IATEX3 Project Team

1994 /01/31

Abstract

This file contains a short description of most of the new features of
I¥TEX 2 - -1t makes no claims of completeness or of complete accuracy
(but please tell us if you find any errors). It assumes a reasonably high
level of familiarity with some parts of the BTEX 2.09 system.

Only the changes to the core system are documented here. Changes
to standard packages (such as ifthen.sty), and new packages that may
be distributed with BTEX 2 are not described.

Full documentation of ¥TEX2¢ can be found in the book “The
BTEX Companion™, by Michel Goossens, Frank Mittelbach and Alexan-
der Samarin, Addison-Wesley, Reading, Massachusetts, 1993, ISBN 0-201-
54199-8. .

Contents
1 ETgX 2¢ —The new BTEX release

2 User document commands

2.1 Initial commands oL

2.3 Option processing

2.4 Commands for the main document body
3 Warning: stop here?
4 Command naming conventions in BTEX 2¢

5 System dependent commands

T NN N

10

11

12

1

High level class & package interface
6.1 Identification
6.2 Option handling

6.3 Safe Input Macros

ETEX programmer commands

7.1 Obsolete commands

7.2 New commands

Incompatibilities and changes
8.1 Compared to the original KTEX 2.09

R.2 Compared to 2.09 with NFSS release 1
8.3 Compared to 2.09 with NFSS2

Option naming conventions
File extension conventions

Font interface commands

11.1 Using text fonts
11.2 Math fonts

11.3 Math symbols

11.4 Text font declarations

11.5 Naming conventions

Font file loading information

12.1 Utilittes

BETEX 2¢—The new BTEX release

13
13
15

16

17
17
17

18
19
19
20

21

21

22
22
24
27
29
32

Over the years many extensions have been developed for I¥TpX. This is, of
course, a sure sign of its continuing popularity but it has had one unfortunate
result: incompatible BTEX formats came into use at different sites. Thus, to
process documents from various places, a site maintainer was forced to keep
ETEX (with and without NFSS), SLITEX, AMS—E\’IEX, and so on. In addition,
when looking at a source file it was not always clear what format the document
was written for.

To put an end to this unsatisfactory situation, this new KTgX release was pro-
duced at the end of 1993; it brings all such extensions back under a single
format and thus prevents the proliferation of mutually incompatible dialects of
ETEX 2.09. With BXTEX 2¢ the ‘new font selection’ will be standard; style files
like amstex (formerly ApMS-IXTEX format) or slides (formerly SUTEX format)
will become extension packages, all working with the same base format. The
mtroduction of a new release also made it possible to add a small number of
often-requested features.

The next section of this document describes very briefly the major new features
of BXTEX 2¢ which are for use in documents.

The following sections describe (again, only in summary form) some of the
changes and enhancements which are of concern only to writers of classes and
packages (these are the files which replace the “style files’).

2 User document commands

2.1 Initial commands

These are the commands that can appear before the \documentclass line.

| \NeedsTeXFormat {(format-name)} [(release-date)] |

This command is usually used in package and class files, but it could be used
as the first line of your document to declare that the document should run
with BTEX 2. This will ensure that someone who tries to use BTEX 2.09, or
plain TEX, would get a reasonably clear error message straight away.

\begin{filecontents} {{file-name)}
{file-contents)
\end{filecontents}

The filecontents environment is intended for packaging, within a single doc-
ument file, the contents of packages, options, or other files. When the document
file is run through BTEX 2¢ the body of this environment is written verbatim to
a file whose name is given as the environment’s only argument. However, if that
file already exists {(maybe only in the current directory if the OS supports a no-
tion of a ‘current directory’ or ‘default directory’) then nothing happens (except
for an information message) and the body of the environment is by-passed.

The environment is allowed only before \documentclass: this helps to ensure
that all packages or options necessary for this particular run are present when
needed.

2.2 Preamble commands

The changes to these commands are intentionally designed to make KIEX 2¢
documents look clearly different from old documents. The commands should be
used only before \begin{document}.

| \documentclass [{option-list)] {(class-name)} [(release-date)] |

This command (also here called a *declaration’) replaces the IXTEX2.09 command
\documentstyle.

There must be exactly one \documentclass declaration in a document, and it
must come first (except for the ‘initial’ commands described above).

The (option-list) is a list of options, each of which may modify the formatting
of elements which are defined in the (class-name) file, as well as those in all
following \usepackage declarations (see below).

The optional argument (release-date) can be used to specify the desired release
date of the class file; it should contain a date in the format YYYY/MM/DD. If a
version of the class older than this date is found, a warning is issued.

| \documentstyle [{option-list)] {(class-name)} [(release-date)] |

This command is still supported for compatibility with old files. It is essentially
the same as \documentclass, but it loads a ‘compatibility mode’ which redefines
certain commands to act as they did in BTEX 2.09. It also causes any options in
the (option-list) that are not processed by the class file to be loaded as packages
after the class has been loaded. This matches the 2.09 behaviour.

(\usepackage [{option-list)] {(package-name)} [(release-date)]—l

Any number of \usepackage declarations is allowed. FEach package file (as
denoted by (package-name)) defines new elements (or modifies those defined
in the class file loaded by the (class-name) argument of the \documentclass
declaration). A package file thus extends the range of documents which can be
processed.

The (option-list) argument can contain a list of options, each of which can

modify the formatting of elements which are Jefined in this (package-name)
file.

As above, (release-date) can contain the earliest desired release date of the
package file in the format YYYY/MM/DD: if an older version of the package is
found, a warning is issued.

Each package is loaded only once. If the same package is requested more than
once, nothing happens in the second or following attempt unless the package

has been requested with options that were not given in the declaration which
caused it to be loaded. If such extra options are specified then an error message
1x produced.

As well as processing the options given in the (option-list) of the correspond-
ing \usepackage declaration, each package processes the (option-list) of the
\documentclass declaration as well. This means that any option which should
be processed by every package (to be precise, by every package that can do
so) can be specified just once, in the \documentclass declaration, rather than
being repeated for each package that needs it.

Further details of this option processing are in Subsection 2.3 below.

Note: class files have the extension .cls: packages have the extension .sty.

\listfiles

If this declaration is placed in the preamble then a list of the files read in (as a
result of processing the document) should be displayed on the terminal (and in
the log file) at the end of the run. For some of these listed files, extra information
about them will also be produced. (We said ‘should’ above since this will all
happen as documented only if class and package writers always read in files
using the mechanisms provided by the system, and we cannot guarantee that
this will always be done.)

i \setcounter{errorcontextlines} {{num)}]

TEX3 introduced a new primitive \errorcontextlines which controls the for-
mat of error messages. IWIEX 2: provides an interface to this through the stan-
dard \setcounter command. As most IATEX users do not want to see the
internal definitions of I*TEX commands each time they make an error, BTEX 2e
sets this to —1 by default.

2.3 Option processing

The options specified in the \documentclass and \usepackage declarations are
processed as follows.

