Contents

1 DopplerToolkit Namespace Index .. 1
 1.1 DopplerToolkit Namespace List .. 1

2 DopplerToolkit Hierarchical Index ... 3
 2.1 DopplerToolkit Class Hierarchy ... 3

3 DopplerToolkit Class Index .. 5
 3.1 DopplerToolkit Class List ... 5

4 DopplerToolkit File Index ... 7
 4.1 DopplerToolkit File List .. 7

5 DopplerToolkit Namespace Documentation 9
 5.1 APL Namespace Reference ... 9
 5.2 LOAPEX Namespace Reference ... 10

6 DopplerToolkit Class Documentation 11
 6.1 LOAPEX::CADFcompare Class Reference 11
 6.2 LOAPEX::CADFFile Class Reference 12
 6.3 LOAPEX::CADFFileAdapter Class Reference 15
 6.4 LOAPEX::CADFInfo Class Reference 17
 6.5 LOAPEX::CADFSource Class Reference 19
 6.6 LOAPEX::CBase3DNavigationData Class Reference 22
 6.7 LOAPEX::CBaseFileAdapter Class Reference 25
 6.8 LOAPEX::CBaseFilter Class Reference 27
6.9 LOAPEX::CBaseMapSolver Class Reference 29
6.10 LOAPEX::CBrentMapSolver Class Reference 32
6.11 LOAPEX::CCompoundTime Class Reference 34
6.12 LOAPEX::CDemultiplexer Class Reference 36
6.13 LOAPEX::CFakeRXNavigationData Class Reference 38
6.14 LOAPEX::CFakeTXNavigationData Class Reference 41
6.15 LOAPEX::CFixedNavigationData Class Reference 44
6.16 LOAPEX::CGappyADFSream Class Reference 47
6.17 LOAPEX::CGenericSource Class Reference 49
6.18 LOAPEX::CGeoParameters Class Reference 51
6.19 LOAPEX::CInterpolatedTableFunction Class Reference 53
6.20 LOAPEX::CMultichannelFilter Class Reference 55
6.21 LOAPEX::CMultiplexor Class Reference 57
6.22 LOAPEX::CMUXFile Class Reference 59
6.23 LOAPEX::CMUXFileAdapter Class Reference 64
6.24 LOAPEX::CNetCDFNavigationData Class Reference 66
6.25 LOAPEX::CNewtonMapSolver Class Reference 69
6.26 LOAPEX::CRez3DNavigationData Class Reference 71
6.27 LOAPEX::CSingleChannelAllPassFilter Class Reference 74
6.28 LOAPEX::CSingleChannelAllStopFilter Class Reference 76
6.29 LOAPEX::CSingleChannelSincFilter Class Reference 78
6.30 LOAPEX::CTimeBaseMapEngine Class Reference 81
6.31 LOAPEX::CTimeTag Class Reference 84
6.32 LOAPEX::CZeroSource Class Reference 87
6.33 dEuclideanVector_t Struct Reference 89
6.34 APL::Error Class Reference .. 90
6.35 APL::FatalError Class Reference 91
6.36 tstream Class Reference .. 92

7 DopplerToolKit File Documentation 93
7.1 adfadapter.cpp File Reference 93
<table>
<thead>
<tr>
<th>Section</th>
<th>File Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.33</td>
<td>navigation.hpp</td>
<td>125</td>
</tr>
<tr>
<td>7.34</td>
<td>nrutil.c</td>
<td>127</td>
</tr>
<tr>
<td>7.35</td>
<td>parameters.hpp</td>
<td>129</td>
</tr>
<tr>
<td>7.36</td>
<td>refman.doc</td>
<td>130</td>
</tr>
<tr>
<td>7.37</td>
<td>sincfilter.hpp</td>
<td>131</td>
</tr>
<tr>
<td>7.38</td>
<td>sincfilter.hpp</td>
<td>132</td>
</tr>
<tr>
<td>7.39</td>
<td>spline.c</td>
<td>133</td>
</tr>
<tr>
<td>7.40</td>
<td>splint.c</td>
<td>134</td>
</tr>
<tr>
<td>7.41</td>
<td>tablefunction.hpp</td>
<td>135</td>
</tr>
<tr>
<td>7.42</td>
<td>tablefunction.hpp</td>
<td>136</td>
</tr>
<tr>
<td>7.43</td>
<td>timetag.cpp</td>
<td>137</td>
</tr>
<tr>
<td>7.44</td>
<td>timetag.hpp</td>
<td>138</td>
</tr>
<tr>
<td>7.45</td>
<td>tstream.cpp</td>
<td>139</td>
</tr>
<tr>
<td>7.46</td>
<td>tstream.hpp</td>
<td>140</td>
</tr>
</tbody>
</table>
Chapter 1

DopplerToolkit Namespace Index

1.1 DopplerToolkit Namespace List

Here is a list of all namespaces with brief descriptions:

<table>
<thead>
<tr>
<th>Namespace</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APL</td>
<td>9</td>
</tr>
<tr>
<td>LOAPEX</td>
<td>10</td>
</tr>
</tbody>
</table>
Chapter 2

DopplerToolkit Hierarchical Index

2.1 DopplerToolkit Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

LOAPEX::CADFcompare .. 11
LOAPEX::CADFFile ... 12
LOAPEX::CADFInfo .. 17
LOAPEX::CBase3DNavigationData 22
 LOAPEX::CFakeRXNavigationData 38
 LOAPEX::CFakeTXNavigationData 41
 LOAPEX::CFixedNavigationData 44
 LOAPEX::CNetCDFNavigationData 66
 LOAPEX::CRes3DNavigationData 71
LOAPEX::CBaseFileAdapter 25
LOAPEX::CADFFileAdapter 15
LOAPEX::CMUXFileAdapter 64
LOAPEX::CBaseFilter .. 27
 LOAPEX::CSingleChannelAllPassFilter 74
 LOAPEX::CSingleChannelAllStopFilter 76
 LOAPEX::CSingleChannelSincFilter 78
LOAPEX::CBaseMapSolver 29
 LOAPEX::CBrentMapSolver 32
 LOAPEX::CNewtonMapSolver 69
LOAPEX::CCompoundTime 34
LOAPEX::CDemultiplexer 36
LOAPEX::CGappyADFFrame 47
<table>
<thead>
<tr>
<th>Class/Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAPEX::CGenericSource</td>
<td>49</td>
</tr>
<tr>
<td>LOAPEX::CADFSource</td>
<td>19</td>
</tr>
<tr>
<td>LOAPEX::CZeroSource</td>
<td>87</td>
</tr>
<tr>
<td>LOAPEX::CGeoParameters</td>
<td>51</td>
</tr>
<tr>
<td>LOAPEX::CInterpolatedTableFunction</td>
<td>53</td>
</tr>
<tr>
<td>LOAPEX::CMultichannelFilter</td>
<td>55</td>
</tr>
<tr>
<td>LOAPEX::CMultiplexor</td>
<td>57</td>
</tr>
<tr>
<td>LOAPEX::CMUXFile</td>
<td>59</td>
</tr>
<tr>
<td>LOAPEX::CTimeBaseMapEngine</td>
<td>81</td>
</tr>
<tr>
<td>LOAPEX::CTimeTag</td>
<td>84</td>
</tr>
<tr>
<td>dEuclidean Vector_t</td>
<td>89</td>
</tr>
<tr>
<td>APL::Error</td>
<td>90</td>
</tr>
<tr>
<td>APL::FatalError</td>
<td>91</td>
</tr>
<tr>
<td>tstream</td>
<td>92</td>
</tr>
</tbody>
</table>
Chapter 3

DopplerToolkit Class Index

3.1 DopplerToolkit Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

- LOAPEX::CADFcompare ... 11
- LOAPEX::CADFFile ... 12
- LOAPEX::CADFFileAdapter 15
- LOAPEX::CADFInfo ... 17
- LOAPEX::CADFSource .. 19
- LOAPEX::CBase3DNavigationData 22
- LOAPEX::CBaseFileAdapter 25
- LOAPEX::CBaseFilter ... 27
- LOAPEX::CBaseMapSolver 29
- LOAPEX::CBrentMapSolver 32
- LOAPEX::CCompoundTime 34
- LOAPEX::CDemultiplexor 36
- LOAPEX::CFakeRXNavigationData 38
- LOAPEX::CFakeTXNavigationData 41
- LOAPEX::CFixedNavigationData 44
- LOAPEX::CGappyADFStream 47
- LOAPEX::CGenericSource 49
- LOAPEX::CGeoParameters 51
- LOAPEX::CInterpolatedTableFunction 53
- LOAPEX::CMultichannelFilter 55
- LOAPEX::CMultiplexer ... 57
- LOAPEX::CMUXFile .. 59
- LOAPEX::CMUXFileAdapter 64
- LOAPEX::CNetCDFNavigationData 66
- LOAPEX::CNewtonMapSolver 69
<table>
<thead>
<tr>
<th>Class Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAPEX::CRex3DNavigationData</td>
<td>71</td>
</tr>
<tr>
<td>LOAPEX::CSingleChannelAllPassFilter</td>
<td>74</td>
</tr>
<tr>
<td>LOAPEX::CSingleChannelAllStopFilter</td>
<td>76</td>
</tr>
<tr>
<td>LOAPEX::CSingleChannelSincFilter</td>
<td>78</td>
</tr>
<tr>
<td>LOAPEX::CTimeBaseMapEngine</td>
<td>81</td>
</tr>
<tr>
<td>LOAPEX::CTimeTag</td>
<td>84</td>
</tr>
<tr>
<td>LOAPEX::CZeroSource</td>
<td>87</td>
</tr>
<tr>
<td>dEuclideanVector_t</td>
<td>89</td>
</tr>
<tr>
<td>APL::Error</td>
<td>90</td>
</tr>
<tr>
<td>APL::FatalError</td>
<td>91</td>
</tr>
<tr>
<td>tstream</td>
<td>92</td>
</tr>
</tbody>
</table>
Chapter 4

DopplerToolkit File Index

4.1 DopplerToolkit File List

Here is a list of all files with brief descriptions:

```
adfadapter.cpp ........................................ 93
adfadapter.hpp ........................................ 94
adfile.cpp ........................................... 95
adfile.hpp ........................................... 96
allpass.cpp ........................................... 97
allpass.hpp ........................................... 98
allstop.cpp ........................................... 99
allstop.hpp ........................................ 100
basefileadapter.hpp ................................. 101
basefilter.hpp ....................................... 102
basefilter.cpp ....................................... 103
basmapsolver.hpp ................................... 104
compoundtime.cpp ................................... 105
compoundtime.hpp ................................... 106
demultiplexer.cpp ................................... 107
demultiplexer.hpp ................................... 108
errors.hpp ........................................ 109
gappstream.cpp ...................................... 110
gappstream.hpp ...................................... 111
mapengine.cpp ...................................... 112
mapengine.hpp ...................................... 113
mapsolvers.cpp ...................................... 114
mapsolvers.hpp ...................................... 115
multichannelfilter.cpp ............................. 116
multichannelfilter.hpp ............................. 117
```
<table>
<thead>
<tr>
<th>File Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplexor.cpp</td>
<td>118</td>
</tr>
<tr>
<td>multiplexor.hpp</td>
<td>119</td>
</tr>
<tr>
<td>muxadapter.cpp</td>
<td>120</td>
</tr>
<tr>
<td>muxadapter.hpp</td>
<td>121</td>
</tr>
<tr>
<td>muxfile.cpp</td>
<td>122</td>
</tr>
<tr>
<td>muxfile.hpp</td>
<td>123</td>
</tr>
<tr>
<td>navigation.cpp</td>
<td>124</td>
</tr>
<tr>
<td>navigation.hpp</td>
<td>125</td>
</tr>
<tr>
<td>nrutil.c</td>
<td>127</td>
</tr>
<tr>
<td>parameters.hpp</td>
<td>129</td>
</tr>
<tr>
<td>sincfilter.cpp</td>
<td>131</td>
</tr>
<tr>
<td>sincfilter.hpp</td>
<td>132</td>
</tr>
<tr>
<td>spline.c</td>
<td>133</td>
</tr>
<tr>
<td>splint.c</td>
<td>134</td>
</tr>
<tr>
<td>tablefunction.cpp</td>
<td>135</td>
</tr>
<tr>
<td>tablefunction.hpp</td>
<td>136</td>
</tr>
<tr>
<td>timetag.cpp</td>
<td>137</td>
</tr>
<tr>
<td>timetag.hpp</td>
<td>138</td>
</tr>
<tr>
<td>tstream.cpp</td>
<td>139</td>
</tr>
<tr>
<td>tstream.hpp</td>
<td>140</td>
</tr>
</tbody>
</table>
Chapter 5

DopplerToolkit Namespace Documentation

5.1 APL Namespace Reference

Classes

- class Error
- class FatalError
5.2 LOAPEX Namespace Reference

Classes

- class CADFFileAdapter
- class CADFInfo
- class CADFFile
- class CSingleChannelAllPassFilter
- class CSingleChannelAllStopFilter
- class CBaseFileAdapter
- class CBaseFilter
- class CBaseMapSolver
- class CCompoundTime
- class CDemultiplexor
- class CGenericSource
- class CZeroSource
- class CADFSource
- class CADFcompare
- class CGappyADFStream
- class CTimeBaseMapEngine
- class CBrentMapSolver
- class CNewtonMapSolver
- class CMultichannelFilter
- class CMultiplexor
- class CMUXFileAdapter
- class CMUXFile
- class CBase3DNavigationData
- class CRe3DNavigationData
- class CNetCDFNavigationData
- class CFakeRXNavigationData
- class CFakeTXNavigationData
- class CFixedNavigationData
- class CGeoParameters
- class CSingleChannelSincFilter
- class CInterpolatedTableFunction
- class CTimeTag
Chapter 6

DopplerToolkit Class Documentation

6.1 LOAPEX::CADFcompare Class Reference

#include <gappystream.hpp>

Public Member Functions

- bool operator() (const CGenericSource *f1, const CGenericSource *f2) const

6.1.1 Detailed Description

This is a function object, used for sorting a std::list of source objects using the sort() method.

6.1.2 Member Function Documentation

6.1.2.1 bool LOAPEX::CADFcompare::operator() (const CGenericSource * f1, const CGenericSource * f2) const

The documentation for this class was generated from the following files:

- gappystream.hpp
- gappystream.cpp
6.2 LOAPEX::CADFFile Class Reference

#include <adffile.hpp>

Public Member Functions

- CADFFile (void)
- CADFFile (const char *filename)
- ~CADFFile ()
- bool eof (void)
- void echo_header (std::string &s)
- bool is_loaded () const
- void get_info_copy (LOAPEX::CADFFInfo &i) const
- void get_sample_rate (int fs) const
- void get_start_second (long l) const
- void get_total_scans (long st) const
- void get_total_channels (int c) const
- void get_scan (std::vector< short > &V)
- int read_entire_channel (const int channel, char *buffer)
- void print (void) const

6.2.1 Detailed Description

ADFFile declaration a class that interfaces the programmer with the .adf files produced by Scripps

So far, these are meant solely to model existing files on disk. The constructors are not engineered to construct themselves for .adf files that are to be created.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 LOAPEX::CADFFile::CADFFile (void)

Generic ctor. Why is this needed?

6.2.2.2 LOAPEX::CADFFile::CADFFile (const char * filename)

Typical ctor, takes C string filename.
6.2.2.3 LOAPEX::CADFFile::~CADFFile ()

6.2.3 Member Function Documentation

6.2.3.1 void LOAPEX::CADFFile::echo_header (std::string & s)

Supplies the whole header in the string.

6.2.3.2 bool LOAPEX::CADFFile::eof (void)

Returns true if the next scan will fail.

6.2.3.3 void LOAPEX::CADFFile::get_info_copy
(LOAPEX::CADFInfo &) const

Supplies a copy of the private info.

6.2.3.4 void LOAPEX::CADFFile::get_sample_rate (int * fs)
const

Supplies the sample rate, from the file (header). Note that we assume an integer
sample rate. This has generally held true for all ATOC hardware influenced by
Kurt Metzger, but of course will not always be true in the future.

6.2.3.5 void LOAPEX::CADFFile::get_scan (std::vector< short >
& V)

Read the next "scan" of samples, one from each channel. Note for .adf files
that the data is not multiplexed with channel incrementing fastest. Instead,
ALL of channel 1 comes first, then ALL of channel 2. This runs contrary to
how hardware works, and cannot support really long acquisitions (unless one has
a lot of memory) or, in particular, acquisitions where the collection time is not
known before capture start. This routine does all the seeks necessary to find the
next sample for each channel even though it may be located way down inside
the file. Clears std::vector(p. 128) V first.

6.2.3.6 void LOAPEX::CADFFile::get_start_second (long * l)
const

Supplies the start second (from the header).
6.2.3.7 void LOAPEX::CADFFile::get_total_channels (int * c)
const
Supplies the total number of sensors (from the header).

