Announcements (Oct 3)

- 1.Homework due tonight by Midnight (note about Tycho and significant figures) Office Hours today will be delayed. remark about study center.
- 2.Clicker registration (via website) <u>http://faculty.washington.edu/storm/121C</u> (note that I probably said .../phys121C ...).
- 3. Lab Manuals.

Chapter 3 of Tipler & Mosca, section 2 Projectile Motion

- 1. Basic idea:
 - a.) Start with Initial velocity vector, \vec{V}_0 -usually the magnitude and elevation angle, θ , are used, but components could be too. Initial position is (x_0, y_0) at t = 0.
 - b.) **Projectile proceeds** with constant acceleration downward. (ignore air resistance.)
 - c.) Figure out distance and time to get somewhere from \vec{V}_0 , or vice-versa.
- 2. X motion: (no x-acceleration)
 - a.) $v_{0x} = v_0 \cos(\theta)$
 - b.) so $\mathbf{x}(t) = \mathbf{v}_0 \cos(\theta) t + \mathbf{x}_0$
- 3.Y motion. (acceleration is g downward)
 - a.) $v_{0y} = v_0 \sin(\theta)$
 - b.) so $y(t) = v_0 \sin(\theta) t \frac{1}{2} g t^2 + y_0$

4. Trajectory:

a.) instead of 2 equations, eliminate t, get y(x):

and if we plug in the elevation angle

$$y = y_0 + \frac{\sin\theta}{\cos\theta} x - \frac{1}{2} g \left(\frac{x}{v_0 \cos\theta}\right)^2$$

c.) Example: At what x does $y = y_0$?

- i) Quadratic, so 2 solutions. x = 0 (where we started) and $\frac{\sin\theta}{\cos\theta} = \frac{1}{2}g \frac{x}{v_0^2 \cos^2 \theta}$ which is $x = \frac{2v_0^2 \cos \theta \sin \theta}{g}$
- ii) More complicated if y_{final} not y₀ (need "roots of quadratic" formula).
- iii) Could also solve for t when $y = y_0$ and then substitute into the x(t) equation.
- iv) Examine using falling time, v_{0x}t

5. "Shoot the monkey"

projectile's \vec{V}_0 points at the monkey

- a.) If $v_{0y} = 0$ (i.e. horizontal initial v)
 - i) Y motions for projectile and monkey are the same. (namely $y = -1/2 gt^2$)
 - ii) so "monkey" and projectile fall the same amount. Projectile hits monkey
- b.) If projectile fired at monkey at some angle.
 - i) In frame of Monkey, which is accelerating at g downward, projectile is moving in straight line. So projectile hits monkey.
 - ii) In frame of shooter, both monkey and projectile fall with same acceleration.
 Projectile falls below line to monkey's original position same amount as monkey falls.