1. They are first divided into two types, local and global:

e for a class, the options from its \documentclass command are local
and there are no global options;

e for a package. the options from its \usepackage command are local
but the options from the \documentclass command are global.

2. The local and global options that have been declared within this class or
package are processed first.

These are usually processed in the order of their declarations in the class
or package (thus their order in the (option-list) is irrelevant).

However, it is possible for a class or package to process the options in the
order that they appear in each (option-list): first the global options; then
the local ones.

3. Any local options that are not declared by this class or package are then
processed. For document classes, this usually means that they are ignored,
except for this fact being recorded by adding the option to a list of ‘unused
options’; they may, of course, be used later since they become global
options for every package subsequently loaded. For packages, this usually
means that an error message is produced, giving the choice of retyping the
option name in case it is incorrect.

Finally, when \begin{document} is reached, if there are any global options
which have not been used by either the class or any package, the system will
produce a warning message and will list them.

2.4 Commands for the main document body
The following commands have been added in IXTEX 2¢, or have extended fune-

tionality over their IXTEX 2.09 versions. Some of these can also be used in the
preamble.

2.4.1 Definitions

The means of creating and changing both commands and environments have
been enhanced and extended.

\newcommand {(cmd)} [(num)] [{default)] {{definition)}
\renewcommand {(cmd)} [(num)] [{default)] {(definition)}

The optional argument, (default), is new in BTEX 2¢; it allows you to define
a command with one optional argument. If this argument to \newcommand is
present then:

e the first argument of the command (cmd) being defined will be an optional
argument of {cmd);

e when the command (cmd) is used without this first (optional) argument
being specified, the value of #1 (i.e. its first argument) in the (definition)
will be whatever was specified as [(default)] when (cmd) was defined.

For example. after the following:
\newcommand{\seq}[2] [n]{#2_{0},\1dots\,#2_{#1}}

using \seq{a} (within a formula) will produce ay, ... a,, whereas \seq[k]{x}
will produce z¢, ... z¢.

| \newenvironment {{cmd)} [(num)] [{default)] {(beg-def)} {{end-def)}
\renewenvironment {{¢md)} [(num)] [{default)] {{beg-def)} {{end-def)}

As for \newcommand. IXTEX 2¢ also supports defining an environment with one
optional argurnent.

] \providecommand {{cmd)} [{num)] [{default)] {(deﬁm'tion)ﬂ

This takes the same arguments as \newcommand. If (cmd) is already defined
then the existing definition is kept; but if it is currently undefined then the
effect of \providecommand is to define (cmd) just as if \newcommand had been
used.

2.4.2 Boxes

These next three commands all existed in ETEX 2.09. They have been enhanced
n two ways.

| \makebox [(width)] [(pos)] {{text)}
\framebox [(width)] [{pos)] {(text)}
\savebox {{emd)} [{width)] [(pos)] {(text)}

One small but far-reaching change for ITEX 2¢ is that, within the (width) ar-
gument only, three special lengths can be used. These are all dimensions of the
box which would be produced by using simply \mbox{{tezt)}:

\height its height above the baseline:

\depth its depth below the baseline;
\totalheight the sum of \height and \depth;
\width its width.

Thus, to put "hello” in the centre of a box of twice its natural width, you would
use:

\makebox[2\width] {hello}

-1

The other change is a new possibility for (pos). If (pos) is ‘s’ then the text is
stretched the full length of the box, making use of any ‘rubber’ lengths (including
any inter-word spaces) in the box contents. If no such ‘rubber length’ is present,
and ‘underfull box" will be produced.

i \parbox [(pos)] [{height)] [{inner-pos)] {(width)} {{text)}
1 \begin{minipage} [(pos)] [{height)] [{inner-pos)] {{width)}
‘ (text)

\end{mlnlpage}

As for the LR-mode boxes above, \height, \width, etc. may be used in the
[{height)] argument to denote the natural dimensions of the box.

The (inner-pos) argument is new in BTEX 2¢. It is the vertical equivalent the
(pos) argument for \makebox, etc, determining the position of (tezt) within the
box. The {inner-pos) may be any one of t, b. ¢, or s, denoting top, bottom,
centred, or ‘stretched’ alignment respectively. The default value of (inner-pos)
1s to be the same as the actual value of (pos).

" \begin{lrbox} {{cmd)}
U (text)
\end{1lrbox}

This is an environment which does not directly print anything. Its effect is to
save the typeset (fezt) in the bin (¢md). Thus it is like \sbox {{cmd}} {{text)},
except that any white space before or after the contents (text) is ignored.

This is very useful as it enables both the \verb command and the verbatim
environment to be used within (fezt).

[t also makes it possible to define, for example, a ‘framed box’ environment.
This is done by first using this environment to save some text in a bin (cmd)
and then calling \fbox{\usebox{{cmd)}}.

The following example defines an environment. called fmpage, that is a framed
version of minipage.

\newsavebox{\fmbox}%

\newenvironment{fmpage}{1]%
{\begin{lrbox}{\fmbox}\begin{minipage} {#1}}%
{\end{minipage}\end{1lrbox}\fbox{\usebox{\fmbox}}}%

2.4.3 Measuring things

The first of these next commands was in KTEX 2.09. The two new commands
are the obvious analogues.

| \settowidth {{length-cmd)} {{Ir text)}
\settoheight {{length-cmd)} {{Ir text)}
\settodepth {{length-crmd)} {{ir text)}

2.4.4 Controlling page breaks

Sometimes it is necessary, for a final version of a document, to ‘help’ WIEX
break the pages in the best way. KTEX 2.09 had a variety of commands for
this situation: \clearpage, \samepage etc. KTEX2¢ provides, in addition,
commands which can produce longer pages as well as shorter ones.

\enlargethispage {(size)}
\enlargethispage#* {(size)}

These commands increase the height of a page (from its normal value of
\textheight) by the specified amount (size), a rigid length. This change affects
only the current page.

This can be used, for example, to allow an extra line to be fitted onto the page
or, with a negative length, to produce a page one line shorter than normal.

The star form also shrinks any vertical white space on the page as much as
possible, so as to fit the maximum amount of text on to the page.

2.4.5 Floats

There is a new command, \suppressfloats, and a new ‘float specifier’. We

hope that these will enable people to gain better control of IXTEX’s float place-
ment algorithm.

[L \suppressfloats [(placement)]]

This command stops any further floating environments from being placed on
the current page. With an optional argument, which should be either t or b
(not both), this restriction applies only to putting further floats at the top or
at the bottom.

f The extra float location specifier: ! l

This can be used, along with at least one of h, t, b and p, in the location
optional argument of a float.

[fa! is present then. just for this particular float, whenever it is processed by
the float mechanism the following are ignored:

¢ all restrictions on the number of floats which can appear;

e all explicit restrictions on the amount of space on a text page which may
be occupied by floats or must be occupied by text.

The mechanism will, however, still attempt to ensure that pages are not overfull
and that floats of the same type are printed in the correct order.

Note that its presence has no effect on the production of float pages.

A ! specifier overrides the effect of any \suppressfloats command for this
particular float.

2.4.6 Font changing: text

The font change commands are described in detail in Section 11.

