
High Order Strong Stability Preserving Time Integrators and
Numerical Wave Propagation Methods for Hyperbolic PDEs

David I. Ketcheson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Applied Mathematics

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

David I. Ketcheson

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Randall J. LeVeque

Reading Committee:

Randall J. LeVeque

Bernard Deconinck

Kenneth Bube

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

. .

University of Washington

Abstract

High Order Strong Stability Preserving Time Integrators and Numerical Wave
Propagation Methods for Hyperbolic PDEs

David I. Ketcheson

Chair of the Supervisory Committee:
Professor Randall J. LeVeque

Applied Mathematics

Hyperbolic PDEs describe the great variety of physical phenomena governed by wave
behavior. Numerical methods are necessary to provide approximate solutions to real
wave propagation problems. High order accurate methods are often essential to achieve
accurate solutions on computationally feasible grids. However, maintaining numerical
stability and satisfying physical constraints becomes increasingly difficult as higher order
methods are employed. In this thesis, high order numerical tools for hyperbolic PDEs
are developed in a method of lines framework. Optimal high order accurate strong sta-
bility preserving (SSP) time integrators, for both linear and nonlinear systems, are devel-
oped. Improved SSP methods are found as a result of rewriting the relevant optimization
problems in a form more amenable to efficient solution. A new, very general class of
low-storage Runge-Kutta methods is proposed (based on the form of some optimal SSP
methods) and shown to include methods with properties that cannot be achieved by
existing classes of low-storage methods. A high order accurate semi-discrete wave propa-
gation method is developed in one and two dimensions using wave propagation Riemann
solvers and high order weighted essentially non-oscillatory (WENO) reconstruction. The
space and time discretizations are combined to achieve a high order accurate method for
general hyperbolic PDEs. This method is applied to model solitary waves in a nonlinear,
non-dispersive periodic heterogeneous medium.

TABLE OF CONTENTS

Page

List of Figures . vi

List of Tables . viii

Chapter 1: Introduction . 1
1.1 Motivation . 1

1.1.1 High Order Numerical Methods for Hyperbolic Conservation Laws 1
1.1.2 Strong Stability Preserving Time Integration 2
1.1.3 Flux Differencing and Wave Propagation 3
1.1.4 Waves in Heterogeneous Media . 4

1.2 Outline . 4

Chapter 2: Numerical Methods for the Initial Value Problem 6
2.1 The Method of Lines . 6
2.2 Linear Multistep Methods . 7
2.3 Runge-Kutta Methods . 8
2.4 General Linear Methods . 9
2.5 Additive Methods . 13

Chapter 3: Strong Stability Preserving Methods and Absolute Monotonicity . . 15
3.1 Strong Stability Preservation . 17

i

3.1.1 TVD Time Integration . 17
3.1.2 The Shu-Osher Form . 19
3.1.3 Strong Stability Properties . 20

3.2 Absolute Monotonicity and Strong Stability Preservation for Linear IVPs . 23
3.3 Absolute Monotonicity of Runge-Kutta Methods 26

3.3.1 The SSP Coefficient . 32
3.4 Unconditional Strong Stability Preservation 33
3.5 Negative Coefficients and Downwinding . 33
3.6 Optimal SSP Methods . 35

3.6.1 Efficiency . 35
3.6.2 The Relation Between R and C . 36

Chapter 4: Optimal Threshold Factors for Linear Initial Value Problems 38
4.1 Threshold Factors for General Linear Methods 39
4.2 ’Tall Tree’ Order Conditions for Explicit General Linear Methods 40
4.3 An Upper Bound . 40
4.4 Solution Algorithm . 42
4.5 Optimal Threshold Factors for Explicit Methods 43

4.5.1 One-step methods . 43
4.5.2 One-stage multistep methods . 43
4.5.3 Multistage multistep methods . 45

4.6 Threshold Factors for Methods with Downwinding 48
4.6.1 Threshold Factors for Downwinded Explicit GLMs 48
4.6.2 Optimal One-step Methods with Downwinding 50

Chapter 5: Optimal SSP Linear Multistep Methods 53
5.1 General Solution Algorithm . 54
5.2 Bounds on the SSP Coefficient . 54

5.2.1 Explicit Methods . 54
5.2.2 Implicit Methods . 55

5.3 Optimal Methods without Downwinding . 55
5.4 Optimal Methods with Downwinding . 56

Chapter 6: SSP Runge-Kutta Methods . 63
6.1 Bounds on the SSP Coefficient for Runge-Kutta Methods 64
6.2 Formulation of the Optimization Problem . 67

ii

6.3 Implicit Runge-Kutta Methods . 69
6.3.1 Optimal Methods . 70
6.3.2 Numerical Experiments . 76

6.4 Explicit Runge-Kutta Methods . 82
6.4.1 Memory Considerations . 83
6.4.2 Optimal Methods . 84
6.4.3 Absolute Stability Regions . 91
6.4.4 Internal Stability . 91
6.4.5 Truncation Error Analysis . 94
6.4.6 Embedding optimal SSP methods . 95
6.4.7 Numerical Experiments . 96

6.5 Summary and Conjectures . 100

Chapter 7: Low-Storage Runge-Kutta Methods 103
7.1 Introduction . 103
7.2 Two-register Methods . 105

7.2.1 Williamson (2N) methods . 106
7.2.2 van der Houwen (2R) methods . 107

7.3 Low-Storage Methods Have Sparse Shu-Osher Forms 108
7.3.1 2N Methods . 108
7.3.2 2R Methods . 109

7.4 2S Methods . 109
7.4.1 2S* Methods . 110
7.4.2 2S Embedded Pairs . 111
7.4.3 3S* Methods . 112

7.5 Feasibility of Low-storage Assumptions . 114
7.5.1 2N Methods . 114
7.5.2 2R Methods . 114
7.5.3 2S Methods . 115

7.6 Improved low-storage methods . 115
7.7 Conclusions . 117

Chapter 8: Numerical Wave Propagation . 118
8.1 Linear Hyperbolic Systems . 118
8.2 The Semi-discrete Wave-Propagation form of Godunov’s Method 119
8.3 Extension to Higher Order . 122

iii

8.4 Variable Coefficient Linear Systems . 123
8.5 Nonlinear Systems . 124
8.6 High Order Non-oscillatory Reconstruction of Scalar Functions 125

8.6.1 Linear (Non-limited) Reconstruction 125
8.6.2 TVD Reconstruction . 126
8.6.3 Weighted Essentially Non-Oscillatory Reconstruction 127

8.7 Reconstruction of Vector-valued Functions 128
8.7.1 Reconstruction of Eigencomponent Coefficients 128
8.7.2 Characteristic-wise Reconstruction . 129
8.7.3 Wave-slope Reconstruction . 130

8.8 Extension to Two Dimensions . 130

Chapter 9: Numerical Tests . 132
9.1 Methods . 132
9.2 Acoustics . 133

9.2.1 Single Material Interface . 134
9.2.2 Several Interfaces . 138
9.2.3 A Sonic Crystal . 138

9.3 Fluid Dynamics . 142

Chapter 10: Stegotons . 144
10.1 Previous Work . 144

10.1.1 Nonlinear Elasticity in 1D . 144
10.1.2 An F-wave Riemann Solver . 145
10.1.3 Homogenized Equations . 146

10.2 Analysis of the Homogenized Equations . 149
10.2.1 Reduced Equations and Phase-Plane Analysis 149
10.2.2 Riemann Invariants . 152

10.3 Time Reversal . 155
10.4 Smoothly Varying Media . 156
10.5 1 1

2 D Stegotons . 157

Chapter 11: Conclusions and Future Directions . 164
11.1 SSP Theory and Methods . 164
11.2 Low-Storage Time Integrators . 166
11.3 High Order Numerical Wave Propagation . 167

iv

11.4 Stegotons . 167

Bibliography . 169

Appendix A: Coefficients of Runge-Kutta Methods 180
A.1 Optimal Implicit SSP RK Methods . 180

A.1.1 Fourth-order Methods . 180
A.1.2 Fifth-order Methods . 184
A.1.3 Sixth-order Methods . 189

A.2 Low-Storage Methods . 194

v

LIST OF FIGURES

Figure Number Page

2.1 Rooted trees and corresponding Runge-Kutta order conditions of order 1 to 4 10

2.2 Fifth order rooted trees and corresponding Runge-Kutta order conditions . 11

2.3 Sixth order rooted trees and corresponding Runge-Kutta order conditions . 12

6.1 Diagram of important classes of Runge-Kutta methods 65

6.2 Scaled absolute stability regions of optimal third-order implicit SSP Runge-
Kutta methods with two to six stages. 72

6.3 Convergence of optimal SSP RK methods for the sine wave advection prob-
lem. 77

6.4 Convergence of optimal third-order SSP IRK methods for the square wave
advection problem. 78

6.5 Comparison of square wave advection using a range of CFL numbers. . . . 79

6.6 Comparison of Burgers evolution of a sine wave for CFL numbers below
and above the SSP limit. 80

6.7 Convergence of optimal implicit SSP RK methods for the Burgers’ sine wave
problem. 81

6.8 Comparison of solutions of the Buckley-Leverett equation for CFL numbers
below and above the SSP limit. 82

6.9 Scaled stability regions of optimal explicit SSP methods. 92

6.10 Theoretical and actual monotone effective timesteps for SSP2s methods on
the variable coefficient advection problem. 99

vi

6.11 Theoretical and actual monotone effective timesteps for SSP3s methods on
the variable coefficient advection problem. 99

8.1 The wave propagation solution of the Riemann problem. 120
8.2 Time evolution of the reconstructed solution q̃ in cell i. 121
8.3 Illustration of piecewise polynomial reconstruction from cell averages. . . . 122

9.1 Acoustic pulse evolution at an interface . 137
9.2 Pressure in the sonic crystal for a long wavelength plane wave incident

from the left. 140
9.3 Pressure in the sonic crystal for a long wavelength plane wave incident

from the left. 140
9.4 RMS pressure in the sonic crystal for a plane wave incident from the left. . 141
9.5 RMS pressure in the sonic crystal along a slice at y=-0.05. 141

10.1 Stegotons . 147
10.2 Comparison of Clawpack and WENO5 solutions of Stegoton problem. . . . 148
10.3 Phase plane topology for solitary wave solutions of (10.20). 151
10.4 Phase plane topology for solitary wave solutions of (10.18). 152
10.5 Comparison of forward solution and time-reversed solution stegotons. . . . 156
10.6 Solitary waves in a smoothly-varying periodic medium 158
10.7 Strain and stress for the medium (10.45) with θ = 1/2. 159
10.8 Strain and stress for the medium (10.45) with θ = 1/4. 160
10.9 Strain and stress for the medium (10.45) with θ = 0 and the period of the

density variation equal to twice the period of the bulk modulus variation. . 161
10.10Time evolution of 1 1

2 D Stegotons . 162

10.11Time evolution of 1 1
2 D Stegotons: two slices in the x-direction 163

vii

LIST OF TABLES

Table Number Page

4.1 Optimal threshold factors Rs,1,p for 1-step methods. 44

4.2 Threshold factors Rs,k,p of optimal 2-, 3- and 4-step general linear methods. 46

4.3 Threshold factors Rs,k,p of optimal 2-,3-, and 4-stage general linear methods. 47

4.4 Optimal downwind threshold factors R̃s,1,p for one-step methods with down-
winding. 52

5.1 SSP coefficients C1,k,p of optimal explicit linear multistep methods. 57

5.2 Optimal SSP coefficients C I
1,k,p for implicit linear multistep methods 58

5.3 Optimal SSP coefficients C̃1,k,p for explicit linear multistep methods with
downwinding . 61

5.4 Optimal SSP coefficients C̃ I
1,k,p for implicit linear multistep methods with

downwinding . 62

6.1 SSP coefficients of optimal implicit 4th order RK methods. 73

6.2 SSP coefficients of optimal implicit 5th order RK methods 75

6.3 SSP coefficients of optimal implicit 6th order RK methods 76

6.4 Comparison of C and σBL for optimal implicit SSP RK methods 83

6.5 Properties of popular and of optimal explicit SSP Runge-Kutta methods. . 90

6.6 Error constants of optimal explicit SSP RK methods. 95

6.7 Threshold factors and effective threshold factors for some optimal explicit
SSP RK methods. 97

viii

6.8 Theoretical and actual monotone effective timesteps for explicit SSP RK
methods applied to variable coefficient advection 100

6.9 Summary of optimal effective SSP coefficients of explicit and implicit RK
methods . 101

7.1 Properties of low-storage methods . 116

9.1 Errors for homogeneous problem . 135
9.2 Errors for interface 1 problem . 136
9.3 Errors for interface 1 problem with wide pulse (a=4) 136
9.4 Errors for interface 2 problem . 137
9.5 Errors for interface 2 problem with wide pulse 138
9.6 Errors for periodic problem . 139
9.7 Largest positivity-preserving timestep for double-rarefaction problem. . . . 143

A.1 Coefficients of the optimal 3-stage implicit SSP RK method of order 4. . . . 180
A.2 Coefficients of the optimal 4-stage implicit SSP RK method of order 4. . . 181
A.3 Coefficients of the optimal 5-stage implicit SSP RK method of order 4. . . 181
A.4 Coefficients of the optimal 6-stage implicit SSP RK method of order 4. . . 181
A.5 Coefficients of the optimal 7-stage implicit SSP RK method of order 4. . . 182
A.6 Coefficients of the optimal 8-stage implicit SSP RK method of order 4. . . 182
A.7 Coefficients of the optimal 9-stage implicit SSP RK method of order 4. . . 182
A.8 Coefficients of the optimal 10-stage implicit SSP RK method of order 4. . . 183
A.9 Coefficients of the optimal 11-stage implicit SSP RK method of order 4. . . 183
A.10 Coefficients of the optimal 4-stage implicit SSP RK method of order 5. . . 184
A.11 Coefficients of the optimal 5-stage implicit SSP RK method of order 5. . . 184
A.12 Coefficients of the optimal 6-stage implicit SSP RK method of order 5. . . 185
A.13 Coefficients of the optimal 7-stage implicit SSP RK method of order 5. . . 185
A.14 Coefficients of the optimal 8-stage implicit SSP RK method of order 5. . . 186
A.15 Coefficients of the optimal 9-stage implicit SSP RK method of order 5. . . 186
A.16 Coefficients of the optimal 10-stage implicit SSP RK method of order 5. . . 187
A.17 Coefficients of the optimal 11-stage implicit SSP RK method of order 5. . . 188
A.18 Coefficients of the optimal 6-stage implicit SSP RK method of order 6. . . 189
A.19 Coefficients of the optimal 7-stage implicit SSP RK method of order 6. . . 190
A.20 Coefficients of the optimal 8-stage implicit SSP RK method of order 6. . . 191
A.21 Coefficients of the optimal 9-stage implicit SSP RK method of order 6. . . 192
A.22 Coefficients of the optimal 10-stage implicit SSP RK method of order 6. . . 193

ix

A.23 Coefficients for the low-storage method RK44[2S] 194
A.24 Coefficients for the low-storage method RK4()6[2S] 194
A.25 Coefficients for the low-storage method RK45[2S*] 195
A.26 Coefficients for the low-storage method RK4(3)6[2S] 195
A.27 Coefficients for the low-storage method RK4(3)5[3S*] 195

x

ACKNOWLEDGMENTS

I wish to thank my advisor, Randy LeVeque, not only for providing continual support
and guidance, but especially for allowing (and even enthusiastically encouraging) me to
pursue research that I found fascinating but that is only indirectly related to his own
research program.

I will always be grateful to my other, "unofficial" advisor, Sigal Gottlieb, who has
been my mentor, colleague, and friend. My mathematical writing in general has bene-
fited greatly from her guidance and example, and several parts of this text have profited
directly from her editing.

I am grateful to Chi-Wang Shu and to Colin Macdonald, in collaboration with whom
some parts of this work were performed. Some parts of the text (and my laTeX skills in
general) have benefited from Colin’s work.

Thanks also go to the other members of my committee, Bernard Deconinck, Ken Bube,
and Tom Quinn. I am grateful to my fellow students in the UW Applied Math program,
who have made my time here enjoyable, and in particular to Kyle Mandli, who also proof-
read an early draft of this work. I am grateful to Allen Robinson and Jeff Favorite, who
have mentored me and supported me with advice, encouragement, and recommendation
letters.

Last, but certainly not least, I thank my daughters Elena and Victoria, and most of all
my wife, Belky, for their support and inspiration.

I am grateful for generous funding during my graduate studies, provided principally
by a US Dept. of Energy Computational Science Graduate Fellowship (2006-2009) under

xi

grant DE-FG02-97ER25308, and by a US Dept. of Homeland Security Graduate Fellowship
(2004-2006). Some support was also provided by AFOSR under grant number FA9550-06-
1-0255. I also acknowledge significant support for travel to many conferences to present
parts of this work, from various DOE and NSF grants, including a VIGRE grant.

xii

DEDICATION

To my father.

xiii

1

Chapter 1

Introduction

The aim of this thesis is the development of high order numerical methods1 for hyper-
bolic PDEs. One of the principal difficulties in solving hyperbolic PDEs is the handling of
discontinuities, which tend to lead to spurious oscillations and numerical instability. This
thesis is largely concerned with methods developed to avoid such oscillations.

In this chapter we give background information and motivation for the numerical
methods developed in this thesis. We also provide an outline of the remainder of the
thesis.

1.1 Motivation

1.1.1 High Order Numerical Methods for Hyperbolic Conservation Laws

Many important physical systems may be described by hyperbolic systems of conser-
vation laws. The main difficulty in solving such systems numerically results from the
tendency of the solutions to form discontinuities, even starting from smooth initial data.
Numerical approximations to such discontinuities tend to develop spurious oscillations.

In contrast, exact solutions to hyperbolic conservation laws in the scalar one-dimensional
case have the property that their total variation is non-increasing in time. Total varia-
tion diminishing (TVD) numerical approximations are appealing because they preserve
this property of the true solution and because the TVD property is an important step

1 The term high order method in this thesis generally refers to any method of greater than second order
accuracy.

2

in proving convergence of the numerical solution. Most modern numerical methods for
hyperbolic conservation laws are based on Godunov’s method, which yields a TVD solu-
tion even in the presence of discontinuities. Godunov’s method uses the solution to the
Riemann problem – the solution to the PDE in the case of a single discontinuity.

Godunov’s method gives only a first order accurate approximation, and thus is inad-
equate for most purposes. Godunov himself proved that any higher order accurate linear
method must give rise to spurious oscillations. Modern second order improvements to
Godunov’s method get around this difficulty by employing nonlinear limiters that avoid
oscillations and ensure the TVD property.

However, strictly TVD methods can be accurate to at most second order (first order
in multi-dimensions). Various approaches have been employed in developing methods of
higher order accuracy, but most make use of the general approach known as the method of
lines, in which a system of PDEs is first discretized in space to yield a system of ODEs. The
semi-discrete system is then integrated using a numerical ODE solver. Perhaps the most
prevalent higher order discretizations for hyperbolic PDEs are discontinuous Galerkin
(DG) methods and weighted essentially non-oscillatory (WENO) methods. Both DG and
WENO methods are typically integrated in time using strong stability preserving Runge-
Kutta methods.

1.1.2 Strong Stability Preserving Time Integration

When a high order nonlinear semi-discretization (such as a DG or WENO method) is
combined with a high order ODE solver, the behavior of the resulting full discretization
is usually very difficult to analyze. While it may be possible to perform a linear stability
analysis of some linearization of the scheme, the results typically apply only to problems
with smooth solutions, and provide little or no information about properties like total
variation or positivity.

Instead, the total variation behavior is often analyzed for the exact solution to the semi-
discrete system of ODEs or for the fully discrete system obtained by using forward Euler
time integration. Unfortunately, this does not directly provide any information about the
total variation behavior under a higher order time discretization.

Strong stability preserving (SSP) time integrators preserve properties like TVD, when-
ever the same property is satisfied under forward Euler integration. Just as the method
of lines separates the analysis of accuracy for the spatial and temporal discretizations, the
SSP approach separates the analysis of the TVD property for the spatial and temporal
discretizations.

Because they preserve any convex functional bound on the solution or on differences

3

between two solutions, SSP methods are also referred to as TVD, monotonicity preserv-
ing, contractive, contractivity preserving, or positivity preserving methods. SSP methods
may find application far beyond time integration of hyperbolic PDEs, since they are use-
ful whenever a system of ODEs must be integrated subject to some convex bound or
positivity-like constraint.

Existing high order SSP methods are either computationally inefficient, requiring sev-
eral function evaluations to advance in time by the amount that Euler’s method would
in a single evalution, or they require unusually large amounts of memory (or, frequently,
both). A goal of this thesis is the development of high order SSP methods that are opti-
mally efficient and use the smallest possible amount of memory.

1.1.3 Flux Differencing and Wave Propagation

Written in integral form, a conservation law states that the rate of change of the solution
in any region is given by the net flux through the boundary of that region. Godunov’s
method is based on using the solution of local Riemann problems to determine fluxes
between computational cells. Most numerical methods for conservation laws follow this
approach, known as flux-differencing.

Wave propagation methods use the solution of the Riemann problem in a different way.
They compute the waves generated at each cell interface and update the solution based
on the net effect of the waves. When applied to conservation laws, and if an appropriate
Riemann solver is used, wave propagation methods are equivalent to flux-differencing
methods.

However, many important problems are naturally modelled by hyperbolic PDEs that
are not in conservation form. In this case, the flux-differencing approach cannot be used,
since the system is not written in terms of a flux function. However, if the Riemann
solution for the system can be computed (or approximated), wave propagation methods
can be applied.

Wave propagation finite volume methods have proven capable of robustly handling
other difficulties that are problematic for traditional flux-differencing methods. For in-
stance, they are easily adapted to problems involving a balance between convective and
source terms, or problems with spatially varying coefficients [3]. They can be applied to
a variety of useful geometries by the use of mapped grids [14].

This thesis develops a high order accurate method based on wave propagation, allow-
ing for highly accurate numerical solutions of general hyperbolic PDEs.

4

1.1.4 Waves in Heterogeneous Media

As mentioned above, finite volume wave propagation methods are well suited to model
problems with spatially varying coefficients. An important example of such problems
involves the propagation of acoustic and elastic waves in heterogeneous materials. In this
case, the coefficients of the PDE are piecewise constant, but discontinuous at material
interfaces. Many interesting and remarkable phenomena that do not occur in homoge-
neous materials may be observed in wave propagation in heterogeneous materials. These
include bandgaps, spatial and temporal focusing, and solitary waves.

Solitary waves are generally understood to arise through a balance between dispersion
and nonlinearity. However, first-order hyperbolic PDEs are non-dispersive. Nevertheless,
solitary wave solutions to hyperbolic systems can arise in the presence of spatially varying
coefficients. This was first observed computationally in [82, 84].

1.2 Outline

The first and largest part of the thesis, consisting of chapters 2 - 6, is concerned with SSP
methods. The goal of this work is to determine the best possible SSP methods, in terms of
accuracy, computational efficiency, and memory usage. This work led serendipitously to a
new general class of memory-efficient time integrators, which form the topic of Chapter 7.

The second part of the thesis, comprising chapters 8, 9, and 10, is concerned with
a new spatial discretization for hyperbolic PDEs. The goal of this work is to provide
a high order accurate method (extendable to arbitrary order accuracy in principle) that
is applicable to general hyperbolic systems. This is accomplished by combining wave
propagation Riemann solvers with high order non-oscillatory reconstruction.

Chapter 2 introduces background material on numerical methods for initial value
problems. We review the method of lines and then discuss the principal classes of meth-
ods; namely, linear multistep methods and Runge-Kutta methods. We recall the theory
describing stability and accuracy of these methods. Finally, we discuss two generaliza-
tions of these methods: general linear methods and additive methods.

Chapter 3 reviews the theory of strong stability preservation in the context of Runge-
Kutta methods, beginning with their development as TVD time integrators for hyperbolic
PDEs. The emphasis of the chapter is on the threshold factor R and the SSP coefficient
C, which control the relative size of the strong stability preserving timestep in the case
of linear and nonlinear problems, respectively. These quantities are shown to be related
to the radius of absolute monotonicity of the stability function and of the Runge-Kutta
method, respectively. New, simpler derivations and proofs of some of the main results

5

are given.
Chapter 4 deals with threshold factors for explicit methods applied to linear prob-

lems. An upper bound on the threshold factor is obtained. The problem of finding
optimal threshold factors and methods is recast as a sequence of linear programming
(LP) problems, and optimal factors are found for many classes of methods.

Chapter 5 deals with strong stability preserving linear multistep methods. The same
solution algorithm of Chapter 4, using linear programming, is applied to find optimal
explicit and implicit methods both with and without downwinding. Most of Chapters 4
and 5 corresponds to the paper [70].

Chapter 6 deals with strong stability preserving Runge-Kutta methods. Important
bounds on the SSP coefficient for RK methods are reviewed and further developed. The
optimization problem for finding optimal SSP RK methods is cast in a new form that
allows the first investigation of implicit methods, as well as new and improved optimal
explicit methods. Several good properties of these methods are analyzed, and they are
applied to some simple numerical tests. This chapter corresponds mostly to the papers
[69, 73].

Chapter 7 represents an intermission of sorts, as it is related to but separate from the
material in the rest of the thesis. It deals with a new class of low-storage Runge-Kutta
methods inspired by the nice low-storage properties of the optimal SSP methods found
in Chapter 6. The new class of methods is compared with existing classes, and shown to
allow for even more storage savings over these classes.

Chapter 8 presents a high order spatial discretization for hyperbolic PDEs based on
the wave propagation solution to the Riemann problem. Concepts of wave propagation
methods are reviewed and extended to a method of lines approach. TVD and WENO
reconstruction methods are reviewed and adapted for use with the semi-discrete wave
propagation scheme.

In Chapter 9, the numerical methods of Chapter 8 are applied to some numerical tests,
including compressible fluid dynamics and acoustics in heterogeneous media.

In Chapter 10, these numerical methods as well as analytical techniques are applied to
study the behavior of solitary elastic waves in periodic nonlinear, non-dispersive media.

In Chapter 11, we review the main contributions of this thesis and discuss interesting
directions for future work.

6

Chapter 2

Numerical Methods for the Initial
Value Problem

2.1 The Method of Lines

High order accurate numerical methods for PDEs, including finite element, finite volume,
finite difference, and spectral methods, are usually based on a numerical approach known
as the method of lines [81]. Given an evolution PDE

∂U(x, t)
∂t

= F (U(x, t), t) U(x, 0) = U0(x), (2.1)

the method of lines involves first discretizing in x and forming a discrete operator F that
approximates the differential operator F . This is known as semi-discretization and results
in a system of ODEs (the semi-discrete scheme):

u′(t) = F(u, t) u(0) = u0. (2.2)

Here u ∈ <N , where N is the number of degrees of freedom in the spatial discretization
and may be very large. System (2.2) is then solved using a numerical ODE solver. For
convenience, we will often omit the explicit time dependence of F in our notation.

The method of lines has some advantages over direct full discretization of the PDE:

• If the spatial discretization and temporal integration are each of order of accuracy
p, then the full discretization is typically also accurate to order p. This makes con-

7

struction of high order schemes relatively simple.

• Different pairings of spatial and temporal discretizations can be used with ease, as
the two are decoupled. This makes method-of-lines approaches useful for testing
numerical methods.

• Similarly, method-of-lines discretizations are often straightforward to analyze be-
cause the space and time discretizations are decoupled.

We will frequently consider the special case of (2.2) in which F is linear and au-
tonomous:

u′(t) = Lu u(0) = u0. (2.3)

Here L ∈ <N×N is a constant matrix.

We next review important classes of numerical methods for the initial value problems
(2.2) and (2.3). For further information, see e.g. [12, 47].

2.2 Linear Multistep Methods

A linear multistep method (LMM) approximates the solution of (2.2) at successive timesteps
by using information from previous timesteps. A k-step LMM has the form

un − ∆tβkF(un) =
k−1

∑
j=0

αjun−k+j + ∆tβ jF(un−k+j). (2.4)

The method is explicit if βk = 0. When applied to the linear autonomous IVP (2.3), the
method (2.4) reduces to the iteration

un = (1− βkz)−1
k−1

∑
j=0

(
αj + β jz

)
un−k+j, (2.5)

where z = ∆tL. Since the exact solution of (2.3) satisfies

u(n∆t) = enzu0, (2.6)

the method (2.4) approximates the solution of (2.3) to order p if

(1− βkz)ekz = (αk−1 + βk−1z)e(k−1)z +(αk−2 + βk−2z)e(k−2)z + · · ·+(α0 + β0z)+O(zp+1) for z→ 0.
(2.7)

8

Expanding (2.5) and (2.7) in powers of z and equating coefficients, we obtain the condi-
tions for order p:

k−1

∑
j=0

αj ji +
k

∑
j=0

β jiji−1 = ki (0 ≤ i ≤ p). (2.8)

The method is said to be consistent if (2.8) holds for i = 0. Although conditions (2.8)
were derived for the linear IVP (2.3), they are valid also for the solution of the nonlinear
IVP (2.2).

2.3 Runge-Kutta Methods

In contrast to multistep methods, Runge-Kutta methods (RKMs) retain only the most
recent timestep solution. They achieve high order approximation by repeated evaluation
of F.

An s-stage Runge-Kutta method is usually represented by its Butcher array, consisting
of an s× s matrix A and two s× 1 vectors b, c. The Runge-Kutta method defined by these
arrays approximates the solution of the IVP (2.2) by the iteration

yi = un−1 + ∆t
s

∑
j=1

aijF
(

tn−1 + cj∆t, yj

)
, 1 ≤ i ≤ s (2.9a)

un = un−1 + ∆t
s

∑
j=1

bjF
(

tn−1 + cj∆t, yj

)
. (2.9b)

We will assume the abscissae are determined by ci = ∑s
j=1 aij.

In general, (2.9a) represents a coupled system of nonlinear equations that may be ex-
pensive to solve. Under certain conditions on A, the system may be solved more easily.
These conditions correspond to the following important subclasses of Runge-Kutta meth-
ods:

• Diagonally implicit: aij = 0 for j > i (i.e., A lower triangular)

• Singly diagonally implicit: aij = 0 for j > i and aii = γ for 1 ≤ i ≤ s

• Explicit: aij = 0 for j ≥ i (i.e., A strictly lower triangular)

When applied to the linear IVP (2.3), the Runge-Kutta method (2.9) reduces to the
iteration

un = ψ(z)un−1, (2.10)

9

where ψ is the stability function of the method. The stability function is given by

ψ(z) =
det(I− z(A− ebT)

det(I− zA)
= 1 + zbT(I− zA)−1e, (2.11)

where the last equality holds whenever (I − zA)−1 exists. Here and throughout this
thesis, e represents a vector of appropriate dimension with all entries equal to unity. We
see that the solution given by the Runge-Kutta method is accurate to order p, where p is
the largest integer such that

ψ(z) = exp(z) +O(zp+1) (2.12)

Expanding the right hand side of (2.11) in powers of z and equating coefficients in (2.12),
we find that the order conditions are

bTAie =
1
i!

0 ≤ i ≤ p. (2.13)

When solving (2.2), additional order conditions are necessary [12, 47]. We do not enter
into details here, except to mention that the order conditions can be explained nicely in
terms of rooted trees. Figures 2.1-2.3 illustrate the rooted trees of order 1 to 6, along with
NumPy code to evaluate the corresponding order condition for each tree. These figures
were generated automatically using a Python software package developed as part of this
thesis. Note that conditions (2.13) correspond to the so-called tall trees (those without
multiple branches). For this reason we will sometimes refer to the conditions that are
relevant for linear problems as ’tall-tree’ order conditions.

The forward Euler method plays a special role in the theory of strong stability preserv-
ing methods, as described in Chapter 3. It can be viewed as the simplest Runge-Kutta or
multistep method:

un = un + ∆tF(un−1). (2.14)

Its stability function is ψ(z) = 1 + z, and it is accurate to order p = 1.

2.4 General Linear Methods

Runge-Kutta methods use multiple stages (function evaluations) but only the most recent
timestep solution. Linear multistep methods use multiple previous timesteps but only a
single stage. More general methods can be constructed using multiple stages and multiple
steps. Such methods are referred to as general linear methods (GLMs).

