Lecture 8 Appendix – Young Diagrams and SU(N) representations

For the question of decomposing products of SU(N) (N = 2 for spin and N = 3 for color and flavor) representations into irreducible representations, the most efficient notation is that of Young diagrams. These are just left justified arrays of boxes with a specific set of (seemingly ad hoc) rules for their manipulation and interpretation. The rules include the following.

1. Each horizontal row of boxes is at least as long as the horizontal row below it.

2. We can think of the horizontal direction as symmetrization (with respect to some internal index) and the vertical direction as anti-symmetrization. There are at most N rows for the case of SU(N), since there are only N distinct objects.

3. For the SU(3) representation \((p,q)\) the first row has \(p\) more boxes than the second row and the second row has \(q\) more boxes than the third row. Thus we have

 \[
 \begin{align*}
 (1,0) &= 3 = \begin{array}{c}
 \hline
 \end{array},
 (0,1) &= 3 = \begin{array}{c|c}
 \hline
 & \\
 \hline
 \end{array},
 (0,0) &= 1 = \begin{array}{c}
 \hline
 \hline
 \end{array},
 \\
 (1,1) &= 8 = \begin{array}{c|c|c}
 \hline
 & & \\
 \hline
 & & \\
 \hline
 \end{array},
 (2,0) &= 6 = \begin{array}{c|c|c|c}
 \hline
 & & & \\
 \hline
 & & & \\
 \hline
 \end{array},
 (3,0) &= 10 = \begin{array}{c|c|c|c|c|c|c|c|c}
 \hline
 & & & & & & & & \\
 \hline
 & & & & & & & & \\
 \hline
 \end{array}.
 \end{align*}
 \]

 \[(8.1)\]

4. The counting of states within a given representation involves filling in the boxes starting with the upper left hand corner. For SU(N) you put \(N\) in that box and then increase the number when moving to the left and decrease the number when moving down. An example is \[\begin{array}{c|c|c|c|c|c|c|c}
 N & N & N + 1 & N - 1 & N - 2 & N - 3 & \ldots & N - N + 1
 \end{array}\]. Next we must define a “hook”. A hook is the set of boxes that form a “right hook”, moving first up and then right. For the previous example there are 3 possible hooks, one involving all three boxes, one involving only the right most box and one involving only the bottom box.

 \[
 \begin{array}{c|c|c|c|c|c|c}
 & & & & & & \\
 & & & & & & \\
 \hline
 \hline
 \hline
 \hline
 \end{array}\Rightarrow 3,
 \begin{array}{c|c|c|c|c|c|c}
 & & & & & & \\
 & & & & & & \\
 \hline
 \hline
 \hline
 \end{array}\Rightarrow 1,
 \begin{array}{c|c|c|c|c|c|c|c}
 & & & & & & & & \\
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{array}\Rightarrow 1.
 \]

 Without proof, we note that the number of states in the representation represented by a Young diagram is given by the product of all the boxes with numbers in them (\(i.e.,\) the product of the numbers in the boxes) divided by the product of the
lengths (number of boxes) of the hooks. For the example above for SU(3), we have \(N = \frac{3 \cdot 4 \cdot 2}{3 \cdot 1 \cdot 1} = 8 \) as expected. Two other examples to test your understanding are

\[
\begin{align*}
N &= \frac{3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 1, \\
N &= \frac{3 \cdot 4 \cdot 5}{3 \cdot 2 \cdot 1} = 10.
\end{align*}
\]

To actually combine multiplets, \(i.e., \) define a product of representations, we need to carefully label things. Here we use the notation of the PDG (see http://pdg.lbl.gov/2012/reviews/rpp20012-rev-young-diagrams.pdf). Consider the product of 2 octets,

\[8 \otimes 8 = \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{Octet 1:}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\otimes \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{Octet 2:}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
, \quad (8.1.2)
\]

where we use boxes to represent the first octet and letters for the second (with “\(a \)” for the first row, “\(b \)” for the second, \(\text{etc} \)). Now we proceed to “add the boxes” with the following rules.

1. Start with the left-hand Young diagram (the boxes) \(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{Octet 1:}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array} \).