Here is a brief description of the two major new classes of commands which
affect the font to be used to typeset text.

\rmfamily
\bfseries

These are font declarations whose use is the same as the declarations \rm, \bf,
etc. The difference is that each command changes just one attribute of the
font (the attribute changed is part of the name). One result of this is that, for
example, \bfseries\itshape produces both a change of series and a change of
shape, to give a bold italic font.

\textrm {(text)}
\textbf {(tert)}
\emph {(texrt)}

E

These are command forms; this means that they take as an argument the text
which is to be typeset in the particular font. They also automatically insert italic
corrections where required; if you do not like the result, this can be over-ridden
by using \/ or \nocorr.

2.4.7 Font changing: maths

Most of the fonts used within math mode do not need to be explicitly invoked;
but to use letters from a range of fonts, the following class of commands is
provided.

10

‘ \mathrm {{letters)}
| \mathnormal {(letters)}

i
|

| \mathcal {{letters)}

These are also command forms so they take as an argument the letters which
are to be typeset in the particular font. The argument is processed in math
mode so spaces within it will be ignored. Also, in general, the treatment of
punctuation, digits, etc is not affected.

2.4.8 Ensuring math mode

(\ensuremath {{math commands)}]

In BTEX 2.09. if you wanted a command to work both in math mode and in
text mode, the suggested method was to define something like:

\newcommand {\Gp}{\mbox{G_p}}

Unfortunately, the \mbox stops \Gp changing size correctly in (for instance)
subscripts or a fraction.

In EXTEX 2¢ you can define it thus:
\newcommand{\Gp}{\ensuremath{G_p}}

Now \Gp will work correctly in all contexts.

This is because the \ensuremath does nothing when \Gp is used within math
mode, but it ensures that math mode is entered (and exited) as required when
\Gp is used in text mode. :

2.4.9 Hiding special tokens.

l \literal {{text)}]

\literal is used to ‘hide’ characters.

This is necessary in certain contexts: for instance, to use a] inside an optional
argument you need to type: \item[\literal{J]}]. It can also be used to
‘break a ligature’: compare the detailed appearance of ‘shelfful’ and ‘shelfful’,
produced by ‘shelfful’ and ‘shel\literal{f}ful’. (The TEXBook suggests
shelf{}ful for the latter effect but unfortunately that can fail as TEX will
‘re-constitute the ligature’ ff if it tries to hyphenate shelf{}ful.)

11

2.4.10 Logos

\LaTeX

\LaTeXe

\LaTeX (producing ‘I¥TEX’) is still the ‘main’ logo command, but if you need to
refer to the new features, you can say \LaTeXe (producing ‘ATEX 2¢°).

3 Warning: stop here?

The rest of this document is aimed exclusively at those who need a quick refer-
ence guide to the inner workings of ETEX 2-. If this is not for you, then stop
here!

4 Command naming conventions in BTEX 2¢

E\TEX 2z attempts to classify commands as follows, and to link this classification
to their appearance (syntactic form).

Document commands Commands that occur in the main document file.
These should have lower case names. (For example, \alpha, \mbox.)

Class & Package Interface commands The high level interfaces for pack-
ages and their options. These commands have mixed case names. (For
example \ProvidesClass.)

BTEX programmer commands These commands help package writers to
build up the structures they require. They are lower case, usually with a
single @ as the first character. (For example \Qifundefined, \@tfor.)

Saved definitions These commands save original definitions. They start with
@@. (For example \Q@end.) KTEX programmers are unlikely to need to
use these commands, but they should avoid naming their own commands
with names starting \@@. . .

Internal commands for a particular package These commands also have
names containing @ but they often have more than one, or it is not the
first letter in the command name. When writing a package, it is good
practice to give all the internal commands a consistent naming scheme as
this reduces the chances of a clash with other packages. (For example,
longtable internal commands include \LT@output, \LT@start.)

12

Note that the above conventions can be broken (\Box is a user level command
that 1s mixed case, \outer has a user-level lowercase name but should never be
used at all!). Also, it is not always clear to which category a command belongs;
nevertheless, it is helpful to bear these conventions in mind when writing new
packages.

The system itself does not try to enforce these conventions except that com-
mands named with an @ may not usually be used in the main document.

5 System dependent commands

When the ETEX 2¢ format is made, certain tests are run to try to determine
the behaviour of the TEX implementation in use and the syntax of external file
names. These tests may be overruled by the site maintainer but in any case the
following commands should be set up to match the local system.

The file dircheck.dtx contains a more detailed explanation of these require-
ments, including examples. This documentation may be typeset by running
IXTEX 2¢ on the file dircheck.drv. ‘

| \@currdir{filename)(space)]

\@currdir(filename)(space) should expand to the syntax on the local operating
system for the file (filename) in the current directory. The expansion should
end with a (space).

| \input@path

On most TEX systems \input@path should be undefined. It is needed on sys-
tems where the TgX program does not look in the same place for files when
using both \input and \openin. On these systems, BXTEX needs \input@path
to be defined to be a list of directories (with the same syntax as \Qcurrdir).
Each directory should be in a {} group.

Examples:

{ {/usr/lib/tex/inputs/} {/usr/local/lib/tex/inputs/} }

{ {c:/tex/inputs/} }

{ {tex$inpurs:} }

__\@filename@parse {(filename)} |

\filename@Qparse{(filename}} defines the following three macros:
\filenameQarea the ‘area’ or ‘directory’ part of (filename)
\filename@base the ‘base’ part of (filename)

13

\filename@ext the ‘extension’ part of (filename)
If {filename) did not have an extension, \filename®ext will be \let to \relax.

6 High level class & package interface

The commands in this section allow class and package writers to clearly identify
their files and to define the options that they support. In BTEX 2.09, a main
style could only define options using ‘low level’ definitions. Packages (which were
implemented as options to the main style) could not have options in previous
releases.

6.1 Identification

[\NeedsTeXFormat {(format-name)} [{release-date)]]

Ensures that the current file is processed under a TEX format with name
(format-name) With (release-date) one can specify the earliest release date
of the format that should still work. Any release older than this date will be
Hagged with a warning.

The standard (format-name) is LaTeX2e. The date, if present, must be in the
form YYY' ‘MM/DD.

Example:

\NeedsTeXFormat{LaTeX2e}[1994/01/01]

\ProvidesClass {(class-name)} [(release-info)]
\ProvidesPackage {(package-name)} [(release-info)]

This declares that the current file contains the definitions for the document
class or package (class-name). The optional (release-info) contains the re-
lease date in the form YYYY/MM/DD, optionally followed by a short descrip-
tion (any sequence of non-special characters). The date information can be
used by \LoadClass or \documentclass (for classes) or \RequirePackage or
\usepackage (for packages) to test if the release is not obsolete. The full infor-
mation is displayed by \listfiles and should therefore not be too long.
Example:

\ProvidesClass{article}[1994/01/01 Standard LaTeX2e class]
\ProvidesPackage{ifthen}[1994/01/01 Standard LaTeX2e package]

14

[\ProvidesFile {{file-name)} [(release-info)]_]

As for the two previous commands, but here the full filename, including ex-
tension must be given. Used for declaring any files other than main class and
package files.