When applied to the linear equation (2.3), a k-step general linear method takes the

10

dot(b, 1)-1/1 dot(b, c)-1/2

dot(b, dot(A, c))-1/6 dot(b, c**2)-1/3

dot(b, dot(A, c**2))-1/12 dot(b, dot(A, dot(A, c)))-1/24

dot(b, c*dot(A, c))-1/8 dot(b, c**3)-1/4

Figure 2.1: Rooted trees and corresponding Runge-Kutta order conditions of order 1 to 4

11

dot(b, dot(A, c**3))-1/20 dot(b, dot(A, dot(A, c**2)))-1/60

dot(b, dot(A, dot(A, dot(A, c))))-1/120 dot(b, dot(A, c*dot(A, c)))-1/40

dot(b, c*dot(A, c**2))-1/15 dot(b, c*dot(A, dot(A, c)))-1/30

dot(b, c**2*dot(A, c))-1/10 dot(b, dot(A, c)**2)-1/20

dot(b, c**4)-1/5

Figure 2.2: Fifth order rooted trees and corresponding Runge-Kutta order conditions

12

d
o
t(b

, d
o
t(A

, c**4
))-1

/3
0

d
o
t(b

, d
o
t(A

, d
o
t(A

, c**3
)))-1

/1
2

0
d
o
t(b

, d
o
t(A

, d
o
t(A

, d
o
t(A

, c**2
))))-1

/3
6

0
d
o
t(b

, d
o
t(A

, d
o
t(A

, d
o
t(A

, d
o
t(A

, c)))))-1
/7

2
0

d
o
t(b

, d
o
t(A

, d
o
t(A

, c*d
o
t(A

, c))))-1
/2

4
0

d
o
t(b

, d
o
t(A

, c*d
o
t(A

, c**2
)))-1

/9
0

d
o
t(b

, d
o
t(A

, c*d
o
t(A

, d
o
t(A

, c))))-1
/1

8
0

d
o
t(b

, d
o
t(A

, c**2
*d

o
t(A

, c)))-1
/6

0

d
o
t(b

, d
o
t(A

, d
o
t(A

, c)**2
))-1

/1
2

0
d
o
t(b

, c*d
o
t(A

, c**3
))-1

/2
4

d
o
t(b

, c*d
o
t(A

, d
o
t(A

, c**2
)))-1

/7
2

d
o
t(b

, c*d
o
t(A

, d
o
t(A

, d
o
t(A

, c))))-1
/1

4
4

d
o
t(b

, c*d
o
t(A

, c*d
o
t(A

, c)))-1
/4

8
d
o
t(b

, c**2
*d

o
t(A

, c**2
))-1

/1
8

d
o
t(b

, c**2
*d

o
t(A

, d
o
t(A

, c)))-1
/3

6
d
o
t(b

, c**3
*d

o
t(A

, c))-1
/1

2

d
o
t(b

, d
o
t(A

, c)*d
o
t(A

, c**2
))-1

/3
6

d
o
t(b

, d
o
t(A

, c)*d
o
t(A

, d
o
t(A

, c)))-1
/7

2
d
o
t(b

, c*d
o
t(A

, c)**2
)-1

/2
4

d
o
t(b

, c**5
)-1

/6

Figure
2.3:Sixth

order
rooted

trees
and

corresponding
R

unge-K
utta

order
conditions

13

form
un = ψ1(z)un−1 + ψ2(z)un−2 + · · ·+ ψk(z)un−k. (2.15)

In this work, we deal only with explicit general linear methods applied to the linear IVP
(2.3). Hence, we will refer to the iteration (2.15) itself as a general linear method (see,
e.g., [12, 47] for a fuller description of general linear methods and their application to
nonlinear IVPs). For explicit methods, each ψi is a polynomial whose degree is at most
the number of stages of the method, s:

ψi =
s

∑
j=0

aijzj 1 ≤ i ≤ k. (2.16)

The method (2.15) approximates the solution of (2.3) to order p if

ekz = ψ1(z)e(k−1)z + ψ2(z)e(k−2)z + · · ·+ ψk(z) +O(zp+1) for z→ 0. (2.17)

Combining (2.15) and (2.16), we can write a general linear method as

un =
k

∑
i=1

s

∑
j=0

aijzjun−i. (2.18)

Writing the exponential functions in (2.17) as Taylor series and equating coefficients of
powers of z, we find the order conditions for order p in terms of the coefficients aij:

k

∑
i=1

q

∑
j=0

aij
(k− i)q−j

(q− j)!
=

kq

q!
1 ≤ q ≤ p. (2.19)

2.5 Additive Methods

In Section 3.5 we will consider a situation in which it is useful to semi-discretize a PDE
in two different ways, resulting in two right hand sides F, F̃, with the property that the
eigenvalues λ̃ of F̃ are related to the eigenvalues λ of F by λ̃ = −λ. Numerical methods
that incorporate both F and F̃ can be understood as additive methods. Additive Runge-
Kutta methods have the form

yi = un−1 + ∆t
s

∑
j=1

aijF
(

tn−1 + cj∆t, yj

)
+ ∆t

s

∑
j=1

ãij F̃
(

tn−1 + cj∆t, yj

)
, 1 ≤ i ≤ s (2.20a)

un = un−1 + ∆t
s

∑
j=1

bjF
(

tn−1 + cj∆t, yj

)
+ ∆t

s

∑
j=1

b̃j F̃
(

tn−1 + cj∆t, yj

)
. (2.20b)

14

General linear methods of this type have stability function of the form

un = ψ1(z, z̃)un−1 + ψ2(z, z̃)un−2 + · · ·+ ψk(z, z̃)un−k, (2.21)

where z̃ = λ̃∆t and the ψi are now bivariate functions. For explicit methods, they are
polynomials with combined degree s:

ψi =
s

∑
j=0

j

∑
l=0

aijlzj−l z̃l 1 ≤ i ≤ k. (2.22)

Since λ̃ = −λ, the method (2.21) approximates the solution of (2.3) to order p if

ekz = ψ1(z,−z)e(k−1)z + ψ2(z,−z)e(k−2)z + · · ·+ ψk(z,−z) +O(zp+1), (2.23)

Using (2.22) and equating coefficients in (2.23) gives the order conditions:

k

∑
i=1

q

∑
j=0

j

∑
l=0

(−1)laijl
(k− i)p−j

(p− j)!
=

kp

p!
1 ≤ q ≤ p. (2.24)

In Section 5.4, we will consider additive linear multistep methods. These take the form

un − ∆tβkF(un)− ∆tβ̃k F̃(un) =
k−1

∑
j=0

αjun−k+j + ∆tβ jF(un−k+j) + ∆tβ̃ j F̃(un−k+j). (2.25)

15

Chapter 3

Strong Stability Preserving Methods
and Absolute Monotonicity

Strong stability preserving (SSP) methods are numerical methods for the initial value
problem that preserve convex boundedness properties of a solution, such as positivity
or a total variation bound. SSP methods are widely used in the solution of hyperbolic
PDEs. They have been employed in a variety of application areas, including compressible
flow [122], incompressible flow [92], viscous flow [114], two-phase flow [13, 4], relativistic
flow [28, 1, 125], cosmological hydrodynamics [30], magnetohydrodynamics [2], radiation
hydrodynamics [89], two-species plasma flow [77], atmospheric transport [22], large-eddy
simulation [91], Maxwell’s equations [23], semiconductor devices [19], lithotripsy [115],
geometrical optics [24], and Schrodinger equations [21, 65]. They are combined with a
range of spatial discretizations, including discontinuous Galerkin methods [23], level set
methods [93, 13, 29, 21, 24, 65], ENO methods [13, 28, 1], WENO methods [4, 19, 115, 30,
77, 2, 125, 91], spectral finite volume methods [114, 22], and spectral difference methods
[122, 123]. This list of references is inevitably only a small sample.

Development of SSP methods was historically motivated in two ways, and developed
by two groups: one focusing on ordinary differential equations, the other focusing on
hyperbolic partial differential equations. Many terms have been used to describe what
we refer to as strong stability preservation; here we stick mostly to this term for clarity.

Among the ODE community, work on this topic began with investigations of positivity
by Bolley & Crouzeix [10] and of contractivity (or monotonicity) by Spijker [109], for linear

16

systems of ODEs. In these works it was noted that such properties cannot be preserved
unconditionally by general linear methods of higher than first order. Conditional strong
stability preservation was shown to be related to the radius of absolute monotonicity for
methods satisfying a circle condition. Optimal Runge-Kutta methods for linear systems,
including implicit and explicit methods, were investigated in [75, 118].

Conditions for strong stability preserving linear multistep methods in the context of
nonlinear equations were given in [102], and optimal linear multistep methods for linear
and nonlinear equations were investigated by Lenferink [78, 79].

The rich theory of absolute monotonicity of Runge-Kutta methods, and its relation
to contractivity for nonlinear equations was developed by Kraaijevanger [76]. In addi-
tion, Kraaijevanger’s work provided important results such as the order barriers for SSP
Runge-Kutta methods and several optimal methods. The relation of this theory to posi-
tivity preservation was later developed by Horvath [55, 56].

Meanwhile, the idea of strong stability preservation in the context of TVD methods for
hyperbolic conservation laws had been proposed by Shu & Osher [105, 107], and some of
the optimal low order methods proposed by Kraaijevanger had already been proposed in
this work. Shu & Osher also proposed the idea of using downwind-biased discretizations
in order to preserve strong stability. The Shu-Osher approach was further developed by
Gottlieb and co-authors [45, 46, 42], who proved the optimality of several methods in this
context and also considered strong stability preservation for linear systems, as well as
considering for the first time low-storage SSP Runge-Kutta methods and independently
proving that unconditionally SSP Runge-Kutta and multistep methods cannot exist.

Ruuth & Spiteri used the Shu-Osher theory and numerical optimization to develop
optimal methods over many classes, including downwind methods [111, 96, 97] (see also
the work by Gottlieb & Ruuth [44]). They also proved in this (different) context some of
the barriers given previously by Kraaijevanger [99].

The equivalence of the Shu-Osher theory and the theory of absolute monotonicity, both
of which had been well developed for nearly fifteen years, was discovered independently
and almost simultaneously by both Ferracina & Spijker [31, 33] and by Higueras [50,
51]. This connection was also independently discovered by the present author [68]. The
unification of the two theories has provided a theoretical framework that is more elegant,
complete, and useful than either of its predecessors.

Recently SSP theory has been extended in several important ways. Higueras has ex-
tended the theory of absolute monotonicity to include methods with downwind-biased
operators [51] and, more generally, additive Runge-Kutta methods [53, 52]. A theory of
SSP has been developed also for diagonally split Runge-Kutta methods, which lie outside

17

the class of general linear methods and are capable of being unconditionally SSP and
higher than first order accurate [5, 58, 6, 55, 87]. Hundsdorfer & Ruuth have developed a
class of linear multistep methods that satisfy a more general (weaker) condition than the
SSP condition, but allow much larger timesteps [63, 62, 98]. First attempts to characterize
the practical sharpness of SSP theory have been made in [74, 43]. New approaches to find-
ing optimal methods have yielded new optimal methods in several classes (see [69, 73, 70]
and this thesis). A general SSP theory for multistage methods applied to nonlinear equa-
tions has been developed by Spijker [110], and optimal SSP general linear methods have
been investigated for certain classes [60, 25].

In this chapter we review both theories and their relationship to each other. The
theory is most interesting in the context of Runge-Kutta methods, and in this chapter
we focus on them exclusively. Extensions of the theory to multistep methods will be
discussed in Chapter 4 and Chapter 5. In Section 3.1, we review the motivation for
SSP methods as a way to obtain total variation diminishing discretizations of hyperbolic
PDEs. We also review development of explicit SSP methods as convex combinations of
forward Euler steps. In Section 3.2, we discuss absolutely monotonic functions, and their
connection to strong stability preservation for linear IVPs. In Section 3.3, we discuss
absolute monotonicity of Runge-Kutta methods, and its connection to strong stability
preservation for general IVPs. In Section 3.5, we discuss SSP methods for hyperbolic
PDEs that use downwind-biased spatial discretizations. Finally, in Section 3.6, we discuss
the problem of finding optimal strong stability preserving methods.

As the intent of this chapter is to provide an introduction, we will focus on present-
ing the essential ideas in a straightforward manner, rather than providing a complete
discussion of all the details. While most of the material in this chapter is a review, the
construction in Section 3.3 of an example for which the SSP timestep restriction is sharp
is an original contribution inspired by the proof of [110, Theorem 2.4].

3.1 Strong Stability Preservation

3.1.1 TVD Time Integration

Solutions to scalar hyperbolic conservation laws in one dimension

Ut + f (U)x = 0 (3.1)

18

possess the property that their total variation, defined by

||U||TV = lim sup
ε→0

1
ε

∫ ∞

−∞
|U(x)−U(x− ε)|dx, (3.2)

is nonincreasing in time:

||U(t + ∆t)||TV ≤ ||U(t)||TV for ∆t ≥ 0. (3.3)

Certain spatial discretizations of (3.1) satisfy the same property discretely, under forward
Euler time integration (2.14), subject to some maximal timestep restriction:

||u(t) + ∆tF(u(t))||TV ≤ ||u(t)||TV for 0 ≤ ∆t ≤ ∆tFE. (3.4)

However, this does not guarantee that the numerical solution will be total variation di-
minishing (TVD):

||un||TV ≤ ||un−1||TV (3.5)

when un is computed using some other (higher order accurate) integration method. More
precisely, property (3.4) by itself provides no indication of the timestep size under which
(3.5) may hold for other integration schemes.

The discrete TVD property (3.5) is important for at least three reasons:

• It is satisfied by the exact solution.

• It implies that the solutions lie in a compact space, which is an important step in
proving convergence for nonlinear problems with discontinuous solutions.

• Reasonable timestep sizes (i.e. CFL numbers) for high order discretizations of hyper-
bolic PDEs are often determined empirically by trial and error. If one can determine
by analysis a maximum timestep such that (3.5) holds, this can serve as a useful
guide.

It is worth mentioning that, for the latter two points, a guarantee that the solution is total
variation bounded might serve just as well.

19

3.1.2 The Shu-Osher Form

In order to investigate explicit Runge-Kutta methods that guarantee the TVD property
(3.5), Shu and Osher introduced the following representation [105]:

y1 =un−1 (3.6a)

yi =
i−1

∑
j=1

(
αijyj + βij∆tF(yj)

)
2 ≤ i ≤ s + 1 (3.6b)

un =ys+1. (3.6c)

For convenience we have shifted the indexing of α, β relative to the usual Shu-Osher form
in order to make the stage indices agree with those of the Butcher form (2.9). Whereas
the Butcher form is unique for an irreducible method, a given method can be represented
in many ways using (3.6) (see Example 3.1.1 below).

Since consistency requires that ∑i−1
j=1 αij = 1, then if all the coefficients αij, βij are non-

negative, the form (3.6) consists of convex combinations of forward Euler steps, with a
modified timestep:

yi =
i−1

∑
j=1

αij

(
yj + ∆t

βij

αij
F(yj)

)

Thus if ∆t βij
αij
≤ ∆tFE, then by 3.4

‖yi‖TV =

∥∥∥∥∥i−1

∑
j=1

αij

(
yj + ∆t

βij

αij
F(yj)

)∥∥∥∥∥
TV

≤
i−1

∑
j=1

αij

∥∥∥∥yj + ∆t
βij

αij
F(yj)

∥∥∥∥
TV

≤
i−1

∑
j=1

αij
∥∥yj
∥∥

TV ≤ max
1≤j≤i−1

‖yj‖TV.

Hence
‖un‖TV = ‖ys+1‖TV ≤ ‖ys‖TV ≤ · · · ≤ ‖y1‖TV = ‖un−1‖TV. (3.7)

We see that the TVD property is preserved under the timestep restriction

0 ≤ ∆t ≤ C(α, β)∆tFE (3.8)

20

where

C(α, β) =

{
mini,j αij/βij if αij, βij ≥ 0 for 1 ≤ i, j ≤ s

0 otherwise.
(3.9)

3.1.3 Strong Stability Properties

Monotonicity

The argument above is not specific to the total variation semi-norm; indeed, the only prop-
erty of || · ||TV that is used is convexity. Suppose || · || represents any convex functional
and that F satisfies

||u + ∆tF(u)|| ≤ ||u|| for u ∈ <N , 0 ≤ ∆t ≤ ∆tFE. (3.10)

Then the solution obtained by the Runge-Kutta method (3.6) satisfies the monotonicity
property

||un|| ≤ ||un−1|| (3.11)

under the timestep restriction (3.8).

Contractivity

Whereas monotonicity is concerned with the growth of the solution itself, contractivity
deals with the growth of the difference between two solutions. Given two approximate
solutions un−1, ũn−1 at time tn−1, and letting un, ũn denote the corresponding numerical
solutions at the next timestep tn, the numerical solution is said to be contractive if

||un − ũn|| ≤ ||un−1 − ũn−1||. (3.12)

Interpreting ũn−1 as a perturbation of un−1 due to errors, we see that contractivity implies
that these errors do not grow as they are propagated.

Suppose that the solution of (2.2) is contractive under forward Euler integration:

||u + ∆tF(u)− (ũ + ∆tF(ũ))|| ≤ ||u− ũ|| for u, ũ ∈ <N , 0 ≤ ∆t ≤ ∆tFE. (3.13)

Using the convexity argument above, it is straightforward to show that (3.12) is then
obtained under the timestep restriction (3.8).

21

Positivity

Often u represents a physical quantity, such as density, concentration, etc., that must be
non-negative. In this case, it is desirable that the numerical method be positivity preserving:

un−1 ≥ 0 =⇒ un ≥ 0 (3.14)

It turns out that positivity is preserved under the timestep restriction (3.8), but with
∆tFE equal to the positivity preserving forward Euler timestep. That is, given initial data
u0 ≥ 0, and assuming that

u + ∆tF(u) ≥ 0 for u ≥ 0, 0 ≤ ∆t ≤ ∆tFE, (3.15)

then the solution obtained with the Runge-Kutta method (3.6) satisfies (3.14) under the
timestep restriction (3.8).

Observe that the positivity condition (3.14) can be written as a monotonicity condition
(3.11) by defining the convex functional ‖x‖ = max(mini(−xi), 0). However, the forward
Euler condition is required only for the positive orthant u ≥ 0.

Strong stability preservation

The discussion above is summarized in the following general theorem:

Theorem 3.1.1. Suppose that the monotonicity property (3.11), the contractivity property (3.12),
or the positivity property (3.14) holds in the numerical solution of the IVP (2.2) when using the
forward Euler method with timestep ∆tFE. Then the same property holds when using any explicit
Runge-Kutta method under the timestep restriction (3.8).

We use the term strong stability property to refer generally to monotonicity, contractivity,
and positivity properties. In the remainder of this work, results will usually be formulated
in the context of monotonicity. However, the results apply equally well to contractivity
and positivity. Methods that can be represented in form (3.6) with C(α, β) > 0 are referred
to as strong stability preserving methods.

Note that the stable timestep is the product of only two factors, the forward Euler
timestep (∆tFE), which depends only on the spatial discretization, and the coefficient
C(α, β), which depends only on the time discretization. However, different values of
C(α, β) may be obtained for a given method, depending on the particular Shu-Osher
representation chosen. This is illustrated in the following example.

22

Example 3.1.1. Consider the second order Runge-Kutta method, based on the trapezoidal
rule, with Butcher form

A =

(
0 0
1 0

)
b =

(
1/2
1/2

)
. (3.16)

Writing out (2.9) for this method gives

y1 = un−1 (3.17a)

y2 = y1 + ∆tF(y1) (3.17b)

un = y1 +
1
2

∆tF(y1) +
1
2

∆tF(y2). (3.17c)

Note that this is a Shu-Osher form (3.6) and yields C(α, β) = 0. However, using the
equation for y2, we can rewrite the equation for un to obtain a better result. For instance,

un =
3
4

y1 +
1
4

∆tF(y1) +
1
4

y2 +
1
2

∆tF(y2) (3.18)

yields C(α, β) = 1/2. This is still not optimal; rewriting (3.17c) as

un =
1
2

y1 +
1
2

y2 +
1
2

∆tF(y2) (3.19)

yields C(α, β) = 1. In fact, this is the optimal value of C(α, β) for this method, as we will
be able to verify after studying the radius of absolute monotonicity in Section 3.3.

Given the dependence of C(α, β) on the choice of representation, we are interested in
the maximal value

C = max
α,β
C(α, β) (3.20)

where the maximum is taken over all representations α, β corresponding to a given
method. We refer to C as the strong stability preserving coefficient of the method.1

We note here three deficiencies in the foregoing theory. First, Theorem 3.1.1 gives
sufficient conditions for strong stability preservation, but makes no claims about their
necessity. Second, it does not tell us how to find the value C in (3.20) for a given method.
Finally, the theory presented here applies only to explicit methods. All of these deficien-
cies will be addressed in Section 3.3.

1In the literature, C has been referred to as a CFL coefficient. However, the CFL condition prescribes a
relation between the time step and the spatial grid size, whereas the SSP coefficient describes the ratio of
the strong stability preserving timestep to the strongly stable forward Euler time step.

23

3.2 Absolute Monotonicity and Strong Stability Preservation for Linear IVPs

In this section, we study strong stability preservation in the context of the linear, au-
tonomous IVP (2.3). In this case, the forward Euler monotonicity condition (3.10) reduces
to the circle condition

||I + ∆tL|| ≤ 1 for 0 < ∆t ≤ ∆tFE. (3.21)

When numerically solving the linear IVP (2.3), the maximum timestep for strong stability
preservation depends on the radius of absolute monotonicity of the stability function of
the numerical method.

Definition 3.2.1. Radius of absolute monotonicity The radius of absolute monotonicity R(ψ)
of a function ψ : R→ R is the largest value of r such that ψ(z) and all of its derivatives exist and
are nonnegative for z ∈ (−r, 0].

The following lemma, whose easy proof is omitted, can be seen as a special case of
[76, Lemma 3.1]:

Lemma 3.2.1. A polynomial ψ has radius of absolute monotonicity R(ψ) ≥ ξ if and only if ψ(z)
is absolutely monotonic at z = −ξ < 0.

Lemma 3.2.1 indicates that the radius of absolute monotonicity can be verified simply
by checking absolute monotonicity at the left endpoint.

When considering absolute monotonicity, it is often helpful to write the stability func-
tion in the form

ψ(z) = ∑
j

γj

(
1 +

z
r

)j
with γj =

rj

j!
ψ(j)(−r). (3.22)

In this form, absolute monotonicity of ψ at z = −r is equivalent to non-negativity of the
coefficients γj. By Lemma 3.2.1,

γj ≥ 0 ⇐⇒ r ≤ R(ψ). (3.23)

Additionally,when ψ corresponds to a consistent Runge-Kutta method, we have

∑
j

γj = 1. (3.24)

The following result may be viewed as a special case of [109, Theorem 3.5], generalized
to convex functionals.

24

Theorem 3.2.2. Let the matrix L and convex functional || · || be such that the circle condition
(3.21) is satisfied. Then the monotonicity property (3.11) holds for the solution of the linear
autonomous IVP (2.3) by a consistent Runge-Kutta method (2.9) if the timestep satisfies

0 ≤ ∆t ≤ R∆tFE, (3.25)

where the threshold factor R = R(ψ).

Proof. Taking ∆t = r∆tFE with r ≤ R(ψ), and using (3.22), we have

||un|| =

∥∥∥∥∥∑i
ψ(∆tL)un−1

∥∥∥∥∥
=

∣∣∣∣∣
∣∣∣∣∣∑j

γj

(
I +

∆t
r

L
)j

un−1

∣∣∣∣∣
∣∣∣∣∣

≤ ∑
j

γj ||I + ∆tFEL||j ||un−1||

≤ ∑
j

γj||un−1|| ≤ ||un−1||.

The first inequality follows from (3.23), (3.24), and convexity of || · ||, while the second
follows from the circle condition (3.21).

The essence of the proof is the observation that form (3.22) expresses the method as
a convex combination of iterated forward Euler steps, in perfect analogy to the proof of
the SSP property in section Section 3.1.1. Observe that the timestep restriction (3.25), like
(3.8), involves two factors: ∆tFE, which depends only on L (i.e., on the particular system
of ODEs), and on R, which depends only on the numerical method.

We now give an example that demonstrates the sense in which absolute monotonicity
of ψ is a necessary condition for strong stability preservation for linear systems. Consider
the 1D advection equation:

Ut = Ux (3.26)

The exact solution is monotonic in the maximum norm ‖ · ‖∞. A first order upwind finite
difference discretization of (3.26) yields the linear system (2.3) with

L =
1

∆x

1
−1 1

.

−1 1

 (3.27)

25

Straightforward computation reveals that for this L and the maximum norm, the circle
condition (3.21) is satisfied for ∆t ≤ ∆x = ∆tFE.

We now show that the timestep restriction (3.25) is strictly necessary in this case. That
is, Theorem 3.2.3 tells us that if a RKM with stability function ψ is applied to this problem
and timestep restriction (3.25) is violated, then there exists an initial condition u0 such
that ‖u1‖∞ > ‖u0‖∞.

Theorem 3.2.3. For any function ψ and for L given by (3.27), we have

‖ψ(∆tL)‖∞ ≤ 1 iff ∆t ≤ R(ψ)∆tFE.

Hence, for a Runge-Kutta method with stability function ψ, monotonicity in the maximum norm
is guaranteed for the solution of the IVP (2.3) iff the timestep satisfies (3.25).

Proof. The ’if’ part follows from Theorem 3.2.2. To show the ’only if’ part, assume
‖ψ(∆tL)‖∞ ≤ 1. Then taking ∆t = r∆x, we have

∆tL = Z = rI + rE,

where

E =

0
−1 0

.

−1 0

 .

So, expanding ψ about −rI,

ψ(Z) =
∞

∑
j=0

(Z− rI)j

j!
ψ(j)(−r) =

∞

∑
j=0

rj

j!
ψ(j)(−r)Ej =

∞

∑
j=0

γjEj,

where γj is defined in (3.22). Since

∞

∑
j=0

γjEj =

γ0

− γ1 γ0
...

.

(−1)N−1γN−1 · · · −γ1 γ0

 .

then
N−1

∑
j=0
|γj| = ‖ψ(Z)‖∞ ≤ 1 =

∞

∑
j=0

γj,

26

where the last equality follows by (3.24). Since this holds for any positive integer N, we
have

∞

∑
j=0
|γj| ≤

∞

∑
j=0

γj,

so γj ≥ 0. Thus ψ is absolutely monotonic at −r, so ∆t = r∆x ≤ R(ψ)∆tFE.

3.3 Absolute Monotonicity of Runge-Kutta Methods

In Section 3.1 we dealt with strong stability preservation for explicit Runge-Kutta meth-
ods. We found that the apparent SSP coefficient C(α, β) for a method depends on the
particular Shu-Osher representation chosen. In this section we present a unique form
for general (implicit or explicit) Runge-Kutta methods that makes apparent the true SSP
coefficient (3.20). This coefficient turns out to be closely related to the concept of absolute
monotonicity of Runge-Kutta methods [76]. The material is adapted primarily from [110].
For more details, the interested reader is referred also to [76, 31, 51].

A modification of the Shu-Osher form

In the investigation of absolute monotonicity of the stability function, we saw that it was
useful to write the stability function in the form (3.22). Similarly, for investigating absolute
monotonicity of the Runge-Kutta method, it is useful to consider, in place of the Butcher
coefficients A, b, another form of the Runge-Kutta method. We first define

K =

(
A 0
bT 0

)
(3.28a)

y = (y1, y2, . . . , ys, ys+1)T (3.28b)

f = (F(y1), F(y2), . . . , F(ys), 0)T. (3.28c)

This allows us to write the Runge-Kutta method compactly as follows:

y = un−1e + ∆tK f (3.29)

un = ys+1

Using the notation (3.28), and assuming I + rK is invertible, we can rewrite the Runge-

27

Kutta method as follows:

y = un−1e + ∆tK f

(I + rK)y = un−1e + rK
(

y +
∆t
r

f
)

y = un−1(I + rK)−1e + r(I + rK)−1K
(

y +
∆t
r

f
)

. (3.30)

Defining

P = r(I + rK)−1K, d = (I− P)e = (I + rK)−1e, (3.31)

we can write (3.30) compactly:

y = un−1d + P
(

y +
∆t
r

f
)

. (3.32)

Writing out equation (3.32), we see that it is similar to the Shu-Osher form:

yi =diun−1 +
s

∑
j=1

pij

(
yj +

1
r

∆tF(yj)
)

1 ≤ i ≤ s + 1 (3.33a)

un =ys+1. (3.33b)

For explicit methods, since y1 = un−1, (3.33) is just the Shu-Osher form (3.6) with

αij =

{
di + pij j = 1
pij j > 1

βij =
1
r

pij (3.34)

and if all elements of P and d are non-negative, the method has C(α, β) = r.

Example 3.3.1. Consider again the explicit trapezoidal rule method, from Example 3.1.1.
The method has

K =

 0 0 0
1 0 0

1/2 1/2 0

 . (3.35)

Taking r = 1/2, we find

d =

 1
1/2
5/8

 , P =

 0 0 0
1/2 0 0
1/8 1/4 0

 , (3.36)

28

which is the form (3.18), with C(α, β) = 1/2. Taking r = 1 gives

d =

 1
0

1/2

 , P =

 0 0 0
1 0 0
0 1/2 0

 (3.37)

which corresponds to the form (3.19), with C(α, β) = 1. On the other hand, if we take
r > 1, we find that p31 + d3 < 0 so that C(α, β) = 0.

Absolute Monotonicity of Runge-Kutta Methods

The form (3.32) bears a strong resemblance to the form (3.22) used to study absolute
monotonicity of the stability function, with the coefficient matrices P, d playing the role of
the coefficients γj. Thus we will be concerned with the following condition (the positivity
of P, d):

(I + rK)−1 exists and pij, dj ≥ 0 1 ≤ i, j ≤ s + 1 (3.38)

Definition 3.3.1. The radius of absolute monotonicity of a Runge-Kutta method, denoted C(K),
is (with P, d defined in (3.31)):

C(K) = sup{r|(3.38) is satisfied}.

If (3.38) is not satisfied even for r = 0, we define C(K) = 0.

It turns out that C(K) generalizes C(α, β), providing a timestep criterion for mono-
tonicity for implicit as well as explicit RK methods. In order to show this, we need the
following lemma, which we will not prove here. It is a special case of [110, Theorem
2.2(ii)], and is analogous to Lemma 3.2.1.

Lemma 3.3.1. For all 0 ≤ r ≤ C(K), (3.38) holds.

Since d = (I− P)e, we have

di + ∑
j

pij = 1 for 1 ≤ i ≤ s + 1. (3.39)

Thus we have the equivalence

r ≤ C(K) ⇐⇒ (I + rK)−1 exists and ‖[d P]‖∞ ≤ 1, (3.40)

where [d P] is the matrix formed by adjoining d and P.

29

We now show the relevance of C(K) to strong stability preservation. Take 0 ≤ r ≤
C(K). Applying ‖ · ‖ to both sides of (3.32), and letting [‖xi‖] denote the vector whose ith
component is ‖xi‖, we have

[‖yi‖] ≤ (I− P)e‖un−1‖+ P[‖yi +
∆t
r

F(yi)‖]
[‖yi‖] ≤ (I− P)e‖un−1‖+ P[‖yi‖]

(I− P)[‖yi‖] ≤ (I− P)e‖un−1‖.

Since (I − P)−1 = I + rK is non-negative and invertible, we have ‖yi‖ ≤ ‖un−1‖ for
1 ≤ i ≤ s + 1. In particular

‖ys+1‖ = ‖un‖ ≤ ‖un−1‖.
Thus monotonicity is preserved for timesteps

0 ≤ ∆t ≤ C(K)∆tFE. (3.41)

Necessity of the SSP Timestep Restriction

Before proceeding, we must first introduce the concept of reducibility. It is possible to
write down a method in Butcher form (2.9) with s stages that is equivalent to a method
with fewer than s stages. Such methods are said to be reducible.

Although multiple types of reducible methods have been defined in the literature, in
this thesis we will only need to be concerned with one type. If pij 6= 0, we say that
stage j influences stage i directly. If there are indices i1, i2, ..., im such that in influences
in+1 for 1 ≤ n ≤ m− 1, we say that stage i1 influences stage im. Clearly, if some stage j
does not influence stage s + 1, then un may be computed without computing yj, so the
method can be written equivalently by removing the jth row and jth column of P and the
jth component of d. If such a superfluous stage exists, we say the method is reducible;
otherwise it is irreducible.

We now show the sense in which the timestep restriction (3.41) is necessary for strong
stability preservation. Whereas most of this chapter is a review, the proof of Theorem 3.3.2
is an original contribution. We think it provides the clearest available explanation of the
sense in which the SSP timestep restriction is necessary. Our proof is most closely related
to, and was inspired by, the proof of [110, Theorem 2.4]. Compare also [76, Theorem 5.4],
[57, Theorem 8], and [33, Theorem 3.4].

Theorem 3.3.2. Given any irreducible method with radius of absolute monotonicity C(K) and
any timestep ∆t > C(K)∆tFE, there exists an IVP (2.2) such that the forward Euler condition

30

(3.10) holds with respect to the maximum norm, but monotonicity is violated by the Runge-Kutta
solution (i.e., ||u1||∞ > ||u0||∞).

Proof. The proof is by construction.

For now, assume that I + rK is invertible and let r > C(K). Let ∆t = r∆tFE and let
P, d be defined by (3.31). Then (3.40) implies ‖[d P]‖∞ > 1. The idea of the proof is to
construct an IVP with ‖u0‖∞ = 1 such that ‖yj‖∞ ≥ ‖[d P]‖∞.

