D position was demonstrated for
a continuous-scintillator gamma camera, but is generally ap-
plicable for other camera types and geometries. For instance,
list-mode calibration of detector response statistics with DOI
can similarly be applied to segmented detectors. However, in
this case, the detector response is discontinuous across segment
boundaries. Therefore, the parametric representation of the
MDRF that we use should reflect this fact. Calibration of each
detector segment can be performed independently.

This calibration method can also be extended for use with
different signal probability models. For instance, if gain noise
is not negligible (i.e., as for avalanche photodiodes), then we
might instead use an independently distributed (i.d.) multi-
variate normal probability model (see Section 3.3.5 in [8]).
In this case, we must simultaneously calibrate the mean and
variance of the detector response as a function of 3D position.
The general procedure we have proposed to calibrate the mean
response can also be used to calibrate the response variance; to
do so, we would require more data to simultaneously calibrate
the additional statistics.

Having adequately calibrated the detector response for single
interactions, we can mitigate issues of parallax and signal vari-
ance due to random interaction depth. The topic of multiple-in-
teraction parameter estimation is another area of work that can
be expanded upon once we can adequately calibrate the detector
response for single interactions (see Section 3.3.6 of [8]).
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