{ \RequirePackage [{options-list)] {(package-name)} [(release-info)] l

With this command, packages can load other packages. The behaviour is similar
to that of \usepackage: if the package (package-name) has already been loaded,
then nothing happens unless the requested options are not a subset of the options
with which i1t was loaded; if they are not then an error is signalled.

Example:

\RequirePackage{ifthen}[1994/01/01 Standard LaTeX2e packagel

| \LoadClass [(options-list)] {{package-name)} [(release-info)]]

This command is similar to \RequirePackage, but it is for use by classes only,
i.e. it must not be used in packages files.

\PassOptionsToPackage {{options-list)} {(package-name)}
\PassOptionsToClass {{options-list)} {{package-name)}

With this command. packages can pass options to another package. This
adds the (option-list) to the list of options of any future \RequirePackage
or \usepackage command for package (package-name).

For example,

\PassOptionsToPackage{foo,bar}{fred}
\RequirePackage[baz] {fred}

Is the same as:
\RequirePackage[foo,bar,baz]{fred}

" Similarly, \PassOptionsToClass may be used to pass options to a class.

\@ifclassloaded {(class-name)} {(true)} {(false)}
\@ifpackageloaded {({package-name)} {{true}} {(false)}

These two commands can be used to execute different pieces of code, depending
on whether a class or package has already been loaded.

| \@ifclasslater {(class-name)} {(release-date)} {(true)} {{false)}
\Qifpackagelater {{package-name)} {(release-date)} {(true)} {{false)}

With these two commands, different pieces of code can be executed, depending
on whether a class or package has already been loaded that is version more
recent. than (release-date). '

@ifclasswith {(class-name)} {{option-list}} {{true)} {{false}}

I\
i \@ifpackagewith {(package-name)} {{option-list)} {{true)} {(false)}

With these two commands, different pieces of code can be executed, depending
on whether a class or package has already been loaded at least the options given
in {option-list).

6.2 Option handling

‘ \DeclareOption {{option-name)} {{code}}]

Declares {option-name) to be an option for the current class or package and
(code) the code to be executed if that option is specified.

The (code) can contain any valid IWNTEX 2¢ construct, plus some special com-
mands for use within this argument which are described below.

Example:

\DeclareOption{twoside}{\@twosidetrue}

\DeclareOption* {(code)}
\OptionNotUsed

Declares (code) to be executed for every option which is otherwise not explicitly
declared. By default, undeclared options to a class will be silently passed to all
packages (just like the declared options for the class); undeclared options to a
package will produce an error.

The (code) can contain any valid BTEX 2¢ construct, plus some special com-
mands for use within this argument which are described below.

The example below handles an undeclared option by loading a .clo file if it
exists. Otherwise it declares the option as unused.

\DeclareOption*{Y
\InputIfFileExists{\CurrentDption.clo}{}{\OptionNotUsed}}

16

\CurrentOption }

Refers to the name of the current option within the (code) of \DeclareOption
or \DeclareOption*.

\Processﬂptionsl

Executes the code for all options specified in the order they are defined in the file.
Afterwards reclaims the memory used by (code) (as given in a \DeclareOptions
declaration) for all options defined in the file.

\ProcessOptions*
\@options

Like \ProcessOptions but executes options in the order specified in the call-
ing command rather than in the order specified in the class or package. The
\@options command from ITEX 2.09 has been made equivalent to this in order
to ease the task of updating old main document styles to BTEX 2¢ class files.

\AtEnd0fClass {(code)}
\AtEndOfPackage {(code)}

These commands cause (code) to be saved away in an internal hook, and then
executed at the end of the current class (package). Repeated use of the com-
mands work, and the arguments are executed in the order they are declared.

\AtBeginDocument {{code)}
\AtEndDocument {(code)}

These commands cause {code) to be saved internally and executed while IXTEX
is executing \begin{document} (\end{document}).

6.3 Safe Input Macros

\InputIfFileExists {{file-name)} {{true)} {(false)} |

Inputs {file-name) if it exists. Immediately before the input, (irue) is executed.
Otherwise (false) is executed.

\IfFileExists {(file-name)} {(true)} {{faise)} |

As above, but does not input the file. One thing that you might like to put in
the (false) clause is:

17

| \@missingtileerror {{file-basename)} {(extension)} |

This starts an iteractive request for a filename, supplying default extensions.

Just hitting the key causes the whole input to be skipped.

| \input {(file-name)}]

This command has been redefined from the BTEX2.09 definition, in terms of
\InputIfFileExists and \@missingfileerror.

7 ETgX programmer commands

There have been many internal changes made while preparing BTRX 2-. Only
those changes that directly affect package writers will be listed here.

This section is not yet complete.

7.1 Obsolete commands

These commands, etc. are no longer available.

\footheight

This parameter was declared in BTEX2.09, and some styles set it to a value, but
the value was never used. It has been removed.

\@maxsep
\@dblmaxsep

These two parameters are no longer used so they have been removed.

7.2 New commands

| \@checkcommand {{cmd)} [{num)] [{default)] {(definition)}

This takes the same arguments as \newcommand but, rather than define (cmd),
it checks that the current definition of {cmd) is (definition). An error is raised
if the definition is different.

This command may be useful for checking the state of the system before your
package starts altering command definitions. It allows you to check that no
other package has redefined the same command.

13

L\two@digits{(num)}1

This is like the primitive command \number except that numbers less than 10
(warning: this includes all negative numbers!) get a leading ‘0’. This is useful
for producing dates of the form 1994/01/01.

} \@percentcharw

This produces a non-special % token. It may be used in \typeout and similar
conmmands to produce a percent-sign.

[\if@compatibility]

This flag is true if the document is being run in WTEX 2.09 compatibility mode.

\@firstofone {(arg)}
\efirstoftwo {(arg’)} {{arg2)}
| \@secondoftwo {{argl)} {{arg2)}

\@firstofone just returns its argument (it has its uses...). \@firstoftwo
returns its first argument, discarding the second. \@secondoftwo returns its
second argument, discarding the first.

\paperheight
\paperwidth

These two parameters are usually set by the class to be the size of the paper be-
ing used. This should be actual paper size, unlike \textwidth and \textheight
which are the size of the main text body within the margins.

8 Incompatibilities and changes

Section 2.2 describes the more obvious changes which affect the preamble of the
document.

This section describes the major differences which will be found when processing
a document. It compares BTEX 2¢ with various old versions of I¥TEX.

8.1 Compared to the original BRTEX 2.09

8.1.1 Font changes

In BTEX 2.09 the only font changing commands (apart from the size commeands)
were the “two-letter’ forms \rm, \bf etc. These each referred to a fized font (at
the given size) so, for instance, the standard commands could not select a bold
italic font. The combination \bf\it selected a medium weight italic (the \it
completely replacing the \bf) and similarly \it\bf produced an upright bold
font.

