Chapter 3 of Tipler & Mosca, section 3 Circular Motion

1. Uniform Circular motion:

a.) Constant speed, go around a circle or just part of one (an arc). Speed and radius. →

- b.) Velocity vector is changing, so there is acceleration.
- c.) **T** is period for complete circle, so $V = 2\pi R/T$

d.) Put velocity vectors on a plot, with tails at the origin:

Tip of \vec{V} goes around circle in period *T*. radius of this circle is *V*. Thus rate of change of \vec{V} with time is

 $a = 2\pi V/T$ and since $T = 2\pi R/V$

$a = V^2 / R$ called Centripetal Acceleration

- e.) NOT a constant acceleration. Magnitude is constant but Direction rotates. Points toward center of circle. Demo.
- f.) Clicker problem

A satellite in "low earth orbit" travels a few hundred km above the surface of the Earth. The orbit radius is 7×10^6 m. If g is still 9.8 m/s² at that height, what is the speed of the satellite?

A. 7.0 x 10^7 m/s B. 8.3×10^3 m/s C. 6.3×10^3 m/s D. 4.3×10^3 m/s E. 5.0×10^7 m/s

- 2. "Circular" motion with change of speed
 - a.) Centripetal acceleration always perpendicular to \vec{V} (toward inside of turn)
 - b.) Change of speed result of Tangential acceleration. (parallel to \vec{V} -- just like one dimensional case.)
 - c.) Homework problem example.
- 3. General case of "curvy" motion
 - a.) At any point along a particle's path the acceleration vector has one component parallel to \vec{V} and another perpendicular. That is all there is.
 - b.) Parallel component is the tangential acceleration changes speed.
 - c.) Perp component is centripetal acceleration changes direction.
 - d.) What about the projectile?