6.2.3.8 void LOAPEX::CADFFile::get_total_scans (long * t) const
Supplies the total number of scans (from the header).

6.2.3.9 bool LOAPEX::CADFFile::is_loaded () const
Returns true if the constructor finished without error. Typically this means you
can pull scans from it.

6.2.3.10 void LOAPEX::CADFFile::print (void) const
Ubiquitous diagnostic routine.

6.2.3.11 int LOAPEX::CADFFile::read_entire_channel (const int
channel, char * buffer)
This is the converse of the above. Reads all the samples for the given channel.
So this is reading consecutive 16 bit words off the disk. Buffer has to be the right
size - user should be able to calculate that from header parameters available
through this class interface.
The documentation for this class was generated from the following files:

- adffile.hpp
- adffile.cpp
6.3 LOAPEX::CADFFFileAdapter Class Reference

#include <adfadapter.hpp>

Inheritance diagram for LOAPEX::CADFFFileAdapter::

```
LOAPEX::CBaseFileAdapter
```

Public Member Functions

- CADFFFileAdapter (LOAPEX::CADFFFile *p)
- ~CADFFFileAdapter (void)
- void get_scan (std::vector<short> &V)
- void get_start_second (long *ss) const
- void get_total_scans (long *t) const
- void get_total_channels (int *c) const
- void get_sample_rate (int *fs) const
- void get_header (std::string &h) const

6.3.1 Detailed Description

An object adapter class for .adf files.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 LOAPEX::CADFFFileAdapter::CADFFFileAdapter (LOAPEX::CADFFFile * p)

6.3.2.2 LOAPEX::CADFFFileAdapter::~CADFFFileAdapter (void)

6.3.3 Member Function Documentation

6.3.3.1 void LOAPEX::CADFFFileAdapter::get_header (std::string & h) const [virtual]

Supplies the whole header via a string.
Implements LOAPEX::CBaseFileAdapter (p. 25).
6.3.3.2 void LOAPEX::CADFFFileAdapter::get_sample_rate (int * fs) const

6.3.3.3 void LOAPEX::CADFFFileAdapter::get_scan (std::vector<short> & V) [virtual]

Read the next "scan" of samples, one from each channel. Clears std::vector(p.128) V first.
Implements LOAPEX::CBaseFileAdapter (p.26).

6.3.3.4 void LOAPEX::CADFFFileAdapter::get_start_second (long * s) const [virtual]

Supplies the "start second" from the file (header)
Implements LOAPEX::CBaseFileAdapter (p.26).

6.3.3.5 void LOAPEX::CADFFFileAdapter::get_total_channels (int * c) const [virtual]

Supplies the total number of channels, from the file (header)
Implements LOAPEX::CBaseFileAdapter (p.26).

6.3.3.6 void LOAPEX::CADFFFileAdapter::get_total_scans (long * t) const [virtual]

Supplies the total number of channels, from the file (header)
Implements LOAPEX::CBaseFileAdapter (p.26).

The documentation for this class was generated from the following files:

- adfadapter.hpp
- adfadapter.cpp
6.4 LOAPEX::CADFInfo Class Reference

#include <adffile.hpp>

Public Member Functions

- CADFInfo (void)
- CADFInfo (std::ostream &os)
- ~CADFInfo (void)
- void get_id (std::string &s) const
- void get_sample_rate (int *s) const
- void get_site (std::string &s) const
- void get_total_scans (long *s) const
- void get_total_phones (int *s) const
- void get_run_start (std::string &t, long &epoch_seconds) const
- void get_header (std::string &h) const
- void print (void)

6.4.1 Detailed Description

CADFInfo (p. 17) encapsulates the parameters of the .adf file. Think of this as an interface to the header.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 LOAPEX::CADFInfo::CADFInfo (void)

Ctor for a plain vanilla object:

6.4.2.2 LOAPEX::CADFInfo::CADFInfo (std::ostream & os)

Ctor that accepts a stream which should contain the header of a file.

6.4.2.3 LOAPEX::CADFInfo::~CADFInfo (void)

6.4.3 Member Function Documentation

6.4.3.1 void LOAPEX::CADFInfo::get_header (std::string & h) const

Supplies the entire header in one big string.
6.4.3.2 void LOAPEX::CADFInfo::get_id (std::string & s) const
Supplies the "ID" string used by these files

6.4.3.3 void LOAPEX::CADFInfo::get_run_start (std::string & t, long & epoch_seconds) const
Supplies the start time, in whole seconds, of the acquisition, from the file (header). The string is the human readable translation.

6.4.3.4 void LOAPEX::CADFInfo::get_sample_rate (int * s) const
Supplies the sample rate, from the file (header). Note that we assume an integer sample rate. This has generally held true for all ATOC hardware influenced by Kurt Metzger, but of course will not always be true in the future.

6.4.3.5 void LOAPEX::CADFInfo::get_site (std::string & s) const
Supplies the site string used by these files

6.4.3.6 void LOAPEX::CADFInfo::get_total_phones (int *) const
Supplies the total number of sensors, from the file (header)

6.4.3.7 void LOAPEX::CADFInfo::get_total_scans (long *) const
Supplies the total number of scans, from the file (header)

6.4.3.8 void LOAPEX::CADFInfo::print (void)
Diagnostic dump of member data.
The documentation for this class was generated from the following files:

- adffile.hpp
- adffile.cpp

Generated on Thu May 3 00:53:59 2007 for DopplerToolkit by Doxygen
6.5 LOAPEX::CADFSource Class Reference

#include <gappystream.hpp>

Inheritance diagram for LOAPEX::CADFSource:

```
LOAPEX::CGenericSource
   \|-- LOAPEX::CADFSource
```

Public Member Functions

- `CADFSource (const char *filename)`
- `~CADFSource (void)`
- `void get_scan (std::vector<short> &V)`
- `void get_start_second (long *s) const`
- `void get_total_scans (long *t) const`
- `void get_total_channels (int *c) const`
- `void get_sample_rate (int *fs) const`
- `void get_type (char *c) const`

6.5.1 Detailed Description

Specialized class for ADF files. This is kind of a lite weight ADF file class, primarily for the gappystream application.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 LOAPEX::CADFSource::CADFSource (const char * filename)

ctor takes a C string filename.
6.5.2.2 LOAPEX::CADFSource::~CADFSource (void)

6.5.3 Member Function Documentation

6.5.3.1 void LOAPEX::CADFSource::get_sample_rate (int * fs)
const [virtual]

Supplies the sample rate, from the file (header). Note that we assume an integer
sample rate. This has generally held true for all ATOC hardware influenced by
Kurt Metzger, but of course will not always be true in the future.
Implements LOAPEX::CGenericSource (p. 49).

6.5.3.2 void LOAPEX::CADFSource::get_scan (std::vector< short > & V) [virtual]

Read the next "scan" of samples, one from each channel. Note for .adf files
that the data is not multiplexed with channel incrementing fastest. Instead, ALL
of channel 1 comes first, then ALL of channel 2. This runs contrary to how
hardware works, and cannot support really long acquisitions (unless one has
a lot of memory) or, in particular, acquisitions where the collection time is not
known before capture start. This routine does all the seeks necessary to find the
next sample for each channel even though it may be located way down inside
the file. Clears std::vector (p. 128) V first.
Implements LOAPEX::CGenericSource (p. 50).

6.5.3.3 void LOAPEX::CADFSource::get_start_second (long * s)
const [virtual]

Supplies the "start second" from the file (header)
Implements LOAPEX::CGenericSource (p. 50).

6.5.3.4 void LOAPEX::CADFSource::get_total_channels (int * c)
const [virtual]

Supplies the total number of channels, from the file (header)
Implements LOAPEX::CGenericSource (p. 50).

6.5.3.5 void LOAPEX::CADFSource::get_total_scans (long * t)
const [virtual]

Supplies the total number of scans, from the file (header)
6.5 LOAPEX::CADFSource Class Reference

Implements LOAPEX::CGenericSource (p. 50).

6.5.3.6 void LOAPEX::CADFSource::get_type (char * c) const
[virtual]

Simple cosmetic function, returns character "A" to indicate a .adf file. Used when assembling a gappy stream to indicate a chunk of real (i.e., .adf) data.

Implements LOAPEX::CGenericSource (p. 50).

The documentation for this class was generated from the following files:

- gappystream.hpp
- gappystream.cpp
6.6 LOAPEX::CBase3DNavigationData Class Reference

#include <navigation.hpp>

Inheritance diagram for LOAPEX::CBase3DNavigationData:

LOAPEX::CBase3DNavigationData

Public Member Functions

- CBase3DNavigationData (void)
- ~CBase3DNavigationData (void)
- virtual void get_file_first_time (time_t *pt) const = 0
- virtual void get_file_final_time (time_t *pt) const = 0
- virtual void get_position (const LOAPEX::CCompoundTime t, d-EuclideanVector_t *X) const = 0
- virtual void get_velocity (const LOAPEX::CCompoundTime t, d-EuclideanVector_t *V) const = 0

Protected Attributes

- time_t file_time_first
- time_t file_time_final

6.6.1 Detailed Description

Pure virtual base class, used primarily to specify the interface for "navigational" data. The intent here is to encapsulate data and present and interface that will yield the 3-D position or velocity for ANY time. Kind of like f:R^1 -> R^3. Derived classes that use tabulated data (which will be typical for real world data) will have to incorporate their own interpolators in order to provide positions (or velocities) for times in between tabulated times.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 LOAPEX::CBase3DNavigationData::CBase3DNavigationData (void)

Ctor will get overridden in derived classes.
6.6.2.2 **LOAEX::CBase3DNavigationData::~CBase3DNavigationData** (void)

6.6.3 Member Function Documentation

6.6.3.1 **virtual void LOAEX::CBase3DNavigationData::get_file_final_time (time_t * pt) const [pure virtual]**

Supplies the time of the last valid position (or velocity) sample in the file. Looks like this is a time_t, so we are assuming Unix time, and the first sample must be tied to a unique whole second.

Implemented in **LOAEX::CRex3DNavigationData** (p. 72), **LOAEX::CNetCDFNavigationData** (p. 67), **LOAEX::CFakeRXNavigationData** (p. 39), **LOAEX::CFakeTXNavigationData** (p. 42), and **LOAEX::CFixedNavigationData** (p. 45).

6.6.3.2 **virtual void LOAEX::CBase3DNavigationData::get_file_first_time (time_t * pt) const [pure virtual]**

Supplies the time of the first valid position (or velocity) sample in the file. Looks like this is a time_t, so we are assuming Unix time, and the first sample must be tied to a unique whole second.

Implemented in **LOAEX::CRex3DNavigationData** (p. 72), **LOAEX::CNetCDFNavigationData** (p. 67), **LOAEX::CFakeRXNavigationData** (p. 39), **LOAEX::CFakeTXNavigationData** (p. 42), and **LOAEX::CFixedNavigationData** (p. 45).

6.6.3.3 **virtual void LOAEX::CBase3DNavigationData::get_position (const LOAEX::CCompoundTime t, dEuclideanVector_t * X) const [pure virtual]**

Given a compound time, retrieves the position at that time. Derived classes will have to figure out what to do it there is no position at that exact time.

Implemented in **LOAEX::CRex3DNavigationData** (p. 72), **LOAEX::CNetCDFNavigationData** (p. 68), **LOAEX::CFakeRXNavigationData** (p. 39), **LOAEX::CFakeTXNavigationData** (p. 42), and **LOAEX::CFixedNavigationData** (p. 45).
6.6.3.4 virtual void LOAPEX::CBase3DNavigationData::getVelocity (const LOAPEX::CCompoundTime &t, dEuclideanVector &t * V) const [pure virtual]

Given a compound time, retrieves the velocity at that time. Derived classes will have to figure out what to do if there is no velocity at that exact time.

Implemented in LOAPEX::CRex3DNavigationData (p. 72), LOAPEX::CNetCDFNavigationData (p. 68), LOAPEX::CFakeRXNavigationData (p. 39), LOAPEX::CFakeTXNavigationData (p. 42), and LOAPEX::CFixedNavigationData (p. 45).

6.6.4 Member Data Documentation

6.6.4.1 time_t LOAPEX::CBase3DNavigationData::file_time_final [protected]

6.6.4.2 time_t LOAPEX::CBase3DNavigationData::file_time_first [protected]

The documentation for this class was generated from the following files:

- navigation.hpp
- navigation.cpp
6.7 LOAPEX::CBaseFileAdapter Class Reference

#include <basefileadapter.hpp>

Inheritance diagram for LOAPEX::CBaseFileAdapter:

![Inheritance Diagram](image)

Public Member Functions

- virtual ~CBaseFileAdapter (void)
- virtual void get_scan (std::vector<short>&V)=0
- virtual void get_start_second (long s) const =0
- virtual void get_total_scans (long *t) const =0
- virtual void get_total_channels (int *c) const =0
- virtual void get_header (std::string &h) const =0

6.7.1 Detailed Description

A class that provides a pure virtual base class for input data files via an adapter pattern.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 virtual LOAPEX::CBaseFileAdapter::~CBaseFileAdapter (void) [inline, virtual]

6.7.3 Member Function Documentation

6.7.3.1 virtual void LOAPEX::CBaseFileAdapter::get_header (std::string &h) const [pure virtual]

Supplies the whole header via a string.

Implemented in LOAPEX::CADFFileAdapter (p. 15), and LOAPEX::CMUXFileAdapter (p. 64).
6.7.3.2 virtual void LOAPEX::CBaseFileAdapter::get_scan
 (std::vector< short > & V) [pure virtual]

Read the next "scan" of samples, one from each channel. Clears
std::vector (p. 128) V first.
Implemented in LOAPEX::CADFFileAdapter (p. 16), and
LOAPEX::CMUXFileAdapter (p. 65).

6.7.3.3 virtual void LOAPEX::CBaseFileAdapter::get_start_second (long * s) const [pure
 virtual]

Supplies the "start second" from the file (header)
Implemented in LOAPEX::CADFFileAdapter (p. 16), and
LOAPEX::CMUXFileAdapter (p. 65).

6.7.3.4 virtual void LOAPEX::CBaseFileAdapter::get_total_channels (int * c) const [pure
 virtual]

Supplies the total number of channels, from the file (header)
Implemented in LOAPEX::CADFFileAdapter (p. 16), and
LOAPEX::CMUXFileAdapter (p. 65).

6.7.3.5 virtual void LOAPEX::CBaseFileAdapter::get_total_scans
 (long * t) const [pure virtual]

Supplies the total number of channels, from the file (header)
Implemented in LOAPEX::CADFFileAdapter (p. 16), and
LOAPEX::CMUXFileAdapter (p. 65).
The documentation for this class was generated from the following file:

- basefileadapter.hpp
6.8 LOAPEX::CBaseFilter Class Reference

#include <basefilter.hpp>

Inheritance diagram for LOAPEX::CBaseFilter:

```
LOAPEX::CBaseFilter

LOAPEX::CSingleChannelAllPassFilter LOAPEX::CSingleChannelAllStopFilter LOAPEX::CSingleChannelSincFilter
```

Public Member Functions

- `CBaseFilter (const int channel_id)`
- `~CBaseFilter (void)`
- virtual void `clock (void)`

Public Attributes

- `int channel_id`
- `LOAPEX::CDemultiplexer * ptheDemux_`
- `LOAPEX::CMultiplexer * ptheMux_`

6.8.1 Detailed Description

A base class for filters that know about the demultiplexer (that's where they get their data) and the multiplexor (that's where they put their data). All derived classes must override the `clock()` (p. 28) method: this is the mechanism which causes the class to perform one cycle of its filter algorithm.

Turns out I needed to retain the notion of "channel" with each filter, so that in multichannel filters, each filter will know its own channel, in the (likely) case that the coefficients for each channel will be different. So for convenience, I made channel ID self knowledge available throughout all derived classes by putting it here.
6.8.2 Constructor & Destructor Documentation

6.8.2.1 LOAPEX::CBaseFilter::CBaseFilter (const int channel_id)

6.8.2.2 LOAPEX::CBaseFilter::~CBaseFilter (void)

6.8.3 Member Function Documentation

6.8.3.1 void LOAPEX::CBaseFilter::clock (void) [virtual]

Reimplemented in LOAPEX::CSingleChannelAllPassFilter (p. 74), LOAPEX::CSingleChannelAllStopFilter (p. 76), and LOAPEX::CSingleChannelSincFilter (p. 79).