Define P̂, d̂ by p̂ij = sgn(pij), d̂j = sgn(dj), and let p̂j denote the jth column of P̂. We
will construct an IVP with N = s + 1 equations, such that the Runge-Kutta stages are
given by

yj = djd̂ + ∑
k

pjk p̂k. (3.42)

For the moment, assume that the resulting stages yj are distinct. Then we can take

u0 = d̂, F(u, t) =

{
1

∆tFE
(p̂j − yj) if u = yj for some j

0 otherwise.
(3.43)

It is straightforward to check that (3.32) is then satisfied, so the yj are indeed the stages
of the Runge-Kutta solution. The forward Euler condition (3.10) holds, since F(u) = 0 if
u 6= yj, whereas for u = yj we have

‖u + ∆tF(u)‖∞ = ‖(1− r)yj + r p̂j‖∞ ≤ (1− r)‖yj‖+ r‖p̂j‖ ≤ ‖u||∞ (3.44)

since ‖p̂j‖∞ ≤ 1 ≤ ‖yj‖∞.

The key property of this construction is that

‖yj‖∞ ≥ (yj)j = dj sgn(dj) + ∑
k

pjk sgn(pjk) = |dj|+ ∑
k
|pjk|. (3.45)

Hence
max

j
‖yj‖∞ ≥ ‖[d P]‖∞ > 1.

Thus monotonicity is violated by one of the stages of the method.

This is essentially the construction used in [110] to prove the necessity of the timestep
restriction (3.41). If ps+1,j ≥ 0 for all j, then for this example the monotonicity condition
(3.11) is still satisfied. However, the example can be modified so that the monotonicity
condition is violated by the solution itself (rather than just by the Runge-Kutta stage(s)).
To do so, we assume that the method is irreducible, so that every stage influences stage

31

ys+1. Then choose some j such that ‖yj‖∞ > 1. Replace the jth column of P̂ by p̂ij =
‖yj‖∞ sgn(pij). Then (3.42) and (3.43) are still consistent, and the forward Euler condition
(3.10) still holds by (3.44). But now for any stage yk that is directly influenced by yj, we
have (note the strict inequality, in place of (3.45))

‖ym‖∞ ≥ (ym)m = |di|+ ∑
k
|pjk| ≥ 1. (3.46)

Hence, we can modify the mth column of P̂ by multiplying it by ‖ym‖∞. Then every stage
influenced directly by ym has maximum norm greater than 1. Proceeding in this manner,
since the method is irreducible, we eventually obtain ‖un‖∞ > 1.

For the special cases in which I + rK is singular or yi = yj for some i 6= j, see pp.
1242-44 of [110].

Example 3.3.2. Consider the classical 4-stage, 4th order Runge-Kutta method, which has

A =

0
1
2 0
0 1

2 0
0 0 1 0

 , b =
(

1
6

,
1
3

,
1
3

,
1
6

)T

,

and C(K) = 0. Taking r = 1, we find

d =
(

1,
1
2

,
3
4

,
1
4

,
3
8

)T

, P =

0
1
2 0
− 1

4
1
2 0

1
4 − 1

2 1 0
1

24
1
4

1
6

1
6 0

 .

Thus we set

d̂ = (1, 1, 1, 1, 1)T , P̂ =

0
1 0
−1 1 0

1 −1 1 0
1 1 1 1 0

 .

32

Then (y3)3 = 3
4 d̂3 − 1

4 p̂31 + 1
2 p̂32 = 3/2 and we have ‖y3‖∞ = 3/2. So we set

d̂ = (1, 1, 1, 1, 1)T , P̂ =

0
1 0
−1 1 0

1 −1 3/2 0
1 1 3/2 1 0

 .

Then we find

(u1)5 = (y5)5 =
3
8

d̂5 +
1
24

p̂51 +
1
4

p̂52 +
1
6

p̂53 +
1
6

p̂54 =
13
12

so ‖u1‖∞ ≥ 13/12 > 1 = ‖u0‖∞.

3.3.1 The SSP Coefficient

By (3.34) we see that for explicit methods there exists a Shu-Osher representation such that
C(K) ≤ C(α, β). Since (3.41) is a necessary condition for strong stability preservation,
while (3.8) is a sufficient condition, it follows that C(α, β) ≤ C(K) for any Shu-Osher
representation. Thus

C = max
α,β
C(α, β) = C(K), (3.47)

i.e., the SSP coefficient is equal to the radius of absolute monotonicity.

For a given Runge-Kutta method, finding the optimal value of C(α, β) using the Shu-
Osher formulation requires solving a nonlinear optimization problem. The theory of
absolute monotonicity, on the other hand, provides a purely algebraic characterization
of the SSP coefficient, making calculation of C trivial. This leads to simplification of the
problem of finding optimal methods [34]. The investigations of optimal implicit and
explicit Runge-Kutta methods with many stages presented in Chapter 6 would not be
possible without this simplification.

An additional benefit provided by the theory of absolute monotonicity is that, for
many optimal SSP methods, the form (3.32) with r = C results in a very sparse matrix P
so that the method can be implemented in this form using very little memory. This will
be examined in detail in Chapter 6.

For more details regarding the relationship between SSP, absolute monotonicity, and
the Shu-Osher form, see [34, 33, 50, 51].

33

3.4 Unconditional Strong Stability Preservation

In classical numerical analysis, stability restrictions on the timestep can often be avoided
by use of an appropriate implicit method. For instance, A-stable Runge-Kutta methods
are stable in L2 under arbitrary timesteps when applied to linear problems involving
dissipative normal matrices.

It is natural to hope that the same can be accomplished in the context of strong stability
preservation. Indeed, it is easy to show that the Backward Euler method

un = un−1 + ∆tF(un) (3.48)

is unconditionally strong stability preserving [76, 50]. However, for higher order methods,
unconditional strong stability preservation is not possible. The result below follows from
[109, Theorem 1.3] (see also [46]).

Theorem 3.4.1. If ψ(z)− exp(z) = O(z3) for z→ 0, then

R(ψ) < ∞. (3.49)

Since C(K) ≤ R(ψ), then any Runge–Kutta method of order p > 1 has a finite SSP coefficient:

p > 1 =⇒ C(K) < ∞. (3.50)

In fact, this result holds for all general linear methods. However, this does not indicate
how restrictive the step-size condition is; it may still be worthwhile to consider implicit
methods if the radius of absolute monotonicity is large enough to offset the additional
work involved in an implicit solver.

3.5 Negative Coefficients and Downwinding

For many Runge-Kutta methods, including the classical fourth order method, it turns
out that C = 0, so that the method is not SSP under any positive timestep. This is
because, whenever the method is written in a (generalized) Shu-Osher form, some of the
coefficients are necessarily negative.

However, in the solution of hyperbolic conservation laws, the SSP property can be
guaranteed also for such methods, provided that we use a modified spatial discretization
for these instances. The semi-discretization F of a hyperbolic system typically involves
some form of upwinding. To obtain a semi-discretization that preserves strong stability
in the presence of negative coefficients, we introduce an alternative semi-discretization F̃

34

that uses downwinding. For instance, in the case of linear finite difference discretizations,
the matrix representing F̃ is just the negative transpose of that representing F. Then F̃
satisfies the forward Euler condition

‖u + ∆tF̃(u)‖ ≤ ‖u‖. (3.51)

Using the discretizations F, F̃, we can apply additive Runge-Kutta methods (see (2.20)).
Introducing

f̃ = (F̃(y1), F̃(y2), . . . , F̃(ys), 0)T (3.52)

we can write the method as

y = un−1e + ∆tK f + ∆tK̃ f̃ , (3.53)

un = ys+1

This can be rewritten as

y = un−1d + P
(

y +
∆t
r

f
)

+ P̃
(

y +
∆t
r

f̃
)

, (3.54)

un = ys+1

where

P = r(I + rK + rK̃)−1K, (3.55)

P̃ = r(I + rK + rK̃)−1K̃, (3.56)

d = (I− P− P̃)e = (I + rK + rK̃)−1e. (3.57)

Following arguments similar to those of Section 3.3, we find that the method is SSP under
the timestep restriction

∆t ≤ C̃∆tFE, (3.58)

where
C̃ = sup{r|(I + rK + rK̃)−1 exists and P, P̃, d ≥ 0}. (3.59)

It would seem that if both F(yj) and F̃(yj) must be computed for the same j, the
computational cost as well as storage requirement for this j is doubled. For this reason,
negative coefficients were avoided whenever possible in [45, 46, 42, 99, 112]. However,
since, as shown in Proposition 3.3 of [45] and Theorem 4.1 in [99], it is not always possible

35

to avoid negative coefficients, recent studies (e.g. [96, 97, 44]) have considered efficient
ways of implementing downwind discretizations. Inclusion of negative coefficients, even
when not absolutely necessary, may raise the SSP coefficient enough to compensate for
the additional computational cost incurred by F̃. Since F̃ is, numerically, the downwind
version of F, it is sometimes possible to compute both F and F̃ without doubling the
computational cost [44]. If F and F̃ do not appear for the same j, then neither the compu-
tational cost nor the storage requirement is increased.

We will discuss downwind methods further in Section 4.6 and Section 5.4. For more
details on SSP methods with downwinding, see [32, 46, 41, 44, 53, 96, 97, 105, 107, 110].

3.6 Optimal SSP Methods

In solving the linear autonomous IVP (2.3) or the nonlinear, nonautonomous IVP (2.2),
the maximum allowable timestep that preserves strong stability bounds is proportional to
the threshold factor R or the SSP coefficient C, respectively. Hence it is advantageous to
use a method with the largest possible value of this coefficient. The next three chapters
are devoted to finding such methods. Specifically, given a prescribed number of stages s,
number of steps k, and order of accuracy p, we determine the largest possible value of
R(ψ) or C among s-stage, k-step, order p methods. In general, this leads to a nonlinear
optimization problem subject to both equality and inequality constraints. The equality
constraints are the order conditions, while the inequality constraints are the absolute
monotonicity conditions.

In order to facilitate discussion of optimal methods, we introduce the following nota-
tion. The coefficients Cs,k,p and Rs,k,p denote the maximal value of C or R over all explicit
general linear methods with s stages, k steps, and order p. Thus, for instance, R1,2,3

denotes the optimal threshold factor over all third order linear multistep methods with
two steps. Similarly, C̃s,k,p and R̃s,k,p denote the same quantities but where the maximum
is taken over methods that use downwinding as well. Sometimes we will discuss im-
plicit methods or other special classes; the optimal coefficients over these classes will be
denoted using superscripts; e.g. CI

s,k,p for implicit Runge-Kutta methods.

3.6.1 Efficiency

The underlying assumption motivating development of these methods, is that the timestep
is actually limited in practice by a requirement of monotonicity, contractivity, or positivity.
We also assume that the computational effort in each timestep is dominated by the cost
of evaluating F. When this is the case, the computational efficiency of a method may be

36

measured by the effective SSP coefficient:

Ceff =
C
s

, (3.60)

The work required to solve a problem is inversely proportional to Ceff. By definition, the
forward Euler method has Ceff = 1. We may analogously define the scaled threshold factor:

Reff =
R
s

. (3.61)

Clearly, Ceff, Reff are more useful measures of the efficiency of a method than C, R(ψ).
Thus, the final objective of the studies in the following chapters is to find methods with
optimal values of Ceff, Reff.

3.6.2 The Relation Between R and C

Since the timestep restriction (3.41) guarantees strong stability preservation for a wider
class of problems than the restriction (3.25), it follows that

C ≤ R (3.62)

for any method, hence also the optimal values of Cs,k,p and Rs,k,p over any class satisfy this
inequality.

For some classes of methods, it can be shown a priori that C = R. This is because the
order conditions and absolute monotonicity conditions are equivalent for these methods,
whether they are applied to linear or nonlinear IVPs. This is true for the following classes:

• Explicit linear multistep methods

• Explicit Runge-Kutta methods of order p ≤ 2

• Explicit general linear methods of order p ≤ 2

In addition, it turns out that C = R for the optimal methods in some other classes. It is
often easier to find the optimal value of R than the optimal value of C over a given class of
methods. If one can find the optimal R and then find a method that has SSP coefficient C
equal to this value, it follows from (3.62) that this method is optimal. This reasoning can
be used to demonstrate the optimality of many SSP methods, including explicit 3rd-order
Runge-Kutta methods and one explicit 4th order Runge-Kutta method, as we will see in

37

Chapter 6. It is also relevant for many classes of implicit multistep methods [79, Theorem
4.2].

38

Chapter 4

Optimal Threshold Factors for Linear
Initial Value Problems

Clearly, the larger R, the better is the
general contractivity behaviour...

M.N. Spijker (1981)

In this chapter, we investigate the problem of finding optimal threshold factors for
linear autonomous problems. Important examples of the linear IVP (2.3) include semi-
discretizations of the partial differential equations describing acoustics, linear elasticity,
and Maxwell’s equations. Optimally contractive methods may be used to integrate such
semi-discretizations, including those with time-dependent source terms [42, 20]. For in-
stance, they have been used for integration of Maxwell’s equations [20, 86] and geomet-
rical optics [24], using discontinuous Galerkin semi-discretizations. They are also use-
ful for providing strong stability bounds when applied to spectral semi-discretizations
[40, 46, 42]. In the present work, the optimal threshold factors found in this chapter will
be useful as upper bounds for the optimal SSP coefficients to be found in later chapters.

Previous studies have investigated optimal threshold factors for explicit Runge-Kutta
methods [75, 118, 42] and for linear multistep methods [78, 79]. In this chapter we gener-
alize these studies by investigating optimal threshold factors for general linear methods.
By suitable reformulation of the associated optimization problem, we are also able to find
optimal threshold factors for much broader classes of Runge-Kutta methods than was
previously possible.

39

In Section 3.2, we reviewed the theory of strong stability preservation for Runge-
Kutta methods applied to the linear autonomous IVP. We saw that the relative timestep
for strong stability preservation is given by the radius of absolute monotonicity of the
stability function of the method, also referred to as the threshold factor. We also saw that
the same holds for general linear methods. Hence the problem of finding optimal explicit
strong stability preserving general linear methods translates to finding functions with the
largest radius of absolute monotonicity, subject to appropriate order conditions.

In Section 4.1, we define the concept of optimal threshold factor. In Section 4.2, we
derive ’tall tree’ order conditions for explicit general linear methods. In Section 4.3, we
derive a general upper bound on the radius of absolute monotonicity for stability func-
tions of explicit general linear methods. In Section 4.4, we show that the problem of
finding optimal threshold factors can be approximately solved by solving a sequence of
linear programming problems (LPs). Section 4.5 describes optimal methods obtained in
this manner. Finally, in Section 4.6, we present some results on absolute monotonicity of
stability functions of additive Runge-Kutta methods.

The contents of this chapter correspond to the paper [70].

4.1 Threshold Factors for General Linear Methods

In this section, we discuss conditions for general linear methods (introduced in Sec-
tion 2.4) to preserve strong stability when applied to the linear autonomous IVP (2.3).
A k-step method computes un in terms of un−k . . . un−1. Thus we replace the monotonicity
condition (3.11) with

||un|| ≤ min
1≤i≤k

||un−i||. (4.1)

The theory of Section 3.2 extends in a straightforward way to general linear methods:

Theorem 4.1.1. Let the matrix L and convex functional || · || be such that the circle condition
(3.21) is satisfied. Then the monotonicity property (4.1) holds for the solution of the linear au-
tonomous IVP (2.3) by a consistent general linear method with stability function (2.15) if the
timestep satisfies

∆t ≤ ∆tFER, (4.2)

where the threshold factor R is given by

R = min
1≤i≤k

R(ψi). (4.3)

The proof is analogous to the proof of Theorem 3.2.2.

40

4.2 ’Tall Tree’ Order Conditions for Explicit General Linear Methods

In this section we derive order conditions for explicit GLMs applied to the linear IVP (2.3).
As mentioned in Chapter 2, these correspond to the tall trees in the theory of rooted trees.

Let Πs,k,p denote the set of all ordered sets of k polynomials (ψ1, ..., ψk) of degree at
most s satisfying the order conditions (2.19) up to order p.

Definition 4.2.1. For given integers s, k, p, the optimal threshold factor Rs,k,p is the largest
threshold factor R among all explicit k-step, s-stage general linear methods of order p:

Rs,k,p = sup
{

min
i

R(ψi) | (ψ1, ..., ψk) ∈ Πs,k,p

}
. (4.4)

In order to investigate Rs,k,p, it is helpful to rewrite each of the functions ψi in the form
used in Section 3.2:

ψi(z) = ∑
j

γij

(
1 +

z
r

)j
with γij =

rj

j!
ψ

(j)
i (−r). (4.5)

Recall that, in this form, absolute monotonicity of ψi is equivalent to non-negativity of the
coefficients γij, i.e.

γij ≥ 0 ⇐⇒ r ≤ R(ψi). (4.6)

Equating the right hand sides of Equations (2.16) and (4.5) gives the following relation
between the coefficients ail and γij:

ail =
1

l!rl

s

∑
j=0

γij

l−1

∏
n=0

(j− n). (4.7)

Using Equations (2.19) and (4.7), the conditions for the method to be accurate to order p
can be written as

k

∑
i=1

s

∑
j=0

γij

q

∑
l=0

(
q
l

)
(k− i)q−l

rl

l−1

∏
n=0

(j− n) = kq 1 ≤ q ≤ p. (4.8)

4.3 An Upper Bound

Theorem 4.3.1. For any s, k, p > 0, the optimal threshold factor for explicit s-stage, k-step, order
p general linear methods is at most equal to the number of stages; i.e., Rs,k,p ≤ s.

Proof. Take any (ψ1, ..., ψk) ∈ Πs,k,p, and let R be the threshold factor of this method.
Writing out explicitly the first two order conditions (i.e., (4.8) for p = 0, 1, with r = R)

41

gives

k

∑
i=1

s

∑
j=0

γij = 1, (4.9a)

k

∑
i=1

s

∑
j=0

γij(j + R(k− i)) = kR. (4.9b)

Subtracting ks times (4.9a) from (4.9b) gives

k

∑
i=1

s

∑
j=0

γij (j + R(k− i)− ks) = k(R− s). (4.10)

Since (for 1 ≤ i ≤ k, 0 ≤ j ≤ s)

j + R(k− i)− ks = (j− s) + R(1− i) + (R− s)(k− 1) ≤ (R− s)(k− 1), (4.11)

then

k(R− s) =
k

∑
i=1

s

∑
j=0

γij (j + R(k− i)− ks)

≤ (k− 1)(R− s)
k

∑
i=1

s

∑
j=0

γij

= (k− 1)(R− s),

which implies that R ≤ s.

An alternate proof is as follows. Let R denote the threshold factor of the method given
by (ψ1, . . . , ψk) ∈ Πs,k,p. Consider the disk

DR = {z ∈ C | |z + R| ≤ R} . (4.12)

For z ∈ DR, |1 + z/R| ≤ 1, so using (4.5), (4.6), and (4.9), we find |∑i ψ(z)| ≤ 1. Hence the
region of absolute stability for this method contains DR. Then [64, Theorem 3.1] asserts
that R ≤ s.

By using higher order conditions or restricting to special cases, tighter bounds can be
obtained. However, we discard that approach in favor of a general method for computing
Rs,k,p, given in the next section.

42

4.4 Solution Algorithm

We now present an algorithm for finding optimal threshold factors Rs,k,p and correspond-
ing methods (ψ1, ..., ψk) for a given number of stages s, steps k, and order p. The next two
results justify our approach, which relies on bisection in r.

Lemma 3.2.1, combined with Definition 4.2.1, leads immediately to the following re-
sult, which will be useful in constructing our solution algorithm.

Corollary 4.4.1. Let r > 0. Then Rs,k,p ≥ r if and only if there exists (ψ1, ..., ψk) ∈ Πs,k,p such
that each ψi is absolutely monotonic at −r.

Corollary 4.4.1 indicates that Rs,k,p can be found by bisection, as follows:

Optimization Algorithm
Inputs: Positive integers s, k, p and real numbers ε and rmax such
that Rs,k,p ≤ rmax

Output: r satisfying Rs,k,p − ε ≤ r ≤ Rs,k,p

1. rmin := 0.
2. Set r := (rmax + rmin)/2.
3. Determine whether there exists (ψ1, ..., ψk) ∈ Πs,k,p such that each
ψi is absolutely monotonic at −r. If so, set rmin := r; otherwise set
rmax := r.
4. If rmax − rmin < ε, set r := rmin and stop. Otherwise, return to
step 2.

Two ingredients are necessary for the execution of this approach: a value for rmax and
a method to solve the feasibility problem in step 3. Theorem 4.3.1 provides the bound
rmax. We now show that the feasibility problem in step 3 of our algorithm above is a
linear programming problem (LP).

Using (4.6), the feasibility problem can be stated very simply: Determine whether
there exist γij ≥ 0 satisfying (4.8). Since (4.8) is linear in γij, for a fixed value of r this is a
linear programming feasibility problem. Set

γ = (γ10, . . . , γ1s, γ20, . . . , γ2s, . . . , . . . , γk0, . . . , γks)
T (4.13a)

k = (1, k, k2, . . . , kp)T (4.13b)

[B(r)]q,m =
q

∑
l=0

(
q
l

)
(k− i)q−l

rl

l−1

∏
n=0

(j− n). (4.13c)

43

where 1 ≤ i ≤ k, 0 ≤ j ≤ s, 1 ≤ q ≤ p, and m = s(i− 1) + i + j. Then the problem is given
by the standard form feasibility LP (for given s, k ≥ 1, r > 0):

LP 1. Determine whether there exists γ ≥ 0 such that B(r)γ = k.

Modern and highly efficient LP solvers can be applied to LP 1. These solvers also
return the coefficients describing (ψ1, ..., ψk). In the present work, the LP solvers included
in Matlab and Maple have been used. Scripts are available from the SSP website [72].

4.5 Optimal Threshold Factors for Explicit Methods

In this section we present optimal threshold factors and methods obtained using the
algorithm of the previous section.

4.5.1 One-step methods

Significant results have been found previously for the case k = 1. Kraaijevanger [75] found
optimal methods for 1 ≤ p ≤ s ≤ 10, and for p ∈ {1, 2, 3, 4, s− 1, s− 2, s− 3, s− 4} for
any s. He also provided an algorithm for the computation of the optimal coefficient and
method for arbitrary s, p. Unfortunately, the computational cost of his algorithm grows
exponentially in s and p. A different but related approach was used by Gottlieb and others
in [46, 42] to find results for the cases s ∈ {1, 2, p− 1, p} and arbitrary values of p (these
results were also found by Kraaijevanger). Implementing Kraaijevanger’s algorithm in
Maple, we found that on a 2.5 Ghz G5 processor, for s = 16, p = 8, the solution requires
days, and for s ≥ 20, p ≈ s/2, the solution would require years of computation.

Table 4.1 lists values of Rs,1,p for 1 ≤ s ≤ 16, 1 ≤ p ≤ 30. For a discussion of many
interesting properties of this table, see [76]. Because we are primarily interested in Rs,k,p as
an upper bound on the SSP coefficient for nonlinear methods (see Chapter 6), and to save
space, we do not give the optimal polynomials here. They may easily be computed with
the code Rsp.mused to produce Table 4.1, which is available from the author’s website
[67].

4.5.2 One-stage multistep methods

We next consider the case s = 1, corresponding to linear multistep methods. Because
R1,k,p = C1,k,p the optimal threshold factors and methods are also optimal SSP coefficients
and methods. Because of this, we will discuss these methods in detail in Chapter 5, when
we investigate optimal SSP linear multistep methods.

44

Table
4.1:O

ptim
althreshold

factors
R

s,1,p
for

1-step
m

ethods.Boldface
entries

representnew
results

obtained
in

the
present

w
ork.

p
s

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1
1.00

2
2.00

1.00
3

3.00
2.00

1.00
4

4.00
3.00

2.00
1.00

5
5.00

4.00
2.65

2.00
1.00

6
6.00

5.00
3.52

2.65
2.00

1.00
7

7.00
6.00

4.29
3.52

2.65
2.00

1.00
8

8.00
7.00

5.11
4.29

3.37
2.65

2.00
1.00

9
9.00

8.00
6.00

5.11
4.10

3.37
2.65

2.00
1.00

10
10.00

9.00
6.79

6.00
4.83

4.10
3.37

2.65
2.00

1.00
11

11.00
10.00

7.63
6.79

5.52
4.83

4.10
3.37

2.65
2.00

1.00
12

12.00
11.00

8.52
7.63

6.35
5.52

4.69
4.10

3.37
2.65

2.00
1.00

13
13.00

12.00
9.36

8.52
7.05

6.35
5.35

4.69
4.10

3.37
2.65

2.00
1.00

14
14.00

13.00
10.21

9.36
7.83

7.05
6.09

5.35
4.69

4.10
3.37

2.65
2.00

1.00
15

15.00
14.00

11.09
10.21

8.58
7.83

6.80
6.09

5.34
4.69

4.10
3.37

2.65
2.00

1.00
16

16.00
15.00

12.00
11.09

9.39
8.58

7.46
6.80

5.93
5.34

4.69
4.10

3.37
2.65

2.00
1.00

17
17.00

16.00
12.85

12.00
10.18

9.39
8.18

7.46
6.63

5.93
5.34

4.69
4.10

3.37
2.65

2.00
18

18.00
17.00

13.72
12.85

10.95
10.18

8.89
8.18

7.32
6.63

5.93
5.34

4.69
4.10

3.37
2.65

19
19.00

18.00
14.61

13.72
11.76

10.95
9.64

8.89
7.93

7.32
6.60

5.93
5.34

4.69
4.10

3.37
20

20.00
19.00

15.52
14.61

12.55
11.76

10.40
9.64

8.62
7.93

7.20
6.60

5.93
5.34

4.69
4.10

21
21.00

20.00
16.40

15.52
13.39

12.55
11.13

10.40
9.32

8.62
7.81

7.20
6.60

5.93
5.34

4.69
22

22.00
21.00

17.28
16.40

14.20
13.39

11.84
11.13

9.99
9.32

8.49
7.81

7.20
6.60

5.93
5.34

23
23.00

22.00
18.17

17.28
15.00

14.20
12.63

11.84
10.74

9.99
9.12

8.49
7.78

7.20
6.60

5.93
24

24.00
23.00

19.08
18.17

15.84
15.00

13.36
12.63

11.42
10.74

9.76
9.12

8.36
7.78

7.20
6.60

25
25.00

24.00
20.00

19.08
16.64

15.84
14.15

13.36
12.12

11.42
10.44

9.76
9.00

8.35
7.78

7.20
26

26.00
25.00

20.88
20.00

17.48
16.64

14.93
14.15

12.83
12.12

11.15
10.44

9.65
9.00

8.35
7.78

27
27.00

26.00
21.78

20.88
18.35

17.48
15.70

14.93
13.56

12.83
11.78

11.15
10.25

9.65
8.96

8.35
28

28.00
27.00

22.68
21.78

19.16
18.35

16.45
15.70

14.29
13.56

12.49
11.78

10.92
10.25

9.54
8.96

29
29.00

28.00
23.59

22.68
19.98

19.16
17.23

16.45
15.01

14.29
13.14

12.49
11.59

10.92
10.14

9.54
30

30.00
29.00

24.52
23.59

20.84
19.98

18.04
17.23

15.80
15.01

13.86
13.14

12.21
11.59

10.82
10.14

45

4.5.3 Multistage multistep methods

Table 4.2 gives optimal threshold factors for two-, three- and four-step methods with up
to ten stages.

Table 4.3 gives optimal threshold factors for two-, three- and four-stage methods with
up to ten steps. In general, less is gained from additional steps than from additional
stages. For instance, for first order methods, the optimal threshold factor is the same
regardless of the number of steps, but increases linearly with the number of stages.

Some of the particularly simple methods are described here. The optimal 2nd order
2-step, s-stage method is

un =
2(s + R)− 2
2(s + R)− 1

(
I +

∆tL
R

)s

un−1 +
1

2(s + R)− 1
un−2

where R = Rs,2,2 =
√

s(s− 1). The optimal 2nd order k-step, 2-stage method is

un =
kR

2 + R(k− 1)

(
I +

∆tL
R

)2

un−k+1 +
2− R

2 + R(k− 1)
un−k

where R = R2,k,2 = 2/(
√

(k− 1)2 + 1 − k + 2). The optimal 3rd order 2-step, 8-stage
method is

un =
2
3

(
I +

∆tL
R

)8

un−1 +
1
3

(
I +

∆tL
R

)8

un−2

where R = R8,2,3 = 6. The optimal 3rd order 3-step, 3-stage method is

un =
3
4

(
I +

∆tL
R

)3

un−1 +
1
4

(
I +

∆tL
R

)3

un−3

where R = R3,3,3 = 2.

The methods are presented here in a form corresponding to (4.5). This form is use-
ful for implementation because it can be shown (see [78, Lemma 2.4(ii)]) that any opti-
mal method will have at most p nonzero coefficients γij. Typically they have exactly p
nonzero coefficients; the last two methods above are remarkable in that they have only
p− 1 nonzero coefficients. They can be implemented very efficiently by storing only the
quantities

(
I + ∆tL

R

)s
u for each solution vector u.

The second order methods are of particular interest because they are also optimal
second order SSP methods in their respective classes. For instance, the optimal second
order 2-stage methods have been proposed as SSP methods in [60], while the optimal
second order 2-step methods have been proposed in [71]. The present results imply that

46

Table 4.2: Threshold factors Rs,k,p of optimal 2-, 3- and 4-step general linear methods.

p
s 1 2 3 4 5 6 7 8 9 10

k=2

1 1.0
2 2.0 1.414 0.732
3 3.0 2.449 1.651 1.284 0.654
4 4.0 3.464 2.507 2.118 1.620 1.217
5 5.0 4.472 3.385 2.929 2.355 1.977 1.447
6 6.0 5.477 4.229 3.775 3.071 2.614 2.027 1.465
7 7.0 6.481 5.093 4.662 3.649 3.137 2.567 2.099 1.501
8 8.0 7.483 6.0 5.433 4.274 3.737 3.078 2.641 2.180 1.562
9 9.0 8.485 6.674 6.114 4.837 4.366 3.621 3.180 2.777 2.363
10 10.0 9.487 7.352 6.797 5.461 4.979 4.239 3.796 3.335 3.000

k=3

1 1.0 0.500
2 2.0 1.618 1.113 0.822
3 3.0 2.637 2.0 1.586 1.123 0.466 0.051
4 4.0 3.646 2.617 2.241 1.728 1.466 1.083 0.716
5 5.0 4.651 3.393 3.060 2.489 2.215 1.879 1.655 1.342
6 6.0 5.653 4.229 3.897 3.284 2.994 2.582 2.291 2.011 1.668
7 7.0 6.655 5.093 4.777 4.016 3.701 3.135 2.846 2.412 2.093
8 8.0 7.657 6.0 5.624 4.633 4.307 3.708 3.393 2.898 2.515
9 9.0 8.658 6.674 6.303 5.251 4.911 4.267 3.891 3.350 3.019
10 10.0 9.659 7.352 6.985 5.884 5.557 4.794 4.446 3.822 3.513

k=4

1 1.0 0.667 0.333
2 2.0 1.721 1.243 0.934 0.542
3 3.0 2.732 2.0 1.684 1.223 0.928 0.555
4 4.0 3.737 2.617 2.331 1.883 1.664 1.406 1.188 0.602 0.325
5 5.0 4.740 3.393 3.143 2.639 2.400 2.035 1.751 1.525 1.235
6 6.0 5.742 4.229 3.975 3.403 3.124 2.676 2.437 2.123 1.903
7 7.0 6.743 5.093 4.847 4.039 3.770 3.230 2.996 2.640 2.443
8 8.0 7.744 6.0 5.723 4.633 4.384 3.801 3.572 3.197 2.969
9 9.0 8.745 6.674 6.400 5.251 4.986 4.383 4.148 3.719 3.478
10 10.0 9.745 7.352 7.081 5.884 5.628 4.987 4.742 4.237 4.005

47

Table 4.3: Threshold factors Rs,k,p of optimal 2-,3-, and 4-stage general linear methods.

p
k 1 2 3 4 5 6 7 8 9 10

s=2

1 2.0 1.0
2 2.0 1.414 0.732
3 2.0 1.618 1.113 0.823
4 2.0 1.721 1.243 0.934 0.542
5 2.0 1.781 1.243 0.984 0.674 0.434
6 2.0 1.820 1.243 1.028 0.796 0.575 0.263
7 2.0 1.847 1.243 1.063 0.833 0.691 0.413 0.174
8 2.0 1.867 1.243 1.089 0.876 0.750 0.484 0.308 0.010
9 2.0 1.883 1.243 1.109 0.905 0.765 0.573 0.395 0.186 0.021
10 2.0 1.895 1.243 1.124 0.905 0.779 0.614 0.481 0.266 0.115

s=3

1 3.0 2.0 1.0
2 3.0 2.449 1.651 1.284 0.655 0.000
3 3.0 2.637 2.0 1.586 1.123 0.466 0.052
4 3.0 2.732 2.0 1.684 1.223 0.928 0.555 0.000
5 3.0 2.788 2.0 1.752 1.384 1.143 0.945 0.388 0.131
6 3.0 2.825 2.0 1.798 1.450 1.272 1.006 0.755 0.427 0.000
7 3.0 2.851 2.0 1.831 1.467 1.301 1.018 0.851 0.656 0.257
8 3.0 2.870 2.0 1.855 1.467 1.325 1.075 0.947 0.780 0.520
9 3.0 2.885 2.0 1.873 1.467 1.339 1.121 0.990 0.870 0.645
10 3.0 2.897 2.0 1.887 1.467 1.351 1.150 1.052 0.873 0.706

s=4

1 4.0 3.0 2.0 1.0
2 4.0 3.464 2.507 2.118 1.620 1.217 0.000
3 4.0 3.646 2.617 2.241 1.728 1.466 1.083 0.716
4 4.0 3.737 2.617 2.331 1.883 1.664 1.406 1.188 0.602 0.325
5 4.0 3.791 2.617 2.390 1.979 1.802 1.465 1.271 1.025 0.815
6 4.0 3.827 2.617 2.430 2.002 1.827 1.533 1.336 1.180 0.975
7 4.0 3.852 2.617 2.459 2.002 1.848 1.603 1.448 1.260 1.130
8 4.0 3.871 2.617 2.480 2.002 1.866 1.643 1.525 1.297 1.150
9 4.0 3.886 2.617 2.496 2.002 1.881 1.658 1.537 1.309 1.179
10 4.0 3.898 2.617 2.509 2.002 1.893 1.658 1.548 1.340 1.242

48

these methods, which in some cases were obtained by nonlinear optimization, are indeed
optimal, even among much larger classes of methods than those considered in [60, 71].
These results also imply the optimality of the third order SSP general linear methods with
up to three stages or three steps in [60, 71].

