Chapter 1 of Tipler & Mosca, sections 6-7 Vectors

6. Vector: magnitude and direction. A

magnitude |A| or just A

 $\vec{A} = \vec{B}$ means both magnitude and direction are equal.

7. General properties.

a.) Addition (subtraction) examples associative: $\vec{A} + \vec{(B} + \vec{C}) = \vec{(A} + \vec{B}) + \vec{C}$

b.) Multiplication by a scalar

- c.) Components:
 - i) In some direction (along some other vector, for example)
 - ii) Along coordinate axes (illustrate)
- d.) Unit vectors

 $\hat{A} = \vec{A} / A$. Magnitude is 1, dimensionless unit coordinate vectors, \hat{i} , \hat{j} , \hat{k}

e.) Given, A_x , A_y , A_z – the components, then

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

Physics 121C lecture 3

October 1, 2007

\vec{A} and \vec{B} are each 2.00 m in magnitude \vec{A} is parallel to the x-axis and \vec{B} is at 30° to the x-axis $\vec{C} = \vec{A} + \vec{B}$ The magnitude \vec{A} A. 4.15

The magnitude of *C* is A. 4.15 m B. 2.15 m C. 3.86 m D. 1.86 m (Clicker question on vector addition)

Chapter 3 Motion in Two and Three dimensions

1. Displacement, Velocity, and Acceleration.

- a.) **Position vector.** (tails go at the origin)
- b.) Displacement vector: $\Delta \hat{r} = \vec{r}_2 \vec{r}_1$ illustrate
- c.) Velocity vector:

i)
$$\vec{V}_{av} = \frac{\Delta \vec{r}}{\Delta t}$$

which is similar to 1-dim case. Direction carried by $\Delta \hat{r} = \vec{r}_2 - \vec{r}_1$

ii)
$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

which means components are

$$V_x = \frac{dx}{dt}, V_y = \frac{dy}{dt}, V_z = \frac{dz}{dt}$$

(often $v_z = 0$ – then we have 2 dim motion)

d.) examples

e.) Relative velocity $\vec{V}_{pB} = \vec{V}_{pA} + \vec{V}_{AB}$ convention is V_{cd} is velocity of "c" in system "d" -- examples

- f.) Acceleration vectors
 - $\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$ average acceleration

and

 $\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$ instantaneous accel.

Note that $\Delta \vec{V}$ will have a non-zero value if just the direction of \vec{V} changes. The magnitude does not have to change.

g.) Examples, clicker question

the velocities of a particle at t_1 and t_2 , $\vec{v_1}$ and $\vec{v_2}$ are each 2.00 m/s in magnitude. $\vec{v_1}$ is parallel to the x-axis at t=0 and The magnitude of \vec{a}_{av} is $\vec{\nu}_2$ is at 30° to the x-axis at t=2.00 s. A. 0.00 m/s^2 B. 1.04 m/s² V_{2} C. 0.52 m/s^2 D. 1.86 m/s²

X axis