6.8.4 Member Data Documentation

6.8.4.1 int LOAPEX::CBaseFilter::channel_id

6.8.4.2 LOAPEX::CDemultiplexor* LOAPEX::CBaseFilter::pthe Demux

6.8.4.3 LOAPEX::CMultiplexor* LOAPEX::CBaseFilter::pthe Mux

The documentation for this class was generated from the following files:

- basefilter.hpp
- basefilter.cpp
6.9 LOAPEX::CBaseMapSolver Class Reference

#include <basemap solver.hpp>

Inheritance diagram for LOAPEX::CBaseMapSolver:

```
LOAPEX::CBaseMapSolver

LOAPEX::CBrentMapSolver  LOAPEX::CNewtonMapSolver
```

Public Member Functions

- `~CBaseMapSolver (void)
- virtual void load_parameters (const LOAPEX::CGeoParameters &p)=0
- virtual void load_TX (LOAPEX::CBase3DNavigationData *p)=0
- virtual void load_RX (LOAPEX::CBase3DNavigationData *p)=0
- virtual void compute_map (const LOAPEX::CCompoundTime &tIn, LOAPEX::CCompoundTime &tOut)=0

Public Attributes

- LOAPEX::CGeoParameters params_
- LOAPEX::CBase3DNavigationData *pTX_
- LOAPEX::CBase3DNavigationData *pRX_

6.9.1 Detailed Description

CBaseMapSolver (p. 29) is intended to be the abstract base class for algorithms that solve the problem of computing T(t), given t. The solver is abstracted because the workhorse routine is likely to use a line search method, but for testing a more accurate and computationally efficient Newton-Raphson scheme would be more appropriate. Hence, code that uses the solver(s) should be invariant to the choice of algorithm. (This is the "strategy pattern").
6.9.2 Constructor & Destructor Documentation

6.9.2.1 LOAPEX::CBaseMapSolver::~CBaseMapSolver (void)

6.9.3 Member Function Documentation

6.9.3.1 virtual void LOAPEX::CBaseMapSolver::compute_map
(const LOAPEX::CCompoundTime & tin,
 LOAPEX::CCompoundTime & tout) [pure virtual]

Once the parameters and the TX and RX interfaces have been registered, this
routine is the one that does one single T(t) computation.
Implemented in LOAPEX::CBrentMapSolver (p. 32), and
LOAPEX::CNewtonMapSolver (p. 70).

6.9.3.2 virtual void LOAPEX::CBaseMapSolver::load_parameters
(const LOAPEX::CGeoParameters & P) [pure virtual]

Provide an interface for copying parameter values into private storage.
Implemented in LOAPEX::CBrentMapSolver (p. 33), and
LOAPEX::CNewtonMapSolver (p. 70).

6.9.3.3 virtual void LOAPEX::CBaseMapSolver::load_RX
(LOAPEX::CBase3DNavigationData * p) [pure virtual]

Provide an interface for copying an interface for receiver position and velocity
into private storage.
Implemented in LOAPEX::CBrentMapSolver (p. 33), and
LOAPEX::CNewtonMapSolver (p. 70).

6.9.3.4 virtual void LOAPEX::CBaseMapSolver::load_TX
(LOAPEX::CBase3DNavigationData * p) [pure virtual]

Provide an interface for copying an interface for transmitter position and velocity
into private storage.
Implemented in LOAPEX::CBrentMapSolver (p. 33), and
LOAPEX::CNewtonMapSolver (p. 70).
6.9.4 Member Data Documentation

6.9.4.1 LOAPEX::CGeoParameters LOAPEX::CBaseMapSolver::params_

6.9.4.2 LOAPEX::CBase3DNavigationData* LOAPEX::CBaseMapSolver::pRX_

6.9.4.3 LOAPEX::CBase3DNavigationData* LOAPEX::CBaseMapSolver::pTX_

The documentation for this class was generated from the following files:

- basemapsolver.hpp
- mapsolvers.cpp
6.10 LOAPEX::CBrentMapSolver Class Reference

#include <mapsolvers.hpp>

Inheritance diagram for LOAPEX::CBrentMapSolver::

```
LOAPEX::CBaseMapSolver

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>LOAPEX::CBrentMapSolver</td>
</tr>
</tbody>
</table>

Public Member Functions

- CBrentMapSolver (void)
- ~CBrentMapSolver (void)
- void load_parameters (const LOAPEX::CGeoParameters &p)
- void load_TX (LOAPEX::CBase3DNavigationData *p)
- void load_RX (LOAPEX::CBase3DNavigationData *p)
- void compute_map (const LOAPEX::CCompoundTime &tin, LOAPEX::CCompoundTime &tout)

6.10.1 Detailed Description

Uses the zbrent routine from Numerical Recipes as the root finder.

6.10.2 Constructor & Destructor Documentation

6.10.2.1 LOAPEX::CBrentMapSolver::CBrentMapSolver (void)

6.10.2.2 LOAPEX::CBrentMapSolver::~CBrentMapSolver (void)

6.10.3 Member Function Documentation

6.10.3.1 void LOAPEX::CBrentMapSolver::compute_map
    (const LOAPEX::CCompoundTime & tin, LOAPEX::CCompoundTime & tout) [virtual]

Once the parameters and the TX and RX interfaces have been registered, this routine is the one that does one single \( T(t) \) computation.

Implements LOAPEX::CBaseMapSolver (p. 30).
6.10.3.2 void LOAPEX::CBrentMapSolver::load_parameters
(const LOAPEX::CGeoParameters & \textit{P}) [virtual]

Provide an interface for copying parameter values into private storage.
Implements \textit{LOAPEX::CBaseMapSolver} (p. 30).

6.10.3.3 void LOAPEX::CBrentMapSolver::load_RX
(LOAPEX::CBase3DNavigationData * \textit{p}) [virtual]

Provide an interface for copying an interface for receiver position and velocity
into private storage.
Implements \textit{LOAPEX::CBaseMapSolver} (p. 30).

6.10.3.4 void LOAPEX::CBrentMapSolver::load_TX
(LOAPEX::CBase3DNavigationData * \textit{p}) [virtual]

Provide an interface for copying an interface for transmitter position and velocity
into private storage.
Implements \textit{LOAPEX::CBaseMapSolver} (p. 30).

The documentation for this class was generated from the following files:

- mapsolvers.hpp
- mapsolvers.cpp
6.11 LOAPEX::CCompoundTime Class Reference

#include <compoundtime.hpp>

Public Member Functions

- CCompoundTime (const long seconds, const double fraction)
- CCompoundTime (void)
- ~CCompoundTime (void)
- void normalize (void)
- CCompoundTime & operator+= (CCompoundTime &)
- CCompoundTime & operator-= (CCompoundTime &)

Public Attributes

- long seconds_
- double fraction_

6.11.1 Detailed Description

Class to model a high resolution time object, comprised of a long, for unix seconds, and a double, for fractional seconds. Huge precision!

6.11.2 Constructor & Destructor Documentation

6.11.2.1 LOAPEX::CCompoundTime::CCompoundTime (const long seconds, const double fraction)

The ctor takes integer seconds, plus so fractional part, which can be greater than one or less than -1. The seconds are supposed to be Unix time (but I'm not sure the class cares.)
6.11.2.2 LOAPEX::CCompoundTime::CCompoundTime (void)

6.11.2.3 LOAPEX::CCompoundTime::~CCompoundTime (void)

6.11.3 Member Function Documentation

6.11.3.1 void LOAPEX::CCompoundTime::normalize (void)

Readjust so that the fraction is in \([0,1]\)

6.11.3.2 LOAPEX::CCompoundTime & LOAPEX::CCompoundTime::operator+= (CCompoundTime &)

6.11.3.3 LOAPEX::CCompoundTime & LOAPEX::CCompoundTime::operator-= (CCompoundTime &)

6.11.4 Member Data Documentation

6.11.4.1 double LOAPEX::CCompoundTime::fraction_

6.11.4.2 long LOAPEX::CCompoundTime::seconds_

The documentation for this class was generated from the following files:

- compoundtime.hpp
- compoundtime.cpp
6.12 LOAPEX::CDemultiplexor Class Reference

#include <demultiplexor.hpp>

Public Member Functions

- CDemultiplexor (LOAPEX::CBaseFileAdapter *A)
- ~CDemultiplexor (void)
- void send_sample (const int channel, short *sample) const
- void clock (void)

6.12.1 Detailed Description

The demultiplexor class contains an interface to a generic input device (base class LOAPEX::CBaseFileAdapter(p. 25)) and upon clock() (p. 36) reads a scan from the file and holds the scan data in internal storage. Classes holding the handle of this object can then get out a particular value by calling send_sample() (p. 36) which sends the sample to the calling routine.

6.12.2 Constructor & Destructor Documentation

6.12.2.1 LOAPEX::CDemultiplexor::CDemultiplexor
(LOAPEX::CBaseFileAdapter * A)

Ctor takes the pointer and stores it internally. Caller is responsible for deallocating it (AFTER the demultiplexor is done with it!)

6.12.2.2 LOAPEX::CDemultiplexor::~CDemultiplexor (void)

6.12.3 Member Function Documentation

6.12.3.1 void LOAPEX::CDemultiplexor::clock (void)

This method is the one for the synchronization mechanism to call. Causes a new read from the input file.

6.12.3.2 void LOAPEX::CDemultiplexor::send_sample (const int channel, short * sample) const

This is the routine for external uses of the demux to use. Not sure if there is checking on the channel value. Supplies a 16 bit dataword.
The documentation for this class was generated from the following files:

- demultiplexor.hpp
- demultiplexor.cpp
6.13 LOAPEX::CFakeRXNavigationData Class Reference

#include <navigation.hpp>

Inheritance diagram for LOAPEX::CFakeRXNavigationData:

```
LOAPEX::CBase3DNavigationData

\|-- LOAPEX::CFakeRXNavigationData
```

Public Member Functions

- **CFakeRXNavigationData** (const int channel)
- **~CFakeRXNavigationData** (void)
- **bool is_loaded** (void) const
- **void get_file_first_time** (time_t *pt) const
- **void get_file_final_time** (time_t *pt) const
- **void get_position** (const LOAPEX::CCompoundTime t, d-EuclideanVector_t *X) const
- **void get_velocity** (const LOAPEX::CCompoundTime t, d-EuclideanVector_t *V) const

6.13.1 Detailed Description

Subclass for a fake class that outputs the position of a fake 3 channel receiver. The receiver is modeled as 3 sensors revolving in horizontal "orbits" one above the other. They all revolve synchronously. Think of a 3-phone vertical line array leaning over at some tilt angle and revolving around the vertical axis. All geometrical parameters hard coded in the include file. The start and stop times of the data (even though it is fake data) are hard coded here as well.
6.13 LOAPEX::CFakeRXNavigationData Class Reference

6.13.2 Constructor & Destructor Documentation

6.13.2.1 LOAPEX::CFakeRXNavigationData::CFakeRXNavigationData (const int channel)

6.13.2.2 LOAPEX::CFakeRXNavigationData::~CFakeRXNavigationData (void)

6.13.3 Member Function Documentation

6.13.3.1 void LOAPEX::CFakeRXNavigationData::get_file_final_time (time_t * pt) const
  [virtual]

Supplies the time of the last valid position (or velocity) sample in the file. Looks
like this is a time_t, so we are assuming Unix time, and the first sample must
be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.13.3.2 void LOAPEX::CFakeRXNavigationData::get_file_first_time (time_t * pt) const
  [virtual]

Supplies the time of the first valid position (or velocity) sample in the file.
Looks like this is a time_t, so we are assuming Unix time, and the first sample
must be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.13.3.3 void LOAPEX::CFakeRXNavigationData::get_position
  (const LOAPEX::CCompoundTime t, dEuclideanVector_t * X) const [virtual]

The evaluation time is the base_time (which is a time_t) plus and additional_seconds, which is a real, and can contain a fractional part.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.13.3.4 void LOAPEX::CFakeRXNavigationData::get_velocity
  (const LOAPEX::CCompoundTime t, dEuclideanVector_t * V) const [virtual]

The evaluation time is the base_time (which is a time_t) plus and additional_seconds, which is a real, and can contain a fractional part.
Implements `LOAPEX::CBase3DNavigationData` (p. 24).

6.13.3.5 `bool LOAPEX::CFakeRXNavigationData::is_loaded` *(void) const*  
[inline]

The documentation for this class was generated from the following files:

- `navigation.hpp`
- `navigation.cpp`
6.14 LOAPEX::CFakeTXNavigationData Class Reference

#include <navigation.hpp>

Inheritance diagram for LOAPEX::CFakeTXNavigationData:

\[
\begin{align*}
\text{LOAPEX::CBase3DNavigationData} & \quad \text{LOAPEX::CFakeTXNavigationData} \\
\end{align*}
\]

Public Member Functions

- CFakeTXNavigationData (void)
- ~CFakeTXNavigationData (void)
- bool is_loaded (void) const
- void get_first_time (time_t *pt) const
- void get_final_time (time_t *pt) const
- void get_position (const LOAPEX::CCompoundTime &t, dEuclideanVector_ &X) const
- void get_velocity (const LOAPEX::CCompoundTime &t, dEuclideanVector_ &V) const

6.14.1 Detailed Description

Subclass for a fake class that outputs the position of a fake single channel transmitter. The transmitter is modeled as revolving in a horizontal "orbit". All geometrical parameters hard coded in the include file. The start and stop times of the data (even though it is fake data) are hard coded here as well.
6.14.2 Constructor & Destructor Documentation

6.14.2.1 LOAPEX::CFakeTXNavigationData::CFakeTXNavigationData (void)

6.14.2.2 LOAPEX::CFakeTXNavigationData::~CFakeTXNavigationData (void)

6.14.3 Member Function Documentation

6.14.3.1 void LOAPEX::CFakeTXNavigationData::get_file_final_time (time_t * pt) const
   [virtual]

Supplies the time of the last valid position (or velocity) sample in the file. Looks
like this is a time_t, so we are assuming Unix time, and the first sample must
be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.14.3.2 void LOAPEX::CFakeTXNavigationData::get_file_first_time (time_t * pt) const
   [virtual]

Supplies the time of the first valid position (or velocity) sample in the file.
Looks like this is a time_t, so we are assuming Unix time, and the first sample
must be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.14.3.3 void LOAPEX::CFakeTXNavigationData::get_position
   (const LOAPEX::CCompoundTime t, dEuclideanVector_t
    * X) const [virtual]

The evaluation time is the base_time (which is a time_t) plus additional_-seconds, which is a real, and can contain a fractional part.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.14.3.4 void LOAPEX::CFakeTXNavigationData::get_velocity
   (const LOAPEX::CCompoundTime t, dEuclideanVector_t
    * V) const [virtual]

The evaluation time is the base_time (which is a time_t) plus additional_-seconds, which is a real, and can contain a fractional part.
6.14 LOAPEX::CFakeTXNavigationData Class Reference

Implements LOAPEX::CBase3DNavigationData (p. 24).

6.14.3.5 bool LOAPEX::CFakeTXNavigationData::is_loaded
   (void) const  [inline]

The documentation for this class was generated from the following files:

  • navigation.hpp
  • navigation.cpp
6.15 LOAPEX::CFixedNavigationData Class Reference

#include <navigation.hpp>

Inheritance diagram for LOAPEX::CFixedNavigationData:

```
LOAPEX::CBase3DNavigationData
 ↓
LOAPEX::CFixedNavigationData
```

Public Member Functions

- **CFixedNavigationData** (const int channel)
- **~CFixedNavigationData** (void)
- **bool is_loaded** (void) const
- **void get_file_first_time** (time_t *pt) const
- **void get_file_final_time** (time_t *pt) const
- **void get_position** (const LOAPEX::CCompoundTime t, d-EuclideanVector_t *X) const
- **void get_velocity** (const LOAPEX::CCompoundTime t, d-EuclideanVector_t *V) const

6.15.1 Detailed Description

Subclass for a fake class that is stationary. File start and stop times are the same as the fake RX and TX classes,
6.15.2 Constructor & Destructor Documentation

6.15.2.1 LOAPEX::CFixedNavigationData::CFixedNavigationData
(const int channel)

6.15.2.2 LOAPEX::CFixedNavigationData::~CFixedNavigationData
(void)

6.15.3 Member Function Documentation

6.15.3.1 void LOAPEX::CFixedNavigationData::get_file_final_time
(time_t * pt) const
[virtual]

Supplies the time of the last valid position (or velocity) sample in the file. Looks
like this is a time_t, so we are assuming Unix time, and the first sample must
be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.15.3.2 void LOAPEX::CFixedNavigationData::get_file_first_time
(time_t * pt) const
[virtual]

Supplies the time of the first valid position (or velocity) sample in the file.
Looks like this is a time_t, so we are assuming Unix time, and the first sample
must be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.15.3.3 void LOAPEX::CFixedNavigationData::get_position
(const LOAPEX::CCompoundTime t, dEuclideanVector_t
* X) const [virtual]

The evaluation time is the base_time (which is a time_t) plus and additional
seconds, which is a real, and can contain a fractional part.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.15.3.4 void LOAPEX::CFixedNavigationData::get_velocity
(const LOAPEX::CCompoundTime t, dEuclideanVector_t
* V) const [virtual]

The evaluation time is the base_time (which is a time_t) plus and additional
seconds, which is a real, and can contain a fractional part.
Implement \texttt{LOAPEX::CBase3DNavigationData} (p. 24).

6.15.3.5 \texttt{bool LOAPEX::CFixedNavigationData::is\_loaded (void)}
\texttt{const \ [inline]}

The documentation for this class was generated from the following files:

- \texttt{navigation.hpp}
- \texttt{navigation.cpp}
6.16 LOAPEX::CGappyADFStream Class Reference

#include <gappystream.hpp>

Public Member Functions

- **CGappyADFStream** (const long sstart, const long sstop, std::list<
  std::string > &L)
- **~CGappyADFStream** (void)
- **void get_scan** (std::vector< short > &V)
- **void get_start_second** (long *lstart) const
- **void get_total_channels** (int *tc) const
- **void get_total_scans** (long *ts) const
- **void get_sample_rate** (int *fs) const
- **void print** (void)

6.16.1 Detailed Description

This is a class that contains a list of files and pretends that they comprise, with
possible zero padding in between, one big long file. Pulling a scan from the class
gets the next scan: this may contain actual data if there is a file in the list whose
time span includes the next scan, otherwise one gets a scan of zeros. This class
was devised to "glue" Scripps burst collections together in way that retained the
temporal relationship between them through intervening gaps. (This is made
easy because the sample rate was a whole integer, meaning there are a whole
number of zero pad scans each second in between real data.)

The public interface is meant to mimic a real .adf file, probably so that the .adf
file adapter could be used on this class as well as real .adf files.

6.16.2 Constructor & Destructor Documentation

6.16.2.1 LOAPEX::CGappyADFStream::CGappyADFStream

(const long sstart, const long sstop, std::list< std::string > &L)

Takes a list of .adf file names, and user selected start and stop times. Makes zero
source objects to fill the gaps in between the supplied files. After construction,
one can pull scans from the object.
6.16.2.2  LOAPEX::CGappyADFStream::~CGappyADFStream
(void)

6.16.3  Member Function Documentation

6.16.3.1  void LOAPEX::CGappyADFStream::get_sample_rate
(int * fs) const

Supplies the sample rate, from the file (header). Note that we assume an integer
sample rate. This has generally held true for all ATOC hardware influenced by
Kurt Metzger, but of course will not always be true in the future.

6.16.3.2  void LOAPEX::CGappyADFStream::get_scan
(std::vector< short > & V)

6.16.3.3  void LOAPEX::CGappyADFStream::get_start_second
(long * tstart) const

6.16.3.4  void LOAPEX::CGappyADFStream::get_total_channels
(int * tc) const

Supplies the total number of sensors, from the file (header)

6.16.3.5  void LOAPEX::CGappyADFStream::get_total_scans
(long * ts) const

Supplies the total number of scans, from the file (header)

6.16.3.6  void LOAPEX::CGappyADFStream::print (void)

Diagnostic dump of member data.
The documentation for this class was generated from the following files:

- gappystream.hpp
- gappystream.cpp
6.17 LOAPEX::CGenericSource Class Reference

#include <gappystream.hpp>

Inheritance diagram for LOAPEX::CGenericSource:

```
LOAPEX::CGenericSource

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>LOAPEX::CADFSource</td>
</tr>
</tbody>
</table>
```

Public Member Functions

- ~CGenericSource (void)
- virtual void get_scan (std::vector< short >&V)=0
- virtual void get_start_second (long *s) const =0
- virtual void get_total_scans (long *t) const =0
- virtual void get_total_channels (int *c) const =0
- virtual void get_sample_rate (int *fs) const =0
- virtual void get_type (char *c) const =0

6.17.1 Detailed Description

Base class for the types of sources we could have. These are lightweight classes, just doing the bare minimum of modeling of actual source files (and being really bare if modeling a source of zeros.) These are primarily for sticking into a std::list().

6.17.2 Constructor & Destructor Documentation

6.17.2.1 LOAPEX::CGenericSource::~CGenericSource (void)

6.17.3 Member Function Documentation

6.17.3.1 virtual void LOAPEX::CGenericSource::get_sample_rate (int *fs) const [pure virtual]

Implemented in LOAPEX::CZeroSource (p. 87), and LOAPEX::CADFSource (p. 20).

Generated on Thu May 3 09:33:59 2007 for DopplerToolKit by Doxygen
6.17.3.2 virtual void LOAPEX::CGenericSource::get_scan
(std::vector< short > & V) [pure virtual]

Implemented in LOAPEX::CZeroSource (p.88), and
LOAPEX::CADFSSource (p.20).

6.17.3.3 virtual void LOAPEX::CGenericSource::get_start_second
(long * s) const [pure virtual]

Implemented in LOAPEX::CZeroSource (p.88), and
LOAPEX::CADFSSource (p.20).

6.17.3.4 virtual void LOAPEX::CGenericSource::get_total_channels
(int * c) const [pure virtual]

Implemented in LOAPEX::CZeroSource (p.88), and
LOAPEX::CADFSSource (p.20).

6.17.3.5 virtual void LOAPEX::CGenericSource::get_total_scans
(long * t) const [pure virtual]

Implemented in LOAPEX::CZeroSource (p.88), and
LOAPEX::CADFSSource (p.20).

6.17.3.6 virtual void LOAPEX::CGenericSource::get_type(char * c) const [pure virtual]

Implemented in LOAPEX::CZeroSource (p.88), and
LOAPEX::CADFSSource (p.21).

The documentation for this class was generated from the following files:

- gappystream.hpp
- gappystream.cpp
6.18 LOAPEX::CGeoParameters Class Reference

#include <parameters.hpp>

Public Attributes

- double mean_sound_speed
- double range_m
- double forward_bearing2VLA
- double forward_bearing2APL
- int channel
- dEuclideanVector_t kTX
- dEuclideanVector_t kRX

6.18.1 Detailed Description

Simple encapsulation of doppler context user parameters. This is essentially a
C structure with an initializer.

6.18.2 Member Data Documentation

6.18.2.1 int LOAPEX::CGeoParameters::channel

Channel identifier. I think this is 0 to N-1.

6.18.2.2 double LOAPEX::CGeoParameters::forward_bearing2APL

Compass bearing from the receiver to the transmitter, in degrees.

6.18.2.3 double LOAPEX::CGeoParameters::forward_bearing2VLA

Compass bearing from the transmitter to the receiver, in degrees.

6.18.2.4 dEuclideanVector_t LOAPEX::CGeoParameters::kRX

This is the incident wavenumber vector at the receiver. I think it is the unit
vector.
6.18.2.5  dEuclideanVector_t  LOAPEX::CGeoParameters::kTX
This is the wavenumber launch vector at the transmitter. I think it is the unit vector.

6.18.2.6  double  LOAPEX::CGeoParameters::mean_sound_speed
Sound speed, meters per second.

6.18.2.7  double  LOAPEX::CGeoParameters::range_m
Range in metres.
The documentation for this class was generated from the following file:

• parameters.hpp
6.19 LOAPEX::CInterpolatedTableFunction Class Reference

```cpp
#include <tablefunction.hpp>
```

Public Member Functions

- **CInterpolatedTableFunction** (const std::vector< double > &x, const std::vector< double > &y)
- **~CInterpolatedTableFunction** (void)
- void **evaluate** (const double x, double *y) const
- void **get_table_length** (long *L) const

6.19.1 Detailed Description

These classes interface spline code to a file containing a N×2 table of values, with the intent of making the tableness of the data transparent to the caller.

6.19.2 Constructor & Destructor Documentation

6.19.2.1 **LOAPEX::CInterpolatedTableFunction::CInterpolatedTableFunction** (const std::vector< double > & x, const std::vector< double > & y)

The ctor builds the spline coefficients. Uses the spline routine from Numerical Recipes in C, 2nd ed. The table data are (x[0],y[0]), (x[1],y[1]), etc....

6.19.2.2 **LOAPEX::CInterpolatedTableFunction::~CInterpolatedTableFunction** (void)

6.19.3 Member Function Documentation

6.19.3.1 void **LOAPEX::CInterpolatedTableFunction::evaluate**

(const double x, double *y) const

Method provides y(x) for arbitrary x. You're on your own if you ask for x outside the domain of the supplied vector x.
6.19.3.2 void LOAPEX::CInterpolatedTableFunction::get_table_length (long * L) const

Gets the length of the underlying table. I have no idea why I exposed this.

The documentation for this class was generated from the following files:

- tablefunction.hpp
- tablefunction.cpp
6.20 LOAPEX::CMultichannelFilter Class Reference

#include <multichannelfilter.hpp>

Public Member Functions

- CMultichannelFilter (const int total_channels)
- ~CMultichannelFilter (void)
- void clock (void)
- void add_filter (LOAPEX::CBaseFilter *p)

6.20.1 Detailed Description

Concrete class that simply is a container for an array of single channel filter objects. Note that the handles to the demultiplexor and the multiplexor reside in the filters: this class does not know about the demux and mux. Design decision: could have gone the other way too.

6.20.2 Constructor & Destructor Documentation

6.20.2.1 LOAPEX::CMultichannelFilter::CMultichannelFilter (const int total_channels)

Ctor simply allocates storage for the single channel filter pointers.

6.20.2.2 LOAPEX::CMultichannelFilter::~CMultichannelFilter (void)

6.20.3 Member Function Documentation

6.20.3.1 void LOAPEX::CMultichannelFilter::add_filter (LOAPEX::CBaseFilter * p)

Helper function that copies the pointer into internal storage. I don’t know what happens if the user adds too many, or not enough. Don’t do that. User responsible for deallocating the filter objects at end of use.
6.20.3.2 void LOAPEX::CMultichannelFilter::clock (void)

This method simply applies \texttt{clock()} (p. 56) to each element of the internal array of filters.

The documentation for this class was generated from the following files:

- \texttt{multichannelfilter.hpp}
- \texttt{multichannelfilter.cpp}
6.21 LOAPEX::CMultiplexor Class Reference

#include <multiplexor.hpp>

Public Member Functions

- CMultiplexor (LOAPEX::CMUXFile *F)
- ~CMultiplexor (void)
- void receive_sample (const int channel, const short sample)
- void clock (void)

6.21.1 Detailed Description

The multiplexor class: contains an interface to a MUX file and upon clock() (p. 57) writes a scan from internal storage to the file. Classes holding the handle of this object write data into the internal storage via the receive_sample() (p. 57) method, which means that this object is "receiving" something from the caller.

6.21.2 Constructor & Destructor Documentation

6.21.2.1 LOAPEX::CMultiplexor::CMultiplexor

(LOAPEX::CMUXFile *F)

Ctor takes a pointer to an existing MUX file and stores it internally. Caller is responsible for deallocating it (AFTER the multiplexor is done with it!)

6.21.2.2 LOAPEX::CMultiplexor::~CMultiplexor (void)

6.21.3 Member Function Documentation

6.21.3.1 void LOAPEX::CMultiplexor::clock (void)

This method is the one for the synchronization mechanism to call. Causes a new write to the output file.

6.21.3.2 void LOAPEX::CMultiplexor::receive_sample (const int channel, const short sample)

This is the routine for external users of the mux to use. Not sure if there is checking on the channel value. Puts a 16-bit data word into the object.
The documentation for this class was generated from the following files:

- `multiplexor.hpp`
- `multiplexor.cpp`
# 6.22 LOAPEX::CMUXFile Class Reference

```cpp
#include <muxfile.hpp>
```

### Public Types

- `enum mode_type { ReadOnly, Write }

### Public Member Functions

- `CMUXFile (const char *name, mode_type m)`
- `~CMUXFile (void)`
- `void close (void)`
- `void print (void)`
- `bool isOpen (void) const`
- `void putSample_rate (int fs)`
- `void putTotal_scans (long L)`
- `void putTotal_channels (int c)`
- `void putStart_second (long s)`
- `void putDescription (std::string &s)`
- `void writeHeader (void)`
- `void putScan (std::vector<short> &V)`
- `bool is_loaded (void) const`
- `void getSample_rate (int &fs) const`
- `void getTotal_scans (long &L) const`
- `void getTotal_channels (int &c) const`
- `void getStart_second (long &s) const`
- `void getDescriptions (std::vector<std::string> &V)`
- `void getScan (std::vector<short> &V)`
- `void getHeader (std::string &h) const`

### 6.22.1 Detailed Description

Class `CMUXFile` describes a very simple scan-oriented file for use with `LOAPEX` data. Such a file has the format

```cpp
muxfile
{
 header
 binary data
}
```

Generated on Thu May 3 09:33:58 2007 for DopplerToolkit by Doxygen
This class interfaces either to an existing file (using mode LOAPEX-CMUXFile:ReadOnly) or open a new file for writing (using LOAPEX-CMUXFile:Write). Methods are provided to read the basic parameters from the header, or to write the basic parameters into the header. These basic parameters are:

- sample rate (integer)
- start-second (long)
- total scans (long)
- total channels (integer)
- an arbitrary amount of line-oriented description material

The header is written in XML.

There are also the methods get_scan() (p.61) for reading one scan at a time, or put_scan() (p.62) for writing one scan at a time. The binary data is treated like a stream: no seeking implemented.

6.22.2 Member Enumeration Documentation

6.22.2.1 enum LOAPEX::CMUXFile::mode_type

Enumeration values:

- ReadOnly
- Write

6.22.3 Constructor & Destructor Documentation

6.22.3.1 LOAPEX::CMUXFile::CMUXFile (const char * name, mode_type m)

Ctor takes a C string name and a mode indicating whether we are creating a new file for writing or opening an existing file reading.

6.22.3.2 LOAPEX::CMUXFile::~CMUXFile (void)

6.22.4 Member Function Documentation

6.22.4.1 void LOAPEX::CMUXFile::close (void)

Simple pass through to C lib close() (p.60).
6.22.4.2  void LOAPEX::CMUXFile::get_descriptions (std::vector<std::string const *> & V)

Gets the descriptions from internal storage. Looks like there could be more than one, so they come back in a vector of strings.

6.22.4.3  void LOAPEX::CMUXFile::get_header (std::string & h)

const

Gets the entire XML header as a single string.

6.22.4.4  void LOAPEX::CMUXFile::get_sample_rate (int * fs)

const

Gets the sample rate from internal storage.

6.22.4.5  void LOAPEX::CMUXFile::get_scan (std::vector<short > & V)

const

Gets a vector of 16 bit data words.

6.22.4.6  void LOAPEX::CMUXFile::get_start_second (long * s)

const

Gets the start second from internal storage.

6.22.4.7  void LOAPEX::CMUXFile::get_total_channels (int * c)

const

Gets the total number of channels from internal storage.

6.22.4.8  void LOAPEX::CMUXFile::get_total_scans (long * L)

const

Gets the total number of scans from internal storage.

6.22.4.9  bool LOAPEX::CMUXFile::is_loaded (void) const

Returns true if the file was opened and the header parsed successfully.
6.22.4.10 bool LOAPEX::CMUXFile::is_open (void) const

Returns true if the file open was successful, false if not.

6.22.4.11 void LOAPEX::CMUXFile::print (void)

Diagnostic: dumps the header (I think.)

6.22.4.12 void LOAPEX::CMUXFile::put_description (std::string & s)

Put the given string into the header. (This does not write anything to file. See writer_header().) XML tag is <description>. I think this can be called multiple times, which would result in multiple <description></description> pairs in the file header.

6.22.4.13 void LOAPEX::CMUXFile::put_sample_rate (int fs)

Put the given sample rate into the header. (This does not write anything to file. See writer_header().) XML tag is <sample-rate>.

6.22.4.14 void LOAPEX::CMUXFile::put_scan (std::vector<short > & V)

This writes a vector of 16 bit data words to the file.

6.22.4.15 void LOAPEX::CMUXFile::put_start_second (long s)

Put the given starting second into the header. (This does not write anything to file. See writer_header().) XML tag is <start-second>.

6.22.4.16 void LOAPEX::CMUXFile::put_total_channels (int c)

Put the given total number of channels into the header. (This does not write anything to file. See writer_header().) XML tag is <total-channels>.

6.22.4.17 void LOAPEX::CMUXFile::put_total_scans (long L)

Put the given total number of scans into the header. (This does not write anything to file. See writer_header().) XML tag is <total-scans>
6.22.4.18  void LOAPEX::CMUXFile::write_header (void)

This causes a bunch of XML to be written to the file on disk, in principle forming the file header. Should be called once before any data is written to the disk.

The documentation for this class was generated from the following files:

- muxfile.hpp
- muxfile.cpp
6.23 LOAPEX::CMUXFileAdapter Class Reference

#include <muxadapter.hpp>

Inheritance diagram for LOAPEX::CMUXFileAdapter:::