2. Add the “\(a \)'s” in all ways that produce a valid Young diagram, but with no more than a single “\(a \)” in each column (initially symmetric labels cannot be antisymmetrized)

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{Octet 1:}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array} \Rightarrow \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{Octet 1:}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array} \otimes \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{Octet 2:}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array} \].

(8.1.3)

3. Starting in the second row (where the “\(b \)'s” were initially) add the “\(b \)'s” subject to the constraint that, reading from right to left starting at the end of the first row and moving on to the second row, the number of “\(a \)'s” must be \(\geq \) the number of “\(b \)'s” (\(\geq \) the number of “\(c \)'s”, \(\text{etc} \)). Thus for our example in Eq. (8.1.2) the allowed Young diagrams are
4. Using the rules noted earlier we can work out the multiplicity of each of these irreducible representations with the “hooks” formula.

\[
\begin{align*}
&= 3 \cdot 4 \cdot 5 \cdot 6 \cdot 2 \cdot 3 + 3 \cdot 4 \cdot 5 \cdot 6 \cdot 2 \cdot 1 + 3 \cdot 4 \cdot 5 \cdot 2 \cdot 3 \cdot 4 \\
&\quad + 5 \cdot 4 \cdot 2 \cdot 1 \cdot 1 + 6 \cdot 3 \cdot 2 \cdot 1 \cdot 1 + 4 \cdot 3 \cdot 2 \cdot 1 \\
&= 3 \cdot 4 \cdot 5 \cdot 2 \cdot 3 \cdot 1 + 3 \cdot 4 \cdot 5 \cdot 2 \cdot 3 \cdot 1 + 3 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \\
&\quad + 5 \cdot 3 \cdot 3 \cdot 1 \cdot 1 \cdot 1 + 5 \cdot 3 \cdot 3 \cdot 1 \cdot 1 \cdot 1 + 4 \cdot 3 \cdot 2 \cdot 2 \cdot 1 \\
&= 27 \oplus 10 \oplus 10 \oplus 8 \oplus 8 \oplus 1 \\
&= (2, 2) \oplus (3, 0) \oplus (0, 3) \oplus (1, 1) \oplus (1, 1) \oplus (0, 0).
\end{align*}
\]

Thus the final result (as we have already noted) is

\[8 \otimes 8 = 27 \oplus 10 \oplus 10 \oplus 8 \oplus 8 \oplus 1. \quad (8.A.6)\]

Looking ahead to the application to the SU(3) of color we can reproduce some other results that we have already used. Consider the product of a quark and antiquark,

\[3 \otimes 3 = 8 \oplus 1. \quad (8.A.7)\]

Next consider the product of 3 quarks, but begin by first looking at 2 quarks,

\[3 \otimes 3 = 6 \oplus 3. \quad (8.A.8)\]
With the third quark we have

\[
\begin{align*}
3 \otimes 3 \otimes 3 &= (6 \oplus \bar{3}) \otimes 3 = \left(\begin{array}{c} + \end{array} \right) \otimes \left(\begin{array}{c} \times \end{array} \right) \\
&= 10 \oplus 8 \oplus 8 \oplus 1.
\end{align*}
\]

(8.A.9)

In the context of color we are interested only in the color singlets for the mesons and baryons respectively. Note as already discussed that the singlet is the completely antisymmetric state. Applied to the SU(3) of flavor, we see again that the mesons should appear in octets and singlets while the baryons should form decuplets, octets (of differing internal permutation symmetry) and singlets of flavor. However, not all of these states can be combined (with space, color and spin wave functions) to yield states with the required overall asymmetry under permutations. For example, the antisymmetric color wave function requires net symmetry in the other quantum numbers. For the ground state we expect the space wave function to be symmetric. The spin wave function is either symmetric (S = 3/2) or mixed (S = 1/2). Thus only the flavor symmetric 10, with spin 3/2, and the appropriately mixed flavor symmetry 8, with spin 1/2, can appear in the baryon ground state.

For further discussion (including how to connect the integers (p,q) to the shape in isospin-strangeness plane) see the PDG report at