The threshold factors and methods in this section were obtained using the code Rskp.m,
which is available from [67].

The numerical results obtained here suggest the following conjectures, which we leave
as open problems.

Conjecture 4.5.1. For any number of stages s and fixed odd order p = 2n + 1, there exists a k0

beyond which all optimal methods have the same R; i.e. Rs,k,2n+1 = Rs,k0,2n+1 for all k ≥ k0.

Conjecture 4.5.2. R2,k0,2n+1 = max
k
CI

1,k,p−1 (see Section 5.3).

Conjecture 4.5.3. For any number of stages s and fixed even order p, Rs,k,p is a strictly increasing
function of k.

4.6 Threshold Factors for Methods with Downwinding

In this section we investigate threshold factors for methods with downwinding, as intro-
duced in Section 2.5 and Section 3.5. Hence, in addition to L we will refer to a second
right hand side matrix L̃, which would typically be given by L̃ = −LT, and is assumed to
satisfy the forward Euler condition under the same maximal timestep as L:

||I + ∆tL̃|| ≤ 1 for 0 ≤ ∆t ≤ ∆tFE. (4.14)

4.6.1 Threshold Factors for Downwinded Explicit GLMs

Once again, we find that the maximal contractivity preserving timestep for these methods
is related to the radius of absolute monotonicity. The definition of the radius of absolute
monotonicity extends naturally to functions ψ(z, z̃) of two variables.

Definition 4.6.1. The radius of absolute monotonicity R̃(ψ) of ψ : < → <2 is the largest value
r ≥ 0 such that all partial derivatives of ψ(z, z̃) are non-negative for z, z̃ ∈ (−r, 0].

In order to study the absolute monotonicity of a bivariate polynomial ψ(z, z̃), it is
helpful to write it in the following form (analogous to (3.22)):

ψi(z, z̃) =
s

∑
j=0

j

∑
l=0

γijl

(
1 +

z
r

)j−l
(

1 +
z̃
r

)l

with γijl =
rj

j!
∂jψi

∂zj−l∂z̃l (4.15)

49

The following lemma is analogous to Lemma 3.2.1.

Lemma 4.6.1. A bivariate polynomial ψ(z, z̃) is absolutely monotonic at −ξ < 0 if and only if ψ

has radius of absolute monotonicity R(ψ) ≥ ξ.

Proof. Suppose R(ψ) ≥ ξ; then ψ is absolutely monotonic at −ξ by continuity. On the
other hand, suppose ψ is absolutely monotonic at −ξ. Write ψ in the form (4.15). Then
term-by-term differentiation shows that ψ is absolutely monotonic on (−ξ, 0].

Thus we have

r ≤ R̃(ψi) ⇐⇒ γijl ≥ 0 for all 0 ≤ j ≤ i ≤ s (4.16)

Theorem 4.6.2. Let || · || be any convex functional and suppose L, L̃ satisfy the circle condi-
tions (3.21) and (4.14). Then the monotonicity condition (4.1) holds for the solution of the linear
autonomous IVP (2.3) by method (2.21) if the timestep satisfies

∆t ≤ R̃∆tFE (4.17)

where the threshold factor R̃ = mini R(ψi(z, z̃)).

Proof. Using (4.15),

||un|| = ||∑
i

ψi(∆tL, ∆tL̃)un−i||

≤
∥∥∥∥∥∑i

s

∑
j=0

j

∑
l=0

γijl

(
1 +

∆t
r

L
)j−l (

1 +
∆t
r

L̃
)l
∥∥∥∥∥

≤ ∑
i,j,l

γijl

∣∣∣∣∣∣∣∣(I +
∆t
r

L
)∣∣∣∣∣∣∣∣j−l ∣∣∣∣∣∣∣∣(I +

∆t
r

L̃
)∣∣∣∣∣∣∣∣l ||un−i||

≤ ∑
i,j,l

γijl ||un−i|| ≤ max
l
||un−i||.

Here we have used the fact that ∑i,j,l γijl = 1, which holds for any consistent method.

For a more general consideration of absolutely monotonic functions that arise from
considering downwind-biased methods, see [51, 53].

Let Π̃s,k,p denote the set of all ordered sets of k bivariate polynomials {ψ1, ..., ψk} of
degree at most s satisfying the order conditions (2.24) up to order p.

Definition 4.6.2. For given integers s, k, p, the optimal downwind threshold factor R̃s,k,p is
the largest threshold factor among all k-step, s-stage, order p accurate general linear methods with

50

downwinding:

R̃s,k,p = sup
{

min
i

R̃(ψi) | {ψ1, ..., ψk} ∈ Π̃s,k,p

}
. (4.18)

Below, we will determine values of R̃s,k,p and corresponding optimal methods. By
virtue of Theorem 4.6.2 these methods are optimal in terms of the maximum timestep for
contractivity.

The following corollary follows from Lemma 4.6.1 and Definition 4.6.2.

Corollary 4.6.3. Let r > 0. Then R̃s,k,p ≥ r if and only if there exists {ψ1, ..., ψk} ∈ Π̃s,k,p such
that each ψi(z, z̃) is absolutely monotonic at −r.

The next theorem provides an upper bound on R̃s,k,p. We omit its proof, which is very
similar to that of Theorem 4.3.1.

Theorem 4.6.4. For any s, k, p > 0, the optimal downwind threshold factor for explicit s-stage,
k-step, order p general linear methods is at most equal to the number of stages; i.e., R̃s,k,p ≤ s.

4.6.2 Optimal One-step Methods with Downwinding

From Corollary 4.6.3, it follows that we can use the bisection algorithm from Section 4.4 to
find R̃s,k,p, by simply replacing Πs,k,p with Π̃s,k,p. The effectiveness of this approach will be
demonstrated by application to additive one-step methods. Thus we consider the special
case k = 1 of the foregoing analysis. Note that these methods represent a generalization
of the downwind-biased Runge-Kutta methods considered in [46, 96, 97, 44].

It would be straightforward (though more tedious) to find optimal threshold factors
and methods with arbitrary numbers of stages and steps. This is left for future work.

We will use the notation of (4.15), but drop the first subscript of γ since k = 1. Thus
(4.15) becomes

ψi(z, z̃) =
s

∑
j=0

j

∑
l=0

γijl

(
1 +

z
r

)j−l
(

1 +
z̃
r

)l

with γijl =
rj

j!
∂jψi

∂zj−l∂z̃l (4.19)

Note that not all functions of the form (4.19) can be realized as the stability function of
an s-stage additive Runge-Kutta method (2.20). This is because the form (2.20) results in
certain necessary relations between the coefficients γ. Nevertheless, the results we will
obtain provide upper bounds for the threshold factors of additive Runge-Kutta meth-
ods, and the methods below may be of independent interest for the integration of linear
systems.

51

After considerable manipulation we can write ψ(z,−z) = ∑s
i=0 Cizi where

Ci(r, γ) =
s

∑
j=i

j

∑
l=0

γjl

min(i,j−l)

∑
m=max(0,i−l)

(
j− l

m

)(
l

i−m

)
(−1)i−m

ri (4.20)

Hence the optimal method of order at least p with at most s stages is given by

Given r find γ such that

γjl ≥ 0 0 ≤ l ≤ j ≤ s (4.21a)

Ci(r, γ) =
1
i!

1 ≤ i ≤ p. (4.21b)

Since (4.21b) is a system of linear equations (in γ) then for any given value of r (4.21)
represents a linear programming feasibility problem. Hence we can apply the strategy of
using bisection and an LP solver to find the optimal values R̃s,1,p.

Table 4.4 gives optimal linear SSP coefficients for Runge-Kutta methods with down-
winding. The optimal first order methods are simply repeated forward Euler steps. The
optimal second order method of s stages is

ψ =
2(s + R̃)− 1

2(s + R̃)

(
I +

∆tL
R̃

)s

+
1

2(s + R̃)

(
I +

∆tL̃
R̃

)s

.

where R = R̃s,1,2 =
√

s(s− 1). We found that some of the other methods have rational
coefficients. The six-stage, third order method is

ψ =
7
12

(
I +

∆tL
R̃

)6

+
1
4

(
I +

∆tL
R̃

)4 (
I +

∆tL̃
R̃

)2

+
1
6

(
I +

∆tL
R̃

)3 (
I +

∆tL̃
R̃

)3

.

where R = R̃6,1,3 = 4. The four-stage, fourth order method is

ψ =
1
3

(
I +

∆tL
R̃

)2

+
17
48

(
I +

∆tL
R̃

)4

+
14
48

(
I +

∆tL
R̃

)2 (
I +

∆tL̃
R̃

)2

+
1
48

(
I +

∆tL̃
R̃

)4

.

where R = R̃4,1,4 = 2.

52

Table 4.4: Optimal downwind threshold factors R̃s,1,p for one-step methods with down-
winding.

s p 1 2 3 4 5 6 7 8 9 10
1 1.00
2 2.00 1.41
3 3.00 2.45 1.60
4 4.00 3.46 2.49 2.00
5 5.00 4.47 3.20 2.94 2.18
6 6.00 5.48 4.00 3.65 3.11 2.58
7 7.00 6.48 4.86 4.45 3.88 3.55 2.76
8 8.00 7.48 5.77 5.31 4.57 4.32 3.72 3.15
9 9.00 8.49 6.62 6.22 5.24 5.02 4.52 4.14 3.33
10 10.00 9.49 7.42 7.09 5.95 5.70 5.25 4.96 4.32 3.73

53

Chapter 5

Optimal SSP Linear Multistep Methods

In the previous chapter, we investigated general linear methods with optimal values
of the threshold factor R, which governs the maximum timestep for contractivity in the
solution of the linear autonomous problem (2.3). As a special case (s = 1), the algorithm
of the last chapter can be used to find optimally contractive explicit linear multistep
methods. Since order conditions and absolute monotonicity conditions for explicit LMMs
are the same in the case of linear or nonlinear problems, these methods are also optimal
explicit SSP LMMs.

It turns out that the problem of finding optimal implicit SSP LMMs can also be solved
using linear programming and bisection. Furthermore, optimal explicit and implicit SSP
LMMs using downwinding can also be found in this way. In each case, the appropriate
LP is obtained by combining the order conditions and the inequalities that are necessarily
satisfied by the SSP coefficient.

In this chapter, we solve each of these problems. In Section 5.1, we generalize the al-
gorithm from Chapter 4. In Section 5.3, we apply the algorithm to find optimal SSP linear
multistep methods with positive coefficients. In Section 5.4, we consider methods that
include negative coefficients. We prove a helpful result about the coefficients of optimal
SSP LMMs with downwinding. This result implies that previously-found optimal meth-
ods are optimal over a larger class of methods than was previously considered. Finally,
we apply the algorithm to find optimal methods.

The SSP coefficients of high order multistep methods are rather small. By consider-
ing a weaker property wherein particular starting procedures are prescribed, Ruuth and
Hundsdorfer [98] have developed methods that are competitive in some cases with op-

54

timal Runge-Kutta methods; however these methods require more memory and in some
cases were observed to violate the SSP property. Also, they are surpassed in efficiency by
the optimal Runge-Kutta methods of Chapter 6.

For multistage (i.e., Runge-Kutta) methods, the problem of finding optimal SSP meth-
ods involves highly nonlinear order conditions, and cannot be solved using the current
approach. Thus we defer that problem to Chapter 6.

5.1 General Solution Algorithm

In each section of this chapter, we pose an optimization problem that includes two sets
of constraints. The first set of constraints are inequalities imposed by the requirement
of absolute monotonicity (of either the stability function or the method). These can be
written as non-negativity of a vector of coefficients: x ≥ 0. The second set of constraints
are equalities arising from the order conditions. The key to our approach is that these
equalities are linear, except for the dependence on r. That is, they take the form A(r)x = b.
Thus, as in the previous chapter, for a fixed value of r the constraints lead to a linear
programming feasibility problem. Therefore, we can apply the algorithm of the previous
chapter, using bisection in r and repeatedly solving the necessary LP.

5.2 Bounds on the SSP Coefficient

5.2.1 Explicit Methods

The existence of explicit SSP LMMs of arbitrarily high order was proven by Sand [102]
(see also [78, Theorem 2.3(ii)]). From Theorem 4.3.1 with s = 1, we have that R1,k,p ≤ 1, so
any explicit linear multistep method has C ≤ 1. The optimal first order method is forward
Euler, which achieves this exactly.

A tighter bound for higher order methods was proven by Lenferink:

Theorem 5.2.1. [78, Theorem 2.2] For k ≥ p > 1,

R1,k,p ≤ k− p
k− 1

. (5.1)

For further interesting properties of R1,k,p, the reader is referred to [78].

From Theorem 4.6.4, it follows that R̃1,k,p ≤ 1; thus the overall upper bound on the
threshold factor for methods with downwinding is the same as that for methods without
downwinding. However, it is interesting to note that (5.1) does not hold for R̃1,k,p (cf.
Table 5.3).

55

5.2.2 Implicit Methods

Lenferink also showed that C ≤ 2 for implicit SSP methods of order p > 1[79]. This
bound was shown to hold in an even more general sense in [62]. By similar means, it
can be shown that this bound holds also for implicit methods with downwinding. For
further discussion of the behavior of C I

s,k,p and RI
s,k,p for implicit LMMs using many steps,

the reader is referred to [79].

5.3 Optimal Methods without Downwinding

Optimal SSP linear multistep methods have been studied previously (see [102, 105, 78,
45] for explicit methods and [79] for implicit methods). Known results include optimal
explicit methods of up to seventh order and twenty steps, as well as an algorithm for
finding the optimal methods of arbitrary order with arbitrary number of steps. Using the
present (more efficient) algorithm we have computed optimal methods of up to fortieth
order.

For simplicity, we use here the traditional notation (2.4) for multistep methods, rather
than the notation of the previous chapter. If αi, βi ≥ 0, the linear multistep method (2.4)
can be written as a convex combination of forward Euler steps:

un − ∆tβkF(un) =
k−1

∑
j=0

αj

(
un−k+j + ∆t

β j

αj
F(un−k+j)

)
. (5.2)

Thus the SSP coefficient is

C =

{
mini αi/βi if αi, βi ≥ 0 for 0 ≤ i ≤ k− 1

0 otherwise.
(5.3)

In the case of explicit linear multistep methods, since

ψi(z) = αi + βiz,

we have

R(ψi) =

{
αi/βi if αi, βi ≥ 0

0 otherwise.

Hence the threshold factor is equal to the SSP coefficient. Thus, the theories presented
in Section 3.1, Section 3.2, and Section 3.3 are immediately equivalent when applied to
explicit linear multistep methods, and R = C for these methods. For implicit linear
multistep methods, the difference between C I

1,k,p and RI
1,k,p is generally small (see Thm.

56

4.3 and Cor. 4.4 of [79]).
Rewriting (5.3), the method (5.2) has SSP coefficient C ≥ r if

β j ≥ 0, αj − rβ j ≥ 0 ((0 ≤ j ≤ k). (5.4)

If (5.4) is satisfied for some r > 0, then clearly it is satisfied for any smaller positive value
of r. This implies that bisection can be used to find C.

Combining this with the order conditions (2.8), and introducing δj = αj − rβ j, the
feasibility problem in this case (equivalent to LP 1 with s = 1) takes the form (for given
positive integers k, p with p ≤ k)

LP 2. Given r, determine whether there exist β j, δj such that

β j, δj ≥ 0 (0 ≤ j ≤ k− 1)
k−1

∑
j=0

(
(δj + rβ j)ji + β jiji−1

)
= ki (0 ≤ i ≤ p).

Thus optimal methods may be found by applying the algorithm of Section 4.4, where
the feasibility problem in step (3) is replaced by LP 2. Computed optimal values of the
SSP coefficient for explicit methods with 1 ≤ k ≤ 50, 1 ≤ p ≤ 15 are shown in Table
5.1. These were computed using the code Rkp.m, available from the author’s website [67].
Note that, since C = R for explicit linear multistep methods, the methods given here
are optimal in terms of both threshold factor and SSP coefficient. In the notation of the
previous chapter, the optimal coefficients are values of R1,k,p.

SSP coefficients of optimal implicit methods for 1 ≤ k ≤ 20, 1 ≤ p ≤ 8 were computed
in [79]. SSP coefficients of optimal methods for 1 ≤ k ≤ 50, 1 ≤ p ≤ 15, computed using
Rkp_imp.m, are listed in Table 5.2.

5.4 Optimal Methods with Downwinding

We now consider LMMs with downwinding; these take the form

un − ∆tβkF(un)− ∆tβ̃k F̃(un) =
k−1

∑
j=0

αjun−k+j + ∆tβ jF(un−k+j) + ∆tβ̃ j F̃(un−k+j). (5.5)

The method is accurate to order p if

k−1

∑
j=0

αj ji +
k

∑
j=0

(β j − β̃ j)iji−1 = ki (0 ≤ i ≤ p) (5.6)

57
Ta

bl
e

5.
1:

SS
P

co
ef

fic
ie

nt
s

of
op

ti
m

al
ex

pl
ic

it
lin

ea
r

m
ul

ti
st

ep
m

et
ho

ds
(n

ot
e

th
at

th
es

e
ar

e
al

so
th

e
op

ti
m

al
th

re
sh

ol
d

fa
ct

or
s

R
1,

k,
p)

.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
1

1.
00

0
2

1.
00

0
3

1.
00

0
0.

50
0

4
1.

00
0

0.
66

7
0.

33
3

5
1.

00
0

0.
75

0
0.

50
0

0.
02

1
6

1.
00

0
0.

80
0

0.
58

3
0.

16
5

7
1.

00
0

0.
83

3
0.

58
3

0.
28

2
0.

03
8

8
1.

00
0

0.
85

7
0.

58
3

0.
35

9
0.

14
5

9
1.

00
0

0.
87

5
0.

58
3

0.
39

3
0.

22
8

10
1.

00
0

0.
88

9
0.

58
3

0.
42

1
0.

28
2

0.
05

2
11

1.
00

0
0.

90
0

0.
58

3
0.

44
3

0.
31

7
0.

11
5

12
1.

00
0

0.
90

9
0.

58
3

0.
46

0
0.

34
5

0.
17

5
0.

01
8

13
1.

00
0

0.
91

7
0.

58
3

0.
47

4
0.

37
0

0.
21

0
0.

07
7

14
1.

00
0

0.
92

3
0.

58
3

0.
48

4
0.

39
0

0.
23

6
0.

11
6

15
1.

00
0

0.
92

9
0.

58
3

0.
49

3
0.

40
6

0.
25

9
0.

15
4

0.
01

2
16

1.
00

0
0.

93
3

0.
58

3
0.

50
1

0.
41

1
0.

27
6

0.
17

7
0.

04
4

17
1.

00
0

0.
93

8
0.

58
3

0.
50

7
0.

41
1

0.
29

1
0.

19
8

0.
07

5
18

1.
00

0
0.

94
1

0.
58

3
0.

51
3

0.
41

1
0.

30
4

0.
21

7
0.

10
6

0.
00

3
19

1.
00

0
0.

94
4

0.
58

3
0.

51
7

0.
41

1
0.

31
4

0.
23

2
0.

12
8

0.
03

5
20

1.
00

0
0.

94
7

0.
58

3
0.

52
1

0.
41

1
0.

32
2

0.
24

6
0.

14
8

0.
06

3
21

1.
00

0
0.

95
0

0.
58

3
0.

52
5

0.
41

1
0.

33
0

0.
25

9
0.

16
3

0.
08

2
22

1.
00

0
0.

95
2

0.
58

3
0.

52
8

0.
41

1
0.

33
7

0.
26

9
0.

17
7

0.
10

0
0.

01
0

23
1.

00
0

0.
95

5
0.

58
3

0.
53

1
0.

41
1

0.
34

2
0.

27
8

0.
19

0
0.

11
6

0.
03

1
24

1.
00

0
0.

95
7

0.
58

3
0.

53
4

0.
41

1
0.

34
7

0.
28

6
0.

20
1

0.
13

1
0.

04
8

25
1.

00
0

0.
95

8
0.

58
3

0.
53

6
0.

41
1

0.
35

1
0.

29
4

0.
21

0
0.

14
5

0.
06

3
26

1.
00

0
0.

96
0

0.
58

3
0.

53
8

0.
41

1
0.

35
4

0.
30

1
0.

22
0

0.
15

5
0.

07
8

0.
01

2
27

1.
00

0
0.

96
2

0.
58

3
0.

54
0

0.
41

1
0.

35
8

0.
30

7
0.

22
8

0.
16

5
0.

09
1

0.
02

7
28

1.
00

0
0.

96
3

0.
58

3
0.

54
2

0.
41

1
0.

36
0

0.
31

2
0.

23
4

0.
17

4
0.

10
5

0.
04

2
29

1.
00

0
0.

96
4

0.
58

3
0.

54
3

0.
41

1
0.

36
3

0.
31

7
0.

24
0

0.
18

4
0.

11
6

0.
05

5
30

1.
00

0
0.

96
6

0.
58

3
0.

54
5

0.
41

1
0.

36
5

0.
31

9
0.

24
6

0.
19

1
0.

12
5

0.
06

6
0.

00
2

31
1.

00
0

0.
96

7
0.

58
3

0.
54

6
0.

41
1

0.
36

8
0.

31
9

0.
25

0
0.

19
9

0.
13

4
0.

07
9

0.
01

4
32

1.
00

0
0.

96
8

0.
58

3
0.

54
8

0.
41

1
0.

37
0

0.
31

9
0.

25
5

0.
20

5
0.

14
2

0.
08

9
0.

02
6

33
1.

00
0

0.
96

9
0.

58
3

0.
54

9
0.

41
1

0.
37

1
0.

31
9

0.
25

9
0.

21
1

0.
15

0
0.

09
7

0.
03

6
34

1.
00

0
0.

97
0

0.
58

3
0.

55
0

0.
41

1
0.

37
3

0.
31

9
0.

26
2

0.
21

6
0.

15
7

0.
10

6
0.

04
7

35
1.

00
0

0.
97

1
0.

58
3

0.
55

1
0.

41
1

0.
37

5
0.

31
9

0.
26

6
0.

22
1

0.
16

4
0.

11
4

0.
05

7
0.

00
5

36
1.

00
0

0.
97

1
0.

58
3

0.
55

2
0.

41
1

0.
37

6
0.

31
9

0.
26

9
0.

22
5

0.
16

9
0.

12
1

0.
06

6
0.

01
6

37
1.

00
0

0.
97

2
0.

58
3

0.
55

3
0.

41
1

0.
37

7
0.

31
9

0.
27

1
0.

22
9

0.
17

5
0.

12
8

0.
07

4
0.

02
7

38
1.

00
0

0.
97

3
0.

58
3

0.
55

4
0.

41
1

0.
37

8
0.

31
9

0.
27

4
0.

23
3

0.
18

0
0.

13
4

0.
08

2
0.

03
6

39
1.

00
0

0.
97

4
0.

58
3

0.
55

5
0.

41
1

0.
37

9
0.

31
9

0.
27

6
0.

23
7

0.
18

5
0.

14
0

0.
08

9
0.

04
4

40
1.

00
0

0.
97

4
0.

58
3

0.
55

5
0.

41
1

0.
38

0
0.

31
9

0.
27

8
0.

24
0

0.
18

9
0.

14
6

0.
09

6
0.

05
2

0.
00

3

58
Table

5.2:O
ptim

alSSP
coefficientsC

I1,k,p
for

im
plicit

linear
m

ultistep
m

ethods

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
1

∞
2.000

2
∞

2.000
1.000

3
∞

2.000
1.500

1.000
4

∞
2.000

1.667
1.243

0.667
5

∞
2.000

1.750
1.243

0.796
0.500

6
∞

2.000
1.800

1.243
0.929

0.660
0.300

7
∞

2.000
1.833

1.243
1.006

0.784
0.468

0.197
8

∞
2.000

1.857
1.243

1.052
0.868

0.550
0.345

0.006
9

∞
2.000

1.875
1.243

1.084
0.905

0.642
0.443

0.206
0.024

10
∞

2.000
1.889

1.243
1.106

0.905
0.690

0.533
0.295

0.127
11

∞
2.000

1.900
1.243

1.123
0.905

0.733
0.580

0.393
0.203

12
∞

2.000
1.909

1.243
1.136

0.905
0.764

0.625
0.444

0.295
0.093

13
∞

2.000
1.917

1.243
1.147

0.905
0.781

0.662
0.485

0.353
0.171

0.042
14

∞
2.000

1.923
1.243

1.155
0.905

0.795
0.692

0.526
0.402

0.238
0.103

15
∞

2.000
1.929

1.243
1.162

0.905
0.806

0.714
0.551

0.438
0.303

0.163
16

∞
2.000

1.933
1.243

1.168
0.905

0.815
0.719

0.578
0.468

0.342
0.221

0.076
17

∞
2.000

1.938
1.243

1.174
0.905

0.823
0.719

0.593
0.493

0.368
0.273

0.128
0.028

18
∞

2.000
1.941

1.243
1.178

0.905
0.829

0.719
0.609

0.518
0.397

0.299
0.173

0.072
19

∞
2.000

1.944
1.243

1.182
0.905

0.835
0.719

0.623
0.535

0.420
0.328

0.223
0.111

20
∞

2.000
1.947

1.243
1.186

0.905
0.839

0.719
0.631

0.550
0.443

0.356
0.253

0.159
0.034

21
∞

2.000
1.950

1.243
1.189

0.905
0.844

0.719
0.639

0.564
0.459

0.374
0.279

0.191
0.081

22
∞

2.000
1.952

1.243
1.192

0.905
0.847

0.719
0.646

0.577
0.475

0.394
0.302

0.221
0.120

23
∞

2.000
1.955

1.243
1.194

0.905
0.851

0.719
0.651

0.587
0.487

0.410
0.320

0.242
0.148

24
∞

2.000
1.957

1.243
1.197

0.905
0.853

0.719
0.656

0.595
0.497

0.426
0.336

0.264
0.178

25
∞

2.000
1.958

1.243
1.199

0.905
0.856

0.719
0.661

0.596
0.506

0.439
0.353

0.283
0.201

26
∞

2.000
1.960

1.243
1.201

0.905
0.858

0.719
0.665

0.596
0.514

0.450
0.368

0.300
0.221

27
∞

2.000
1.962

1.243
1.202

0.905
0.861

0.719
0.668

0.596
0.520

0.459
0.383

0.314
0.241

28
∞

2.000
1.963

1.243
1.204

0.905
0.862

0.719
0.671

0.596
0.527

0.468
0.392

0.327
0.257

29
∞

2.000
1.964

1.243
1.205

0.905
0.864

0.719
0.674

0.596
0.532

0.476
0.402

0.341
0.270

30
∞

2.000
1.966

1.243
1.207

0.905
0.866

0.719
0.676

0.596
0.536

0.482
0.413

0.352
0.283

31
∞

2.000
1.967

1.243
1.208

0.905
0.867

0.719
0.678

0.596
0.540

0.489
0.420

0.362
0.294

32
∞

2.000
1.968

1.243
1.209

0.905
0.869

0.719
0.679

0.596
0.543

0.495
0.426

0.372
0.305

33
∞

2.000
1.969

1.243
1.210

0.905
0.870

0.719
0.681

0.596
0.547

0.500
0.433

0.380
0.316

34
∞

2.000
1.970

1.243
1.211

0.905
0.871

0.719
0.682

0.596
0.549

0.505
0.438

0.388
0.327

35
∞

2.000
1.971

1.243
1.212

0.905
0.872

0.719
0.684

0.596
0.552

0.508
0.443

0.394
0.335

36
∞

2.000
1.971

1.243
1.213

0.905
0.873

0.719
0.685

0.596
0.554

0.508
0.448

0.400
0.343

37
∞

2.000
1.972

1.243
1.214

0.905
0.874

0.719
0.686

0.596
0.556

0.508
0.451

0.406
0.349

38
∞

2.000
1.973

1.243
1.215

0.905
0.875

0.719
0.687

0.596
0.557

0.508
0.455

0.411
0.356

39
∞

2.000
1.974

1.243
1.216

0.905
0.876

0.719
0.688

0.596
0.559

0.508
0.458

0.416
0.363

40
∞

2.000
1.974

1.243
1.217

0.905
0.877

0.719
0.689

0.596
0.560

0.508
0.461

0.420
0.368

59

and has SSP coefficient C̃ ≥ r if

β j, β̃ j ≥ 0 (0 ≤ j ≤ k− 1) (5.7a)

αj − r(β j + β̃ j) ≥ 0 (0 ≤ j ≤ k− 1). (5.7b)

If (5.7) is satisfied for some positive value of C̃, then it holds for any smaller positive
value. Hence we are again justified in using bisection to find optimal methods. The
feasibility problem to be solved at each step is (with δj = αj − r(β j + β̃ j)):

LP 3. Given r, determine whether there exist β j, β̃ j, δj such that

β j, β̃ j, δj ≥ 0 (0 ≤ j ≤ k− 1)
k−1

∑
j=0

(
δj + r(β j + β̃ j)

)
ji +

k

∑
j=0

(β j − β̃ j)iji−1 = ki (0 ≤ i ≤ p)

Optimal SSP explicit linear multistep methods with downwinding have been studied
previously [105, 46, 98, 44]. Previous searches for methods in this class were restricted to
methods satisfying β j β̃ j = 0. The following lemma shows that this restriction is always
satisfied by optimal methods.

Lemma 5.4.1. Any optimal SSP method of the form (5.5) has the property that β j β̃ j = 0 for each
j.

Proof. Note that the order conditions (5.6) depend only on the difference β j − β̃ j, while
the inequality constraint (5.7a) can be written as (setting r = C̃)

C̃ ≤ αj/(β j + β̃ j).

Suppose that an optimal method has β j > β̃ j > 0 for j ∈ J1 ⊂ (0, 1, . . . , k − 1) and
β̃ j > β j > 0 for j ∈ J2 ⊂ (0, 1, . . . , k− 1). Then for j ∈ J1 define β∗j = β j − β̃ j and β̃∗j = 0;
for j ∈ J2 define β̃∗j = β̃ j− β j and β∗j = 0. Then (α, β∗) satisfies (5.7) and (5.6) with a larger
value of C̃, which is a contradiction.

Lemma 5.4.1 could be used to write the optimization problem in terms of fewer vari-
ables, obtaining the formulation used in [98, 44]. This results in an integer program-
ming problem with 2k possibilities, each of which is solved by nonlinear programming in
[98, 44]. Although the NLP subproblems are solved very quickly, this approach is unrea-
sonable for very large k because of the exponential growth of the number of subproblems.
By retaining all of the β j, β̃ j, we are able to solve the problem using linear programming;

60

furthermore, the number of linear programming solves is independent of k. Only the size
of the LPs grows with k, and only at a linear rate.

Optimal coefficients of explicit methods are known for methods with up to k = 10
steps and order p = 6 [44]. Optimal SSP coefficients for 1 ≤ k ≤ 50, 1 ≤ p ≤ 15 are given
in Table 5.3. These were computed using the code Rkp_dw.m, available from the author’s
website [67]. For p ≤ 6, k ≤ 10, these values agree with those reported in [44]. The
remaining values are new. Note that, for large values of k, there is little or no difference
between the SSP coefficient for the optimal methods with and without downwinding.