```
LOAPEX::CBaseFileAdapter

LOAPEX::CMUXFileAdapter
```

Public Member Functions

- `CMUXFileAdapter (LOAPEX::CMUXFile *p)`
- `~CMUXFileAdapter (void)`
- `void get_scan (std::vector< short >&v)`
- `void get_start_second (long &s) const`
- `void get_total_scans (long &t) const`
- `void get_total_channels (int &c) const`
- `void get_sample_rate (int &fs) const`
- `void get_header (std::string &h) const`

6.23.1 Detailed Description

Object adaptor class for .mux files

6.23.2 Constructor & Destructor Documentation

6.23.2.1 LOAPEX::CMUXFileAdapter::CMUXFileAdapter (LOAPEX::CMUXFile * p)

6.23.2.2 LOAPEX::CMUXFileAdapter::~CMUXFileAdapter (void)

6.23.3 Member Function Documentation

6.23.3.1 `void LOAPEX::CMUXFileAdapter::get_header (std::string & h) const` [virtual]

Supplies the whole header via a string,
6.23 LOAPEX::CMUXFileAdapter Class Reference

Implements LOAPEX::CBaseFileAdapter (p. 25).

6.23.3.2 void LOAPEX::CMUXFileAdapter::get_sample_rate (int *fs) const

6.23.3.3 void LOAPEX::CMUXFileAdapter::get_scan (std::vector<short> & V) [virtual]

Read the next "scan" of samples, one from each channel. Clears
std::vector(p. 128) V first.
Implements LOAPEX::CBaseFileAdapter (p. 26).

6.23.3.4 void LOAPEX::CMUXFileAdapter::get_start_second (long * s) const [virtual]

Supplies the "start second" from the file (header)
Implements LOAPEX::CBaseFileAdapter (p. 26).

6.23.3.5 void LOAPEX::CMUXFileAdapter::get_total_channels (int * c) const [virtual]

Supplies the total number of channels, from the file (header)
Implements LOAPEX::CBaseFileAdapter (p. 26).

6.23.3.6 void LOAPEX::CMUXFileAdapter::get_total_scans (long * t) const [virtual]

Supplies the total number of channels, from the file (header)
Implements LOAPEX::CBaseFileAdapter (p. 26).

The documentation for this class was generated from the following files:

- muxadapter.hpp
- muxadapter.cpp

---

Generated on Thu May 3 09:53:59 2007 for DopplerToolBarkit by Doxygen
6.24 LOAPEX::CNetCDFNavigationData Class Reference

#include <navigation.hpp>

Inheritance diagram for LOAPEX::CNetCDFNavigationData:

```
+----------------+ +----------------+
| LOAPEX::CNetCDFNavigationData | —— | LOAPEX::CNetCDFNavigationData |
```

Public Member Functions

- **CNetCDFNavigationData** (const char *filename, const int channel)
- **~CNetCDFNavigationData** (void)
- **bool is_loaded** (void) const
- **void get_file_first_time** (time_t *pt) const
- **void get_file_final_time** (time_t *pt) const
- **void get_position** (const LOAPEX::CCompoundTime t, d-EuclideanVector_t &X) const
- **void get_velocity** (const LOAPEX::CCompoundTime t, d-EuclideanVector_t &V) const

6.24.1 Detailed Description

Subclass for a netCDF file format. I made such files based on Mike Zarnetske’s .mat files, but I needed something I could read beyond Matlab. The CDL for an example file is:

```
netcdf t1000x350 {
 dimensions:
 time = 122213 ;
 singleton = 1 ;
 variables:
 double depth(singleton);
 depth:units = "metres" ;
 double x(time);
 x:units = "metres, east/west" ;
 double y(time);
 y:units = "metres, north/south" ;
 double z(time);
 z:units = "metres, up/down (up is positive)" ;
 double u(time);
 u:units = "metres/second, east/west" ;
```
6.24 LOAPEX::CNetCDFNavigationData Class Reference

```cpp
double v(time);
v.units = "metres/second, north/south";
double w(time);
w.units = "metres/second, up/down (up is positive)";
int t(time);
t.units = "seconds since Jan 1 1970 00:00:00";
```

// global attributes:
:station = "T1000";
:description = "VLFP position solution, 2004 LOAPEX Cruise";
:note = "Converted from file t1000vole36of.mat";
:conversiondate = "2006/10/28";
:author = "RJAndrew, APL/UW, randrew@apl.washington.edu";
}

6.24.2 Constructor & Destructor Documentation

6.24.2.1 LOAPEX::CNetCDFNavigationData::CNetCDFNavigationData (const char * filename, const int channel)

Ctor takes the filename as a C string, and a channel. This class only handles navigable object. If there are multiple channels, (i.e., multiple tables of position and velocity) I suppose one would need multiple instantiations of this class.

6.24.2.2 LOAPEX::CNetCDFNavigationData::~CNetCDFNavigationData (void)

6.24.3 Member Function Documentation

6.24.3.1 void LOAPEX::CNetCDFNavigationData::get_file_final_time (time_t * pt) const

virtual Supplies the time of the last valid position (or velocity) sample in the file. Looks like this is a time_t, so we are assuming Unix time, and the first sample must be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.24.3.2 void LOAPEX::CNetCDFNavigationData::get_file_first_time (time_t * pt) const

virtual Supplies the time of the first valid position (or velocity) sample in the file. Looks like this is a time_t, so we are assuming Unix time, and the first sample must be tied to a unique whole second.

Generated on Thu May 3 09:53:59 2007 for DopplerToolkit by Doxygen
Implements LOAPEX::CBase3DNavigationData (p. 23).

6.24.3.3 void LOAPEX::CNetCDFNavigationData::get_position
(const LOAPEX::CCompoundTime t, dEuclideanVector_t
* X) const [virtual]

The evaluation time is the base_time (which is a time_t) plus and additional_-seconds, which is a real, and can contain a fractional part.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.24.3.4 void LOAPEX::CNetCDFNavigationData::get_velocity
(const LOAPEX::CCompoundTime t, dEuclideanVector_t
* V) const [virtual]

The evaluation time is the base_time (which is a time_t) plus and additional_-seconds, which is a real, and can contain a fractional part.

Implements LOAPEX::CBase3DNavigationData (p. 24).

6.24.3.5 bool LOAPEX::CNetCDFNavigationData::is_loaded
( void ) const [inline]

The documentation for this class was generated from the following files:

- navigation.hpp
- navigation.cpp
6.25 LOAPEX::CNewtonMapSolver Class Reference

#include <mapsolvers.hpp>

Inheritance diagram for LOAPEX::CNewtonMapSolver::

```
LOAPEX::CBaseMapSolver

LOAPEX::CNewtonMapSolver
```

Public Member Functions

- CNewtonMapSolver (void)
- ~CNewtonMapSolver (void)
- void load_parameters (const LOAPEX::CGeoParameters &P)
- void load_TX (LOAPEX::CBase3DNavigationData *p)
- void load_RX (LOAPEX::CBase3DNavigationData *p)
- void compute_map (const LOAPEX::CCompoundTime &tin, LOAPEX::CCompoundTime &tout)

6.25.1 Detailed Description

Uses a Newton-Raphson solver, from Numerical Recipes, for solving the root finding problem by optimizing to the minimum of the squared error. Requires an analytic expression for position and velocity versus time, which is only the case for theoretical test scenarios. Hence, this class is only used for testing, and comparing results to the CBrentMapSolver (p. 32) class.
6.25.2 Constructor & Destructor Documentation

6.25.2.1 LOAPEX::CNewtonMapSolver::CNewtonMapSolver (void)

6.25.2.2 LOAPEX::CNewtonMapSolver::~CNewtonMapSolver (void)

6.25.3 Member Function Documentation

6.25.3.1 void LOAPEX::CNewtonMapSolver::compute_map (const LOAPEX::CCompoundTime & tin, LOAPEX::CCompoundTime & tout) [virtual]

Once the parameters and the TX and RX interfaces have been registered, this routine is the one that does one single T(t) computation.

Implements LOAPEX::CBaseMapSolver (p. 30).

6.25.3.2 void LOAPEX::CNewtonMapSolver::load_parameters (const LOAPEX::CGeoParameters & P) [virtual]

Provide an interface for copying parameter values into private storage.

Implements LOAPEX::CBaseMapSolver (p. 30).

6.25.3.3 void LOAPEX::CNewtonMapSolver::load_RX (LOAPEX::CBase3DNavigationData * p) [virtual]

Provide an interface for copying an interface for receiver position and velocity into private storage.

Implements LOAPEX::CBaseMapSolver (p. 30).

6.25.3.4 void LOAPEX::CNewtonMapSolver::load_TX (LOAPEX::CBase3DNavigationData * p) [virtual]

Provide an interface for copying an interface for transmitter position and velocity into private storage.

Implements LOAPEX::CBaseMapSolver (p. 30).

The documentation for this class was generated from the following files:

- mapsolvers.hpp
- mapsolvers.cpp
6.26 LOAPEX::CRex3DNavigationData Class Reference

```cpp
#include <navigation.hpp>
```

Inheritance diagram for LOAPEX::CRex3DNavigationData:

```
LOAPEX::CBase3DNavigationData
```

```
LOAPEX::CRex3DNavigationData
```

### Public Member Functions

- **CRex3DNavigationData** (const char *filename)
- **~CRex3DNavigationData** (void)
- **bool is_loaded** (void) const
- **void get_file_first_time** (time_t *pt) const
- **void get_file_final_time** (time_t *pt) const
- **void get_position** (const LOAPEX::CCompoundTime t, d-EuclideanVector_t *X) const
- **void get_velocity** (const LOAPEX::CCompoundTime t, d-EuclideanVector_t *V) const

### 6.26.1 Detailed Description

This was total testing stuff. Ignore.
6.26.2 Constructor & Destructor Documentation

6.26.2.1 LOAPEX::CReX3DNavigationData::CReX3DNavigationData (const char * filename)

6.26.2.2 LOAPEX::CReX3DNavigationData::~CReX3DNavigationData (void)

6.26.3 Member Function Documentation

6.26.3.1 void LOAPEX::CReX3DNavigationData::get_file_final_time (time_t * pt) const
        [virtual]

Supplies the time of the last valid position (or velocity) sample in the file. Looks like this is a time_t, so we are assuming Unix time, and the first sample must be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.26.3.2 void LOAPEX::CReX3DNavigationData::get_file_first_time (time_t * pt) const
        [virtual]

Supplies the time of the first valid position (or velocity) sample in the file. Looks like this is a time_t, so we are assuming Unix time, and the first sample must be tied to a unique whole second.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.26.3.3 void LOAPEX::CReX3DNavigationData::get_position
        (const LOAPEX::CCompoundTime t, dEuclideanVector_t * X) const [virtual]

Given a compound time, retrieves the position at that time. Derived classes will have to figure out what to do if there is no position at that exact time.

Implements LOAPEX::CBase3DNavigationData (p. 23).

6.26.3.4 void LOAPEX::CReX3DNavigationData::get_velocity
        (const LOAPEX::CCompoundTime t, dEuclideanVector_t * V) const [virtual]

Given a compound time, retrieves the velocity at that time. Derived classes will have to figure out what to do if there is no velocity at that exact time.
Implements `LOAPEX::CBase3DNavigationData` (p. 24).

6.26.3.5 `bool LOAPEX::CReX3DNavigationData::is_loaded (void)`
`const [inline]`

The documentation for this class was generated from the following file:

- `navigation.hpp`
6.27 LOAPEX::CSingleChannelAllPassFilter
Class Reference

#include <allpass.hpp>

Inheritance diagram for LOAPEX::CSingleChannelAllPassFilter:

```
LOAPEX::CBaseFilter

LOAPEX::CSingleChannelAllPassFilter
```

Public Member Functions

- **CSingleChannelAllPassFilter** (const int channel)
- **~CSingleChannelAllPassFilter** (void)
- void **clock** (void)
- void set_demultiplexor (LOAPEX::CDemultiplexor *p)
- void set_multiplexor (LOAPEX::CMultiplexor *p)

6.27.1 Detailed Description

Implements a filter that simply clocks the input data to the output. I.e., all pass. Largely for testing.

6.27.2 Constructor & Destructor Documentation

6.27.2.1 **LOAPEX::CSingleChannelAllPassFilter::CSingleChannelAllPassFilter** (const int channel)

6.27.2.2 **LOAPEX::CSingleChannelAllPassFilter::~CSingleChannelAllPassFilter** (void)

6.27.3 Member Function Documentation

6.27.3.1 void **LOAPEX::CSingleChannelAllPassFilter::clock** (void) [virtual]

Causes the filter to step once.

Reimplemented from **LOAPEX::CBaseFilter** (p. 28).
6.27.3.2 void LOAPEX::CSingleChannelAllPassFilter::set_deminplexor (LOAPEX::CDemultiplexor * p)

Copies the handle to the demux into internal storage. It is the user's responsibility to free the demux after the class is destroyed.

6.27.3.3 void LOAPEX::CSingleChannelAllPassFilter::set_multiplexor (LOAPEX::CMultiplexor * p)

Copies the handle to the mux into internal storage. It is the user's responsibility to free the emux after the class is destroyed.

The documentation for this class was generated from the following files:

- allpass.hpp
- allpass.cpp
6.28 LOAPEX::CSingleChannelAllStopFilter
Class Reference

#include <allstop.hpp>

Inheritance diagram for LOAPEX::CSingleChannelAllStopFilter::

```
LOAPEX::CBaseFilter

LOAPEX::CSingleChannelAllStopFilter
```

Public Member Functions

- `CSingleChannelAllStopFilter (const int channel)`
- `~CSingleChannelAllStopFilter (void)`
- `void clock (void)`
- `void set_demultiplexor (LOAPEX::CDemultiplexor *p)`
- `void set_multiplexor (LOAPEX::CMultiplexor *p)`

6.28.1 Detailed Description

Implements a filter that simply clocks out zeros regardless of input. I.e., all stop. Largely for testing.

6.28.2 Constructor & Destructor Documentation

6.28.2.1 LOAPEX::CSingleChannelAllStopFilter::CSingleChannelAllStopFilter (const int channel)

6.28.2.2 LOAPEX::CSingleChannelAllStopFilter::~CSingleChannelAllStopFilter (void)

6.28.3 Member Function Documentation

6.28.3.1 void LOAPEX::CSingleChannelAllStopFilter::clock (void) [virtual]

Causes the filter to step once.
Reimplemented from LOAPEX::CBaseFilter (p. 28).
6.28.3.2 void LOAPEX::CSingleChannelAllStopFilter::set_demultiplexor (LOAPEX::CDemultiplexor * p)

Copies the handle to the demux into internal storage. It is the user's responsibility to free the demux after the class is destroyed.

6.28.3.3 void LOAPEX::CSingleChannelAllStopFilter::set_multiplexor (LOAPEX::CMultiplexor * p)

Copies the handle to the mux into internal storage. It is the user's responsibility to free the mux after the class is destroyed.

The documentation for this class was generated from the following files:

- allstop.hpp
- allstop.cpp
6.29  LOAPEX::CSingleChannelSincFilter Class Reference

#include <sincfilter.hpp>

Inheritance diagram for LOAPEX::CSingleChannelSincFilter:

```
LOAPEX::CBaseFilter

LOAPEX::CSingleChannelSincFilter
```

Public Member Functions

- **CSingleChannelSincFilter**(const int channel, const int order, const double sample_time)
- **~CSingleChannelSincFilter**(void)
- **void clock**(void)
- **void set_demultiplexor**(LOAPEX::CDemultiplexor *p)
- **void set_multiplexor**(LOAPEX::CMultiplexor *p)
- **void set_mapper**(LOAPEX::CTimeBaseMapEngine *p)
- **void set_rx_start_time**(const time_t t)
- **void enable_logging**(void)
- **void disable_logging**(void)

6.29.1  Constructor & Destructor Documentation

6.29.1.1  LOAPEX::CSingleChannelSincFilter::CSingleChannelSincFilter**(const int channel, const int order, const double sample_time)**

Ctor takes a channel, an order and a sample period. It uses the channel to interface with the receiver navigation interface. (There is assumed to be only one transmitter, so that channel is always 1.) The order is the order of the filter you want. I prefer this to be odd: never tested for even order.
6.29 LOAPEX::CSingleChannelSincFilter Class Reference

6.29.1.2 LOAPEX::CSingleChannelSincFilter::~CSingleChannelSincFilter (void)

6.29.2 Member Function Documentation

6.29.2.1 void LOAPEX::CSingleChannelSincFilter::clock (void) [virtual]

Causes the filter to step once.
Reimplemented from LOAPEX::CBaseFilter (p. 28).

6.29.2.2 void LOAPEX::CSingleChannelSincFilter::disable_logging (void)

Help utility that stops the dumping of coefficients to a log file.

6.29.2.3 void LOAPEX::CSingleChannelSincFilter::enable_logging (void)

Help utility that causes coefficients to be dumped to a log file.

6.29.2.4 void LOAPEX::CSingleChannelSincFilter::set_demultiplexor (LOAPEX::CDemultiplexor * p)

Copies the handle to the demux into internal storage. It is the user's responsibility to free the demux after the class is destroyed.

6.29.2.5 void LOAPEX::CSingleChannelSincFilter::set_mapper (LOAPEX::CTimeBaseMapEngine * p)

Copies the mapper pointer into internal storage.

6.29.2.6 void LOAPEX::CSingleChannelSincFilter::set_multiplexor (LOAPEX::CMultiplexor * p)

Copies the handle to the mux into internal storage. It is the user's responsibility to free the mux after the class is destroyed.

Generated on Thu May 3 09:33:39 2007 for DopplerToolkit by Doxygen
6.29.2.7  void LOAPEX::CSingleChannelSincFilter::set_rx_start_time (const time_t t)

This method tells the filter the time of the first sample to be processed. Usually this will be taken from the receiver file (which knows when it started taking data.)

The documentation for this class was generated from the following files:

- `sincfilter.hpp`
- `sincfilter.cpp`
6.30 LOAPEX::CTimeBaseMapEngine Class Reference

#include <mapengine.hpp>

Public Member Functions

- CTimeBaseMapEngine (const time_t tstart, const time_t tstop)
- ~CTimeBaseMapEngine (void)
- void load_parameters (const LOAPEX::CGeoParameters &P)
- void load_TX (const char *name, const int channel)
- void load_RX (const char *name, const int channel)
- void load_TX (LOAPEX::CBase3DNavigationData *p)
- void load_RX (LOAPEX::CBase3DNavigationData *p)
- void arm (void)
- bool is_valid (void)
- void get_forward_time (const CCompoundTime &Tin, CCompoundTime *pTout)
- void get_inverse_time (const CCompoundTime &Tin, CCompoundTime *pTout)
- void get_first_time (time_t *pt) const
- void get_last_time (time_t *pt) const
- void dump (const int howmany)

6.30.1 Detailed Description

A class that describes the mapping between two timebases.

6.30.2 Constructor & Destructor Documentation

6.30.2.1 LOAPEX::CTimeBaseMapEngine::CTimeBaseMapEngine
(const time_t tstart, const time_t tstop)

The Ctor initializes a few data members, and copies the two supplied times to
internal member. These two times are intended to be inside the times of the
navigation files.

6.30.2.2 LOAPEX::CTimeBaseMapEngine::~CTimeBaseMap-
Engine (void)

Dtor deallocates all the instantiated internal objects.
6.30.3 Member Function Documentation

6.30.3.1 void LOAPEX::CTimeBaseMapEngine::arm (void)

Gets start and stop times of TX and RX nav data, compares them to the requested start and stop times. Aborts with an error message if incompatible.

6.30.3.2 void LOAPEX::CTimeBaseMapEngine::dump (const int howmany)

Diagnostic utility.

6.30.3.3 void LOAPEX::CTimeBaseMapEngine::get_first_time (time_t * pt) const

Convenience function to retrieve the time supplied during construction.

6.30.3.4 void LOAPEX::CTimeBaseMapEngine::get_forward_time (const CCompoundTime & Tin, CCompoundTime * pTout)

this is the main forward interpolation engine:

6.30.3.5 void LOAPEX::CTimeBaseMapEngine::get_inverse_time (const CCompoundTime & Tin, CCompoundTime * pTout)

this is the main inverse interpolation engine:

6.30.3.6 void LOAPEX::CTimeBaseMapEngine::get_last_time (time_t * pt) const

Convenience function to retrieve the time supplied during construction.

6.30.3.7 bool LOAPEX::CTimeBaseMapEngine::is_valid (void)

True if the mapper armed correctly. False if the mapped aborted during arming.
6.30.3.8 void LOAPEX::CTimeBaseMapEngine::load_parameters
(const LOAPEX::CGeoParameters & P)

Copies the parameters to internal storage. This is also the routine where the
wavenumber vectors are computed (for internal use only.)

6.30.3.9 void LOAPEX::CTimeBaseMapEngine::load_RX
(LOAPEX::CBase3DNavigationData * p)

Overloaded member, copies a pointer from a navigation interface that has been
previously instantiated into internal storage.

6.30.3.10 void LOAPEX::CTimeBaseMapEngine::load_RX (const
char * name, const int channel)

Overloaded member, loads a netCDF file for the receiver.

6.30.3.11 void LOAPEX::CTimeBaseMapEngine::load_TX
(LOAPEX::CBase3DNavigationData * p)

Overloaded member, copies a pointer from a navigation interface that has been
previously instantiated into internal storage.

6.30.3.12 void LOAPEX::CTimeBaseMapEngine::load_TX (const
char * name, const int channel)

Overloaded member, loads a netCDF file for the transmitter.

The documentation for this class was generated from the following files:

- mapengine.hpp
- mapengine.cpp

Generated on Thu May 3 09:53:59 2007 for DopplerToolkit by Doxygen
6.31 LOAPEX::CTimeTag Class Reference

#include <tag.h>

Public Member Functions

- CTimeTag()
- CTimeTag(char *string)
- CTimeTag(CTimeTag&)
- ~CTimeTag()
- CTimeTag & operator=(const CTimeTag&)
- std::string get_tag (void)
- void get_components (int *yyyy, int *ddd, int *hr, int *min, float *ss)
- long double get_decimal_day (void)
- long get_year_seconds (void)
- void KM_to_tm (struct tm &TM)
- void tm_to_KM (struct tm &TM, std::string &Kmtime)
- int compute_mday (void)

Public Attributes

- char *str_time_
- int year_
- int month_
- int day_
- int hour_
- int minute_
- float second_
- long double decYD_
- long double decJD_

Friends

- std::ostream & operator<<(std::ostream &, CTimeTag&)

6.31.1 Detailed Description

One of my first big classes! Handles time conversions from Kurt's format to linear time. Everything is exposed. Didn't understand data hiding (or couldn't make it work...)
6.31.2 Constructor & Destructor Documentation

6.31.2.1 CTimeTag::CTimeTag ()
6.31.2.2 CTimeTag::CTimeTag (char * string)
6.31.2.3 CTimeTag::CTimeTag (CTimeTag &)
6.31.2.4 CTimeTag::~CTimeTag ()

6.31.3 Member Function Documentation

6.31.3.1 int CTimeTag::compute_mday (void)
6.31.3.2 void CTimeTag::get_components (int * yyyy, int * ddd, int * hr, int * min, float * ss)
6.31.3.3 long double LOAPEX::CTimeTag::get_decimal_day (void) [inline]
6.31.3.4 std::string LOAPEX::CTimeTag::get_tag (void) [inline]
6.31.3.5 long CTimeTag::get_year_seconds (void)
6.31.3.6 void CTimeTag::KM_to_tm (struct tm & TM)
6.31.3.7 CTimeTag & CTimeTag::operator= (const CTimeTag &)
6.31.3.8 void CTimeTag::tm_to_KM (struct tm & TM, std::string & KMtime)

6.31.4 Friends And Related Function Documentation

6.31.4.1 std::ostream & operator<< (std::ostream &, CTimeTag &) [friend]

6.31.5 Member Data Documentation

6.31.5.1 int LOAPEX::CTimeTag::day_
6.31.5.2 long double LOAPEX::CTimeTag::decJD_
6.31.5.3 long double LOAPEX::CTimeTag::decYD_
6.31.5.4 int LOAPEX::CTimeTag::hour_
6.31.5.5 int LOAPEX::CTimeTag::minute_

6.31.5.6 int LOAPEX::CTimeTag::month_
6.31.5.7 float LOAPEX::CTimeTag::second_
6.31.5.8 char* LOAPEX::CTimeTag::str_time_
6.31.5.9 int LOAPEX::CTimeTag::year_

The documentation for this class was generated from the following files:
• timetag.hpp
• timetag.cpp
6.32 LOAPEX::CZeroSource Class Reference

#include <gappystream.hpp>
Inheritance diagram for LOAPEX::CZeroSource:

```
LOAPEX::CGenericSource

LOAPEX::CZeroSource
```

Public Member Functions

- **CZeroSource** (const long start_second, const long total_scans, const int total_channels, const int sample_rate)
- **~CZeroSource** (void)
- void get_scan (std::vector<short> &V)
- void get_start_second (long &s) const
- void get_total_scans (long *t) const
- void get_total_channels (int *c) const
- void get_sample_rate (int *fs) const
- void get_type (char *c) const

6.32.1 Detailed Description

Specialized class for sources of zeroes. Interface mimics a .adf file source.

6.32.2 Constructor & Destructor Documentation

6.32.2.1 LOAPEX::CZeroSource::CZeroSource (const long

\textit{start\_second}, const long \textit{total\_scans}, const int

\textit{total\_channels}, const int \textit{sample\_rate})

6.32.2.2 LOAPEX::CZeroSource::\textit{~CZeroSource} (void)

6.32.3 Member Function Documentation

6.32.3.1 void LOAPEX::CZeroSource::get_sample_rate (int *fs)

\quad \text{const \ [virtual]}

Implements LOAPEX::CGenericSource (p. 49).
6.32.3.2 void LOAPEX::CZeroSource::get_scan (std::vector< short > & V) [virtual]

Implements LOAPEX::CGenericSource (p. 50).

6.32.3.3 void LOAPEX::CZeroSource::get_start_second (long * s) const [virtual]

Implements LOAPEX::CGenericSource (p. 50).

6.32.3.4 void LOAPEX::CZeroSource::get_total_channels (int * c) const [virtual]

Implements LOAPEX::CGenericSource (p. 50).

6.32.3.5 void LOAPEX::CZeroSource::get_total_scans (long * t) const [virtual]

Implements LOAPEX::CGenericSource (p. 50).

6.32.3.6 void LOAPEX::CZeroSource::get_type (char * c) const [virtual]

Supplies the character "Z", for cosmetic output, indicating a zero source class.

Implements LOAPEX::CGenericSource (p. 50).

The documentation for this class was generated from the following files:

- gappystream.hpp
- gappystream.cpp
6.33 dEuclideanVector_t Struct Reference

#include <navigation.hpp>

Public Attributes

- double x
- double y
- double z

6.33.1 Member Data Documentation

6.33.1.1 double dEuclideanVector_t::x

6.33.1.2 double dEuclideanVector_t::y

6.33.1.3 double dEuclideanVector_t::z

The documentation for this struct was generated from the following file:

- navigation.hpp
6.34 APL::Error Class Reference

#include <errors.hpp>

Inheritance diagram for APL::Error:

```
APL::Error
 |
 V
APL::FatalError
```

Public Member Functions

- **Error** (std::string s)
- **Error** (const char *c)

Public Attributes

- std::string **error_msg**

6.34.1 Constructor & Destructor Documentation

6.34.1.1 APL::Error::Error (std::string s) [inline]

6.34.1.2 APL::Error::Error (const char * c) [inline]

6.34.2 Member Data Documentation

6.34.2.1 std::string APL::Error::error_msg

The documentation for this class was generated from the following file:

- errors.hpp
6.35 APL::FatalError Class Reference

#include <errors.hpp>

Inheritance diagram for APL::FatalError:

```
 APL::Error
 | |
 APL::FatalError
```

Public Member Functions

- `FatalError (std::string s)`
- `FatalError (const char *c)`

6.35.1 Constructor & Destructor Documentation

6.35.1.1 APL::FatalError::FatalError (std::string s) [inline]

6.35.1.2 APL::FatalError::FatalError (const char * c) [inline]

The documentation for this class was generated from the following file:

- `errors.hpp`
6.36 tstream Class Reference

#include <tstream.hpp>

Public Member Functions

- tstream (std::ostream &os)
- ~tstream (void)
- void operator>>(char *)
- void operator>>(std::string &s)
- int seekt (long, std::ios_base::seekdir)
- bool eos (void)

6.36.1 Detailed Description

A class for a stream of tokens, derived from the simple list class. New functionality over the base class includes the extraction operator >> , the ability to seek to any particular token, and an "end of stream" function.

6.36.2 Constructor & Destructor Documentation

6.36.2.1 tstream::tstream (std::ostream & os)

6.36.2.2 tstream::~tstream (void)

6.36.3 Member Function Documentation

6.36.3.1 bool tstream::eos (void) [inline]

6.36.3.2 void tstream::operator>>(std::string & s)

6.36.3.3 void tstream::operator>>(char *)

6.36.3.4 int tstream::seekt (long, std::ios_base::seekdir)

The documentation for this class was generated from the following files:

- tstream.hpp
- tstream.cpp
Chapter 7

DopplerToolkit File Documentation

7.1 adfadapter.cpp File Reference

#include <adfadapter.hpp>
#include <adffile.hpp>
#include <iostream>
7.2 adfadapter.hpp File Reference

#include <vector>
#include <string>
#include <basefileadapter.hpp>
#include <adffile.hpp>

Namespaces

- namespace LOAPEX
7.3 adfile.cpp File Reference

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <fstream>
#include <iostream>
#include <sstream>
#include <adfile.hpp>
#include <tstream.hpp>
#include <errors.hpp>
#include <timetag.hpp>
#include <time.h>

Defines

- #define SBUFFERSIZE 256
- #define TOKEN_BUFFER_SIZE 100
- #define ECHOINDENT " "

Functions

- int FindLine (std::ifstream &instream, const char *key)
- int FindLine (std::ifstream &instream, const char *key)

7.3.1 Define Documentation

7.3.1.1 #define ECHOINDENT " "

7.3.1.2 #define SBUFFERSIZE 256

7.3.1.3 #define TOKEN_BUFFER_SIZE 100

7.3.2 Function Documentation

7.3.2.1 int FindLine (std::ifstream & instream, const char * key)

7.3.2.2 int FindLine (std::ifstream & instream, const char * key)
7.4  adffile.hpp File Reference

#include <fstream>
#include <vector>
#include <map>
#include <string>

Namespaces

- namespace LOAPEX

Defines

- #define DEFAULT_SAMPLE_RATE 300
- #define DEFAULT_SITE "no-site"
- #define DEFAULT_ID "No ID"
- #define BYTE unsigned char

7.4.1  Define Documentation

7.4.1.1  #define BYTE unsigned char

7.4.1.2  #define DEFAULT_ID "No ID"

7.4.1.3  #define DEFAULT_SAMPLE_RATE 300

7.4.1.4  #define DEFAULT_SITE "no-site"
7.5 allpass.cpp File Reference

#include <iostream>
#include <allpass.hpp>
7.6 allpass.hpp File Reference

#include <basefilter.hpp>

Namespaces

- namespace LOAPEX
# include <allstop.hpp>
7.8  allstop.hpp File Reference

#include <basefilter.hpp>

Namespaces
  
  - namespace LOAPEX
#include <vector>
#include <string>

Namespaces

- namespace LOAPEX
7.10 basefilter.cpp File Reference

#include <basefilter.hpp>
#include <iostream>
7.11 basefilter.hpp File Reference

#include <multiplexor.hpp>
#include <demultiplexor.hpp>

Namespaces

- namespace LOAPEX
7.12 basemapsolver.hpp File Reference

#include <compoundtime.hpp>
#include <parameters.hpp>
#include <navigation.hpp>

Namespaces

- namespace LOAPEX
7.13 compoundtime.cpp File Reference

```cpp
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <compoundtime.hpp>
```

**Functions**

- LOAPEX::CCompoundTime & operator+ (LOAPEX::CCompoundTime &a, LOAPEX::CCompoundTime &b)
- LOAPEX::CCompoundTime & operator- (LOAPEX::CCompoundTime &a, LOAPEX::CCompoundTime &b)

### 7.13.1 Function Documentation

**7.13.1.1 LOAPEX::CCompoundTime operator+**

```cpp
LOAPEX::CCompoundTime operator+ (LOAPEX::CCompoundTime & a, LOAPEX::CCompoundTime & b)
```

**7.13.1.2 LOAPEX::CCompoundTime operator-**

```cpp
LOAPEX::CCompoundTime operator- (LOAPEX::CCompoundTime & a, LOAPEX::CCompoundTime & b)
```
7.14 

compoundtime.hpp File Reference

Namespaces

- namespace LOAPEX

Functions

- LOAPEX::CCompoundTime operator+ 
  (LOAPEX::CCompoundTime &a, LOAPEX::CCompoundTime &b)

- LOAPEX::CCompoundTime operator- 
  (LOAPEX::CCompoundTime &a, LOAPEX::CCompoundTime &b)

7.14.1 Function Documentation

7.14.1.1 LOAPEX::CCompoundTime operator+ 
  (LOAPEX::CCompoundTime & a, 
  LOAPEX::CCompoundTime & b)

7.14.1.2 LOAPEX::CCompoundTime operator- 
  (LOAPEX::CCompoundTime & a, 
  LOAPEX::CCompoundTime & b)
#include <demultiplexor.hpp>
#include <iostream>
7.16 demultiplexor.hpp File Reference

#include <basefileadapter.hpp>

Namespaces

- namespace LOAPEX
7.17  

7.17 errors.hpp File Reference

#include <string>

Namespaces

- namespace APL
7.18 gappystream.cpp File Reference

#include <stdio.h>
#include <iostream>
#include <errors.hpp>
#include <gappystream.hpp>
7.19 `gappystream.hpp` File Reference

