Exam answers posted on class website

Clicker Scores now posted on TYCHO. Look in grades for "clicker"

Tycho Typos. 60 not 80 pts for #7, and #8 heading about dates, number of problems, etc is incorrect.

Homework #8 due next Wed (Nov 21) at midnight

Graded exams to be returned at end of class

Getting exam grades posted.....

Overview of HW #8 "hanging sign" and "disk and string"

Chapter 10. Polar vectors

\vec{C} is perpendicular to each of \vec{A}, \vec{B}

Magnitude is $ABsin(\phi)$. C is Max when A and B are perpendicular (opposite from dot product).

 $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ (which may seem peculiar)

 $\vec{\omega} = \vec{r} \times \vec{v} / r^2$ so COUNTER Clockwise rotation (as you look at it) points toward you.

I.e. the hands of a clock have $\vec{\omega}$ pointing into the clock, away from the viewer. This is an arbitrary convention.

Physics 121C lecture 21

 $\hat{i} \times \hat{j} = \hat{k}$ for "right handed coordinates" $\hat{i} \times \hat{j} = \hat{k}$, $\hat{k} \times \hat{i} = \hat{j}$, $\hat{j} \times \hat{k} = \hat{i}$ (cyclic perm.) $\hat{j} \times \hat{i} = -\hat{k}$, etc. and $\hat{i} \times \hat{i} = 0$, etc.

For vectors written as $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$

 $\vec{A} \times \vec{B} = (A_x B_y - A_y B_x)\hat{k} + (A_y B_z - A_z B_y)\hat{i} + (A_z B_x - A_x B_z)\hat{j}$ Note pattern in this.

If you like determinants:

$$ec{A} imes ec{B} = \det egin{pmatrix} ec{i} & ec{j} & ec{k} \ A_x & A_y & A_z \ B_x & B_y & B_z \end{pmatrix}$$

Angular Momentum

Define, $\vec{L} = \vec{r} \times \vec{p}$ for a point particle and note that Torque: $\vec{\tau} = \vec{r} \times \vec{F}$ and $\vec{\omega} = \vec{r} \times \vec{v} / r^2$

the \vec{r} goes first, and the right hand rule works

This particle may or may not be going in a circle about O. Often it won't be!!! Consider a ring, rotating about its center at O.

Then
$$\vec{L} = \vec{r} \times m\vec{v} = m(\frac{r^2}{r^2})\vec{r} \times \vec{v} = mr^2\vec{\omega} = I\vec{\omega}$$

Clicker

Physics 121C lecture 21

A wheel is rotating clockwise as shown. Its rotation axis coincides with the x-axis. A torque that causes the wheel to slow down is best represented \overline{x} by the vector

If the ring is displaced from the x-y plane, but still rotates about the z-axis : $\vec{L} = I \vec{\omega}$ about the z-axis.

See cancellation of components.

In general, an object rotating about a symmetry axis has

 $\vec{L} = I \vec{\omega}$ where *I* is moment of inertia about that axis. (Life is complicated for non-symmetry axes.) Exactly as was the case for linear momentum,

where
$$\vec{F} = m\vec{a} \rightarrow F = \frac{d\vec{p}}{dt}$$
 we see
 $\vec{\tau} \equiv \vec{r} \times \vec{F} = I\vec{\alpha} \rightarrow \vec{\tau} = \frac{d\vec{L}}{dt}$ and
 $\vec{\tau}_{net,external} = \frac{d\vec{L}_{system}}{dt}$ Likewise, angular impulse:
 $\Delta \vec{L}_{sys} = \int_{t_i}^{t_f} \vec{\tau}_{net,ext} dt$

Splitting motion into that of C.M. and *in* C.M. $\vec{L}_{sys} = \vec{r}_{cm} \times M \vec{v}_{cm} + \vec{L}_{spin}$ where $\vec{r}_{cm} \times M \vec{v}_{cm}$ is called "orbital" angular momentum and is *L* of system associated with its C.M. moving with respect to some point. \vec{L}_{spin} is the angular momentum of the system about its C.M. – examples of Earth, Moon, Sun. **Gyroscope: (precession)**

 \vec{L}_{spin} is in horizontal plane. Gravity provides torque, also in horizontal plane, perpendicular to \vec{L}_{spin} .

Therefore $\Delta \vec{L}_{spin}$ changes direction of \vec{L}_{spin} , not its magnitude and it stays in horizontal plane.

(b)

 $\Delta L = \tau \Delta t = MgD\Delta t - \text{angle axis points is } \phi\text{:}$ $\Delta \phi = \frac{\Delta L}{L_{\text{spin}}} = \frac{MgD\Delta t}{I_g \omega_{\text{spin}}}$ **so precession angular speed is** $\omega_p = \frac{d\phi}{dt} = \frac{MgD}{I_g \omega_{\text{spin}}}$

Physics 121C lecture 21