Coefficients of optimal implicit methods with 1 ≤ k ≤ 40, 1 ≤ p ≤ 15, computed
using Rkp_imp_dw.m, are given in Table 5.4. This is the first investigation of implicit SSP
methods with downwinding.

61
Ta

bl
e

5.
3:

O
pt

im
al

SS
P

co
ef

fic
ie

nt
s
C̃ 1

,k
,p

fo
r

ex
pl

ic
it

lin
ea

r
m

ul
ti

st
ep

m
et

ho
ds

w
it

h
do

w
nw

in
di

ng

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
1

1.
00

0
2

1.
00

0
0.

50
0

3
1.

00
0

0.
66

7
0.

28
7

4
1.

00
0

0.
75

0
0.

41
5

0.
15

9
5

1.
00

0
0.

80
0

0.
51

7
0.

23
7

0.
08

7
6

1.
00

0
0.

83
3

0.
58

3
0.

28
3

0.
13

1
0.

04
6

7
1.

00
0

0.
85

7
0.

58
3

0.
36

0
0.

18
7

0.
08

1
0.

02
4

8
1.

00
0

0.
87

5
0.

58
3

0.
39

4
0.

22
3

0.
10

7
0.

04
4

0.
01

3
9

1.
00

0
0.

88
9

0.
58

3
0.

42
4

0.
26

1
0.

14
2

0.
06

8
0.

02
5

0.
00

7
10

1.
00

0
0.

90
0

0.
58

3
0.

44
7

0.
29

9
0.

17
5

0.
08

6
0.

03
7

0.
01

3
0.

00
3

11
1.

00
0

0.
90

9
0.

58
3

0.
46

4
0.

32
6

0.
19

9
0.

10
4

0.
05

6
0.

02
2

0.
00

7
0.

00
2

12
1.

00
0

0.
91

7
0.

58
3

0.
47

7
0.

35
1

0.
21

5
0.

13
1

0.
06

9
0.

03
0

0.
01

2
0.

00
4

0.
00

0
13

1.
00

0
0.

92
3

0.
58

3
0.

48
7

0.
37

2
0.

24
2

0.
15

4
0.

08
3

0.
04

4
0.

01
9

0.
00

7
0.

00
2

0.
00

0
14

1.
00

0
0.

92
9

0.
58

3
0.

49
6

0.
39

1
0.

26
6

0.
17

1
0.

09
6

0.
05

5
0.

02
4

0.
01

0
0.

00
4

0.
00

1
0.

00
0

15
1.

00
0

0.
93

3
0.

58
3

0.
50

3
0.

40
7

0.
28

0
0.

18
7

0.
11

2
0.

06
6

0.
03

4
0.

01
6

0.
00

6
0.

00
2

0.
00

1
0.

00
0

16
1.

00
0

0.
93

8
0.

58
3

0.
50

9
0.

41
1

0.
29

5
0.

19
9

0.
13

3
0.

07
5

0.
04

3
0.

02
0

0.
00

8
0.

00
3

0.
00

1
0.

00
0

17
1.

00
0

0.
94

1
0.

58
3

0.
51

4
0.

41
1

0.
30

7
0.

21
6

0.
14

7
0.

08
6

0.
05

1
0.

02
5

0.
01

3
0.

00
5

0.
00

2
0.

00
1

18
1.

00
0

0.
94

4
0.

58
3

0.
51

9
0.

41
1

0.
31

7
0.

23
2

0.
16

1
0.

09
5

0.
06

0
0.

03
2

0.
01

6
0.

00
7

0.
00

3
0.

00
1

19
1.

00
0

0.
94

7
0.

58
3

0.
52

3
0.

41
1

0.
32

6
0.

24
3

0.
17

3
0.

11
1

0.
06

7
0.

04
0

0.
02

0
0.

01
0

0.
00

4
0.

00
2

20
1.

00
0

0.
95

0
0.

58
3

0.
52

6
0.

41
1

0.
33

4
0.

25
4

0.
18

2
0.

12
5

0.
07

7
0.

04
6

0.
02

4
0.

01
3

0.
00

5
0.

00
2

21
1.

00
0

0.
95

2
0.

58
3

0.
52

9
0.

41
1

0.
33

9
0.

26
3

0.
18

9
0.

13
5

0.
08

4
0.

05
3

0.
03

0
0.

01
5

0.
00

7
0.

00
4

22
1.

00
0

0.
95

5
0.

58
3

0.
53

2
0.

41
1

0.
34

4
0.

27
2

0.
20

1
0.

14
6

0.
09

0
0.

05
9

0.
03

6
0.

01
8

0.
01

0
0.

00
4

23
1.

00
0

0.
95

7
0.

58
3

0.
53

5
0.

41
1

0.
34

9
0.

28
0

0.
21

2
0.

15
7

0.
10

3
0.

06
6

0.
04

0
0.

02
2

0.
01

2
0.

00
6

24
1.

00
0

0.
95

8
0.

58
3

0.
53

7
0.

41
1

0.
35

3
0.

28
8

0.
22

0
0.

16
4

0.
11

3
0.

07
3

0.
04

7
0.

02
6

0.
01

5
0.

00
7

25
1.

00
0

0.
96

0
0.

58
3

0.
53

9
0.

41
1

0.
35

6
0.

29
5

0.
22

8
0.

17
1

0.
12

2
0.

07
9

0.
05

2
0.

03
1

0.
01

7
0.

00
9

26
1.

00
0

0.
96

2
0.

58
3

0.
54

1
0.

41
1

0.
35

9
0.

30
2

0.
23

5
0.

17
7

0.
13

2
0.

08
5

0.
05

7
0.

03
6

0.
02

0
0.

01
1

27
1.

00
0

0.
96

3
0.

58
3

0.
54

3
0.

41
1

0.
36

2
0.

30
7

0.
24

1
0.

18
3

0.
14

0
0.

09
2

0.
06

3
0.

04
0

0.
02

3
0.

01
3

28
1.

00
0

0.
96

4
0.

58
3

0.
54

4
0.

41
1

0.
36

5
0.

31
2

0.
24

6
0.

18
9

0.
14

7
0.

10
2

0.
06

9
0.

04
5

0.
02

7
0.

01
5

29
1.

00
0

0.
96

6
0.

58
3

0.
54

6
0.

41
1

0.
36

7
0.

31
7

0.
25

0
0.

19
6

0.
15

4
0.

10
9

0.
07

4
0.

05
0

0.
03

1
0.

01
8

30
1.

00
0

0.
96

7
0.

58
3

0.
54

7
0.

41
1

0.
36

9
0.

31
9

0.
25

4
0.

20
2

0.
15

9
0.

11
7

0.
07

9
0.

05
4

0.
03

4
0.

02
0

31
1.

00
0

0.
96

8
0.

58
3

0.
54

8
0.

41
1

0.
37

1
0.

31
9

0.
25

7
0.

20
9

0.
16

4
0.

12
4

0.
08

4
0.

05
8

0.
03

8
0.

02
3

32
1.

00
0

0.
96

9
0.

58
3

0.
54

9
0.

41
1

0.
37

3
0.

31
9

0.
26

1
0.

21
4

0.
16

9
0.

13
1

0.
08

9
0.

06
4

0.
04

3
0.

02
6

33
1.

00
0

0.
97

0
0.

58
3

0.
55

0
0.

41
1

0.
37

4
0.

31
9

0.
26

5
0.

21
9

0.
17

3
0.

13
7

0.
09

6
0.

06
8

0.
04

7
0.

02
9

34
1.

00
0

0.
97

1
0.

58
3

0.
55

1
0.

41
1

0.
37

6
0.

31
9

0.
26

8
0.

22
4

0.
17

8
0.

14
2

0.
10

2
0.

07
2

0.
05

0
0.

03
3

35
1.

00
0

0.
97

1
0.

58
3

0.
55

2
0.

41
1

0.
37

7
0.

31
9

0.
27

1
0.

22
8

0.
18

2
0.

14
6

0.
10

9
0.

07
6

0.
05

4
0.

03
6

36
1.

00
0

0.
97

2
0.

58
3

0.
55

3
0.

41
1

0.
37

8
0.

31
9

0.
27

3
0.

23
1

0.
18

5
0.

15
1

0.
11

5
0.

08
1

0.
05

8
0.

03
9

37
1.

00
0

0.
97

3
0.

58
3

0.
55

4
0.

41
1

0.
37

9
0.

31
9

0.
27

6
0.

23
5

0.
19

0
0.

15
5

0.
12

0
0.

08
5

0.
06

2
0.

04
3

38
1.

00
0

0.
97

4
0.

58
3

0.
55

5
0.

41
1

0.
38

0
0.

31
9

0.
27

8
0.

23
8

0.
19

4
0.

15
9

0.
12

6
0.

08
9

0.
06

6
0.

04
6

39
1.

00
0

0.
97

4
0.

58
3

0.
55

6
0.

41
1

0.
38

1
0.

31
9

0.
27

9
0.

24
0

0.
19

8
0.

16
2

0.
13

0
0.

09
5

0.
07

0
0.

04
9

40
1.

00
0

0.
97

5
0.

58
3

0.
55

6
0.

41
1

0.
38

2
0.

31
9

0.
28

1
0.

24
3

0.
20

2
0.

16
6

0.
13

4
0.

10
0

0.
07

3
0.

05
2

62
Table

5.4:O
ptim

alSSP
coefficientsC̃

I1,k,p
for

im
plicit

linear
m

ultistep
m

ethods
w

ith
dow

nw
inding

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
1

∞
2.000

2
∞

2.000
1.303

3
∞

2.000
1.591

1.000
4

∞
2.000

1.710
1.243

0.744
5

∞
2.000

1.776
1.243

0.871
0.544

6
∞

2.000
1.817

1.243
0.976

0.672
0.384

7
∞

2.000
1.845

1.243
1.035

0.788
0.535

0.261
8

∞
2.000

1.866
1.243

1.073
0.870

0.619
0.410

0.171
9

∞
2.000

1.882
1.243

1.093
0.905

0.668
0.474

0.280
0.107

10
∞

2.000
1.894

1.243
1.117

0.905
0.718

0.542
0.369

0.191
0.065

11
∞

2.000
1.905

1.243
1.132

0.905
0.755

0.585
0.433

0.280
0.119

0.038
12

∞
2.000

1.913
1.243

1.143
0.905

0.776
0.629

0.485
0.304

0.195
0.078

0.021
13

∞
2.000

1.920
1.243

1.153
0.905

0.791
0.664

0.512
0.376

0.234
0.121

0.047
0.013

14
∞

2.000
1.926

1.243
1.160

0.905
0.803

0.693
0.540

0.424
0.296

0.175
0.077

0.028
0.007

15
∞

2.000
1.931

1.243
1.167

0.905
0.813

0.714
0.570

0.455
0.342

0.227
0.116

0.050
0.014

16
∞

2.000
1.935

1.243
1.172

0.905
0.821

0.719
0.588

0.479
0.376

0.240
0.157

0.074
0.029

17
∞

2.000
1.939

1.243
1.177

0.905
0.828

0.719
0.605

0.497
0.404

0.266
0.199

0.103
0.047

18
∞

2.000
1.943

1.243
1.181

0.905
0.834

0.719
0.620

0.520
0.430

0.330
0.228

0.140
0.067

19
∞

2.000
1.946

1.243
1.185

0.905
0.839

0.719
0.630

0.536
0.445

0.354
0.263

0.170
0.089

20
∞

2.000
1.949

1.243
1.188

0.905
0.843

0.719
0.638

0.551
0.457

0.379
0.292

0.201
0.124

21
∞

2.000
1.951

1.243
1.191

0.905
0.847

0.719
0.645

0.565
0.472

0.396
0.313

0.227
0.148

22
∞

2.000
1.953

1.243
1.194

0.905
0.850

0.719
0.651

0.577
0.484

0.413
0.335

0.256
0.172

23
∞

2.000
1.956

1.243
1.196

0.905
0.853

0.719
0.656

0.587
0.495

0.424
0.352

0.276
0.196

24
∞

2.000
1.957

1.243
1.198

0.905
0.856

0.719
0.660

0.595
0.504

0.435
0.369

0.293
0.220

25
∞

2.000
1.959

1.243
1.200

0.905
0.858

0.719
0.664

0.596
0.513

0.443
0.383

0.308
0.240

26
∞

2.000
1.961

1.243
1.202

0.905
0.860

0.719
0.668

0.596
0.520

0.453
0.392

0.325
0.258

27
∞

2.000
1.962

1.243
1.203

0.905
0.862

0.719
0.671

0.596
0.526

0.460
0.402

0.339
0.274

28
∞

2.000
1.964

1.243
1.205

0.905
0.864

0.719
0.674

0.596
0.532

0.469
0.410

0.352
0.289

29
∞

2.000
1.965

1.243
1.206

0.905
0.866

0.719
0.676

0.596
0.536

0.477
0.417

0.362
0.301

30
∞

2.000
1.966

1.243
1.208

0.905
0.867

0.719
0.678

0.596
0.540

0.483
0.423

0.370
0.314

31
∞

2.000
1.967

1.243
1.209

0.905
0.869

0.719
0.679

0.596
0.543

0.489
0.430

0.379
0.326

32
∞

2.000
1.968

1.243
1.210

0.905
0.870

0.719
0.681

0.596
0.547

0.495
0.435

0.386
0.336

33
∞

2.000
1.969

1.243
1.211

0.905
0.871

0.719
0.682

0.596
0.549

0.500
0.439

0.392
0.343

34
∞

2.000
1.970

1.243
1.212

0.905
0.872

0.719
0.684

0.596
0.552

0.505
0.444

0.398
0.350

35
∞

2.000
1.971

1.243
1.213

0.905
0.873

0.719
0.685

0.596
0.554

0.508
0.447

0.403
0.356

36
∞

2.000
1.972

1.243
1.214

0.905
0.874

0.719
0.686

0.596
0.556

0.508
0.451

0.408
0.363

37
∞

2.000
1.973

1.243
1.215

0.905
0.875

0.719
0.687

0.596
0.558

0.508
0.455

0.413
0.369

38
∞

2.000
1.973

1.243
1.216

0.905
0.876

0.719
0.688

0.596
0.559

0.508
0.458

0.417
0.374

39
∞

2.000
1.974

1.243
1.216

0.905
0.877

0.719
0.689

0.596
0.560

0.508
0.461

0.421
0.378

40
∞

2.000
1.975

1.243
1.217

0.905
0.878

0.719
0.690

0.596
0.562

0.508
0.463

0.425
0.382

63

Chapter 6

SSP Runge-Kutta Methods

I am currently working on a survey of
implicit RK schemes which are SSP... I
don’t anticipate your part of the
project will take a lot of your time,
maybe a month or so.

S. Gottlieb to the author (Jan. 2007)

In this chapter we present new optimal SSP Runge-Kutta methods of both explicit and
implicit type. Among the various classes of ODE solvers, explicit Runge-Kutta methods
have proven to have the best potential for large effective SSP coefficients. As we saw
in Chapter 5, results for SSP multistep methods are disappointing, in the sense that the
SSP coefficients are very small [107, 46, 63, 41] (even for implicit multistep methods with
downwinding, C ≤ 2 if p > 1).

In Section 6.1, we review many known results from the literature that provide bounds
on C for the classes of RK methods we will consider (explicit, implicit, diagonally implicit,
and singly diagonally implicit). We also draw some simple new conclusions providing
further bounds.

In Section 6.2, we describe the formulation of the optimization problem that is used
in our numerical searches. The optimization problem associated with finding optimal
methods is formulated using the theory of absolutely monotonic methods described in
Chapter 3, which turns out to be advantageous relative to formulations that were used
previously. This formulation uses the Butcher form and a simplified algebraic charac-

64

terization of the SSP coefficient, as suggested in [32]. This allows for solution of the
optimization problem for higher order and larger numbers of stages.

In Section 6.3, we investigate numerically optimal implicit SSP Runge-Kutta methods.
Our results provide the first implicit RK methods with large SSP coefficients, as well as
the first such methods of order six. The methods have many good properties: they are
diagonally implicit and possess small error coefficients and useful low-storage imple-
mentations. We find that the ratio of SSP coefficient for optimal implicit versus explicit
methods is rather small, however.

In Section 6.4, we investigate numerically optimal explicit SSP Runge-Kutta methods.
Our new explicit methods are superior to known methods both in terms of computational
efficiency (larger Ceff) and memory usage. They also have small error coefficients and
good internal stability.

6.1 Bounds on the SSP Coefficient for Runge-Kutta Methods

In this section, we will discuss bounds on C and R(ψ) for various classes of Runge-Kutta
methods. The relationships between these classes are illustrated in Figure 6.1.

The SSP property is a very strong requirement, and imposes severe restrictions on
other properties of a Runge–Kutta method. We now review these results and draw a few
additional conclusions that will guide our search for optimal methods in the next section.

Some results in this and the next section will deal with the optimal value of C when
K ranges over some class of methods. Recall that Cs,k,p (resp., C I

s,k,p) denotes the optimal
value of C over all explicit (resp., implicit) methods of order at least p with at most s
stages and k steps. Since Runge-Kutta methods are 1-step methods, optimal values of C
for explicit (resp., implicit) Runge-Kutta methods will be denoted by Cs,1,p (resp., CI

s,1,p)
when K is permitted to be any explicit (resp., implicit) Runge–Kutta method with at most
s stages and at least order p.

An s-stage Runge–Kutta method applied to a system of N ODEs typically requires
the solution of a system of sN equations. When the system results from the semi-
discretization of a system of nonlinear PDEs, N is typically very large and the system
of ODEs is nonlinear, making the solution of this system very expensive. Using a trans-
formation involving the Jordan form of A, the amount of work can be reduced [11]. This
is especially efficient for singly implicit (SIRK) methods (those methods for which A has
only one distinct eigenvalue), because the necessary matrix factorizations can be reused.
On the other hand, diagonally implicit (DIRK) methods, for which A is lower triangular,
can be implemented efficiently without transforming to the Jordan form of A. The class of
singly diagonally implicit (SDIRK) methods, which are both singly implicit and diagonally

65

IRK

DIRK SIRK

SDIRK

ERK

Figure 6.1: Diagram of important classes of Runge-Kutta methods: IRK=Implicit;
DIRK=Diagonally Implicit; SIRK=Singly Implicit; SDIRK=Singly Diagonally Implicit;
ERK=Explicit.

66

implicit (i.e., A is lower triangular with all diagonal entries identical), incorporate both of
these advantages. Note that in the literature the term diagonally implicit has sometimes
been used to mean singly diagonally implicit. We use CDI

s,1,p, CSI
s,1,p, and CSDI

s,1,p to denote the
optimal value of C over each of the respective classes of DIRK, SIRK, and SDIRK methods.
Note that for a given s and p, these three quantities are each bounded by RI

s,1,p. For details
on efficient implementation of implicit Runge–Kutta methods see, e.g., [27].

We recall from Theorem 3.4.1 that C(K) is finite for all methods of higher than first
order.

The following result, from [76, Theorem 4.2], provides lower bounds for the coeffi-
cients in our numerical searches.

Result 6.1.1. Any irreducible Runge–Kutta method with positive radius of absolute monotonicity
C > 0, must have all non-negative coefficients A ≥ 0 and positive weights b > 0.

Result 6.1.1 implies restrictions on the order and stage order of SSP Runge-Kutta meth-
ods. The stage order is a lower bound on the order of convergence when a method is
applied to arbitrarily stiff problems. Thus low stage order may lead to slow convergence
(i.e., order reduction) when computing solutions of stiff ODEs. The stage order is given by
the largest integer p̃ such that the simplifying assumptions B(p̃), C(p̃) hold, where [27]:

B(ξ) :
s

∑
j=1

bjck−1
j =

1
k

, (1 ≤ k ≤ ξ), (6.1a)

C(ξ) :
s

∑
j=1

aijck−1
j =

1
k

ck
i , (1 ≤ k ≤ ξ). (6.1b)

Result 6.1.2. [76, Lemma 8.6] A Runge–Kutta method with weights b > 0 must have stage order
p̃ ≥

⌊
p−1

2

⌋
.

Combining Results 6.1.1 and 6.1.2, we have that

C > 0 =⇒ p ≤ 2p̃ + 2. (6.2)

We next review restrictions on the stage order of certain classes of Runge-Kutta meth-
ods.

Result 6.1.3. [76, Theorem 8.5] A Runge–Kutta method with non-negative coefficients A ≥ 0
must have stage order p̃ ≤ 2. If p̃ = 2, then A must have a zero row.

When dealing with singly diagonally implicit methods or explicit methods, stage order
is limited whether or not one requires non-negative coefficients [76, 26, 27]:

67

Result 6.1.4. The stage order of a singly diagonally implicit (or explicit) Runge–Kutta method is
at most p̃ = 1.

For SSP methods, the stage order restriction leads to restrictions on the classical order
as well. Combining Results 6.1.1, 6.1.3, 6.1.2, and 6.1.4, we obtain:

Result 6.1.5. (see also [76, Corollary 8.7]) Any irreducible Runge–Kutta method with C > 0 has
order p ≤ 6 (p ≤ 4 if it is explicit or singly diagonally implicit). Furthermore, if p ≥ 5, then A
has a zero row.

We next give a general result on the order of DIRK and SIRK methods.

Result 6.1.6. The order of an s-stage SIRK or DIRK method is at most s + 1.

Proof. For a given s-stage SIRK or DIRK method, let ψ denote the stability function. For
both classes of methods, ψ is a rational function with numerator of degree s and only real
poles. Such a function approximates the exponential function to order at most s + 1 [27,
Theorem 3.5.11].

In the following result, Πs,p denotes the set of all polynomials ψ of degree less than or
equal to s satisfying ψ(x) = exp(x) +O(xp+1) as x → 0.

Corollary 6.1.7. For SIRK methods with p ≥ 5,

CSI
s,1,p ≤ Rs,1,p.

Proof. For SIRK methods with p ≥ 5, Result 6.1.5 implies that all eigenvalues of A must
be zero, hence the stability function ψ must be a polynomial. Combined with (3.62), this
proves the inequality.

Corollary 6.1.7 implies that for s-stage SIRK methods of order p ≥ 5, C is bounded by
the optimal threshold factor of s-stage explicit Runge–Kutta methods of the same order
(see Chapter 4 for values of these optimal coefficients).

6.2 Formulation of the Optimization Problem

Extensive efforts have been made to find optimal explicit SSP Runge-Kutta methods both
by analysis and numerical search [76, 45, 46, 111, 112, 96]. Except for [76], all of these
efforts formulated the optimization problem using the Shu-Osher form. While this allows
the inequality constraints to be written as linear constraints, it leads to a large number
of decision variables. It has been pointed out in [33] that by using the conditions for

68

absolute monotonicity, the problem can be formulated in terms of the Butcher array only,
reducing the number of variables by half and simplifying dramatically the form of the
order conditions. We adopt this latter formulation, which can be applied to implicit
methods as well:

maximize r subject to

K(I + rA)−1 ≥ 0 (6.3a)

‖rK(I + rA)−1‖∞ ≤ 1 (6.3b)

τk(K) = 0 (k ≤ p) (6.3c)

where the matrix inequality is understood componentwise and τk represents the set of
order conditions for order k (see Section 2.3). Additional constraints are added in order
to investigate various subclasses of methods. For explicit methods, we impose

Kij = 0 (j ≥ i). (6.4)

For diagonally implicit methods, we impose

Kij = 0 (j > i). (6.5)

For singly diagonally implicit methods, we impose

Kij = 0 (j > i) (6.6)

Kjj = K11 (j > 1). (6.7)

This formulation, implemented in Matlab using a sequential quadratic programming
approach (fmincon in the optimization toolbox), was used to find the methods given below.

The above problem can be reformulated (using a standard approach for converting
rational constraints to polynomial constraints) as

max
K,P

r (6.8a)

subject to

P ≥ 0

‖P‖∞ ≤ 1

rK = P(I + rK),

Φp(K) = 0.

(6.8b)

This optimization problem has only polynomial constraints and thus is appropriate for

69

the Baron optimization software which requires such constraints to be able to guarantee
global optimality [100].

6.3 Implicit Runge-Kutta Methods

For implicit methods it is not known
whether p = 6 can be achieved...

J.F.B.M. Kraaijevanger (1991)

In this section we present numerically optimal implicit SSP Runge–Kutta methods for
nonlinear systems of ODEs. These methods were found via numerical search, and in
general we have no analytic proof of their optimality. In a few cases, we have employed
Baron, an optimization software package that provides a numerical certificate of global
optimality [100]. Baron was used to find optimal explicit SSP Runge–Kutta methods in
[88, 97]. However, this process is computationally expensive and was not practical in most
cases.

We applied our optimization approach to finding optimal SSP Runge–Kutta methods
over other classes for which results are already known, and successfully found a solution
at least as good as the previously best known solution in every case. Because our approach
was able to find these previously known methods (and some improvements), we expect
that many of the new methods are globally optimal (to within numerical precision).

The optimization problem for general (implicit) Runge–Kutta methods involves ap-
proximately twice as many decision variables (dimensions) as the explicit or singly diag-
onally implicit cases, which have previously been investigated [45, 46, 111, 112, 97, 35].
Despite the larger number of decision variables, we have been able to find numerically
optimal methods even for large numbers of stages. We attribute this success to the refor-
mulation of the optimization problem in terms of the Butcher coefficients rather than the
Shu–Osher coefficients.

Because in most cases we cannot prove the optimality of the resulting methods, we
use hats to denote the best value found by numerical search, e.g. ĈI

s,1,p, etc.

In comparing methods with different numbers of stages, one is usually interested in
the relative time advancement per computational cost. For diagonally implicit methods,
the computational cost per time-step is proportional to the number of stages; hence in this
case the effective SSP coefficient is relevant. However, for non-DIRK methods of various s,
it is much less obvious how to compare computation cost.

Since C < ∞ for all general linear methods, one cannot hope to avoid SSP time re-
strictions completely by using an implicit method. Nevertheless, implicit methods may

70

be expected to allow larger SSP timesteps than explicit methods.

6.3.1 Optimal Methods

For implicit methods, the matrix P defined in (3.31) has non-zero diagonal elements.
Thus it is not convenient for implementation, since yj appears on the right hand side of
the equation for yj in this form. We thus present the coefficients in modified Shu-Osher
form (see [73]):

yi =

(
1−

s

∑
j=1

λij

)
un +

s

∑
j=1

λijyj + ∆tµijF(tn + cj∆t, yj), (1 ≤ i ≤ s + 1), (6.9a)

un+1 = ys+1. (6.9b)

We choose the coefficients so that the diagonal elements of λii are zero. This form is a
simple rearrangement and involves no loss of generality.

Second-order Methods

Optimizing over the class of all (s ≤ 11)-stage second-order implicit Runge–Kutta meth-
ods we found that the numerically optimal methods are, remarkably, identical to the
numerically optimal SDIRK methods found in [32, 35]. This result stresses the impor-
tance of the second-order SDIRK methods found in [32, 35]: they appear to be optimal
not only among SDIRK methods, but also among the much larger class of all implicit
Runge–Kutta methods.

These methods are most advantageously implemented in a certain modified Shu–
Osher form. This is because these arrays (if chosen carefully) are more sparse. In fact,
for these methods there exist modified Shu–Osher arrays that are bidiagonal. We give the
general formulae here.

The numerically optimal second-order method with s stages has C = 2s and coeffi-
cients

λ =

0
1 0

1
. . .
. . . 0

1

, µ =

1
2s
1
2s

1
2s
1
2s

. . .

. . . 1
2s
1
2s

. (6.10)

The one-stage method of this class is the implicit midpoint rule, while the s-stage

71

method is equivalent to s successive applications of the implicit midpoint rule (as was
observed in [32]). Thus these methods inherit the desirable properties of the implicit
midpoint rule, such as algebraic stability and A-stability [48]. Of course, since they all
have the same effective SSP coefficient C/s = 2, they are all essentially equivalent.

The one-stage method is the unique method with s = 1, p = 2 and hence is optimal.
The two-stage method achieves the maximum radius of absolute monotonicity for rational
functions that approximate the exponential to second order with numerator and denomi-
nator of degree at most two, hence it is optimal to within numerical precision [118, 68, 35].
In addition to duplicating these optimality results, Baron was used to numerically prove
that the s = 3 scheme is globally optimal, verifying [35, Conjecture 3.1] for the case s = 3.
The s = 1 and s = 2 cases required only several seconds but the s = 3 case took much
longer: approximately 11 hours of CPU time on an Athlon MP 2800+ processor.

While the remaining second order methods have not been proven optimal, it appears
likely that they may be (see Conjecture 6.5.1).

Third-order Methods

The numerically optimal third-order implicit Runge–Kutta methods with s ≥ 2 stages are
also singly diagonally implicit and identical to the numerically optimal SDIRK methods
found in [32, 35], which have C = s− 1 +

√
s2 − 1. Once again, these results indicate that

the methods found in [32, 35] are likely optimal over the entire class of implicit Runge–
Kutta methods.

These methods may also be implemented using bidiagonal modified Shu–Osher ar-
rays. For p = 3 and s ≥ 2 the numerically optimal methods have coefficients

λ =

0

1
. . .
. . . 0

1 0
λs+1,s

, µ =

µ11

µ21
. . .
. . . µ11

µ21 µ11

µs+1,s

, (6.11a)

where

µ11 =
1
2

(
1−

√
s− 1
s + 1

)
, µ21 =

1
2

(√
s + 1
s− 1

− 1

)
, (6.11b)

µs+1,s =
s + 1

s(s + 1 +
√

s2 − 1)
, λs+1,s =

(s + 1)(s− 1 +
√

s2 − 1)
s(s + 1 +

√
s2 − 1)

. (6.11c)

72

Figure 6.2: Scaled absolute stability regions of optimal third-order implicit SSP Runge-
Kutta methods with two to six stages. The larger scaled stability regions correspond to
the methods with more stages.

The two-stage method in this family achieves the maximum value of R(ψ) found in [118]
for ψ in the set of third-order rational approximations to the exponential with numerator
and denominator of degree at most 2. Since the corresponding one-parameter optimiza-
tion problem is easy to solve, then (since C ≤ R), the method is clearly optimal to within
numerical precision. Baron was used to numerically prove global optimality for the
three-stage method (6.11), requiring about 12 hours of CPU time on an Athlon MP 2800+
processor. Note that this verifies [35, Conjecture 3.2] for the case s = 3.

The scaled absolute stability regions (scaled by the number of stages) of the methods
with two to six stages are plotted in Figure 6.2.

While the remaining third order methods (those with s ≥ 4) have not been proven
optimal, we are again led to suspect that they may be, because of the nature of the optimal
methods and the convergent behavior of the optimization algorithm for these cases (see
Conjecture 6.5.2).

Fourth-order Methods

Based on the above results, one might suspect that all optimal implicit SSP methods are
singly diagonally implicit. In fact, this cannot hold for p ≥ 5 since in that case A must

73

Table 6.1: SSP coefficients and effective SSP coefficients of numerically optimal fourth-
order implicit Runge–Kutta methods and SDIRK methods.

s CI
s,1,4 CSDI

s,1,4 CI
s,1,4/s CSDI

s,1,4/s
3 2.05 1.76 0.68 0.59
4 4.42 4.21 1.11 1.05
5 6.04 5.75 1.21 1.15
6 7.80 7.55 1.30 1.26
7 9.19 8.67 1.31 1.24
8 10.67 10.27 1.33 1.28
9 12.04 1.34

10 13.64 1.36
11 15.18 1.38

have a zero row (see Result 6 above). The numerically optimal methods of fourth-order
are not singly diagonally implicit either; however, all numerically optimal fourth-order
methods we have found are diagonally implicit.

The unique two-stage fourth-order Runge–Kutta method has a negative coefficient and
so is not SSP. Thus we begin our search with three-stage methods. We list the SSP coeffi-
cients and effective SSP coefficients of the numerically optimal methods in Table 6.1. For
comparison, the table also lists the effective SSP coefficients of the numerically optimal
SDIRK methods found in [35]. Our numerically optimal DIRK methods have larger SSP
coefficients in every case. Furthermore, they have representations that allow for very effi-
cient implementation in terms of storage. However, SDIRK methods may be implemented
in a potentially more efficient (in terms of computation) manner than DIRK methods. An
exact evaluation of the relative efficiencies of these methods is beyond the scope of this
work. The coefficients of the methods are given in Appendix A.

Baron was run on the three-stage fourth-order case but was unable to prove the global
optimality of the resulting method using 14 days of CPU time on an Athlon MP 2800+
processor. However, during that time Baron did establish an upper bound CI

3,1,4 ≤ 3.234.
Baron was not run on any other fourth-order cases, nor was it used for p = 5 or p = 6.

Although none of the fourth-order methods are proven optimal, it appears that they
may be optimal. This is again because the optimization algorithm is able to converge
to these methods from a range of random initial guesses, and because very many of the
inequality constraints are satisfied exactly for these methods. Additionally, we were able
to recover all of the optimal fourth-order SDIRK methods of [35] by restricting our search
to the space of SDIRK methods.