```cpp
#include <iostream>
#include <list>
#include <vector>
#include <adffile.hpp>
```

**Namespaces**

- `namespace LOAPEX`
7.20 mapengine.cpp File Reference

```c
#include <math.h>
#include <time.h>
#include <iostream>
#include <errors.hpp>
#include <mapengine.hpp>
```

**Defines**

- `#define GRID_SAMPLE_RATE 1.0`
- `#define NRANSI`
- `#define ITMAX 100`
- `#define EPS 3.0e-8`
- `#define SIGN(a, b) ( (b)>0.0 ? fabs(a) : -fabs(a) )`

### 7.20.1 Define Documentation

**7.20.1.1** `#define EPS 3.0e-8`

**7.20.1.2** `#define GRID_SAMPLE_RATE 1.0`

**7.20.1.3** `#define ITMAX 100`

**7.20.1.4** `#define NRANSI`

**7.20.1.5** `#define SIGN(a, b) ( (b)>0.0 ? fabs(a) : -fabs(a) )`
7.21 mapengine.hpp File Reference

#include <time.h>
#include <vector>
#include <mapsolvers.hpp>
#include <navigation.hpp>
#include <compoundtime.hpp>
#include <parameters.hpp>
#include <tablefunction.hpp>

Namespaces
  - namespace LOAPEX
7.22 mapsolvers.cpp File Reference

```cpp
#include <math.h>
#include <errors.hpp>
#include <mapsolvers.hpp>
#include <compoundtime.hpp>
#include <parameters.hpp>
#include <navigation.hpp>
```

Defines

- `#define BRENTTOL 0.0001`
- `#define NEWTONTOL 0.00001`
- `#define NRANSI`
- `#define ITMAX 100`
- `#define EPS 3.0e-8`
- `#define SIGN(a, b) ( (b) > 0.0 ? fabs(a) : -fabs(a) )`
- `#define JMAX 20`

7.22.1 Define Documentation

7.22.1.1 `#define BRENTTOL 0.0001`

7.22.1.2 `#define EPS 3.0e-8`

7.22.1.3 `#define ITMAX 100`

7.22.1.4 `#define JMAX 20`

7.22.1.5 `#define NEWTONTOL 0.00001`

7.22.1.6 `#define NRANSI`

7.22.1.7 `#define SIGN(a, b) ( (b) > 0.0 ? fabs(a) : -fabs(a) )`
7.23 mapsolvers.hpp File Reference

#include <math.h>
#include <basemapsolver.hpp>
#include <compoundtime.hpp>
#include <parameters.hpp>

Namespaces

• namespace LOAPEX
7.24 multichannelfilter.cpp File Reference

#include <multichannelfilter.hpp>
7.25 multichannelfilter.hpp File Reference

#include <basefilter.hpp>
#include <vector>

Namespaces

- namespace LOAPEX
7.26 multiplexor.cpp File Reference

#include <multiplexor.hpp>
#include <iostream>
7.27 multiplexor.hpp File Reference

#include <muxfile.hpp>
#include <vector>

Namespaces

  • namespace LOAPEX
7.28 muxadapter.cpp File Reference

#include <muxadapter.hpp>
#include <muxfile.hpp>
#include <iostream>
#include <vector>
#include <string>
#include <basefileadapter.hpp>
#include <muxfile.hpp>

Namespaces

- namespace LOAPEX
7.30  muxfile.cpp File Reference

#include <errors.hpp>
#include <iostream>
#include <muxfile.hpp>
#include <string>
#include <list>
#include <sstream>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <stdlib.h>

Functions

- void clean_line_list (std::list< std::string * > &L)

7.30.1  Function Documentation

7.30.1.1  void clean_line_list (std::list< std::string * > & L)
7.31  muxfile.hpp File Reference

#include <fstream>
#include <vector>
#include <string>
#include <list>

Namespaces

- namespace LOAPEX
7.32 navigation.cpp File Reference

#include <math.h>
#include <string.h>
#include <fstream>
#include <iostream>
#include <sstream>
#include <navigation.hpp>
#include <compoundtime.hpp>
#include <tablefunction.hpp>
7.33  navigation.hpp File Reference

#include <time.h>
#include <netcdf.hh>
#include <compoundtime.hpp>
#include <tablefunction.hpp>

Namespaces

- namespace LOAPEX

Defines

- #define RXRADIUS 50.0
- #define RXRADIUSINCREMENT 50.0
- #define RXDEPTH 1000.0
- #define RXDEPTHINCREMENT 500.0
- #define RXPERIOD 4320.0
- #define RXTIME_START 1096392840
- #define RXTIME_STOP 1099439999
- #define TXRADIUS 10.0
- #define TXPERIOD 50.0
- #define TXDEPTH 0.0
- #define TXTIME_START 1099180800
- #define TXTIME_STOP 1099439999

Generated on Thu May 3 09:53:59 2007 for DopplerToolkit by Doxygen
7.33.1 Define Documentation

7.33.1.1 #define RXDEPTH 1000.0
7.33.1.2 #define RXDEPTHTHINC 500.0
7.33.1.3 #define RXPERIOD 4320.0
7.33.1.4 #define RXRADIUS 50.0
7.33.1.5 #define RXRADIUSINC 50.0
7.33.1.6 #define RXTIME_ START 1096392840
7.33.1.7 #define RXTIME_ STOP 1099439999
7.33.1.8 #define TXDEPTH 0.0
7.33.1.9 #define TXPERIOD 50.0
7.33.1.10 #define TXRADIUS 10.0
7.33.1.11 #define TXTIME_ START 1099180800
7.33.1.12 #define TXTIME_ STOP 1099439999
7.34 nrutil.c File Reference

#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>

Defines

- #define NR_END 1
- #define FREE_ARG char*

Functions

- void nerror (char error_text[])
- float *vector (long nl, long nh)
- int *ivector (long nl, long nh)
- unsigned char *evector (long nl, long nh)
- unsigned long *ivector (long nl, long nh)
- double *dvector (long nl, long nh)
- float **matrix (long nrl, long nrh, long ncl, long nch)
- double **dmatrix (long nrl, long nrh, long ncl, long nch)
- int **imatrix (long nrl, long nrh, long ncl, long nch)
- float **submatrix (float **a, long oldrl, long oldrh, long oldcl, long oldch, long newrl, long newcl)
- float **convert_matrix (float **a, long nrl, long nrh, long ncl, long nch)
- float ***f3tensor (long nrl, long nrh, long ncl, long nch, long nul, long nhd)
- void free_vector (float *v, long nl, long nh)
- void free_ivector (int *v, long nl, long nh)
- void free_evector (unsigned char *v, long nl, long nh)
- void free_ivector (unsigned long *v, long nl, long nh)
- void free_dvector (double *v, long nl, long nh)
- void free_matrix (float **m, long nrl, long nrh, long ncl, long nch)
- void free_dmatrix (double **m, long nrl, long nrh, long ncl, long nch)
- void free_imatrix (int **m, long nrl, long nrh, long ncl, long nch)
- void free_submatrix (float **b, long nrl, long nrh, long ncl, long nch)
- void free_convert_matrix (float **b, long nrl, long nrh, long ncl, long nch)
- void free_f3tensor (float ***t, long nrl, long nrh, long ncl, long nch, long nul, long nhd)
7.34.1 Define Documentation

7.34.1.1 #define FREE_ARG char

7.34.1.2 #define NR_END 1

7.34.2 Function Documentation

7.34.2.1 float** convert_matrix (float * a, long nr1, long nrh, long ncl, long nch)

7.34.2.2 unsigned char* cvector (long nl, long nh)

7.34.2.3 double** dmatrix (long nr1, long nrh, long ncl, long nch)

7.34.2.4 double* dvector (long nl, long nh)

7.34.2.5 float*** f3tensor (long nr1, long nrh, long ncl, long nch, long ndl, long ndh)

7.34.2.6 void free_convert_matrix (float ** b, long nr1, long nrh, long ncl, long nch)

7.34.2.7 void free_cvector (unsigned char * v, long nl, long nh)

7.34.2.8 void free_dmatrix (double ** m, long nr1, long nrh, long ncl, long nch)

7.34.2.9 void free_dvector (double * v, long nl, long nh)

7.34.2.10 void free_f3tensor (float *** t, long nr1, long nrh, long ncl, long nch, long ndl, long ndh)

7.34.2.11 void free_imatrix (int ** m, long nr1, long nrh, long ncl, long nch)

7.34.2.12 void free_ivector (int * v, long nl, long nh)

7.34.2.13 void free_lvector (unsigned long * v, long nl, long nh)

7.34.2.14 void free_matrix (float ** m, long nr1, long nrh, long ncl, long nch)

7.34.2.15 void free_submatrix (float ** b, long nr1, long nrh, long ncl, long nch)

7.34.2.16 void free_vector (float * v, long nl, long nh)

7.34.2.17 int** imatrix (long nr1, long nrh, long ncl, long nch)

7.34.2.18 int* ivector (long nl, long nh)

7.34.2.19 unsigned long* lvector (long nl, long nh)

7.34.2.20 float** matrix (long nr1, long nrh, long ncl, long nch)

7.34.2.21 void nrerror (char error_text[])

7.34.2.22 float** submatrix (float ** a, long oldrl, long oldrh, long oldcl, long oldch, long newrl, long newch)
7.35  parameters.hpp File Reference

#include <navigation.hpp>

Namespaces

- namespace LOAPEX
7.36 refman.dox File Reference
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <sincfilter.hpp>

**Defines**

- 

## 7.37.1 Define Documentation

### 7.37.1.1 #define LOGNAME "sincfilter.log"
7.38 sincfilter.hpp File Reference

#include <basefilter.hpp>
#include <mapengine.hpp>
#include <stdio.h>
#include <iostream>
#include <fstream>

Namespaces

- namespace LOAPEX
7.39 spline.c File Reference

Defines

- \#define NRANSI

Functions

- void nrerror (char error_text[])
- double * dvector (long nl, long nh)
- void freedvector (double *v, long nl, long nh)
- void spline (double x[], double y[], int n, double yp1, double ypn, double y2[])

7.39.1 Define Documentation

7.39.1.1 \#define NRANSI

7.39.2 Function Documentation

7.39.2.1 double * dvector (long nl, long nh)

7.39.2.2 void freedvector (double *v, long nl, long nh)

7.39.2.3 void nrerror (char error_text[])

7.39.2.4 void spline (double x[], double y[], int n, double yp1, double ypn, double y2[])
7.40  splint.c File Reference

Functions

- void nerror (char error_text[])
- void splint (double xa[], double ya[], double y2a[], int n, double x, double *y)

7.40.1  Function Documentation

7.40.1.1  void nerror (char error_text[])

7.40.1.2  void splint (double xa[], double ya[], double y2a[], int n, double x, double *y)
#include <string>
#include <fstream>
#include <iostream>
#include <vector>
#include <stdio.h>
#include <tablefunction.hpp>

Functions

- void spline (double x[], double y[], int n, double yp1, double ypn, double y2[])
- void splint (double xa[], double ya[], double y2a[], int n, double x, double *y)

7.41.1 Function Documentation

7.41.1.1 void spline (double x[], double y[], int n, double yp1, double ypn, double y2[]))

7.41.1.2 void splint (double xa[], double ya[], double y2a[], int n, double x, double *y)
7.42  `tablefunction.hpp` File Reference