The size-changing commands such as \large always switched to a roman
font. IATEX 2: introduces the more flexible font changing declarations, such
as \rmfamily, and commands, such as \textrm.

The old ‘two-letter’ font commands are not defined! by the core ITEX 2¢ system.

The standard classes define \rm, \bf etc., to select a fixed text font. The size
commands, however, just change the size; they do not select a roman font.
Furthermore, the commands \rm, \bf, \it are allowed in math mode (unlike
the new NFSS text font commands and declarations.)

8.1.2 Compatibility mode

[f the document begins with \documentstyle rather than \documentclass then
a more complete emulation of BTEX 2.09 is used.

¢ A .sty file will be loaded if a .c1s file cannot be found.
e Size changing commands switch to a roman font.
o All the standard two-letter font comni ads are allowed in math.

¢ The declaration \sloppy, which normally has an improved definition, re-
verts to its old definition; this helps maintain the line-breaking on existing
documents.

8.2 Compared to 2.09 with NFSS release 1

Release 1 of the NFSS introduced the concept of orthogonal font switching but
not the new declaration names such as \rmfamily. With the newlfont option
it redefined the existing two-letter forms and their usc was not allowed in math

mode. KIEX2e is distributed with a package newlfont that defines \rm, \bf
etc in a way similar to NFSS1.

The following list details some more differences between NFSS1 and ETEX 2¢.

20

® These obsolete commands from NFSS1 have been removed: \family,
\series, \shape. and \size. Instead use \fontfamily, \fontseries,
\fontshape. and \fontsize.

e The math alphabets \mit and \cal have been renamed to \mathnormal
and \mathcal.

e The commands \normalshape and \mediumseries have been renamed to
\upshape and \mdseries.

e The following internal commands are also now obsolete:
\extra@defs, \new@fontshape, \subst@fontshape,
\newmathalphabet, \addtoversion.

o In NFSSI, an explicit request for \fontsize{14}{16pt} was actually try-
ing to load a font at 14.4pt; in other words ‘14’ was used as a label and
not as a real size specification. In BTEX 2¢ this request is now interpreted
as asking for a font at ‘14pt’ sharp. Since in the standard FontShape
declarations such a font is not available, I'TEX 2¢ will attempt to use a
nearby size and therefore will (after a warning) also use the ‘14.4pt’ size,
so documents will come out unchanged.

Also, the new version of \fontsize allows other units to be used in its
arguments (defaulting to pt) so \fontsize{12dd}{15dd} is an acceptable
declaration (assuming you have fonts for that size).

e The internal switch \ifdefine@mathfonts, used to suppress math font
changes, was removed. Use \ifmath@fonts instead but do not rely on it
for future interfaces either!

8.3 Compared to 2.09 with NFSS2

While WTEX 2: was being developed, a prototype NFSS2 release was made avail-
able for use with IXTEX 2.09. The internal structure of ITEX 2¢ has not signifi-
cantly altered from this but the prototype, like NFSS1, radefified the two-letter
font changing commands rather than introducing the new \rmfamily forms.
Use the package newlfont if you would prefer. this behaviour in ITFX 2.

The other major difference is that all the styles (packages) distributed with
the prototype had a consistent naming scheme nf.... For example nftimes.sty,
nfoldifnt.sty. After some discussion, it was decided to drop this idea and revert
to the old names times sty, oldlfont.sty.

21

9 Option naming conventions

Nooption names are built into the IXTEX core system. but we hope that package
and class writers will follow these conventions for names of options that have
general applicability. Of course, packages may also have options with names
particular to the package.

language options If your package produces ‘fixed strings’ that produce text
in the output then please consider supporting language options as defined
by the babel package.

paper size options |ie standard classes support the options letterpaper,
legalpaper, executivepaper, a4paper, abpaper, bSpaper; any pa-
per size can be modified by the option landscape. These set the
\paperheight and \paperwidth parameters. When writing a class that
supports different paper sizes you should make similar options, with names
ending in paper, for those sizes that you support.

driver options Many graphics related packages need to know what dvi-driver
1s being used (so that the correct syntax may be used in the \special
command). It is hoped that conventional option-names will be agreed
denoting the major drivers. Currently the suggested list includes: emtex,
dvips, oztex etc.

debugging options errorshow warningshow infoshow debugshow pausing

10 File extension conventions

The ETEX 2¢ system uses mahy different types of files. The main file extensions
and their meanings are listed here.

12e Plain text files containing basic documentation, etc.

ins Docstrip batch files: run iniTeX on these to unpack files.

1tx Internal IXTEX files, used only during the installation.

cfg Configuration files: these are the only files that you are
allowed to edit to customise BTEX for your site.

‘fdd Documented sources for font definition files.

dtx Documented sources for other files.

drv Driver files: run BTEX on these to produce documentation.

cls Class files.

clo Files implementing class options.

sty Package files (and ETEX 2.09 style files).

fd Font definition files.

def Other EXTEX definition files.

tex BTEX document.
aux KTEX document information.
toc E'TEX document table-of-contents information.

ist Makeindex style files.
idx Raw index files.

ind Sorted index files.
gls Raw glossary files.
glo Sorted Glossary files.

log TEX log file {some systems).
lis TEX log file (some systems).
ilg Makeindex log file.

fmt TEX format file (binary).
dvi TgX outpat file (binary).

11 Font interface commands

11.1 Using text fonts

There are two ways of changing the text font: commands, which take the af-
fected text as an argument; declarations, which change the text from that point
onward.

Although the command form is the best one for use in documents, it does more
work so it is not as efficient as the declaration form. Therefore, when writing
package files it is better to use a declaration unless the automatic insertion of
the 1talic correction (see below) is needed.

11.1.1 Font changing commands

Font changes use the following commands.

THe font family 1s changed with:
\textrm{...} \textsf{...} \texttt{...}

The font series (weight/width) is changed with:
\textbf{...} \textmd{...}

"The font shape is changed with:
\textit{.. .} \textsl{...} \textsc{...} \textup{...}

Finally, emphasis can be expressed with

23

\emph{...}

All such commands take care of any necessary italic correction (\/). In case
you want to suppress this extra space you can use \nocorr at an appropriate
place, depending on whether you wish to suppress the correction before or after
the argument text. '

The automatic insertion of the italic correction is regulated by the contents of
\nocorrlist. This is a list of characters; immediately in front of these, no italic
correction is inserted. Its value could, for example, be set as follows:

\def\nocorrlist{.,;:}

11.1.2 Font changing declarations

Each of the above commands has a corresponding declaration.
Font family:

{\rmfanily ...} {\sffamily ...} {\ttfamily ...}
Font series (weight/width):
{\bfseries ...} {\mdseries ...}
Fout shape:
{\itshape ...} {\slshape ...} {\scshape ...} {\upshape ...}

Emphasis:

{\em ...}

11.1.3 Font hooks

NFSS provides a set of built-in hooks that modify the behaviour of the high-level
font changing commands. These hooks are shown in table 1.

The initial setting of \familydefault means that changing only \rmdefault
will also change \familydefault to its value. However, if \familydefault is
changed \rmdefault is not affected.