74

Fifth- and Sixth-order Methods

We have found fifth- and sixth-order SSP methods with up to eleven stages. Two sets of
numerical searches were conducted, corresponding to optimization over the full class of
implicit Runge–Kutta methods and optimization over the subclass of diagonally implicit
Runge–Kutta methods. More CPU time was devoted to the first set of searches; however,
in most cases the best methods we were able to find resulted from the searches restricted
to DIRK methods. Furthermore, when searching over fully implicit methods, in every case
for which the optimization algorithm successfully converged to a (local) optimum, the
resulting method was diagonally implicit. Thus all of the numerically optimal methods
found are diagonally implicit.

Because better results were obtained in many cases by searching over a strictly smaller
class of methods, it seems likely that the methods found are not globally optimal. This
is not surprising because the optimization problems involved are highly nonlinear with
many variables, many constraints, and multiple local optima. The application of more
sophisticated software to this problem is an area of future research. Nevertheless, the
observation that all converged solutions correspond to DIRK methods leads us to believe
that the globally optimal methods are likely to be DIRK methods.

Typically, an optimization algorithm may be expected to fail for sufficiently large prob-
lems (in our case, sufficiently large values of s). However, we found that the cases of
relatively small s and large p (i.e., p = 5 and s < 6 or p = 6 and s < 9) also posed great
difficulty. This may be because the feasible set in these cases is extremely small. The
methods found in these cases were found indirectly by searching for methods with more
stages and observing that the optimization algorithm converged to a reducible method.
Due to the high nonlinearity of the problem for p ≥ 5, we found it helpful to explicitly
limit the step sizes used by fmincon in the final steps of optimization.

Fifth-order Methods

Three stages Using the W transformation [27] we find the one parameter family of
three-stage, fifth-order methods

A =

5
36 + 2

9 γ 5
36 + 1

24

√
15− 5

18 γ 5
36 + 1

30

√
15 + 2

9 γ
2
9 − 1

15

√
15− 4

9 γ 2
9 + 5

9 γ 2
9 + 1

15

√
15− 4

9 γ
5
36 − 1

30

√
15 + 2

9 γ 5
36 − 1

24

√
15− 5

18 γ 5
36 + 2

9 γ

 .

It is impossible to choose γ so that a21 and a31 are simultaneously nonnegative, so there
are no SSP methods in this class.

75

Table 6.2: Comparison of SSP coefficients of numerically optimal fifth-order IRK methods
with theoretical upper bounds on SSP coefficients of fifth-order SIRK methods.

s CI
s,1,5 CSI

s,1,5 CI
s,1,5/s CSI

s,1,5/s
(upper bound) (upper bound)

4 1.14 0.29
5 3.19 1.00 0.64 0.20
6 4.97 2.00 0.83 0.33
7 6.21 2.65 0.89 0.38
8 7.56 3.37 0.94 0.42
9 8.90 4.10 0.99 0.46
10 10.13 4.83 1.01 0.48
11 11.33 5.52 1.03 0.50

Four to Eleven stages We list the time-step coefficients and effective SSP coefficients
of the numerically optimal fifth order implicit Runge–Kutta methods for 4 ≤ s ≤ 11 in
Table 6.2. It turns out that all of these methods are diagonally implicit.

For comparison, we also list the upper bounds on effective SSP coefficients of SIRK
methods in these classes implied by combining Corollary 6.1.7 with [69, Table 2.1]. Our
numerically optimal IRK methods have larger effective SSP coefficients in every case. The
coefficients of the methods are given in Appendix A.

Sixth-order Methods

Kraaijevanger [76] proved the bound p ≤ 6 (see Result 6.1.5 above) and presented a single
fifth-order method, leaving the existence of sixth-order methods as an open problem.
The sixth-order methods we have found settle this problem, demonstrating that the order
barrier p ≤ 6 for implicit SSP/contractive methods is sharp.

The non-existence of three-stage SSP Runge–Kutta methods of fifth-order, proved
above, implies that sixth-order SSP Runge–Kutta methods must have at least four stages.
Result 6.1.6 implies that sixth-order SSP DIRK methods must have at least five stages, and
Corollary 6.1.7 shows that sixth-order SSP SIRK methods require at least six stages. We
were unable to find sixth-order SSP Runge–Kutta methods with fewer than six stages.

The SSP coefficients and effective SSP coefficients of the numerically optimal methods
for 6 ≤ s ≤ 11 are listed in Table 6.3. All of these methods are diagonally implicit.
The coefficients of the methods are given in Appendix A. We were unable to find an
eleven-stage method with larger effective SSP coefficient than that of the ten-stage method
(although we did find a method with larger C).

76

Table 6.3: SSP coefficients and effective SSP coefficients for numerically optimal sixth-
order implicit RK methods.

s CI
s,1,6 CI

s,1,6/s
6 0.18 0.030
7 0.26 0.038
8 2.25 0.28
9 5.80 0.63
10 8.10 0.81
11 8.85 0.80

6.3.2 Numerical Experiments

We begin our numerical examples with a convergence study on a linear advection prob-
lem with smooth initial conditions. We then proceed to show the importance of the
threshold factor for this linear advection problem with discontinuous initial condition.
Finally, the effect of the SSP coefficient is demonstrated on the nonlinear Burgers’ and
Buckley–Leverett equations.

The computations in Section 6.3.2 were performed with Matlab version 7.1 on a Mac
G5; those in Sections 6.3.2 and 6.3.2 were performed with Matlab version 7.3 on x86-
64 architecture. All calculations were performed in double precision. For the implicit
solution of linear problems we used Matlab’s backslash operator, while for the nonlinear
implicit solves we used the fsolve function with very small tolerances.

We refer to the numerically optimal methods as SSPsp where s, p are the number of
stages and order, respectively. For instance, the numerically optimal eight-stage method
of order five is SSP85.

Linear Advection

The prototypical hyperbolic PDE is the linear advection equation,

ut + aux = 0, 0 ≤ x ≤ 2π. (6.12)

We consider (6.12) with a = −2π, periodic boundary conditions and various initial con-
ditions. We use a method-of-lines approach, discretizing the interval (0, 2π] into m points
xj = j∆x, j = 1, . . . , m, and then discretizing −aux with first-order upwind finite differ-
ences. We solve the resulting system using our timestepping schemes. To isolate the effect
of the time-discretization error, we exclude the effect of the error associated with the spa-

77

10
0

10
1

10
−6

10
−4

10
−2

10
0

σ

L ∞
 e

rr
or

Advection of a Sine Wave

p = 3

SSP33
SSP43
SSP53
SSP63
SSP73
SSP83

10
0

10
110

−15

10
−10

10
−5

σ

L ∞
 e

rr
or

Advection of a Sine Wave

p = 4

p = 5

p = 6

SSP54
SSP64
SSP85
SSP116

Figure 6.3: Convergence of optimal SSP IRK methods for the sine wave advection prob-
lem. All methods achieve their designed rate of convergence.

tial discretization by comparing the numerical solution to the exact solution of the ODE
system, rather than to the exact solution of the PDE (6.12). In lieu of the exact solution
we use a very accurate numerical solution obtained using Matlab’s ode45 solver with
minimal tolerances (AbsTol = 1× 10−14, RelTol = 1× 10−13).

Figure 6.3 shows a convergence study for various numerically optimal schemes for the
problem (6.12) with m = 120 points in space and smooth initial data

u(0, x) = sin(x),

advected until final time t f = 1. Here σ indicates the relative size of the timestep: ∆t =
σ∆tFE. The results show that all the methods achieve their design order.

Now consider the advection equation with discontinuous initial data

u(x, 0) =

{
1 if π

2 ≤ x ≤ 3π
2 ,

0 otherwise.
(6.13)

Figure 6.4 shows a convergence study for the third-order methods with s = 3 to s = 8
stages, for t f = 1 using m = 64 points and the first-order upwinding spatial discretization.
Again, the results show that all the methods achieve their design order. Finally, we note
that the higher-stage methods give a smaller error for the same timestep; that is, as s
increases, the error constant of the method decreases.

Figure 6.5 shows the result of solving the discontinuous advection example using
the two-stage third-order method over a single timestep with m = 200. For this lin-

78

10
0

10
110

−6

10
−4

10
−2

σ

L ∞
 e

rr
or

Advection of a Square Wave

p = 3

SSP33
SSP43
SSP53
SSP63
SSP73
SSP83

Figure 6.4: Convergence of optimal third-order SSP IRK methods for the square wave
advection problem.

ear autonomous system, the theoretical monotonicity-preserving timestep bound is σ ≤
R(ψ) = 2.732. We see that as the timestep is increased, the line steepens and forms a
small step, which becomes an oscillation as the stability limit is exceeded, and worsens as
the timestep is raised further.

Burgers’ Equation

In this section we consider the inviscid Burgers’ equation, which consists of the conserva-
tion law

ut + f (u)x = 0 (6.14)

with flux function f (u) = 1
2 u2. We take initial conditions u(0, x) = 1

2 − 1
4 sin(πx) on

the periodic domain x ∈ [0, 2). The solution is right-travelling and over time develops a
shock. We discretize − f (u)x using the conservative upwind approximation

− f (u)x ≈ − 1
∆x

(f (ui)− f (ui−1)) . (6.15)

with m = 256 points in space and integrate to time t f = 2. The convergence study in
Figure 6.7 shows that the fourth-, fifth- and sixth-order s-stage methods achieve their
respective orders of convergence when compared to a temporally very refined solution of

79

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

x

u

(a) σ = 2.0

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

x

u

(b) σ = 2.5

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

x

u

(c) σ = 2.7

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

x

u

(d) σ = 2.8

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

x

u

(e) σ = 3.0

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

x

u

(f) σ = 3.6

Figure 6.5: Comparison of square wave advection using a range of CFL numbers. The
solution obtained with the optimal implicit two-stage third-order method (R(ψ) = 2.732)
is plotted after one timestep.

80

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

u

ref. soln.
SSP53

(a) σ = 8

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

u

ref. soln.
SSP53

(b) σ = 32

Figure 6.6: Comparison of Burgers evolution of a sine wave for CFL numbers below and
above the SSP limit. The solution is obtained with the optimal five-stage third-order
implicit Runge-Kutta method (C = 8.90).

the discretized system.

Figure 6.6 shows that when the timestep is below the stability limit no oscillations
appear, but when the stability limit is violated, oscillations are observed.

Buckley–Leverett Equation

The Buckley–Leverett equation is a model for two-phase flow through porous media [82]
and consists of the conservation law (6.14) with flux function

f (u) =
u2

u2 + a(1− u)2 .

We take a = 1
3 and initial conditions

u(x, 0) =

{
1 if x ≤ 1

2 ,
0 otherwise,

on x ∈ [0, 1) with periodic boundary conditions. Our spatial discretization uses m = 100
points and we use the conservative scheme with Koren limiter used in [35] and [61, Sec-
tion III.1]. The nonlinear system of equations for each stage of the Runge–Kutta method is
solved with Matlab’s fsolve, with the Jacobian approximated [61] by that of the first-order
upwind discretization (6.15). We compute the solution for n =

⌈ 1
8

1
∆t

⌉
timesteps.

For this problem, as in [35], we find that the forward Euler solution is total variation

81

10
0

10
1

10
−10

10
−5

p = 4

σ

L ∞
 e

rr
or

Burgers’ Equation

SSP34
SSP44
SSP54
SSP64
SSP74
SSP84
SSP94
SSP10,4
SSP11,4

10
0

10
1

10
−10

10
−5

p = 5

σ

L ∞
 e

rr
or

Burgers’ Equation

SSP45
SSP55
SSP65
SSP75
SSP85
SSP95
SSP10,5
SSP11,5

10
0

10
1

10
−10

10
−5

p = 6

σ

L ∞
 e

rr
or

Burgers’ Equation

SSP66
SSP76
SSP86
SSP96
SSP10,6

Figure 6.7: Convergence of optimal implicit SSP RK methods for the Burgers’ sine wave
problem. The solid circles indicate σ = C for each scheme.

82

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

u(
x)

 t = 0.085, TV = 1

IC
num soln

(a) σ = 2

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

u(
x)

 t = 0.084, TV = 1.0869

IC
num soln

(b) σ = 2.4

Figure 6.8: Comparison of solutions of the Buckley-Leverett equation for CFL numbers
below and above the SSP limit. The optimal second-order, one-stage implicit SSP RK
method is used (C = 2).

diminishing (TVD) for ∆t ≤ ∆tFE = 0.0025. Figure 6.8 shows typical solutions for the
SSP(1,2) scheme with timestep ∆t = σ∆tFE. Table 6.4 compares the SSP coefficient C with
σBL = ∆tRK/∆tFE, where ∆tRK is the largest observed timestep for which the numerical
solution obtained with the Runge–Kutta method is TVD. We note that, for each method,
the value of σBL is greater than the SSP coefficient. In fact, at least for either lower order p
or high number of stages s, the values are in good correspondence. For p = 2 and p = 3,
our results agree with those of [35].

6.4 Explicit Runge-Kutta Methods

Among the Runge-Kutta methods originally introduced in [105], two have been very
widely implemented: the two stage, second order method of Heun, and a three stage,
third order method originally proposed by Fehlberg (though not in the context of SSP
methods). These methods achieve the largest SSP coefficient, or relative nonlinearly sta-
ble timestep, among all two-stage, second order and three-stage, third order methods,
respectively. The non-existence of four-stage, fourth order methods was suggested in
[105] and proved in [45] (cf. [76]).

Extensive efforts have been made to find more efficient explicit SSP Runge-Kutta meth-
ods by allowing more stages [76, 45, 46, 111, 112, 97]. Although increasingly efficient
methods have been found, most require increased storage and have not been widely
used. A few studies have considered optimal low-storage SSP methods [45, 46, 97].

Efforts to find SSP methods have focused on finding the method with maximal SSP

83

Table 6.4: Comparison of the SSP coefficient C and the maximum TVD timestep σBL for
the Buckley-Leverett example for optimal implicit SSP RK methods.

s
p C σBL

2 3 4 5 6 2 3 4 5 6
1 2 - - - - 2.03 - - - -
2 4 2.73 - - - 4.08 3.68 - - -
3 6 4.83 2.05 - - 6.11 5.39 4.01 - -
4 8 6.87 4.42 1.14 8.17 7.13 5.59 4.04
5 10 8.90 6.04 3.21 10.25 9.06 6.46 4.91
6 12 10.92 7.80 4.97 0.18 12.33 11.18 7.98 6.92 4.83
7 14 12.93 9.19 6.21 0.26 14.43 13.33 9.31 9.15 5.14
8 16 14.94 10.67 7.56 2.25 16.53 15.36 11.42 8.81 5.66
9 18 16.94 12.04 8.90 5.80 18.60 17.52 15.01 11.04 7.91

10 20 18.95 13.64 10.13 8.10 20.66 19.65 13.84 12.65 10.80
11 22 20.95 15.18 11.33 8.85 22.77 21.44 15.95 14.08 11.82

coefficient for a prescribed order, number of stages, and (sometimes) number of memory
registers. However, the number of stages is only important as it affects the computational
efficiency and memory requirements of the method. We therefore focus on methods that
are optimal over all stages in terms of efficiency and memory. We will see that in some
cases the optimal method is obtained as the limit of a family of methods, parameterized
by stage number.

6.4.1 Memory Considerations

We now briefly discuss some concepts regarding memory usage for explicit Runge-Kutta
methods. These will be explored in much greater detail in Chapter 7.

A naive implementation of an s-stage Runge-Kutta method requires s + 1 memory
registers. However, if certain algebraic relations between the coefficients are satisfied, the
method may be implemented with fewer registers. Two such types of relations have been
exploited in the literature [124, 66]. The resulting two types of low-storage methods make
different important assumptions on the manner in which F is evaluated.

Consider two storage registers, q1 and q2, each of size N, where N denotes the number
of ODEs to be integrated. The low-storage methods of Williamson [124] assume that it is
possible to make assignments of the form

q1 := q1 + F(q2),

without allocating (much) additional storage for the evaluation of F(q2). As noted in
[66], this requires that the evaluation be done in ’piecemeal fashion’. This is natural, for

84

instance, if F corresponds to a spatial discretization of a PDE where the spatial stencil is
localized, which is usually the case for semi-discretizations of hyperbolic PDEs.

The low-storage methods of van der Houwen type [66] make instead the assumption
that it is possible to make assignments of the form

q1 := F(q1),

again without significant additional storage. This is reasonable for compressible Navier-
Stokes calculations [66], and also when F corresponds to a spatial discretization of a PDE
where the spatial stencil is localized.

In the present work we give a new class of low-storage methods; the low-storage
methods presented here require the assumption that it is possible to make assignments of
the form

q1 := q1 + F(q1),

without employing a second storage register. This assumption implies the assumptions
necessary for implementation of Williamson and van der Houwen methods; hence, the
class of semi-discretizations to which it is applicable is smaller. However, it is still reason-
able for spatial discretizations with local stencils. While it requires careful programming,
especially for problems in two or three dimensions, when memory considerations are
important this may be worth the effort.

In the following, a method requiring m storage registers of length N is referred to as
an mS method. Sometimes it is necessary to retain the value of the solution at the previous
timestep, usually in order to restart the step if some accuracy or stability requirement is
violated. While most low-storage methods will require an additional register in this case,
some will not. Methods that do not are denoted by mS*.

The first order accurate forward Euler method has Ceff = 1 and can be implemented
in 1S* fashion; hence consideration of first order SSP methods with more stages is super-
fluous. Since explicit SSP Runge-Kutta methods have order at most four [99], it remains
to consider methods of order two through four.

6.4.2 Optimal Methods

Note that C ≤ R by definition, so the values of Rs,1,p(ψ) in Table 4.1 are upper bounds
on the value of C for methods with a given order p and number of stages s. We will see
that, in many cases, this bound can be achieved. Surprisingly, it is even possible to find
methods that achieve this bound and that can be implemented in low-storage form.

Since R ≤ s, it follows that Ceff ≤ 1 (in fact, Ceff < 1 for methods of greater than first
order). Also, any method that uses only a single memory register must consist simply

85

of repeated forward Euler steps and therefore cannot be more than first order accurate.
Thus an ideal higher order method would have m = 2 and Ceff as close as possible to 1.

Second Order Methods

2S* Methods. Optimal second order methods with Ceff arbitrarily close to 1 were found
in [76], and later independently in [111]. The s-stage method in this family has SSP
coefficient s − 1, hence Ceff = s−1

s . The nonzero entries of the low-storage form for the
s-stage method are

βi,i−1 =

{
1

s−1 2 ≤ i ≤ s
1
s i = s + 1

(6.16a)

αi,i−1 =

{
1 2 ≤ i ≤ s
s−1

s i = s + 1
(6.16b)

αs+1,0 =
1
s

. (6.16c)

The abscissas are
ci =

i− 1
s− 1

(1 ≤ i ≤ s). (6.17)

Note that these methods do not require a third register even if the previous timestep must
be retained. As far as we know, no low-storage implementations of this type have been
proposed before, for any Runge-Kutta method. Because the storage costs do not increase
with s while the effective SSP coefficient does, there seems to be little drawback to using
these methods with large values of s. However, we are not aware of any implementation
of these methods for s > 4. This may be because the low-storage property of these
methods has not been pointed out previously, probably because they cannot be written in
Williamson or van der Houwen form, for s > 2.

Since second order discretizations are often considered to be the most efficient for com-
pressible flow problems involving shocks (the same problems that originally motivated
development of SSP methods), these methods should prove to be very useful. Note that
the large s members of this family are approximately twice as efficient as the two-stage
method, which is the most commonly used.

Here and below, low-storage implementations are given in Matlab code; if imple-
mented exactly in this form in Matlab, an additional memory register will be used for
temporary storage during evaluation of F. To avoid this, the code should be implemented
in a manner such that the argument of F is passed by reference, rather than by copy. The
storage registers in the pseudo-code are denoted by q1 and q2. A low-storage implemen-

86

tation of (6.16) is given in Pseudo-code 1.

q1 = u; q2=u;
for i=1:s-1

q1 = q1 + dt*F(q1)/(s-1);
end
q1 = ((s-1)*q1 + q2 + dt*F(q1))/s;
u=q1;

Pseudo-code 1: Low-storage implementation of the optimal second order methods.

Third Order Methods

2S* Methods. The three- and four-stage third order SSP Runge-Kutta methods, origi-
nally reported in [105] and [76], respectively, can be implemented with just two memory
registers, even if the previous timestep must be retained. This is possible because, like
the second order methods above, the only nonzero coefficients in the Shu-Osher arrays
of these methods are in the first column of α and the first subdiagonal of α and β Since
the four-stage method is 50% more efficient and requires the same amount of memory, it
seems always preferable to the three-stage method. By allowing more than four stages,
we found methods of this type with larger SSP coefficient; however, the number of stages
required resulted in every case in an effective SSP coefficient smaller than that of the
four-stage method (Ceff = 1/2).

2S Methods. We now consider methods that can be implemented with only two
registers, assuming the solution at the previous timestep can be discarded. Of course,
they may be implemented with three registers if the previous timestep solution needs to
be retained.

Low-storage 3rd order methods were found in [97]; the best 2S method has Ceff =
0.297; the best 3S method has Ceff = 0.513. In the limit of s → ∞, the following family of
methods achieves the ideal Ceff → 1.

Theorem 6.4.1. Let n > 2 be an integer and let s = n2. Then there exists a third order s-stage

87

method with SSP coefficient C = Rs,1,3 = n2 − n. The non-zero coefficients of the method are

αi,i−1 =

{
n−1

2n−1 i = n(n+1)
2 + 1

1 otherwise
(6.18a)

α n(n+1)
2 +1, (n−1)(n−2)

2 +1
=

n
2n− 1

(6.18b)

βi,i−1 =
αi,i−1

n2 − n
. (6.18c)

The abscissas of the method are

ci =
i− 1

n2 − n
, for 1 ≤ i ≤ (n2 + n)/2 (6.19a)

ci =
i− n− 1

n2 − n
for (n2 + n + 2)/2 ≤ i ≤ n2. (6.19b)

Furthermore, no third order s-stage method exists with a larger SSP coefficient.

The proof of the theorem is straightforward. The SSP coefficient is evident from the
coefficients, while the satisfaction of the order conditions can be verified by forming the
Butcher array and checking directly. The optimality follows from (3.62) and the fact that
Rn2,1,3 = n2 − n [75].

Like the second order family (6.16) above, this family of methods achieves effective SSP
coefficients arbitrarily close to one while using only two memory registers. Also, like the
family (6.16), and unlike most known optimal third order SSP methods, the coefficients
are simple rational numbers. Note that the four-stage 2S* method discussed above is the
first member of this family. A low-storage implementation of (6.18) is given in Pseudo-
code 2.

Remark 6.4.1. The family (6.18) was not found by numerical search; we have discovered that,
for each value of s ≤ 15, there exists at least a one-parameter family of third order methods with
C = Rs,1,3; hence the particular methods (6.18) are unlikely to be found by numerical search
(much less the low-storage implementations). We were led to these methods by the discovery of the
remarkable ten-stage method of order four, discussed in the next section.

Fourth Order Methods

No explicit fourth order method with four stages has c > 0 [76, 45]. The optimal five stage
method was found in [76] and again independently in [111]; this method has Ceff = 0.302,
More efficient methods with up to eight stages were found in [112, 97, 88]; the most
efficient (eight-stage) method has Ceff = 0.518 and can be implemented in 3S fashion.

88

s=n^2; r=s-n; q1=u;
for i=1:(n-1)*(n-2)/2

q1 = q1 + dt*F(q1)/r;
end
q2=q1;
for i=(n-1)*(n-2)/2+1:n*(n+1)/2-1

q1 = q1 + dt*F(q1)/r;
end
q1 = (n*q2 + (n-1)*(q1 + dt*F(q1)/r)) / (2*n-1);
for i=n*(n+1)/2+1:s

q1 = q1 + dt*F(q1)/r;
end
u=q1;

Pseudo-code 2: Low-storage implementation of the optimal third order methods.

Low-storage fourth order SSP methods were found in [97]; no 2S methods are reported
and the best 3S method has Ceff = 0.106. Even allowing downwinding, the best 3S method
reported there has Ceff = 0.187. Therefore these are inferior to the eight-stage method
mentioned above.

Our search recovered the same optimal methods for up to eight stages. However, these
methods are superseded in terms of both efficiency and storage by the optimal ten stage
method below.

2S Methods. No 2S fourth order SSP methods were previously known. By numeri-
cal search, we found a ten stage fourth order method implementable with two registers
and with an effective SSP coefficient greater than any previously known fourth order full-
storage method. The numerically determined coefficients approximate, to within machine
precision, simple rational numbers. The method given below, using these rational num-
ber coefficients, is the only fourth order SSP method to be analytically proved optimal,
because it achieves the optimal bound on ten-stage, fourth order SSP methods for linear

89

problems: C = R10,1,4(ψ) = 6. The nonzero coefficients are

βi,i−1 =

1
6 i ∈ {1..4, 6..9}
1
15 i = 5
1
10 i = 10

β10,4 =
3

50

αi,i−1 =

1 i ∈ {1..4, 6..9}
2
5 i = 5
3
5 i = 10

α5,0 =
3
5

α10,0 =
1

25

α10,4 =
9

25
.

The abscissas are
c =

1
6
· (0, 1, 2, 3, 4, 2, 3, 4, 5, 6)T . (6.20)

Remark 6.4.2. This method bears a remarkable similarity to the nine-stage third order method
of the previous section; this is not altogether surprising because both of these methods achieve
the linear stability limit and the optimal s + 1-stage, 4th order linear SSP Runge-Kutta method is
closely related to the optimal s-stage, 3rd order linear SSP Runge-Kutta method [75]. Generalizing
this, one is led to hope for a family of fourth order methods similar to the third order family above -
i.e., a family with n2 + 1 stages and SSP coefficient n2 − n. However, for the case n = 2, no such
method exists [97]. Furthermore, after extensive analytical and numerical searches, we have been
unable to find a method of this type for n = 4.

A 2S implementation of the ten-stage method is given in Pseudo-code 3.

3S Methods. We have found many fourth order 3S methods with more than ten
stages that are more efficient than the 2S ten-stage method above. It appears likely that
with three registers it is possible to obtain fourth order methods with Ceff arbitrarily
close to unity. However, the value of Ceff increases very slowly with the stage number
and the optimization problem becomes increasingly difficult. We do not discuss these
methods further here, except to say that the most efficient found so far has 26 stages and
Ceff ≈ 0.696.

90

q1 = u; q2=u;
for i=1:5

q1 = q1 + dt*F(q1)/6;
end
q2 = 1/25*q2 + 9/25*q1;
q1 = 15*q2-5*q1;
for i=6:9

q1 = q1 + dt*F(q1)/6;
end
q1 = q2 + 3/5*q1 + 1/10*dt*F(q1);
u=q1;

Pseudo-code 3: Low-storage implementation of the ten-stage fourth order method.

Popular Method Ceff Storage Improved Method Ceff Storage
SSPRK(2,2) 0.500 2S* SSPRK(s,2) 1− 1/s 2S*
SSPRK(3,3) 0.333 2S* SSPRK(4,3) 0.500 2S*

SSPRK(n2,3) 1− 1/n 2S
SSPRK(5,4) 0.377 3S SSPRK(10,4) 0.600 2S

SSPRK(26,4) 0.696 3S

Table 6.5: Properties of popular and of optimal explicit SSP Runge-Kutta methods. Meth-
ods and properties in bold indicate new contributions in the present work. An asterisk
indicates that the previous timestep can be retained without increasing the required num-
ber of registers.

91

6.4.3 Absolute Stability Regions

As discussed in section 2, when a Runge-Kutta method is applied to a linear autonomous
system of ODEs (2.3), it reduces to the iteration (2.10), characterized by the stability func-
tion ψ. For the case of a single linear ODE, this is simply un+1 = ψ(λ∆t)un. The method
is said to be absolutely stable for values of z such that |ψ(z)| < 1. For the optimal second
order SSP family (6.16),

ψ(z) =
1
s

+
s− 1

s

(
1 +

z
s− 1

)s−1

. (6.21)

These are, of course, the same optimal polynomials found in section 2 for the s-stage 2nd
order cases. For the optimal third order SSP methods (6.18),

ψ(z) =

(
n

2n− 1

(
1 +

z
n2 − n

)(n−1)2

+
n− 1

2n− 1

(
1 +

z
n2 − n

)n2)
(6.22)

where again n =
√

s.

In Figure 6.9, we plot the corresponding absolute stability regions for some of these
methods and some of the optimal fourth-order methods. The plots have been rescaled
by dividing hλ by the number of stages s, in order to give a fair comparison of relative
computational efficiency. Note that, despite the increase in stage number, the SSP methods
generally have larger scaled stability regions.

It is interesting to note that for large s, the stability functions of the optimal 2nd order
methods approach that corresponding to s applications of the forward Euler method. The
scaled absolute stability regions of the second order methods therefore tend to that of the
forward Euler method.

6.4.4 Internal Stability

The stability function may be thought of as modeling the amplification of errors in the
initial stage. For Runge-Kutta methods with many stages, it is important also to consider
amplification of roundoff errors occurring in the intermediate stages.

Consider a Shu-Osher implementation of a Runge-Kutta method including roundoff

92

ℑ (hλ)/s

ℜ
(h

λ)
/s

Scaled Linear Stability Regions

−2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

SSP22
SSP32
SSP82
SSP132
SSP182

(a) 2nd order methods

ℑ (hλ)/s

ℜ
(h

λ)
/s

Scaled Linear Stability Regions

−2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

SSP33

SSP223

SSP323

SSP423

SSP523

(b) 3rd order methods

ℑ (hλ)/s

ℜ
(h

λ)
/s

Scaled Linear Stability Regions

−1.5 −1 −0.5 0
−1.5

−1

−0.5

0

0.5

1

RK44
SSP64
SSP104

(c) 4th order methods of optimal methods; RK44 denotes the classical 4th order Runge-
Kutta method

Figure 6.9: Scaled stability regions of optimal explicit SSP methods.

93

errors ri at each stage, applied to the test equation u′ = λu:

ỹ1 = un + r1,

ỹi =
i−1

∑
j=1

(
αi,jỹk + ∆tλβi,jỹk

)
+ ri, αi,j ≥ 0, i = 2, . . . , s + 1, (6.23)

ũn+1 = ỹs+1.

By subtracting the true method (3.6) from the perturbed method (6.23), one finds that

ũn+1 − un+1 = ψ(∆tλ)r1 +
s+1

∑
j=2

θj(∆tλ)rj. (6.24)

Here, ψ is again the absolute stability function; the functions θj are referred to as internal
stability polynomials [120]. Assuming the rj have magnitude on the order of roundoff
(εmachine), the method will be internally stable as long as ||ψ(∆tλ)|| << 1/εmachine in the
appropriate region of the complex plane. It is important to note that, in contrast to the
stability function of a method, the internal stability polynomials depend on the particular
manner in which the method is implemented.

2nd Order Methods

Straightforward calculation reveals that, for the optimal family of second order methods
(6.16), as implemented above,

θj(z) =
(

s− 1
s

+
z
s

)(
1 +

z
s− 1

)s−j

(6.25)

for 2 ≤ j ≤ s, while θs+1(z) = 1. It can be shown that the region for which |θj(z)| <

1 contains the absolute stability region of the method, so that for any linearly stable
calculation, internal stability is never a concern for these methods.

3rd Order Methods

Similarly, for the optimal family of third order methods (6.18), as implemented above, the
highest degree internal stability polynomials are given by

θj(z) =
1

2n− 1

[
n
(

1 +
z

n2 − n

)(n−1)2

+ (n− 1)
(

1 +
z

n2 − n

)n2−j+1
]

(6.26)

94

for 2 ≤ j ≤ (n−1)(n−2)
2 + 1. Again, it can be shown that the region for which |θj(z)| <

1 contains the absolute stability region of the method, so that for any linearly stable
calculation, internal stability is never a concern for these methods.

Similar analysis shows that the new ten-stage fourth order method with the low-
storage implementation presented here is internally stable. We omit the details here.

6.4.5 Truncation Error Analysis

By considering the Taylor series of the true solution and comparing the terms appearing
in a Runge-Kutta method, bounds on the relative size of the leading terms of the local
truncation error can be found. Similar to the derivation of order conditions, this analy-
sis is simplified by using the theory of rooted trees. By assuming that F is sufficiently
smooth and assuming bounds on F and its derivatives, the leading truncation error can
be bounded by a constant proportional to ([12], p. 152)

C = ∑
r(t)=p+1

1
σ(t)

∣∣∣∣Φ(t)− 1
γ(t)

∣∣∣∣ .

Here the sum is over all rooted trees of order p + 1, Φ(t) are the elementary differentials,
and γ(t), σ(t) are the density and the symmetry of the tree t, respectively. The reader is
referred to [12] for further details. In the case of a linear autonomous ODE, only tall trees
are important, so the above reduces to

CL =
1

σ(T)

∣∣∣∣Φ(T)− 1
γ(T)

∣∣∣∣
where T is the tall tree of order p + 1.

