Clicker Test – just for those who are having trouble. Press a letter (A?) and see if your screen name appears.

Press another and see if a 1 appears next to it.

You can do this twice

Chapter 4 of Tipler & Mosca, sections 4 - 6 Various Forces

0. Newton's Laws (reminder):

- a.) 2^{nd} : $\vec{F}_{net} = m\vec{a}$ (in inertial frame) 1^{st} is special case. $\vec{F}_{net} = 0$ so velocity does not change.
- b.) 3^{rd} : $\vec{F}_{AB} = -\vec{F}_{BA}$ (two objects. "action reaction" or not)
- 4. Force due to gravity: Weight
 - a.) $\vec{F}_g = m\vec{g}$ magnitude of this is weight (g varies slightly with location on the surface. Decreases with altitude. So weight depends on where you are!!) $g = 9.8 \text{ m/s}^2 = 32 \text{ ft/s}^2$
 - b.) Apparent weight (perceived weight) requires a balancing force.)
 - c.) Free fall Gravity still accelerates you, you just don't feel it. Examples Will return to this at end of lecture

5. Solids, springs and strings.

- a.) Surface of solid
 - i) Normal force (is perpendicular)

ii) Friction force (is tangential)

b.) Examples – inclines. demo

c.) Springs. Hooke's law: $F_x = -kx$ the sign means a "restoring force" x=0 at "equilibrium point" actual springs and things that deform. Elastic Limit demo

- d.) Strings (ropes, cables, etc.). Exert Tension (pull, don't push)
 - i) Usually Assume k very large ignore stretch
 - ii) Usually ignore mass of string
 - iii) Will see more later.
 - iv) Clicker question

The 10 kg weight is tied to the ceiling of an elevator going up at 20 m/s. The ropes make 45 deg angles with the ceiling. The tension in each rope is

A. 98 N B. 49 N C. 69 N D. 139 N

6. Free Body Diagrams

- a.) Isolate the thing in question. (the "body")
- b.) Draw the thing with all the force vectors on it. Point them carefully. Label them
- c.) The "body" is drawn all by itself, to avoid confusing 3rd law force pairs. Now you can compute the Net Force.
- d.) Sometimes you know components of the Net Force which you can use to determine the individual forces.
- e.) Demo. Examples.