11.1.4 Accessing symbols in text
Use \symbol{{number)} to select the symbol in position {number) of the cur-

rent font. The characters > or " at the beginning of (number) denote octal or
hexadecimal notation, respectively.

24

Hook Default value Description

\encodingdefault 0T1 Encoding scheme for ‘main font’
\familydefault \rmdefault Font family selected for ‘main font’
\seriesdefault n Series selected for ‘main font’

\shapedefault n Shape selected for *main font’

\rmdefault cmr Font family selected by \rmfamily and \textrm
\sfdefault cmss Font family selected by \sffamily and \textsf
\ttdefault cmtt Font family selected by \ttfamily and \texttt
\bfdefault bx Series selected by \bfseries and \textbf
\mddefault m Series selected by \mdseries and \textmd
\itdefault 1t Shape selected by \itshape and \textit
\sldefault sl Shape selected by \slshape and \textsl
\scdefault sc Shape selected by \scshape and \textsc
\updefault n Shape selected by \upshape and \textup

Table 1: Font attribute hooks

Use \oldstylenums{(number)} to produce non-aligned digits like 1982: this
works in text and math and honours spaces in the argument if used in text.
Do not try to put other characters in the argument, the result would be unpre-
dictable and may change in later releases.

11.2 Math fonts
11.2.1 Predefined math versions

The standard format declares two math versions: ‘normal’ and ‘bold’.

(You can switch between them using \boldmath and \unboldmath or directly
using \mathversion{...}.)

11.2.2 Predefined math alphabets
The system provides the following.
\mathnormal \mathcal \mathrm \mathbf \mathsf \mathit \mathtt

If you use the above commands often, consider defining an abbreviation in the
preamble of yvour document, e.g.

\newcommand{\mrm} {\mathrm}

11.2.3 Declaring math sizes

| \DeclareMathSizes (t-size) (mt-size) (s-size) (ss-size) |

Declares that (mi-size) is the math text size, (s-size) is the script size and
(ss-size) the scriptscript size to be used in math, when (f-size) is the current
text size. For text sizes for which no such declaration is given the script and
scriptscript size will be calculated and then fonts are loaded for the calculated
sizes or the best approximation (this may result in some warning message by

NFSS).

Normally (#-size) and (mt-size) will be identical. however, if, for example,
PostScript text fonts are mixed with bit-map math fonts you may not have
for every (t-size) a corresponding set of math sizes.

Example:

\DeclareMathSizes{13.82}{12.4}{10}{7}

11.2.4 Declaring math versions

| \DeclareMathVersion (version-name)]

Defines (version-name) to be a math version. Initializes this version with the de-
fault for all symbol fonts declared so far (see \DeclareSymbolFont). Internally
stores the stuff in \mve{version-name).

If used on an already existing version. a warning is issued and all previous
\SetSymbolFont declarations for this version are overwritten by the symbol
font defaults, 1.e. one ends up with a virgin math version.

Example:

\DeclareMathVersion{normal}

11.2.5 Declaring math alphabets

{ \DeclareMathAlphabet (id) (cdp) (family) (series) (shape)]

Defines (id) to be a new math alphabet with the default (cdp) (family) (series)
(shape) in all versions (the old \newmathalphabet* plus encoding scheme). If
(shape) is empty then the (id) is declared to be invalid in all versions unless
overwritten later by a \SetMathAlphabet command.

Chechs that (éd) can be used and that (cdp) is a valid encoding scherme.

In these examples, \foo is defined everywhere but \baz, by default, is defined
nowhere.

26

\DeclareMathAlphabet{\foo}{0T1}{cmtt}{m}{n}
\DeclareMathAlphabet{\baz}{0T1}{}{}{}

| \SetMathAlphabet (:d) (version-name) (cdp) (family) (series) (shape) |

Changes the setting of the math alphabet (id) in math version (version-name)
to (cdp)(family)(series)(shape).

Checks that (id) is a math alphabet, (version-name) is a math version and (cdp)
is a known encoding scheme.

This example defines \baz for the ‘normal’ math version only):

\SetMathAlphabet\baz{normal}{0T1}{cmss}{m}{n}
Note that this declaration is not used for all math alpahabets: section 11.2.6 de-

scribes \DeclareSymbolFontAlphabet, which is used to set up math alphabets
contained in fonts which have are declared as symbol fonts.

11.2.6 Declaring symbol fonts

| \DeclareSymbolFont (sym-font-name) {cdp) {family) (series) (shape) |

Defines (sym-font-name) to be a symbolic name for a new symbol font.

The arguments (cdp) (family) (series) (shape) are the default values for this
symbol font in all math versions if not redefined later with a \SetSymbolFont
command.

Checks if (cdp) is a declared encoding scheme.

Internally it allocates a new math group with name \sym(sym-font-name).
For example, the following sets up the first four standard math fonts:

\DeclareSymbolFont{operators}{0T1}{cmr}{m}{n}
\DeclareSymbolFont{letters}{OML}{cmm}{m}{it}
\DeclareSymbolFont{symbols}{0MS}{cmsy}{m}{n}
\DeclareSymbolFont{largesymbols}{OMX}{cmex}{m}{n}

| \SetSymbolFont (sym-font-name) (version name) (cdp) (family) (series) (shape) I

Changes the setting for the symbol font (sym-font-name) in math version
(version name) to (cdp) (family) (sertes) {shape).

Checks that (sym-font-name) is a symbol font, (version name) is a known math
version and (cdp) is a declared encoding scheme.

For example, the following come from the set up of the ‘bold” math version:

\SetSymbolFont{operators}{bold}{0T1}{cmr}{bx}{n}
\SetSymbolFont{letters}{bold}{OML}{cmm}{b}{it}

| \DeclareSymbolFontAlphabet {id) (sym-font—name)W

Allows use of the math alphabet contained in the symbol font that was declared
earlier as (sym-font-name).

This declaration should be used in preference to \DeclareMathAlpahbet and
\SetMathAlphabet when the math alphabet is part of a symbol font; this is
because it makes better use of the limited number (only 16) of TEX’s math
groups.

Checks that (id) can be defined and that (sym-font-name) is a symbol font.
Example:

\DeclareSymbolFontAlphabet{\mathrm}{operators}
\DeclareSymbolFontAlphabet{\mathcal}{symbols}

11.3 Math symbols

[\DeclareMathSymbol (symbol) (type) (sym-font-name) (position) |

The (symbol) can be either a single character, eg ‘>, or a macro name, eg \sum.

Defines this macro or character (symbol) to be a math symbol of type (type)
(values 0-7 or symbolic see below) i+ font position {position) of symbol font
{(sym-font-name) which must have been declared previously. The (position) can
be decimal, octal, or hexadecimal with the usual notation * or " for octal and
hex. Symbolic values for ({ype) are the corresponding \mathord, \mathbin,. ..
commands.

Allows a macro {symbol) to be redefined only if it was previously defined to be
a math symbol.

Checks that (symbol) can be used and that (sym-font-name) is a declared symbol
font.