It is straightforward to calculate the values of C, CL for our optimal methods. The
resulting error constants are given in Table 6.6; the error constants of some previously
known methods are provided for comparison. Note that the error constants of the new
methods are smaller in all cases, and decrease as the stage number increases. Thus,
for a given timestep, the new methods are more accurate. If we compare the accuracy
while holding the amount of computational work constant, we find that the size of the
error increases very slowly with the number of stages. For instance, for linear problems
SSP(10,4) gives an error about twice as large as RK(4,4) if the amount of work is held
constant.

95

Table 6.6: Error constants of optimal explicit SSP RK methods. RK(4,4) is the classical 4th
order Runge-Kutta method (for comparison).

Method CL C
SSP(2,2) 1

6
1
4

SSP(s,2) 1
6(s−1)

1
4(s−1)

SSP(3,3) 1
24

1
8

SSP(n2,3) ((n−2)!)2

12(n!)2
(n2−n+1)((n−2)!)2

12(n!)2

RK(4,4) 24
2880

101
2880

SSP(10,4) 1
18 · 24

2880
17

101 · 101
2880

6.4.6 Embedding optimal SSP methods

Embedded Runge-Kutta methods provide an estimate of the local truncation error that
can be computed at little cost. Embedded methods will be discussed further in Chapter 7;
see also [47, 12].

When using an SSP method to enforce an important constraint, it is very desirable to
have an embedded method that is also SSP under the same (or larger) timestep restriction,
since violation of the constraint in the computation of the error estimate might lead to
adverse effects. It turns out that it is possible to create embedded pairs from some of the
optimal SSP methods.

The SSP72 method can be used as an embedded method with SSP93 for error control
as follows:

u(0) =un (6.27a)

u(i) =u(i−1) +
∆t
6

F(u(i−1) 1 ≤ i ≤ 6 (6.27b)

un+1
2 =

1
7

(
un + 6u(6) +

∆t
6

F(u(6)
)

(6.27c)

u(6)∗ =
3
5

u(1) +
2
5

u(6) (6.27d)

u(i)∗ =u(i−1)∗ +
∆t
6

F(u(i−1)∗ 7 ≤ i ≤ 9 (6.27e)

un+1
3 =u(9)∗ (6.27f)

96

Here un+1
2 , un+1

3 are the second and third-order approximations corresponding to SSP72,
SSP93. Note that one extra function evaluation is required over what is necessary for
SSP93 alone. The same can be done for SSP32 with SSP43.

6.4.7 Numerical Experiments

In this section we demonstrate the effect of the SSP properties of our optimal methods
through example problems.

Constant Coefficient Advection

We consider again the linear system of ODEs given by (2.3) with right-hand-side matrix
(3.27), arising from first order upwind differencing of the linear advection equation (3.26).
We recall that the exact solution of the PDE, as well as the exact solution of the semi-
discretization, is monotonic in the maximum norm.

For this linear autonomous system, any Runge-Kutta method reduces to the simple
iteration (2.10). Clearly monotonicity will be preserved for arbitrary initial conditions iff

||ψ(∆tL)|| ≤ 1. (6.28)

For this problem we have monotonicity for the forward Euler method under the maximal
timestep ∆tFE ≤ ∆x = 1

N . In order to compare different integration methods, we compute
for each method the maximum value c0 such that (6.28) holds with

∆t = c0∆tFE. (6.29)

From Theorem 3.2.3, we know that c0 is exactly equal to the threshold factor R(ψ). In
Table 6.7, we list values of c0, R(ψ), and Reff = R(ψ)/s for various methods. Here we
have included the non-SSP methods of Wang & Spiteri 1 [121] (note that they are SSP for
linear autonomous problems). In every case the theory and experiment are in perfect
agreement. A clear advantage in efficiency is conferred by the SSP methods with many
stages.

1Note that in [121], the term ’strong stability preserving’ was mistakenly used to refer to full discretizations
of PDEs in many places, whereas the term actually refers to a property of the ODE solver. It appears that
the term intended in these cases was ’total variation diminishing’.

97

Table 6.7: Threshold factors and effective threshold factors for some optimal explicit SSP
RK methods. RK44 is the classical 4th order method (for comparison). The NSSP (Non-
SSP) methods are from [121].

Method c0 = R(ψ) Reff

NSSP(2,1) 0.67 0.33

NSSP(3,2) 1 0.33
SSP(2,2) 1 0.50
SSP(10,2) 9 0.90

NSSP(3,3) 1 0.33
NSSP(5,3) 1.4 0.28
SSP(3,3) 1 0.33
SSP(4,3) 2 0.50
SSP(9,3) 6 0.67
SSP(25,3) 20 0.80

RK(4,4) 1 0.25
SSP(5,4) 1.86 0.37
SSP(10,4) 6 0.60

Variable Coefficient Advection

Previous work on SSP methods has emphasized that the SSP property is most critical
when solving semi-discretizations of nonlinear PDEs with discontinuous solutions. The
following example shows that SSP methods are relevant also for linear nonautonomous
problems with smooth solutions but rapidly varying coefficients. A similar test problem
was used in [76].

We solve the IBVP

ut + (a(x, t)u)x = 0 (6.30a)

u(0, t) = 0 u(x, 0) = g(x) (6.30b)

on the interval x ∈ [0, 1] with

a(x, t) = cos2(20x + 45t). (6.31)

We semi-discretize using upwind differencing and N = 20 points.

This rapidly oscillating velocity field is designed to demonstrate the effect of the SSP

98

property; it might be considered as a simple model of an underresolved turbulent flow.
The low-storage property of our methods makes them appealing choices for direct nu-
merical simulation of turbulent flows.

The exact solution to (6.30) is monotonic in the L1 norm and is nonnegative for all time
if g(x) ≥ 0. For a given integration method, we are interested in the maximum timestep
such that these properties hold discretely to within roundoff error (≈ 10−15). For the
forward Euler method, this maximum timestep is found to be ∆t = 1.02∆x.

Because this semi-discretization is linear, any Runge-Kutta method applied to it re-
duces to the iteration

un+1 = M∆t(t)un (6.32)

where M∆t(t) is the matrix-valued K-function of the method [76]. Thus monotonicity and
positivity are equivalent to

||M∆t||1 ≤ 1, and M∆t ≥ 0,

respectively (the second inequality is interpreted componentwise).

In figures 6.10-6.11, we plot the theoretical monotone and positive scaled timestep
∆t/(s∆x) (i.e., the effective SSP coefficient) versus the observed maximum scaled mono-
tone and positive timestep for the second and third order families of optimal methods.
In all cases, the theory is borne out by these results; furthermore, the theoretical timestep
limit seems to be quite sharp for this problem. For comparison, we also plot the observed
maximum monotone and positive timestep for the most commonly used second and third
order SSP methods.

In Table 6.8 we list, for various methods, the maximum observed monotone and pos-
itive timestep for this problem, along with effective SSP coefficients for linear and non-
linear problems. Again we see fairly good agreement with theory, and a clear advantage
conferred by the SSP methods with many stages.

Remark 6.4.3. As expected, nearly all the non-SSP methods fail to produce monotone results even
for very small relative timesteps (< 0.1) for this problem. On the other hand, the classical fourth
order method performs reasonably well despite being non-SSP for nonautonomous/nonlinear prob-
lems. This demonstrates that SSP timestep restrictions are not always very sharp for a particular
choice of ODE and time integrator.

99

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

∆t
m

on
ot

on
e/(

s∆
 x

)

Theoretical
Observed
SSP22

Figure 6.10: Theoretical and actual monotone effective timesteps for the family of optimal
2nd order methods. The horizontal line shows the actual monotone effective timestep of
the popular SSP22 method, for comparison.

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

∆t
m

on
ot

on
e/(

s∆
 x

)

Theoretical
Observed
SSP33

Figure 6.11: Theoretical and actual monotone effective timesteps for the family of optimal
3rd order methods. The horizontal line shows the actual monotone effective timestep of
the popular SSP33 method, for comparison.

100

Method Ceff

Monotone
effective
timestep

NSSP(2,1) 0 0.033

NSSP(3,2) 0 0.037

NSSP(3,3) 0 0.004
NSSP(5,3) 0 0.017

RK(4,4) 0 0.287
SSP(5,4) 0.302 0.416
SSP(10,4) 0.600 0.602

Table 6.8: Theoretical and observed monotone effective timesteps for variable coefficient
advection. RK44 is the classical 4th order method.

6.5 Summary and Conjectures

The effective SSP coefficients of all known optimal SSP Runge-Kutta methods are sum-
marized in Table 6.9. For integration of systems of ODEs that satisfy the forward Euler
condition (3.10), these coefficients are the bottom line in terms of computational efficiency
of a method. Note that this should be used only to compare methods within a class – ex-
plicit or (diagonally) implicit. Comparison of efficiency of explicit versus implicit methods
is much more complicated, although it seems clear that the explicit methods will be more
efficient when the timestep is controlled exclusively by SSP considerations. The implicit
methods may be useful for stiff problems that also have a mild SSP timestep constraint
since the scaled absolute stability regions of the implicit methods are much larger than
those of optimal explicit SSP methods.

The optimality of most of the explicit methods is ascertained by virtue of their achiev-
ing the theoretical upper bound Cs,1,p = Rs,1,p. On the other hand, this holds for only two
of the implicit methods.

However, we have reason to believe that at least the second and third order implicit
methods are optimal. For these cases, using multiple random initial guesses, the optimiza-
tion algorithm consistently converges to the same method, or to a reducible method cor-
responding to one of the numerically optimal methods with a smaller number of stages.
Also, many of the inequality constraints are satisfied exactly for these methods. Further-
more, the methods all have a similar form, depending only on the stage number. These
observations suggest the following two conjectures.

101

Table 6.9: Effective SSP coefficients of best known methods. A dash indicates that SSP
methods of this type cannot exist. A blank space indicates that no SSP methods of this
type were found.

s
p Implicit Methods Explicit Methods

2 3 4 5 6 2 3 4

1 2 - - - - - - -
2 2 1.37 - - - 0.5 - -
3 2 1.61 0.68 - - 0.67 0.33 -
4 2 1.72 1.11 0.29 0.75 0.5 -
5 2 1.78 1.21 0.64 0.8 0.53 0.30
6 2 1.82 1.30 0.83 0.030 0.83 0.59 0.38
7 2 1.85 1.31 0.89 0.038 0.86 0.61 0.47
8 2 1.87 1.33 0.94 0.28 0.88 0.64 0.52
9 2 1.89 1.34 0.99 0.63 0.89 0.67 0.54

10 2 1.90 1.36 1.01 0.81 0.9 0.68 0.60
11 2 1.91 1.38 1.03 0.80 0.91 0.69 0.59

Conjecture 6.5.1. (An extension of [35, Conjecture 3.1]) The optimal second-order s-stage implicit
SSP method is given by the SDIRK method (6.10) and hence CI

s,1,2 = CSDI
s,1,2 = 2s.

Conjecture 6.5.2. (An extension of [35, Conjecture 3.2]) For s ≥ 2, the optimal third-order s-
stage implicit Runge–Kutta SSP method is given by the SDIRK method (6.11) and hence RI

s,1,3 =
s− 1 +

√
s2 − 1.

Conjecture 6.5.1 would imply that the effective SSP coefficient of any Runge–Kutta
method of order greater than one is at most equal to two. In fact, van de Griend and
Kraaijevanger [118] showed that the optimal R(ψ) ≥ 2m for second order methods with
m stages, and conjectured that R(ψ) = 2m. They proved the conjecture only in the one-
and two-stage cases. In fact it does not hold for the three-stage case, as we demonstrate
with the following counterexample:

ψ =
1 + 7969150767159903

18014398509481984 x + 4716995547632067
72057594037927936 x2 + 1867769670100979

576460752303423488 x3

1− 313913991947565
562949953421312 x + 8869189497956419

72057594037927936 x2 − 1762527965732417
144115188075855872 x3

(6.34)

Since the numerator and denominator have degree three, this corresponds to the stability
function of an implicit RK method with m = 3 stages. This function was found by
numerical search; using the algorithm in [118] we have verified that R(ψ) ≥ 6.77 > 2s.

102

Thus our conjecture cannot be proved by analyzing R(ψ).
Proving the implication that Ceff ≤ 2 for Runge-Kutta methods, and its extension to

general linear methods, is the most significant open problem on SSP methods. For this
reason, we restate the problem here in a concise algebraic form:

Conjecture 6.5.3. (algebraic reformulation of conjecture 6.5.1) Let r > 0, b ∈ <s, A ∈ <s×s, and
let K be given by (3.28). Suppose that I + rK is invertible and that the following hold:

bTe = 1 (6.35a)

bTAe =
1
2

(6.35b)

K(I + rK)−1 ≥ 0 (6.35c)

rK(I + rK)−1e ≤ 1. (6.35d)

where, as usual, vector and matrix inequalities are understood componentwise. Then r ≤ 2s.

103

Chapter 7

Low-Storage Runge-Kutta Methods

Storage management is an aspect of
codes for the solution of ODEs which
has received little attention...

L.F. Shampine (1979)

...the storage requirement becomes
crucial whenever the systems are very
large. For instance, in the simulation
of plasmas, there may be 10,000 or
even 1,000,000 particles...

J.H. Williamson (1980)

7.1 Introduction

This chapter deals with new classes of Runge-Kutta methods that were inspired by low-
storage properties of the optimal explicit SSP methods of Chapter 6. In this chapter, we
disregard the SSP property and focus instead on the issue of storage requirements.

A straightforward implementation of the Runge-Kutta method (2.9a) requires m + 1
memory registers of length N, where m is the number of stages and N is the number of
ordinary differential equations (note that we break from the notation of previous chapters,
in this chapter only, by using m in place of s to represent the number of stages). In early
computers, only a very small amount of memory was available for storing both the pro-
gram and intermediate results of the computation, which led Gill to devise a four-stage

104

fourth-order Runge-Kutta method that could be implemented using only three memory
registers [39]. The method relied on a particular algebraic relation between the coeffi-
cients, such that only certain combinations of previous stages (rather than all of the stages
themselves) needed to be stored. This is the basic idea underlying all low-storage meth-
ods, including those of the present work. Blum later provided a three-register implemen-
tation of the classical Runge-Kutta method (with rational coefficients) [8]. Fyfe showed
that all four-stage methods are capable of three-register implementation [38]. Shampine
devised a variety of techniques for reducing the storage requirements of methods with
many stages [104]. Williamson devised a two-register algorithm [124]; he showed that "all
second-order, many third-order, and a few fourth-order" methods can be implemented
in this fashion. One of his third-order methods is among the most popular low-storage
methods; however, his fourth-order methods are not generally useful because they apply
only to the special case in which F(u) is bounded as u→ ∞.

On modern computers, storage space for programs is no longer a concern; however,
when integrating very large numbers of ODEs, fast memory for temporary storage dur-
ing a computation is often the limiting factor. This is typically the case in method of
lines discretizations of PDEs, and modern efforts have focused on finding low-storage
methods that are also optimized for stability and or accuracy relative to particular semi-
discretizations of PDEs. Exploiting Williamson’s technique, Carpenter and Kennedy
[18] developed four-stage, third-order, two-register methods with embedded second or-
der methods for error control. They also derived five-stage fourth order two-register
methods [17]. In perhaps the most thorough work on low-storage methods, Kennedy
et. al. [66] generalized a type of low-storage implementation originally due to van der
Houwen [119]. They provide many methods of various orders, optimized for a variety
of accuracy and stability properties. Further development of low-storage Runge-Kutta
methods in the last decade has come from the computational aeroacoustics community
[59, 113, 15, 16, 9, 7, 117].

All of the two-register methods in the literature use one of two algorithms (referred
to below as 2N and 2R). These algorithms rely on particular assumptions regarding the
evaluation and storage of F. Recently, in [69], a new type of low-storage algorithm was
proposed, based on a different assumption on F. The aim of this chapter is to present a
general algorithm based on this assumption, which includes the 2N and 2R algorithms as
special cases, but allows additional degrees of freedom in designing the methods.

It is often important, when solving an ODE numerically, to have an estimate of the
local truncation error. Methods that provide such error estimates are known as embed-
ded methods. Existing low-storage embedded methods always require an extra memory

105

register to provide the error estimate. If a desired error tolerance is exceeded in a given
step, it may be necessary to restart that step. In this case, another additional register is
necessary for storing the previous step solution. In some applications where no error
estimate is used, restarting may still be required based on some other condition (such as
a CFL condition) that is checked after each step. In this case, again, existing low-storage
methods require the use of an extra register.

In this chapter work we present improved low-storage methods that use the theoretical
minimum number of registers in each of these situations, i.e. two registers if an error
estimate or the ability to restart is required, and three registers if both are needed. In each
case these methods use one register fewer than any known methods.

In Section 7.2, we review existing low-storage methods and explicitly define the as-
sumptions required for their implementation. In Section 7.3, we observe that these meth-
ods have sparse Shu-Osher forms. Based on this observation, we introduce a new, more
general class of low-storage methods in Section 7.4. In Section 7.5, we explain how the
low-storage methods can be implemented for integrating an important class of PDE semi-
discretizations. In Section 7.6, we present new low-storage methods.

7.2 Two-register Methods

Before proceeding, it is helpful to define precisely what is meant by the number of regis-
ters required by a method. Let N denote the number of ODEs to be integrated (typically
the number of PDEs multiplied by the number of gridpoints). Then we say a method
requires M registers if each step can be calculated using MN + o(N) memory locations.

Let S1, S2 represent two N-word registers in memory. Then it is always assumed that
we can make the assignments

S1 := F(S2)

and
S1 := c1S1 + c2S2

without using additional memory beyond these two registers. Here a := b means ’the
value of b is stored in a’. Using these only these two types of assignments, it is straight-
forward to implement an m-stage method using m + 1 registers.

Various Runge-Kutta algorithms have been proposed that require only two registers.
Each requires some additional type of assignment, and takes one of the following two
forms.

106

7.2.1 Williamson (2N) methods

Williamson methods [124] require 2 registers and take the following form:

Algorithm 1: Williamson (2N)

(y1) S1 := un

for i = 2 : m+ 1 do

S2 := AiS2 + ∆tF(S1)
(yi) S1 := S1 + BiS2

end

un+1 = S1

with A2 = 0. The methods proposed in [18, 17, 113, 7, 54] are also of Williamson type.
Observe that an m-stage method has 2m− 1 free parameters. The coefficients above are
related to the Butcher coefficients as follows:

Bi = ai+1,i i < m

Bm = bm

Ai =
bi−1 − ai,i−1

bi
bi 6= 0

Ai =
ai+1,i−1 − ci

ai+1,i
bi = 0.

In order to implement these methods with just two registers, the following assumption
is required:

Assumption 7.2.1 (Williamson). Assignments of the form

S2 := S2 + F(S1) (7.2)

can be made with only 2N + o(N) memory.

Williamson notes that (converting some notation to the present)

No advantage can be gained by trying to generalize [Algorithm 1] by includ-
ing a term [proportional to S1] in the expression for [S2]...this is because the
additional equations determining the new parameters turn out to be linearly
dependent on those for Ai and Bi.

107

Indeed, it appears that the algorithm above is the most general possible using only two
registers and Assumption 7.2.1.

7.2.2 van der Houwen (2R) methods

A different low-storage algorithm was developed by van der Houwen [119] and Wray
[66]. It is similar to, but more aggressive than the approach used by Gill [39]. The
implementation is given as Algorithm 2.

Algorithm 2: van der Houwen (2R)

S2 := un

for i = 1 : m do

(yi) S1 := S2 + (ai,i−1 − bi−1)∆tS1
S1 := F(S1)
S2 := S2 + bi∆tS1

end

un+1 = S2.

The coefficients aij, bj are the Butcher coefficients, and we define a10 = b0 = 0. Again,
an m-stage method has 2m− 1 free parameters. The class of methods proposed in [15, 16]
is equivalent. In [66], an implementation is given that requires swapping the roles of the
two registers at each stage. Here we have followed the implementation of [16] as it is less
complicated in that the roles of the two registers need not be swapped at each stage.

Methods of van der Houwen type have also been proposed in [117]. The low-storage
methods of [59] can be viewed as a subclass of van der Houwen methods with especially
simple structure.

In order to implement these methods with just two registers, the following assumption
is required:

Assumption 7.2.2 (van der Houwen). Assignments of the form

S1 := F(S1)

may be made with only N + o(N) memory.

Again, it seems that the above algorithm is the most general possible using only two
registers and Assumption 7.2.2.

108

7.3 Low-Storage Methods Have Sparse Shu-Osher Forms

The low-storage methods above can be better understood by considering the Shu-Osher
form (3.6) discussed in Chapter 3. As discussed there, the Shu-Osher form for a given
method is not unique. By writing (3.6) as a homogeneous linear system, it follows that
the method is invariant under the transformation (for any t and i, j > 1)

αij =⇒ αij − t (7.3a)

αik =⇒ αik + tαjk k 6= j (7.3b)

βik =⇒ βik + tβ jk. (7.3c)

It is convenient to define the matrices:

(α)ij =

 0 i = 1

αij i > 1
(7.4)

(β)ij =

 0 i = 1

βij i > 1.
(7.5)

Defining further α0, β0 to be the upper m×m parts of α, β, and α1, β1 to be the remaining
last rows, the relation between the Butcher array and the Shu-Osher form is

A =(I −α0)−1β0 =

(
m−1

∑
i=0

αi
0

)
β0 (7.6a)

bT =β1 + α1A. (7.6b)

It turns out that Williamson and van der Houwen methods possess a Shu-Osher form
in which the matrices α, β are very sparse. This is not surprising, since low-storage
algorithms rely on partial linear dependencies between the stages, and such dependencies
can be exploited using the transformation (7.3) to introduce zeros into these matrices.

7.3.1 2N Methods

By straightforward algebraic manipulation, Williamson methods can be written in Shu-
Osher form with

yi =αi,i−2yi−2 + (1− αi,i−2)yi−1 + βi,i−1∆tF(yi−1) 1 < i ≤ m + 1 (7.7)

109

where αi,i−2 = − Bi Ai
Bi−1

and βi,i−1 = Bi. Here and elsewhere, any coefficients with nonposi-
tive indices are taken to be zero. Notice that α is bidiagonal and β is diagonal.

7.3.2 2R Methods

Similarly, van der Houwen methods can be written in Shu-Osher form with

yi =yi−1 + βi,i−2∆tF(yi−2) + βi,i−1∆tF(yi−1) 1 < i ≤ m + 1 (7.8)

where βi,i−2 = bi−1 − ai−1,i−2 and βi,i−1 = ai,i−1. Notice that α is diagonal and β is
bidiagonal.

7.4 2S Methods

Based on the Shu-Osher forms presented above for 2N and 2R methods, it is natural to
ask whether it is possible to implement a method with just two registers if α and β have
other types of sparse structure. Perhaps the most obvious generalization is to allow both
matrices to be bidiagonal, i.e.

yi =αi,i−2yi−2 + (1− αi,i−2)yi−1 + βi,i−2∆tF(yi−2) + βi,i−1∆tF(yi−1). (7.9)

It turns out that this is possible, under the following assumption, which was introduced
in [69]:

Assumption 7.4.1. Assignments of the form

S1 := S1 + F(S1)

can be made with only N + o(N) memory.

Examining the Shu-Osher form (7.9), it is clear that 2S methods may be implemented
(under Assumption 7.4.1) using two registers if one is willing to evaluate F(yi) twice
for each stage i. With a little care, however, this doubling of the number of function
evaluations can be avoided. The resulting algorithm is given as Algorithm 3.

The value of δm makes no essential difference (any change can be compensated by
changing γm+1,1, γm+1,2), so we set it to zero. Consistency requires that δ1 = 1, γ22 = 1,
and

γi,1 =1− γi,2

i−1

∑
j=1

δj 2 ≤ i ≤ m + 1,

110

Algorithm 3: 2S

S2 := 0

(y1) S1 := un

for i = 2 : m+ 1 do

S2 := S2 + ¡i−1S1
(yi) S1 := 'i1S1 + 'i2S2 + ↓i,i−1∆tF(S1)

end

un+1 = S1

leaving 3s− 3 free parameters – significantly more than for the 2N or 2R methods. We
refer to these methods as 2S methods. Clearly this class includes the 2N and 2R methods
as well as new methods.

While the Butcher coefficients are not needed for implementation, they are useful for
analyzing the properties of the methods. They can be obtained from the low-storage
coefficients as follows. The coefficients βi,i−1 appearing in Algorithm 3 are Shu-Osher
coefficients. In terms of the low-storage coefficients, the remaining nonzero Shu-Osher
coefficients are

βi+1,i−1 =− γi+1,2

γi,2
βi,i−1 2 ≤ i ≤ m

αi+1,i−1 =− γi+1,2

γi,2
γi,1 2 ≤ i ≤ m

αi+1,i =1− αi+1,i−1 2 ≤ i ≤ m.

The Butcher coefficients are obtained by substituting the above values into (7.6).

If γi2 = 0 for some i, the low-storage method cannot be written in the bidiagonal Shu-
Osher form; however, it will still possess a sparse (in fact, even more sparse) Shu-Osher
form, and can be implemented using two registers in a slightly different way. We do not
investigate such methods in detail, since they have a smaller number of free parameters
than the general case. However, note that some of the methods of [69] are of this type.

7.4.1 2S* Methods

It is common to check some accuracy or stability condition after each step, and to reject
the step if the condition is violated. In this case, the solution from the last timestep,

111

un, must be retained during the computation of un+1. For 2R/2N/2S methods, this will
require an additional register. On the other hand, in [69], methods were proposed that
can be implemented using only two registers, with one register retaining the previous
solution. We refer to these as 2S* methods. These methods have Shu-Osher form

yi =αi,1un + αi,i−1yi−1 + βi,i−1∆tF(yi−1) (7.11)

Here we give a general algorithm for such methods (Algorithm 4), which is straightfor-
ward given the sparse Shu-Osher form. It is equivalent to the usual 2S algorithm with
γi2 = αi,1 and δi = 0 except δ1 = 1. Remarkably, these methods have as many free
parameters (2m-1) as 2N/2R methods.

Algorithm 4: 2S*

(y1) S1 := un S2 := un

for i = 2 : m+ 1 do

(yi) S1 := (1− ↑i,1)S1 + ↑i,1S2 + ↓i,i−1∆tF(S1)
end

un+1 = S1

7.4.2 2S Embedded Pairs

It is often desirable to compute an estimate of the local error at each step. The most
common way of doing this is to use an embedded method, i.e. a second Runge-Kutta
method that shares the same matrix A (hence the same stages) but a different vector
of weights b̂ in place of b. The methods are designed to have different orders, so that
their difference gives an estimate of the error in the lower order result. As it is common
to advance the higher order solution (’local extrapolation’), we refer to the higher order
method as the principal method, and the lower order method as the embedded method.
Typically the embedded method has order one less than the principal method.

In [66], many 2R embedded pairs are given; however, a third storage register is re-
quired for the error estimate. The 2S algorithm can be modified to include an embedded
method while still using only two storage registers. The implementation is given as Al-
gorithm 5.

Here ûn+1 is the embedded solution. Note that there are two additional free param-
eters, δm, δm+1, effectively determining the weights b̂. Since the conditions for first and

112

Algorithm 5: 2S embedded

S2 := 0

(y1) S1 := un

for i = 2 : m+ 1 do

S2 := S2 + ¡i−1S1
(yi) S1 := 'i1S1 + 'i2S2 + ↓i,i−1∆tF(S1)

end

un+1 = S1

(ûn+1) S2 :=
1

∑m+1
i=2 ¡i

(S2 + ¡m+1S1)

second order are (for fixed abscissas c) a pair of linear equations for the weights, it would
appear that if the embedded method is at least second order, then necessarily b̂ = b.
However, by including additional stages, the added degrees of freedom can be used to
achieve independence of b, b̂.

The relation between the coefficients in Algorithm 5 and the Shu-Osher coefficients
for the principal method is again given by (7.10), and the Butcher coefficients can then be
obtained using (7.6). The embedded method has the same Butcher arrays A, c, with the
weights b̂ given by

b̂j =
1

∑k δk

(
δm+1bj + ∑

i
δiaij

)
(7.12)

where bj, aij are the Butcher coefficients of the principal method.

7.4.3 3S* Methods

Our experience indicates that the class of 2S* methods above typically have relatively
unfavorable error constants (though they are not so large as to be unusable for practical
applications). Hence we are led to consider methods with Shu-Osher form

yi =αi,1un + αi,i−1yi−1 + αi,i−2yi−2 + βi,i−2∆tF(yi−2) + βi,i−1∆tF(yi−1) (7.13)

These methods can be implemented using three registers, while retaining the previous so-
lution. Hence we refer to them as 3S* methods. Because they allow more free parameters
than 2S* methods, 3S* methods can be found with much smaller error constants. Further-
more, it is possible to design embedded pairs within this framework. The corresponding

113

algorithm is given as Algorithm 6. Note that these are the first methods to provide both
error control and the ability to restart a step with only three memory registers. No fur-
ther improvement is possible, since the new solution, the previous solution, and an error
estimate must be available simultaneously.

Algorithm 6: 3S* embedded

S3 := un

(y1) S1 := un

for i = 2 : m+ 1 do

S2 := S2 + ¡i−1S1
(yi) S1 := 'i1S1 + 'i2S2 + 'i3S3 + ↓i,i−1∆tF(S1)

end

(ûn+1) S2 :=
1

∑m+2
j=1 ¡j

(S2 + ¡m+1S1 + ¡m+2S3)

un+1 = S1

Note that including terms in S2 proportional to S3 is superfluous. Consistency requires
δ1 = 1 and we take γ22 = 1, γ21 = γ23 = γ33 = γ43 = 0 to eliminate additional spurious
degrees of freedom. Thus the primary method has 4m− 6 free parameters, with 3 more
available for the embedded method. Once again, to avoid having b̂ = b, additional stages
are necessary.

Again, the coefficients βi,i−1 in Algorithm 6 are just the corresponding Shu-Osher
coefficients. The remaining Shu-Osher coefficients are

βi+1,i−1 =− γi+1,2

γi,2
βi,i−1 2 ≤ i ≤ m

αi+1,1 =γi+1,3 − γi+1,2

γi,2
γi,3 2 ≤ i ≤ m

αi+1,i−1 =− γi+1,2

γi,2
γi,1 2 ≤ i ≤ m

αi+1,i =1− αi+1,i−1 − αi+1,1 2 ≤ i ≤ m.

The Butcher array for the principal method can then be obtained using (7.6). The embed-
ded method is again identical except for the weights, which are given by (7.12).

114

7.5 Feasibility of Low-storage Assumptions

In this section we discuss the feasibility of the various low-storage assumptions. We will
assume the method is applied to integrate a semi-discretization of a PDE on a structured
grid where the stencil is local; in 1D this means that the Jacobian is sparse with narrow
bandwidth; i.e., the formula for updating a given cell depends on a local stencil whose
size is independent of the overall grid size. This is typical of many finite difference,
finite volume, and discontinuous Galerkin methods. For semi-discretizations with dense
jacobian, it appears that an additional ’working space’ memory register will always be
necessary. In one dimension, we write the semi-discretization as:

∂uij

∂t
= F(ui−r, . . . , ui+r) (7.15)

for some (small) fixed integer r.

7.5.1 2N Methods

Recall that 2N methods require Assumption 7.2.1, which involves assignments of the form

S1 := S1 + F(S2). (7.16)

For systems of the form (7.15), implementation of 2N methods is completely straightfor-
ward, since the register from which F is being calculated is different from the register to
which it is being written. The algorithm simply marches along the grid, calculating F at
each point.

7.5.2 2R Methods

Recall that 2R methods require Assumption 7.2.2, which involves assignments of the form

S1 := F(S1). (7.17)

A naive implementation like that prescribed for 2N methods above will overwrite solution
values that are needed for subsequent computations of F. It is thus necessary to maintain
a small buffer with old solution values that are still needed. In one dimension, the buffer
need only be the size of the computational stencil (i.e., 2r+1). The algorithm looks roughly

115

like this (letting S denote the memory register and w the buffer)

w[1 : 2r] := w[2 : 2r+ 1]

w[2r+ 1] := S[i+ r]

S[i] := F(w).

In higher dimensions a similar strategy can be used, depending on whether the stencil is
one-dimensional or multi-dimensional. If it is 1D, then one can simply apply the algo-
rithm above along each slice. If it is d-dimensional then a buffer containing 2r + 1 slices
of dimension d− 1 is required. In either case, the buffer size is much smaller than a full
register.

7.5.3 2S Methods

For the type of spatial discretizations under consideration here, implementation of 2S
methods is no more difficult than implementation of 2R methods. The algorithm in 1D is
identical except that one assigns

s[i] := s[i] + F(w)

at each point. The extension to multiple dimensions follows the same pattern.