```cpp
#include <string>
#include <fstream>
#include <iostream>
#include <vector>
#include <stdio.h>
```

Namespaces

- `namespace LOAPEX`
7.43 timetag.cpp File Reference

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <timetag.hpp>
#include <time.h>

Functions

- int decYD_to_month (float decYD, int year)
- int isleap (int year)

7.43.1 Function Documentation

7.43.1.1 int decYD_to_month (float dec YD, int year)

7.43.1.2 int isleap (int year)
7.44 timetag.hpp File Reference

#include <string>
#include <time.h>

Namespaces

- namespace LOAPEX
7.45 tstream.cpp File Reference

#include <string.h>
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <tstream.hpp>

Defines

- #define CR 0x0D
- #define SPACE 0x20
- #define TAB 0x09
- #define LINEFEED 0x0A

7.45.1 Define Documentation

7.45.1.1 #define CR 0x0D
7.45.1.2 #define LINEFEED 0x0A
7.45.1.3 #define SPACE 0x20
7.45.1.4 #define TAB 0x09
7.46  tstream.hpp File Reference

#include <fstream>
#include <sstream>
#include <string>
#include <list>
Index

~CADFFile
LOAPEX::CADFFile, 12
~CADFFileAdapter
LOAPEX::CADFFileAdapter, 15
~CADFInfo
LOAPEX::CADFInfo, 17
~CADFSource
LOAPEX::CADFSource, 19
~CBase3DNavigationData
LOAPEX::CBase3DNavigationData, 22
~CBaseFileAdapter
LOAPEX::CBaseFileAdapter, 25
~CBaseFilter
LOAPEX::CBaseFilter, 28
~CBaseMapSolver
LOAPEX::CBaseMapSolver, 30
~CBrentMapSolver
LOAPEX::CBrentMapSolver, 32
~CCompoundTime
LOAPEX::CCompoundTime, 35
~CDemultiplexer
LOAPEX::CDemultiplexer, 36
~CFakeRXNavigationData
LOAPEX::CFakeRXNavigationData, 39
~CFakeTXNavigationData
LOAPEX::CFakeTXNavigationData, 42
~CFixedNavigationData
LOAPEX::CFixedNavigationData, 45
~CGappyADFStream
LOAPEX::CGappyADFStream, 47
~CGenericSource
LOAPEX::CGenericSource, 49
~CInterpolatedTableFunction
LOAPEX::CInterpolatedTableFunction, 53
~CMUXFile
LOAPEX::CMUXFile, 60
~CMUXFileAdapter
LOAPEX::CMUXFileAdapter, 64
~CMultichannelFilter
LOAPEX::CMultichannelFilter, 55
~CMultiplexer
LOAPEX::CMultiplexer, 57
~CNetCDFNavigationData
LOAPEX::CNetCDFNavigationData, 67
~CNewtonMapSolver
LOAPEX::CNewtonMapSolver, 70
~CReX3DNavigationData
LOAPEX::CReX3DNavigationData, 72
~CSingleChannelAllPassFilter
LOAPEX::CSingleChannelAllPassFilter, 74
~CSingleChannelAllStopFilter
LOAPEX::CSingleChannelAllStopFilter, 76
~CSingleChannelSincFilter
LOAPEX::CSingleChannelSincFilter, 78
~CTimeBaseMapEngine
LOAPEX::CTimeBaseMapEngine, 81
~CTimeTag
LOAPEX::CTimeTag, 85
~CZeroSource
LOAPEX::CZeroSource, 87
INDEX

LOAPEX::CSingleChannelAllStopFilter, 76
LOAPEX::CSingleChannelSincFilter, 79

CMultiplexer
LOAPEX::CMultiplexer, 57

CMUXFile
LOAPEX::CMUXFile, 60
CMUXFileAdapter
LOAPEX::CMUXFileAdapter, 64

CNetCDFNavigationData
LOAPEX::CNetCDFNavigationData, 67

CNewtonMapSolver
LOAPEX::CNewtonMapSolver, 70

compoundtime.cpp, 105
operator+, 105
operator-, 105

compoundtime.hpp, 106
operator+, 106
operator-, 106

compute_map
LOAPEX::CBaseMapSolver, 30
LOAPEX::CBrentMapSolver, 32
LOAPEX::CNewtonMapSolver, 70

compute_nday
LOAPEX::CTimeTag, 85

convert_matrix
nuutil.c, 128

CR
stream.cpp, 139
CReX3DNavigationData
LOAPEX::CReX3DNavigationData, 72

CSingleChannelAllPassFilter
LOAPEX::CSingleChannelAllPassFilter, 74

CSingleChannelAllStopFilter
LOAPEX::CSingleChannelAllStopFilter, 76

CSingleChannelSincFilter
LOAPEX::CSingleChannelSincFilter, 78

CTimeBaseMapEngine
LOAPEX::CTimeBaseMapEngine, 81

CTimeTag
LOAPEX::CTimeTag, 85
cvector
nuutil.c, 128

CZeroSource
LOAPEX::CZeroSource, 87
day_
LOAPEX::CTimeTag, 85
decD_
LOAPEX::CTimeTag, 85
decYD_
LOAPEX::CTimeTag, 85
decYD_to_month
timetag.cpp, 137

DEFAULT_ID
adfile.hpp, 96

DEFAULT_SAMPLE_RATE
adfile.hpp, 96

DEFAULT_SITE
adfile.hpp, 96
demultiplexer.cpp, 107
demultiplexer.hpp, 108
dEuclideanVector_t, 89
dEuclideanVector_t
x, 89
y, 89
z, 89
disable_logging
LOAPEX::CSingleChannelSincFilter, 79
dmatrix
nuutil.c, 128
dump
LOAPEX::CTimeBaseMapEngine, 82
dvector
nuutil.c, 128
spline.c, 133
echo_header
   LOAPEX::CADFFile, 13
ECHOINDENT
   adfile.cpp, 95
enable_logging
   LOAPEX::CSingleChannelSinc-Filter, 79
ecf
   LOAPEX::CADFFile, 13
cos
tstream, 92
EPS
   mapengine.cpp, 112
   mapsolvers.cpp, 114
Error
   APL::Error, 90
error_msg_
   APL::Error, 90
errors.hpp, 109
evaluate
   LOAPEX::CInterpolatedTable-Function, 53
f3tensor
   nrutil.c, 128
FatalError
   APL::FatalError, 91
file_time_final
   LOAPEX::CBase3DNavigation-Data, 24
file_time_first
   LOAPEX::CBase3DNavigation-Data, 24
FindLine
   adfile.cpp, 95
forward_bearing2APL
   LOAPEX::CGeoParameters, 51
forward_bearing2VLA
   LOAPEX::CGeoParameters, 51
fraction
   LOAPEX::CCompoundTime, 35
FREE_ARG
   nrutil.c, 128
free_convert_matrix
   nrutil.c, 128
free_cvector
   nrutil.c, 128
free_dmvector
   nrutil.c, 128
gappystream.cpp, 110
gappystream.hpp, 111
get_components
   LOAPEX::CTimeTag, 85
get_decimal_day
   LOAPEX::CTimeTag, 85
get_descriptions
   LOAPEX::CMUXFile, 60
generate
   LOAPEX::CBase3DNavigation-Data, 23
   LOAPEX::CFakeRXNavigation-Data, 39
   LOAPEX::CFakeTXNavigation-Data, 42
   LOAPEX::CFixedNavigation-Data, 45
   LOAPEX::CNetCDFNavigation-Data, 67
   LOAPEX::CReX3DNavigation-Data, 72
get_file_final_time
   LOAPEX::CBase3DNavigation-Data, 23
   LOAPEX::CFakeRXNavigation-Data, 39
   LOAPEX::CFakeTXNavigation-Data, 42
   LOAPEX::CFixedNavigation-Data, 45
   LOAPEX::CNetCDFNavigation-Data, 67
   LOAPEX::CReX3DNavigation-Data, 72
get_file_first_time
   LOAPEX::CBase3DNavigation-Data, 23
   LOAPEX::CFakeRXNavigation-Data, 39
   LOAPEX::CFakeTXNavigation-Data, 42
   LOAPEX::CFixedNavigation-Data, 45
   LOAPEX::CNetCDFNavigation-Data, 67
   LOAPEX::CReX3DNavigation-Data, 72
INDEX

LOAPEX::CBase3DNavigationData, 23
LOAPEX::CFakeRXNavigationData, 39
LOAPEX::CFakeTXNavigationData, 42
LOAPEX::CFixedNavigationData, 45
LOAPEX::CNetCDFNavigationData, 68

get_first_time
LOAPEX::CTimeBaseMapEngine, 82
get_forward_time
LOAPEX::CTimeBaseMapEngine, 82
get_header
LOAPEX::CAffFileAdapter, 15
LOAPEX::CADFInfo, 17
LOAPEX::CBaseFileAdapter, 25
LOAPEX::CMUXFile, 61
LOAPEX::CMUXFileAdapter, 64

get_id
LOAPEX::CADFInfo, 17
get_info_copy
LOAPEX::CADFFile, 13
get_inverse_time
LOAPEX::CTimeBaseMapEngine, 82
get_last_time
LOAPEX::CTimeBaseMapEngine, 82
get_position
LOAPEX::CBase3DNavigationData, 23
LOAPEX::CFakeRXNavigationData, 39
LOAPEX::CFakeTXNavigationData, 42
LOAPEX::CFixedNavigationData, 45
LOAPEX::CNetCDFNavigationData, 68

get_run_start
LOAPEX::CADFInfo, 18
get_sample_rate
LOAPEX::CADFFile, 13
LOAPEX::CADFFileAdapter, 15
LOAPEX::CADFInfo, 18
LOAPEX::CADFSeparator, 20
LOAPEX::CGuppyADFSemaphore, 40
LOAPEX::CGenericSource, 49
LOAPEX::CMUXFile, 61
LOAPEX::CMUXFileAdapter, 65
LOAPEX::CZeroSource, 87

get_scan
LOAPEX::CADFFile, 13
LOAPEX::CADFFileAdapter, 16
LOAPEX::CADFSeparator, 20
LOAPEX::CBaseFileAdapter, 25
LOAPEX::CGuppyADFSemaphore, 48
LOAPEX::CGenericSource, 49
LOAPEX::CMUXFile, 61
LOAPEX::CMUXFileAdapter, 65
LOAPEX::CZeroSource, 87

get_site
LOAPEX::CADFInfo, 18
get_start_second
LOAPEX::CADFFile, 13
LOAPEX::CADFFileAdapter, 16
LOAPEX::CADFSeparator, 20
LOAPEX::CBaseFileAdapter, 26
LOAPEX::CGuppyADFSemaphore, 48
LOAPEX::CGenericSource, 50
LOAPEX::CMUXFile, 61
LOAPEX::CMUXFileAdapter, 65
LOAPEX::CZeroSource, 88

get_table_length
LOAPEX::CInterpolatedTableFunction, 53
get_tag
LOAPEX::CTimeTag, 85
get_total_channels
LOAPEX::CADFFile, 13
LOAPEX::CTimeBaseMapEngine, 82
load_RX
LOAPEX::CBaseMapSolver, 30
LOAPEX::CBrentMapSolver, 33
LOAPEX::CNewtonMapSolver, 70
LOAPEX::CTimeBaseMapEngine, 83
load_TX
LOAPEX::CBaseMapSolver, 30
LOAPEX::CBrentMapSolver, 33
LOAPEX::CNewtonMapSolver, 70
LOAPEX::CTimeBaseMapEngine, 83
LOAPEX, 10
LOAPEX::CADFCompare, 11
operator(), 11
LOAPEX::CADFFile, 12
~CADFFile, 12
CADFFile, 12
echo_header, 13
ecf, 13
get_info_copy, 13
get_sample_rate, 13
get_scan, 13
get_start_second, 13
get_total_channels, 13
get_total_scans, 14
is_loaded, 14
print, 14
read_entire_channel, 14
LOAPEX::CADFFileAdapter, 15
LOAPEX::CADFFileAdapter
~CADFFileAdapter, 15
CADFFileAdapter, 15
get_header, 15
get_sample_rate, 15
get_scan, 16
get_start_second, 16
get_total_channels, 16
get_total_scans, 16
LOAPEX::CADFInfo, 17
~CADFInfo, 17
CADFInfo, 17
get_header, 17
get_id, 17
get_run_start, 18
get_sample_rate, 18
get_site, 18
get_total_phones, 18
get_total_scans, 18
print, 18
LOAPEX::CADFSolver, 19
~CADFSolver, 19
CADFSolver, 19
get_sample_rate, 20
get_scan, 20
get_start_second, 20
get_total_channels, 20
get_total_scans, 20
get_type, 21
LOAPEX::CBase3DNavigationData, 22
LOAPEX::CBase3DNavigationData
~CBase3DNavigationData, 22
CBase3DNavigationData, 22
file_time_final, 24
file_time_first, 24
get_file_final_time, 23
get_file_first_time, 23
get_position, 23
get_velocity, 23
LOAPEX::CBaseFileAdapter, 25
LOAPEX::CBaseFileAdapter
~CBaseFileAdapter, 25
get_header, 25
get_scan, 25
get_start_second, 26
get_total_channels, 26
get_total_scans, 26
LOAPEX::CBaseFilter, 27
LOAPEX::CBaseFilter
~CBaseFilter, 28
CBaseFilter, 28
channel_id, 28
clock, 28
phdEmux, 28
phdMux, 28
LOAPEX::CBaseMapSolver, 29
LOAPEX::CBaseMapSolver
~CBaseMapSolver, 30  
compute_map, 30  
load_parameters, 30  
load_RX, 30  
load_TX, 30  
params, 31  
pRX_, 31  
pTX_, 31  
LOAPEX::CBrentMapSolver, 32  
LOAPEX::CBrentMapSolver  
~CBrentMapSolver, 32  
CBrentMapSolver, 32  
compute_map, 32  
load_parameters, 32  
load_RX, 33  
load_TX, 33  
LOAPEX::CCompoundTime, 34  
LOAPEX::CCompoundTime  
~CCompoundTime, 35  
CCompoundTime, 34  
fraction, 35  
normalize, 35  
operator+=, 35  
operator=, 35  
seconds, 35  
LOAPEX::CDemultiplexor, 36  
~CDemultiplexor, 36  
CDemultiplexor, 36  
clock, 36  
send_sample, 36  
LOAPEX::CFakeRXNavigationData, 38  
LOAPEX::CFakeRXNavigationData  
~CFakeRXNavigationData, 39  
CFakeRXNavigationData, 39  
get_file_final_time, 39  
get_file_first_time, 39  
get_position, 39  
get_velocity, 39  
is_loaded, 40  
LOAPEX::CFakeTXNavigationData, 41  
LOAPEX::CFakeTXNavigationData  
~CFakeTXNavigationData, 42  
CFakeTXNavigationData, 42  
get_file_final_time, 42  
get_file_first_time, 42  
get_position, 42  
get_velocity, 42  
is_loaded, 43  
LOAPEX::CFixedNavigationData, 44  
LOAPEX::CFixedNavigationData  
~CFixedNavigationData, 45  
CFixedNavigationData, 45  
get_file_final_time, 45  
get_file_first_time, 45  
get_position, 45  
get_velocity, 45  
is_loaded, 46  
LOAPEX::CGappyADFStream, 47  
LOAPEX::CGappyADFStream  
~CGappyADFStream, 47  
CGappyADFStream, 47  
generate, 48  
get_file_final_time, 48  
get_file_first_time, 48  
get_position, 48  
get_velocity, 48  
is_loaded, 49  
LOAPEX::CGenericSource, 49  
LOAPEX::CGenericSource  
~CGenericSource, 49  
CGenericSource, 49  
generate, 49  
get_file_final_time, 49  
get_file_first_time, 49  
get_position, 49  
get_velocity, 49  
is_loaded, 50  
LOAPEX::CGeoParameters, 51  
LOAPEX::CGeoParameters  
channel, 51  
forward_bearing2APL, 51  
forward_bearing2VLA, 51  
kRX, 51  
kTX, 51  
mean_sound_speed, 52  
range_m, 52  
LOAPEX::CInterpolatedTableFunction, 53  
LOAPEX::CInterpolatedTableFunction  
~CInterpolatedTableFunction, 53
INDEX

LOAPEX::CTimeTag, 85
multichannelfilter.cpp, 116
multichannelfilter.hpp, 117
multiplexor.cpp, 118
multiplexor.hpp, 119
muxadapter.cpp, 120
muxadapter.hpp, 121
muxfile.cpp, 122
muxfile.hpp, 123
navigation.cpp, 124
navigation.hpp, 125
RXDEPTH, 126
RXDEPTHINCREMENT, 126
RXPERIOD, 126
RXRADIUS, 126
RXRADIUSINCREMENT, 126
RXTIME_START, 126
RXTIME_STOP, 126
TXDEPTH, 126
TXPERIOD, 126
TXRADIUS, 126
TXTIME_START, 126
TXTIME_STOP, 126
NEWTONTOL
mapsolvers.cpp, 114
normalize
LOAPEX::CCompoundTime, 35
NR_END
nutil.c, 128
NRFNSI
mapengine.cpp, 112
mapsolvers.cpp, 114
spline.c, 133
nerror
nutil.c, 128
spline.c, 133
spline.c, 134
nutil.c, 127
convert_matrix, 128
cvector, 128
dmatrix, 128
dvector, 128
f3tensor, 128
FREE_ARG, 128
free_convert_matrix, 128
free_cvector, 128
free_dmatrix, 128
free_dvector, 128
free_f3tensor, 128
free_imatrix, 128
free_ivector, 128
free_lvector, 128
free_matrix, 128
free_submatrix, 128
free_vector, 128
imatrix, 128
ivector, 128
lvector, 128
matrix, 128
NR_END, 128
nerror, 128
submatrix, 128
vector, 128
operator()
  LOAPEX::CADFcompare, 11
operator+
  compoundtime.cpp, 105
  compoundtime.hpp, 106
operator+=
  LOAPEX::CCompoundTime, 35
operator-
  compoundtime.cpp, 105
  compoundtime.hpp, 106
operator=
  LOAPEX::CCompoundTime, 35
operator<<
  LOAPEX::CTimeTag, 85
operator=
  LOAPEX::CTimeTag, 85
operator>>
  istream, 92
parameters.hpp, 129
params_
  LOAPEX::CBaseMapSolver, 31
print
  LOAPEX::CADFFile, 14
  LOAPEX::CADFInfo, 18

Generated on Thu May 3 00:33:39 2007 for DopplerToolKit by Doxygen
LOAPEX::CGappyADFStream, 48
LOAPEX::CMUXFile, 62
pRX
LOAPEX::CBaseMapSolver, 31
ptheDemux_
LOAPEX::CBaseFilter, 28
ptheMux_
LOAPEX::CBaseFilter, 28
pTX_
LOAPEX::CBaseMapSolver, 31
put_description
LOAPEX::CMUXFile, 62
put_sample_rate
LOAPEX::CMUXFile, 62
put_scan
LOAPEX::CMUXFile, 62
put_start_second
LOAPEX::CMUXFile, 62
put_total_channels
LOAPEX::CMUXFile, 62
put_total_scans
LOAPEX::CMUXFile, 62
range_m
LOAPEX::CGeoParameters, 52
read_entire_channel
LOAPEX::CADFFile, 14
read_only
LOAPEX::CMUXFile, 60
receive_sample
LOAPEX::CMultiplexer, 57
refman.doc, 130
RXDEPTH
navigation.hpp, 126
RXDEPTHTHINCREMENT
navigation.hpp, 126
RXPERIOD
navigation.hpp, 126
RXRADIUS
navigation.hpp, 126
RXRADIUSTHINCREMENT
navigation.hpp, 126
RXTIME_START
navigation.hpp, 126
RXTIME_STOP
navigation.hpp, 126
navigation.hpp, 126

SBUFFERSIZE
adfile.cpp, 95
second_
LOAPEX::CTimeTag, 85
seconds_
LOAPEX::CCompoundTime, 35
seek
fstream, 92
send_sample
LOAPEX::CDemultiplexer, 36
set_demultiplexer
LOAPEX::CSingleChannelAllPassFilter, 74
LOAPEX::CSingleChannelAllStopFilter, 76
LOAPEX::CSingleChannelSincFilter, 79
set_mapper
LOAPEX::CSingleChannelSincFilter, 79
set_multiplexer
LOAPEX::CSingleChannelAllPassFilter, 75
LOAPEX::CSingleChannelAllStopFilter, 77
LOAPEX::CSingleChannelSincFilter, 79
set_rx_start_time
LOAPEX::CSingleChannelSincFilter, 79
SIGN
mapengine.cpp, 112
mapsolvers.cpp, 114
sincfilter.cpp, 131
LOGNAME, 131
sincfilter.h, 132
SPACE
tstream.cpp, 139
spline
spline.c, 133
tablefunction.cpp, 135
spline.c, 133
dvector, 133
free_dvector, 133
INDEX

NRANSI, 133
nrerror, 133
spline, 133
splint
  splint.c, 134
tablefunction.cpp, 135
splint.c, 134
nrerror, 134
spline, 134
str_time_
  LOAPEX::CTimeTag, 85
submatrix
  nrutil.c, 128
TAB
tstream.cpp, 139
tablefunction.cpp, 135
spline, 135
splint, 135
tablefunction.cpp, 136
tmetag.cpp, 137
decYD_to_month, 137
isleap, 137
tmetag.hpp, 138
tm_to_KM
  LOAPEX::CTimeTag, 85
TOKEN_BUFFER_SIZE
  adffile.cpp, 95
tstream, 92
~tstream, 92
cos, 92
operator>>, 92
seek, 92
tstream, 92
tstream.cpp, 139
  CR, 139
  LINEFEED, 139
  SPACE, 139
  TAB, 139
tstream.hpp, 140
TXDEPTH
  navigation.hpp, 126
TXPERIOD
  navigation.hpp, 126
TXRADIUS
  navigation.hpp, 126

TXTIME_START
  navigation.hpp, 126
TXTIME_STOP
  navigation.hpp, 126
vector
  nrutil.c, 128
Write
  LOAPEX::CMUXFile, 60
write_header
  LOAPEX::CMUXFile, 62
x
dEuclideanVector_t, 89
y
dEuclideanVector_t, 89
year
  LOAPEX::CTimeTag, 85
z
dEuclideanVector_t, 89