Example:

\DeclareMathSymbol{\alpha}{0}{letters}{"0B}
\DeclareMathSymbol{\lessdot}{\mathbin}{AMSb}{"0c}
\DeclareMat hSymbol{\foo}{\mathalpha}{AMSb}{''0c}

1 \DeclareMathDelimiter (cmd) (type) (sym-font-name-1) (position-1)
l (sym-font-name-2) (position-2)

or

| \DeclareMathDelimiter {char) (sym-font-name-1) (position-1)
‘\ (sym-font-name-2) (position-2)

Defines (¢md) or {char) to be a math delimiter where the small variant is in font
position {position-1) of symbol font (sym-foni-name-1) and the large variant in
font position (position-2) of symbol font {sym-font-name-2). Both symbol fonts
must have been declared previously. The (position-i) can be decimal, octal, or
hexadecimal with the usual notation ’ or " for octal and hex.

Checks that (cmd) can be used and that {sym-font-name-i) are both declared
symbol fonts.

If TEX is not looking for a delimiter, {¢md) is treated just as if it had been
defined with \DeclareMathSymbol using (sym-font-name-1) (position-1). In
other words, if a command is defined as a delimiter then this automatically
defines it as a math symbol.

However, if this command 1s used to define a single character as a delimiter this
has no effect on its normal use. It can be defined, via \DeclareMathSymbol, to
have completely different behaviour when it is used as a math symbol.

Example:

\DeclareMathDelimiter{\langle}{\mathopen}{symbols}{"68}
{largesymbols}{"0A}

| \DeclareMathAccent (cmd) (type) (sym-font-name) {position)]

Defines (cmd) to act as a math accent. The accent character comes from
(sym-font-name) in position (position). The (type) can be either \mathord
or \mathalpha; in the latter case the accent character changes font when used
in a math alphabet.

Example:

\DeclareMathAccent{\acute}{\mathalpha}{operators}{"13}
\DeclareMathAccent{\vec}{\mathord}{letters}{"7E}

\DeclareMathRadical (cmd) (sym-font-name-1) (position-1)

[
! (sym-font-name-2) (position-2)

Defines (cmd) to be a radical where the small variant is in font position
(position-1) of symbol font (sym-font-name-1) and the large variant in font
position (position-2) of symbol font (sym-font-name-2). Both symbol fonts
must have been declared previously. {position-i) can be decimal, octal, or hexa-
decimal with the usual notation ’ or " for octal and hex.

Example (probably the only use for it!):

\DeclareMathRadical\sqrt{symbols}{"70}{largesymbols}{"70}

29

11.4 Text font declarations

11.4.1 . Encoding

|_\DeclareFontEncoding (cdp) (text-settings) (math-settings) |

Declares a new encoding scheme (cdp). The (tezt-settings) are declarations
which are executed every time \selectfont switches to encoding scheme (cdp).
(More exactly, they are already executed when \fontencoding is encountered
and the new encoding differs from the previous encoding.) This can be used for
changing definitions of accents or other beasts that depend on font positions.

The (math-settings) are similar but for math alphabets (only!). They will be
executed whenever a math alphabet with this encoding is called. Spaces within
the arguments are ignored to avoid surplus spaces in the document in funny
places. If a real space is necessary use \space.

Example:

\DeclareFontEncoding{0T2}{}{\noaccents@}

[\DeclareFontEncodingDefaults (text-settings) (math-settings) |

Declares (text-settings) and (math-settings) for all encoding schemes. These are
executed before the encoding scheme dependent ones are executed so that one
can use the defaults for the major cases and overwrite them if necessary using
\DeclareFontEncoding.

[f \relax is used as an argument, the current setting of this default is left
unchanged.

This example is used by amsfonts.sty for accent positioning; it changes only the
math settings:

\DeclareFontEncodingDefaults{\relax}{\def\accentclass@{7}}

11.4.2 Family, shape and size

| \DeclareFontFamily (cdp) (family) (loading-options)]

Declares a font family (famuly) to be available in an encoding scheme (cdp). The
(loading-options) are executed for every font shape of that combination once at
the time of loading.

("hecks that (mlp> was previously declared.

This example refers to the Computer Modern Typewriter in Cork encoding:

\DeclareFontFamily{T1}{cmtt}{\hyphenchar\font=-1}

30

| \DeclareFontShape {cdp) (farnily) (series) (shape) (loading-info) (loading-option)]

L

Declares a font shape combination; here (loading-info) contains the information
that combines sizes with external fonts. The syntax is complex and is described
in Section 12 below.

The (loading-options) are used as above; they allow overwriting, for this partic-
ular shape, of the general loading options made at the family level.

Checks that (cdp)+(famaily) was previously declared via \DeclareFontFamily.
Example:

\DeclareFontShape{0T1}{cmr}{m}{s1}{%
<5-8> sub * cmr/m/n
<8> cmsl18
<9> cmsl9
<10> <10.95> cmsl10
<12> <14.4> <17.28> <20.74> <24.88> cmsl1?2
H>

| \DeclareFixedFont (cmd) (cdp) (family) (series) (shape) (size) |

Declares command (cmd) to be a font switch which selects the font that is
specified by the attributes (cdp), (family), (series), (shape), and (size) without
any overhead by NFSS table processing.

The NFSS tables are evaluated only when this declaration is made. The font is
selected without any adjustments to baselineskip and other surrounding condi-
tions.

This example makes \picturechar . select a small dot very quickly:

\DeclareFixedFont{\picturechar}{0T1}{cmr}{m}{n}{5}

11.4.3 Font substitution

| \DeclareErrorFont (cdp) (family) (series) (shape) (size) |

Declares (cdp)(family)(series)(shape) to be the font shape used in cases where
the standard substitution mechanism fails (i.e. would loop).

Also initializes \f@encoding ... \f@baselineskip with the corresponding val-
ues in case a \selectfont command is used during the early part of the style
file.

Enforces, at \begin{document}, that (cdp)(family)(series)(shape) is defined
via \DeclareFontShape.

Example:

\DeclareErrorFont{0T1}{cmr}{m}{n}{10}

i \DeclareFontSubstitution {(cdp) {family) (series) (shape)]

Declares the default values for font substitution which will be used when a font
has to be loaded but cannot be found with the current attributes. These are
local to the encoding scheme because the encoding scheme is never substituted!
They are tried in the order (shape) then (series) and finally (family).

If no defaults are set up for an encoding, the values given by \DeclareErrorFont
are used.

Enforces, at \begin{document}, that (cdp)(family)(series)(shape) is defined
via \DeclareFontShape.

Example:

\DeclareFontSubstitution{T1}{cmr}{m}{n}

| \fontsubfuzz = (dimen)]

Parameter that is used to decide whether or not to produce a terminal warning
if a font size substitution takes place. If the difference between the requested
and the chosen size is less than \fontsubfuzz the warning is only written to
the transcript file. The default value is 0.4pt.

11.4.4 Size functions

| \DeclareSizeFunction (name) (code) l

Declares a size-function (name) for use in \DeclareFontShape commands. The
interface is still lousy but then there should be no real need to a define new size
functions.

The (code) is executed when the size or size-range in \DeclareFontShape
matches the requested user size.

The arguments of the size-function are automatically parsed and placed into
\mandatory@arg and \optional@arg for inspection. Also available, of course,
is \f@size, which is the user requested size.

To signal success {code) has to define the command \external@font to contain
the external name and any scaling options of the font to be loaded.

This example sets up the ‘empty’ size function (simplified):

\DeclareSizeFunction{}
{\edef\external@font{\mandatory@arg\space at\f@size}

The system provides the following functions.

* (empty) Load the external font (in (fontarg)) at user requested size. If
(optarg) present. used as scale-factor.

s Like the empty function but without terminal warnings, only loggings.

gen (Generates the external font from the mandatory arg followed by the user
requested size, e.g. <8> <9> <10> gen * cmtt

sgen Like the "gen” function but without terminal warnings, only loggings.

sub Tries to load a font from a different fontshape declaration given by (fontarg)
in the form (famaly)/(series)/{shape).

ssub Silent variant of ‘sub’, only loggings.

subf Like the empty function but issues a warning that it has to substitute the
-external font (fontarg) because the desired font shape was not available
in the requested size.

ssubf Silent variant of subf’, only loggings.

fixed Load font as is (disregarding user size) from (fontarg). If present (optarg)
denotes the “at ...pt” size to be used.

sfixed Silent variant of ‘fixed’, only loggings.

11.4.5 Preloading

| \DeclarePreloadSizes (cdp) (family) (series) (shape) (size-list) l

Specifies the font (.tfm) files that should be loaded by the format:
Example:

\DeclarePreloadSizes{0Ti}{cmr}{m}{s1}{10,10.95,12}

11.5 Naming conventions
11.5.1 Math alphabets

Math alphabet commands all start with \math...;e.g. \mathbf, \mathcal, etc.
Define your private shorthands in the preamble if desired.

33

11.5.2 Text font changes

The text font changing commands with arguments all start with \text...;
e.g. \textbf. \textrm. \emph. etc.

11.5.3 Encoding schemes

Names for encoding schemes are strings of up to three letters all upper case.
Currently the names officially supported by the NFSS2 release are:

FEncoding Description declared by
T1 TEX text Cork encoding NFSS

OT1 TEX text as defined by Don (more or less) NFSS

oT2 TEX text cyrillic UW fonts —

0oT3 IPA University of Washington (AMS encoding) —

OML TgX math letters (italic) as defined by Don NFSS
OMS TEX math symbol as defined by Don NFSS
OMX TEX math extended symbol as defined by Don NFSS

U Unknown encoding NFSS

This table will be extended in the future if the TEX community, e.g. the national
user groups, agree on additional encodings.

The following starting letters are reserved for future use by the NFSS maintain-
ers and should not used to declare new encodings: T (standard 256-long text
encodings), M (standard 256-long math encodings), S (standard 256-long symbol
encodings), OT (standard 128-long text encodings), OM (standard 128-long math
encodings).

Encoding schemes which are local to a site should start with L. Please do not
use other starting letters for non-portable encodings. Instead, please inform us
if a new standard encoding should be added to a later release.

11.5.4 Font families

Font family names should contain up to five lower case letters.

11.5.5 Font series

Font series names should contain up to four lower case letters.

11.5.6 Font shapes

Font shapes should contain up to two letters lower case.

34

11.5.7 Symbol fonts

Names for symbol fonts are built from lower and upper case letters with no
restriction.

NFSS defines the following names for symbol fonts:

operators fam 0 font for operator names (sin, lim, etc.)
letters fam 1 where the normal letters come from
symbols fam 2 normal size symbols

largesymbols fam 3 large size symbols

12 Font file loading information

The information which tells BTEX exactly which font (.tfm) files to load is
contained in the (loading-info) part of a \DeclareFontShape declaration. This
part consists of one or more (fontshape-decl)s, each of which has the following
form:

(fontshape-decl): : = (size-info) {font-info)

(size-info) 1= <" (number-or-range) “>”
(font-info) ::={[(size-function) “*"] “[" (optarg) “1” (fontary)
| (fontarg)

The {number-or-range) denotes the size or size-range for which this entry ap-
plies. If it contains a hyphen char it is a range: lower bound on the left (if
missing, zero implied), upper bound to the right of hyphen (if missing, \infty
mnplied). For ranges. the upper bound is not included in the range and the
lower bound is.

Examples:
<10> simple size 10pt only
<-8> range all sizes less than 8pt
<8-14.4> range all sizes greater than or equal to 8pt
but less than 14.4pt
<14.4-> range all sizes greater than or equal 14.4pt

If more than one (number-or-range) entry follows without any intervening
- (font-info), they all share the next (font-info).

The (size-function), if present, handles the use of (font-info). If not present,
the ‘empty’ (size-function) is assumed.

All the (size-info)s are inspected in the order in which they appear in the font
shape declaration. If a {size-info) matches the requested size, its (size-function)
1s executed. If \external@font is non-empty afterwards this process stops,
otherwise the next (size-info) is inspected. (See also \DeclareSizeFunction.)

[f this process does not lead to a non-empty \external@font, NFSS tries the
nearest simple size.

12.1 Utilities

[\hexnumber@ (num) |

For (num) in the range 0 < (num) < 16, converts (num) into a single hex
digit. Tt is completely expandable and thus can be used to construct longer hex
numbers in an emergency.

Example:

\xdef\yen{\noexpand\mathhexbox\hexnumber@\symAMSa 55 }

[\f@warn@break]

This command is used within warning messages generated by NFSS and is de-
fined to produce a new line beginning with the string “Font” (plus a suitable
number of spaces). This means that it is fairly easy to extract all NFSS related
messages from the transcript file. If this is not desired. redefine it to be less
conspicuous; for example:

\def\f@warn@break{" " J\@spaces\@spaces\@spaces}

12.2 Low-level interfaces

The low-level commands used to select a text font are as follows.

\fontencoding (encoding)
\fontfamily (fam:ly)
| \fontseries ({series)

| \fontshape (shape)
\fontsize (size) (baselineskip)

Each of these commands sets the value of just one of the font attributes;
\fontsize also sets the value of \baselineskip. The actual font in use is not
altered by these commands, but the current attributes are used to determine
which font to use after the the next \selectfont command.

\selectfont

Selects a text font, based on the current values of the font attributes.

36

L \usefont (encoding) {family) (series) (shape)

A short hand for the equivalent \font... commands followed by a call to
\selectfont.
The current values of the font attributes are held internally in these locally set
NACros:

\fQencoding current encoding value

\f@family current family value

\fQ@series current series value

\fQ@size current size value

(in pt, without an explicit dimension)
\f@baselineskip current haselineskip value

\tf@size current text size for math
(normally the same as \f@size)

\sf@size current script size for math

\ssf@size current scriptscript size for math

As an example of their use, this will set the size to 12 without changing the
baselineskip:

\fontsize{12}{\f@baselineskip}

37