7.6 Improved low-storage methods

In this section we present some new low-storage methods of the types developed in the
previous section. This is only intended to demonstrate what is possible; a thorough
investigation of 2S methods optimized for various properties, like that done in [66] for 2R
methods, is left for future work.

Similarly to [66], we refer to a method as RK-p(p̂)m[X], where m is the number of
stages, p is the order of accuracy, p̂ is the order of accuracy of the embedded method (if
any), and X indicates the type of method (2R, 2S, 2S*, etc.).

By writing a three-stage Runge-Kutta method in Shu-Osher form (3.6) and using trans-
formations of the form (7.3) to write the method in the form (7.9), it is seen that any three-
stage method may be implemented in 2S form except in the special case that β31 = α31β21.
In this case the method may be implemented with two registers using a slight modifica-
tion of the 2S algorithm. Hence all three-stage Runge-Kutta methods can be implemented
using two registers.

116

Method A(p+1) SI SR

Classical RK4 1.45e-02 0.71 0.70
RK4(3)5[2R+]C 5.12e-03 0.66 0.96
RK4()4[2S] 2.81e-02 0.71 0.70
RK4()6[2S] 4.17e-03 0.60 1.60
RK4()5[2S*] 1.49e-02 0.62 0.67
RK4(3)5[2S] 1.25e-02 0.57 0.56
RK4(3)5[3S*] 5.52e-03 0.67 0.93

Table 7.1: Properties of low-storage methods

Throughout the development of low-storage Runge-Kutta methods, fourth-order meth-
ods have been of particular interest [39, 8, 38, 124]. In this section we present several
examples of minimum storage fourth order methods. We have also found 2S (and 2S*,
embedded, etc.) methods of fifth and sixth orders. As far as we know, these are the first
two-register methods of sixth order.

It is known that no generally applicable four-stage fourth order two-register methods
of 2N or 2R type exist [124, 66]. This is not surprising, since four-stage methods in
those classes have seven free parameters, whereas there are 8 conditions for fourth order
accuracy. Four-stage 2S methods, on the other hand, have 9 free parameters, and fourth
order methods of this kind exist. An example of such a method is given in Table A.23 as
RK4()4[2S].

By allowing additional stages, methods with improved accuracy or stability are pos-
sible. These methods can have very good properties compared to 2R or 2N methods
because of the additional degrees of freedom available. As an example, we include in
Table A.24 a six-stage, fourth order method RK4()6[2S] with improved real-axis stability.
In table A.25 we present a 2S* method of fourth order, using five stages. In Table A.26 we
present a 4(3)5 2S pair, and in Table A.27 a 4(3)5 3S* pair.

Table 7.1 summarizes the accuracy and stability properties of these methods. The
quantities SI , SR are the size of the largest interval included in the region of absolute
stability along the imaginary and real axes, respectively, scaled (divided) by the number
of stages of the method. The quantity A(p+1) is the L2 principal error norm (i.e., the norm
of the vector of leading-order truncation error coefficients). The classical fourth-order RK
method and a recommended 2R method from [66] are included for comparison. The new
methods all have reasonably good properties.

117

7.7 Conclusions

We have proposed a new class of low-storage Runge-Kutta methods and given examples
of high order methods in this class requiring fewer stages than existing low-storage meth-
ods. The methods include embedded pairs using only two memory registers, as well
as embedded pairs that retain the previous solution value and use only three memory
registers. Such methods were not previously available. A thorough investigation of 2S
methods optimized for various properties, like that done in [66] for 2R methods, would
be of great utility.

118

Chapter 8

Numerical Wave Propagation

In this chapter, we introduce a high order accurate semi-discretization for hyperbolic
PDEs, based on wave propagation Riemann solvers and high order reconstruction. In
Section 8.1, we briefly review exact solution of linear hyperbolic systems and Riemann
problems for such systems. In Section 8.2, we present Godunov’s method for linear hy-
perbolic PDEs in wave propagation form. This method is extended to high order in Sec-
tion 8.3 by introducing a high order reconstruction based on cell averages. The method
is generalized to variable-coefficient and nonlinear hyperbolic systems in Section 8.4 and
Section 8.5. In Section 8.6, we discuss several approaches to reconstruction of a vector
function from componentwise cell averages.

For more information regarding the wave propagation methods on which the ap-
proach here is based, see [80].

8.1 Linear Hyperbolic Systems

Our starting point is the one-dimensional linear system

qt + Aqx = 0. (8.1)

Here q ∈ <m and A ∈ <m×m. System (8.1) is said to be hyperbolic if A is diagonalizable
with real eigenvalues; we will henceforth assume this to be the case.

Let the eigendecomposition of A be given by

A = RΛR−1 (8.2)

119

where Λ is a diagonal matrix. We order the eigenvalues so that λ1 ≤ λ2 ≤ · · · ≤ λm, and
let rp (lp) denote the right (left) eigenvector of A corresponding to λp. Multiplying (8.1)
on the left by R−1 gives

wt + Λwx = 0 (8.3)

where w = R−1q. System (8.3) is a set of uncoupled advection equations; each charac-
teristic field wp simply translates with velocity equal to the corresponding eigenvalue λp.
Thus if we decompose the initial data as

q(x, 0) = ∑
p

wp
0 (x)rp,

the solution at time t is given by

q(x, t) = ∑
p

wp
0(x− λpt)rp. (8.4)

As a special case, consider the Riemann problem consisting of (8.1) together with initial
data

q(x, 0) =

 ql x < 0

qr x > 0
(8.5)

In this case, the solution may be obtained by decomposing just the difference qr − ql in
terms of the eigenvectors A:

qr − ql = ∑
p

αprp = ∑
p
W p. (8.6)

We refer to the vectors W p as waves. Each wave is a jump discontinuity along the ray
x = λpt in phase space. The solution is pictured in Figure 8.1.

8.2 The Semi-discrete Wave-Propagation form of Godunov’s Method

We now describe the well-known numerical method due to Godunov, which is based on
the solution to the Riemann problem. Taking a finite volume approach, we define the cell
averages

Qi(t) =
1

∆x

∫ x
i+ 1

2

x
i− 1

2

q(x, t)dx. (8.7)

To solve (8.1), we initially approximate the solution q by these cell averages; that is, we

120

W1 W2 W3

q = ql q = qr

q = ql +W1

q = qr −W3

Figure 8.1: The wave propagation solution of the Riemann problem.

define the piecewise function

q̃(x) = q̃i(x) for x ∈ (xi− 1
2
, xi+ 1

2
) (8.8)

with
q̃i(x) = Qi. (8.9)

Clearly, (8.1) with initial data q̃ consists of a series of Riemann problems, with a jump at
each interface xi− 1

2
. Let q̃(x, ∆t) denote the exact evolution of q̃ after a time increment ∆t.

If we take ∆t small enough that the waves from adjacent interfaces do not interact, then
we can integrate (8.1) over [xi− 1

2
, xi+ 1

2
]× [0, ∆t], and divide by ∆x, to obtain

Qi(t + ∆t)−Qi(t) = − 1
∆x

∫ x
i+ 1

2

x
i− 1

2

Aq̃x(x, ∆t)dx (8.10)

We can split the integral into three parts, representing the Riemann fans from the two

121

xi− 1

2

xi+ 1

2

∆t

xi− 1

2

+ λ3

i− 1

2

∆t xi+ 1

2

+ λ1

i− 1

2

∆t

W1

i+ 1

2

W2

i− 1

2

W3

i− 1

2

Figure 8.2: Time evolution of the reconstructed solution q̃ in cell i.

interfaces, and the remaining piece:

∫ x
i+ 1

2

x
i− 1

2

Aq̃xdx =
∫ x

i− 1
2
+λr∆t

x
i− 1

2

Aq̃xdx +
∫ x

i+ 1
2

x
i+ 1

2
+λl∆t

Aq̃xdx +
∫ x

i+ 1
2
+λl∆t

x
i− 1

2
+λr∆t

Aq̃xdx (8.11)

= ∆t
m

∑
p=1

(
λ

p
i− 1

2

)+W p
i− 1

2
+ ∆t

m

∑
p=1

(
λ

p
i+ 1

2

)−W p
i+ 1

2
. (8.12)

This is illustrated in Figure 8.2. Here we have defined λl = min(λ1
i+ 1

2
, 0) and λr =

max(λm
i− 1

2
, 0), and (x)± denotes the positive or negative part of x:

(x)− = min(x, 0) (x)+ = max(x, 0).

The wavesWi− 1
2

and speeds λi− 1
2

are those resulting from the Riemann problem with left
and right states Qi−1 and Qi, respectively. The third piece vanishes because q̃(x, ∆t) is

122

b b b b b

xi− 1

2

Figure 8.3: Illustration of piecewise polynomial reconstruction from cell averages.

constant outside the Riemann fans. Defining the fluctuations

A+∆qi− 1
2

=
m

∑
p=1

(
λ

p
i− 1

2

)+W p
i− 1

2
(8.13)

A−∆qi+ 1
2

=
m

∑
p=1

(
λ

p
i+ 1

2

)−W p
i+ 1

2
, (8.14)

we have
Qi(t + ∆t)−Qi(t) = − ∆t

∆x

(
A−∆qi+ 1

2
+A+∆qi− 1

2

)
. (8.15)

Dividing by ∆t and taking the limit as ∆t approaches zero, we obtain the semi-discrete
scheme

∂Qi

∂t
= − 1

∆x

(
A−∆qi+ 1

2
+A+∆qi− 1

2

)
. (8.16)

Equation (8.16) constitues a linear system of ODEs that may be integrated, for instance,
with any of the methods discussed in the first part of this thesis.

8.3 Extension to Higher Order

The method of the previous section is only first order accurate in space. In order to
improve the spatial accuracy, we replace the piecewise-constant approximation (8.9) by
a piecewise-polynomial approximation that is accurate to order p in regions where the
solution is smooth:

q̃i(x) = q(x, t) +O(∆xp+1). (8.17)

This reconstruction is illustrated in Figure 8.3.

We again integrate 8.1 over [xi− 1
2
, xi+ 1

2
]× [0, ∆t], divide by ∆t∆x, and take the limit as

123

∆t approaches zero. We now find that the third integral in (8.11) contributes, since q̃ is
not constant outside the Riemann fans: Defining

q+
i− 1

2
= q̃i(xi− 1

2
) q−

i+ 1
2

= q̃i(xi+ 1
2
), (8.18)

the contribution from this term is

lim
∆t→0

∫ x
i+ 1

2
+λr∆t

x
i− 1

2
+λl∆t

Aq̃x = A(q−
i+ 1

2
− q+

i− 1
2
). (8.19)

The resulting scheme is thus

∂Qi

∂t
= − 1

∆x

(
A−∆qi+ 1

2
+A+∆qi− 1

2
+ A(q−

i+ 1
2
− q+

i− 1
2
)
)

. (8.20)

Note that, for instance, the fluctuation A+∆qi− 1
2

corresponds to the effect of right-going
waves from the Riemann problem with left state q−

i− 1
2

and right state q+
i− 1

2
.

8.4 Variable Coefficient Linear Systems

We now generalize the method to solve linear hyperbolic systems with variable coeffi-
cients:

qt + A(x)qx = 0. (8.21)

We assume that the system is hyperbolic for all x and that A(x) is piecewise-constant,
with points of discontinuity aligned with grid interfaces. Thus A(x) is given by a constant
matrix Ai within grid cell i. The Riemann problem at xi− 1

2
is now given by (8.21) together

with

q(x, 0) =

q−

i− 1
2

x < xi− 1
2

q+
i− 1

2
x > xi− 1

2

A(x) =

 Ai−1 x < xi− 1
2

Ai x > xi− 1
2

(8.22)

As in the constant coefficient case, the Riemann solution consists of waves, but now the
left-going waves are multiples of the eigenvectors ri−1 of Ai−1 while the right-going waves
are multiples of the eigenvectors ri of Ai. Thus the semi-discrete scheme is again (8.20),
but with fluctuations corresponding to these waves and with A = Ai.

124

8.5 Nonlinear Systems

Next we generalize the method to solve general nonlinear hyperbolic systems:

qt + A(q, x)qx = 0. (8.23)

We again assume that A is a constant function of x within each cell, so we can write
A(q, x) = Ai(q). In the special case that A is the Jacobian matrix of some function f ,
(8.23) corresponds to a conservation law:

qt + f (q, x)x = 0. (8.24)

Our method can be applied to the general system (8.23) only if a meaningful solution to
the Riemann problem can be given. In that case, the scheme is given by

∂Qi

∂t
= − 1

∆x

(
A−∆qi+ 1

2
+A+∆qi− 1

2
+
∫ x

i+ 1
2

x
i− 1

2

Ai(q̃(x)dx)

)
. (8.25)

The fluctuations may be computed using a suitable (exact or approximate) Riemann
solver. In general, the integral must be evaluated by quadrature; however, in the case
of (8.24), the integral can be evaluated exactly, and is given by∫ x

i+ 1
2

x
i− 1

2

Ai(q̃(x)dx) = f (q−
i+ 1

2
)− f (q+

i− 1
2
). (8.26)

Noting that the sum of fluctuations from a Riemann solution are equal to the flux differ-
ence between the states involved, we can write the above flux difference as the sum of
both fluctuations resulting from the Riemann problem

q(x, 0) =

q+

i− 1
2

x < xi

q−
i+ 1

2
x > xi

A(x) = Ai. (8.27)

Then we can write both (8.20) and (8.25) as

∂Qi

∂t
= − 1

∆x

(
A−∆qi+ 1

2
+A+∆qi− 1

2
+A∆qi

)
, (8.28)

where A∆qi is the sum of both fluctuations in the solution of the Riemann problem (8.27).

125

Note that, in the case of (8.24), if the fluctuations are equal to flux differences

A−∆qi− 1
2

= f̂i− 1
2
− f (q−

i− 1
2
) (8.29)

A+∆qi− 1
2

= f (q+
i− 1

2
)− f̂i− 1

2
, (8.30)

(where f̂i− 1
2

is the numerical flux at xi− 1
2
), then (8.28) is equivalent to the traditional flux-

differencing method
∂Qi

∂t
= − 1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
. (8.31)

In particular, the scheme is conservative in this case.

8.6 High Order Non-oscillatory Reconstruction of Scalar Functions

In this section we discuss the problem of reconstruction of a scalar-valued function from
cell averages. We will focus on methods that are able to reconstruct functions with dis-
continuities without introducing spurious oscillations. For simplicity, we will assume an
equispaced grid.

8.6.1 Linear (Non-limited) Reconstruction

Given a stencil of k cells i− r, . . . , i− r + k and the average values Qi−r, . . . , Qi−r+k, there
exists a unique reconstructed polynomial Pi(x) possessing exactly these cell averages. We
will be interested mainly in the values of the reconstructed function at the cell interfaces.
For a centered stencil and a uniform grid, these values can be written as

q+
i− 1

2
= Pi(xi− 1

2
) =

s

∑
j=−s

cjQi+j, q−
i+ 1

2
= Pi(xi+ 1

2
) =

s

∑
j=−s

cjQi−j. (8.32)

Here cj are fixed weights. For instance, a 3rd order reconstruction using the stencil {i−
1, i, i + 1} is

q+
i− 1

2
=

1
3

Qi−1 +
5
6

Qi − 1
6

Qi+1 (8.33a)

q−
i+ 1

2
=

1
3

Qi+1 +
5
6

Qi − 1
6

Qi−1. (8.33b)

We refer to this as a linear reconstruction because the reconstructed values are linear
combinations of the cell averages.

If a linear reconstruction is used for a stencil that contains a discontinuity, the recon-
structed solution will exhibit spurious oscillations. For this reason, when reconstructing

126

solutions of hyperbolic PDEs, typically some kind of nonlinear limiting is performed. In
the following sections we discuss limited reconstructions that are designed to avoid oscil-
lations.

8.6.2 TVD Reconstruction

The simplest improvement of the piecewise-constant reconstruction (8.9) is to reconstruct
a linear function q̃ in each cell. If we force the resulting reconstruction to have the property
that reconstructed values in cell i lie between the cell averages Qi−1 and Qi+1, we are led
to the well-known class of total variation diminishing (TVD) reconstructions. We will
discuss two types of reconstructions; the first is cell-centered reconstruction:

q+
i− 1

2
= Qi − 1

2
δi q−

i+ 1
2

= Qi +
1
2

δi (8.34)

where δi is a local approximation to ∂q
∂x ∆x. For purposes of accuracy, a finite difference

approximation could be used. In order to satisfy the TVD property, this approximation is
’limited’ in a nonlinear fashion. Many limiters can be written in the form

δi = φ(θi)∆Qi− 1
2

(8.35)

where

θi =
∆Qi+ 1

2

∆Qi− 1
2

. (8.36)

For instance, the harmonic van Leer limiter is given by

φ(θ) =
θ + |θ|
1 + |θ| (8.37)

.

Interface-centered TVD reconstructions can be written as

q+
i− 1

2
= Qi − δi− 1

2
q−

i+ 1
2

= Qi + δi+ 1
2

(8.38)

where
δi− 1

2
= φ(θi− 1

2
)∆Qi− 1

2
(8.39)

with

θi− 1
2

=
∆QI− 1

2

∆Qi− 1
2

. (8.40)

127

Here I − 1
2 refers to the interface upwind of i− 1

2 .

8.6.3 Weighted Essentially Non-Oscillatory Reconstruction

TVD reconstructions are generally at most second order accurate (first order accurate near
extrema). We now discuss WENO reconstruction, which achieves higher order accuracy
while still generally avoiding spurious oscillations when reconstructing functions with
discontinuities or large gradients. For further details on WENO reconstruction, see the
recent review paper [108].

For a given integer k, the WENO reconstruction of order 2k − 1 in cell i can be de-
scribed as follows. First, component reconstructions pj(x) are formed using linear recon-
struction based on each of the k-cell stencils containing cell i. Observe that there are k
such stencils, and that the total number of cells in all of the component stencils is 2k− 1.
For each component reconstruction, a measure of its smoothness is computed; we will
denote the smoothness indicator of the jth component reconstruction by β j. The smooth-
ness indicator is given by a scaled sum of the squared L2 norms of all of the derivatives
of the reconstructed function:

β j =
k

∑
l=1

∆x2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl pj(x)
)2

dx.

Discretely, the smoothness indicators are quadratic functions of the cell averages.
For any interface location xi− 1

2
, there exists a linear combination of these k component

reconstructions pj that is accurate to order 2k− 1:

k

∑
l=1

γj pj(xi− 1
2
) = qexact(xi− 1

2
) +O(∆x2k−1).

WENO reconstruction uses a different linear combination of the component recon-
structions to find the reconstructed value q−

i− 1
2
. The weights are given by

ωj =
ω̃j

∑k
l=1 ω̃l

with ω̃j =
γj

(ε + β j)2 . (8.41)

Here ε is a small number used only to avoid division by zero. Although a value of 10−6 is
generally advocated in the literature, we have found that this can have an adverse effect
on accuracy in some well-resolved convergence tests. In all numerical tests, we use a
value of 10−36.

In order to implement WENO in the context of the vector reconstruction approaches

128

below, we rewrite the WENO reconstruction in a form analogous to that of TVD recon-
struction methods:

q+
i− 1

2
= Qi − φ(θi− 1

2 ,2−k, . . . , θi− 1
2 ,k−1)∆Qi− 1

2
(8.42)

where

θi− 1
2 ,j =

∆Qi− 1
2 +j

∆Qi− 1
2

. (8.43)

The reconstruction methods we have considered are all symmetric in the sense that

q−
i+ 1

2
= Qi − φ(θi+ 1

2 ,1−k, . . . , θi+ 1
2 ,k−2)∆Qi− 1

2
(8.44)

8.7 Reconstruction of Vector-valued Functions

In this section, we discuss how the reconstruction techniques of the previous section may
be extended for systems of equations. In this case q is a vector-valued function. The
simplest approach, which we refer to as component-wise reconstruction, is to simply apply
the scalar reconstruction to each component of q. However, this is generally less accurate
or less stable than other approaches that take into account the characteristic structure of
A.

8.7.1 Reconstruction of Eigencomponent Coefficients

In the approach above, the nonlinear limiting is applied directly to the components of q.
This approach has worked well for many finite volume methods for conservative systems
and a range of problems; however, in other cases it is insufficient. In particular, it appears
to become successively less satisfactory as the order of accuracy of the reconstruction is
increased. See [94] for a detailed discussion with respect to central WENO schemes, for
instance.

A somewhat more sophisticated approach, suitable for linear systems (8.21), requires
the decomposition of Qi into eigenvectors of Ai:

Qi = ∑
p

wp
i rp

i . (8.45)

We then form the "wave strengths"

α
p
i− 1

2
= wp

i − wp
i−1. (8.46)

129

Note that these are the strengths of waves that would be obtained in Godunov’s method
for the Riemann problem at xi− 1

2
only in the case of a linear system with uniform coeffi-

cients. The limiter function φ is computed for each characteristic field

φ
p
i− 1

2
= φ(θ

p
i− 1

2 ,−s+1
, . . . , θ

p
i− 1

2 ,s
), (8.47)

using the ratios

θ
p
i− 1

2 ,j
=

α
p
i− 1

2 +j

α
p
i− 1

2

. (8.48)

The reconstructed values are given by

q+
i− 1

2
= Qi −∑

p
φ

p
i− 1

2
α

p
i− 1

2
rp

i q−
i+ 1

2
= Qi + ∑

p
φ

p
i+ 1

2
α

p
i− 1

2
rp

i . (8.49)

This approach is ideally suited to linear systems of equations with uniform coefficients,
since it corresponds to performing the nonlinear limiting on the decoupled characteristic
fields.

For problems with variable coefficients, this method is potentially inaccurate for two
reasons. First, it is not always clear how to normalize the eigenvectors in a consistently
meaninful way among cells with differing coefficients Ai. Second, the eigenvectors in
such cells will not be parallel in phase space, so that comparing their magnitudes may
not give a useful indicator of oscillations. However, this method is widely used in finite
volume schemes and was used in the original ENO schemes [49].

8.7.2 Characteristic-wise Reconstruction

We now present a method that addresses the two problems mentioned in the previous
section. This is similar to the characteristic-wise approach used in Shu’s finite volume
WENO scheme of [106]. The limiter is computed for each characteristic field using the
ratios (8.48), but the wave strengths are calculated differently. For each interface xi− 1

2
, an

interface Jacobian Ai− 1
2

is defined and the jumps ∆Qj− 1
2

for i− k + 2 ≤ j ≤ i + k− 1 are
all decomposed in terms of the eigenvectors of Ai− 1

2
:

∆Qj− 1
2

= ∑
p

α
p
j− 1

2
rp

i− 1
2
. (8.50)

The reconstructed values are again given by (8.49). The interface Jacobian Ai− 1
2

may be
chosen as a simple average of A(qi, xi) and A(qi−1, xi−1), or as something more sophis-
ticated. For systems such as the Euler equations, the Roe average seems to be a good

130

choice. For linear acoustics, we choose the Jacobian with first eigenvector equal to the
first eigenvector of Ai−1 and second eigenvector equal to that of Ai. This results in a
reconstruction similar in spirit to that of Lax & Liu [85] or Fogarty [37].

8.7.3 Wave-slope Reconstruction

The following method accounts for spatial variation in the coefficients and can conve-
niently be performed using the existing Riemann solvers in Clawpack.

At each interface xi− 1
2
, the jump ∆Qi− 1

2
is decomposed in terms of the eigenvectors of

Ai− 1
2
:

∆Qi− 1
2

= ∑
p

α
p
i− 1

2
rp

i− 1
2

= ∑
p
W p

i− 1
2
. (8.51)

The reconstructed values are given by

q−
i− 1

2
= Qi−1 + ∑

p
φ

p
i− 1

2
W p

i− 1
2

q+
i− 1

2
= Qi −∑

p
φ

p
i− 1

2
W p

i− 1
2
. (8.52)

with

θ
p
i− 1

2
=
W p

I− 1
2
· W p

i− 1
2

W p
i− 1

2
· W p

i− 1
2

. (8.53)

This approach is intended to be similar to that used in Clawpack [80]. It was found
that this limiting method does not yield consistent improvement over component-wise
limiting in practice; for this reason, we do not use wave-slope reconstruction in any of the
numerical examples in Chapter 9.

8.8 Extension to Two Dimensions

In this section, we extend the numerical wave propagation method to two dimensions
using a simple dimension-by-dimension approach. The method is applicable to systems
of the form

qt + A(q, x, y)qx + B(q, x, y)qy = 0 (8.54)

on uniform Cartesian grids.

The 2D analog of the semi-discrete scheme (8.28) is

∂Qij

∂t
= − 1

∆x∆y

(
A−∆qi+ 1

2 ,j +A+∆qi− 1
2 ,j +A∆qi,j + B−∆qi,j+ 1

2
+ B+∆qi,j− 1

2
+ B∆qi,j

)
.

(8.55)
For the method to be high order accurate, the fluctuation terms like A−∆qi+ 1

2 ,j should in-

131

volve integrals over cell edges, while the total fluctuation terms like A∆qi,j should involve
integrals over cell areas. This can be achieved by forming a genuinely multidimensional
reconstruction of q and using, e.g., Gauss quadrature. An implementation following this
approach was undertaken and exists in the SharpClaw software, but has been found to
be extremely inefficient, as it typically yields only a small improvement in accuracy over
the dimension-by-dimension scheme given below, but has a much greater computational
cost. A careful comparison of the two approaches is left for future work.

We now describe the dimension-by-dimension scheme for a single Runge-Kutta stage.
We first reconstruct piecewise-polynomial functions q̃j(x) along each row of the grid and
q̃i(y) along each column, by applying a 1D reconstruction procedure to each slice. We
thus obtain reconstructed values

q̃+
j (xi− 1

2
) ≈ q(xi− 1

2
, yj) (8.56a)

q̃−j (xi+ 1
2
) ≈ q(xi+ 1

2
, yj) (8.56b)

q̃+
i (yi− 1

2
) ≈ q(xi, yi− 1

2
) (8.56c)

q̃−i (yi+ 1
2
) ≈ q(xi, yi+ 1

2
). (8.56d)

for each cell i, j. The fluctuation terms in (8.55) are determined by solving Riemann prob-
lems between the appropriate reconstructed values; for instance B−∆qi,j+ 1

2
is determined

from the Riemann problem with

ql = q−
i,j+ 1

2
qr = q+

i,j+ 1
2
.

Similarly, in the case of conservative systems or piecewise constant coefficients, the total
fluctuation terms A∆qi,j and B∆qi,j can be determined by summing the left- and right-
going fluctuations of an appropriate Riemann problem. Thus, for instance, B∆qi,j is de-
termined by the fluctuations resulting from the Rieman problem with

ql = q+
i,j− 1

2
qr = q−

i,j+ 1
2
.

132

Chapter 9

Numerical Tests

In this chapter we present results of numerical tests using the wave propagation
method of Chapter 8 and the explicit SSP Runge-Kutta methods of Chapter 6 to solve
hyperbolic PDEs. The high order wave propagation method will be compared with the
well-known TVD wave propagation code Clawpack (see [80]). In Section 9.1, we explain
the methods that will be compared. In Section 9.2, we present results for the variable coef-
ficient linear acoustics equations. In Section 9.3, we present results for the Euler equations
of compresible fluid flow.

9.1 Methods

In this chapter we will compare numerical results obtained using the following methods:

Clawpack. Wave propagation method of LeVeque [80]. In all tests, we use a CFL number
of 0.9 and the monotonized centered limiter.

UC3, UC7. High order wave propagation with un-limited centered reconstruction of third
or seventh order accuracy.

TVD2. High order wave propagation with component-wise TVD (monotonized centered)
reconstruction.

WENO5. High order wave propagation with component-wise fifth-order WENO recon-
struction.

133

WENO5 Char. High order wave propagation with characteristic-wise fifth-order WENO
reconstruction.

All of the high order methods are integrated using SSPRK(10,4) with a CFL number of
2.85.

9.2 Acoustics

In this section, we apply the high-order wave propagation methods of Chapter 8 to linear
acoustics in piecewise homogeneous materials. The acoustics equations in one dimension
are

pt + K(x)ux = 0 (9.1a)

ut +
1

ρ(x)
px = 0 (9.1b)

where p, u are pressure and velocity perturbations (respectively) relative to some ambient
state. This system is of the form (8.21), with

q =

 p

u

 , A(x) =

 0 K(x)

1/ρ(x) 0

 (9.2)

The eigenvectors of the matrix Ai in this case are

r1
i =

 −Zi

1

 , r2
i =

 Zi

1

 (9.3)

and the eigenvalues are
λ1

i = −ci, λ2
i = ci. (9.4)

Here Zi =
√

Kiρi is the impedance and ci =
√

Ki/ρi is the sound speed. For the solution
of the Riemann problem, and also for characteristic-wise decomposition, we will make
use of the matrix Ai− 1

2
with eigenvectors

r1
i− 1

2
=

 −Zi−1

1

 , r2
i− 1

2
=

 Zi

1

 (9.5)

and eigenvalues
λ1

i− 1
2

= −ci−1, λ2
i− 1

2
= ci. (9.6)

134

Thus the solution to the Riemann problem at xi− 1
2

consists of a left-moving wave α1
i− 1

2
r1

i−1

with velocity −ci−1 and a right-moving wave α2
i− 1

2
r2

i with velocity ci. The wave strengths
are found to be

α1
i− 1

2
=
−∆pi− 1

2
+ Zi∆ui− 1

2

Zi + Zi−1
(9.7a)

α2
i− 1

2
=

∆pi− 1
2
+ Zi−1∆ui− 1

2

Zi + Zi−1
. (9.7b)

9.2.1 Single Material Interface

In this section, we study a test problem involving a single interface between two materials.
Thus we solve (9.1) with

ρ, c =

 ρl , cl x < 0

ρr, cr x > 0
(9.8)

We will measure the convergence rate of the solution in order to determine a practical or-
der of accuracy for smooth solutions. We thus require an initial condition that is p-times
differentiable, where p is greater than the expected order of accuracy. Additionally, we
require that the initial condition have compact support so that after some time the solu-
tion will again be sufficiently smooth. We therefore use as initial condition the Newton
interpolating polynomial

p(x, 0) =
((x− x0)− a)6((x− x0) + a)6

a12 ξ(x− x0) (9.9)

u(x, 0) = p(x, 0)/Z(x) (9.10)

where

ξ(x− x0) =

0 (x− x0 < −a)

1 (−a ≤ x− x0 ≤ a)

0 (x− x0 > a)

(9.11)

with x0 = −4 and a = 1. This function is everywhere six times differentiable and is
identically zero at the interface. Since the solution is a multiple of r2(x) at every value of
x, initially the wave is purely right-going. The evolution of the exact solution for two sets
of material parameters is illustrated in Figure 9.1. When the wave reaches the interface,
part is reflected and part transmitted. Although the solution is not differentiable during
the interaction with the interface, at later times it is once again six-times differentiable.
Ideally, we would like to recover a high order of accuracy with our numerical scheme,

135

even after the wave has passed through the interface.
As a first verification of the implementation, we consider a homogeneous medium by

taking ρl = cl = ρr = cr = 1. Table 9.1 shows results for three different reconstruction
methods and Clawpack. In each case, the order of convergence is approximately equal
to the theoretical order of accuracy of the reconstruction, except for UC7. In this case the
spatial error is small enough that the error of the time discretization dominates.

Table 9.1: Errors for homogeneous problem

TVD2 WENO5 UC7 Clawpack

mx Error Order Error Order Error Order Error Order

200 1.69e-01 nan 3.60e-02 nan 6.41e-03 nan 4.10e-02 nan
400 5.95e-02 1.50 3.65e-03 3.30 2.83e-04 4.50 1.30e-02 1.66
800 2.22e-02 1.42 1.85e-04 4.31 1.63e-05 4.11 3.61e-03 1.85
1600 6.67e-03 1.74 7.35e-06 4.65 1.01e-06 4.02 8.94e-04 2.01
3200 1.83e-03 1.87 2.72e-07 4.76 6.25e-08 4.01 2.19e-04 2.03

For the next test we take

ρl = cl = 1 ρr = 4 cr = 1/2,

yielding an impedance ratio of two. Results are shown in Table 9.2. In this case the
methods UC7 and WENO5 show convergence rates well below their formal order, even
though the initial and final solutions are smooth. To investigate this further, we repeat
the same test with a wider pulse by taking a = 4. Results are shown in table 9.3.

For the latter test, we observe a convergence rate of approximately two for all methods.
The results can be understood as follows. For this problem, the errors can be divided
into two sources. First, the truncation error that occurs as the pulse is propagated in
a homogeneous medium; this error is of the order given by the design order of each
method. This error is large for a narrow pulse that is not well resolved on the grid.

The second source of error arises in the reconstruction step, when the solution is re-
constructed using stencils that cross the material interface. The high-order reconstruction
is based on an assumption of smoothness of the solution, which does not hold at the
interface. Since the jump in the first derivative of the solution at the interface is O(1), the
error in the reconstructed values in cells whose stencil overlaps the interface is O(∆x).
Since the total area of all such cells is O(∆x), the resulting global error is O(∆x2). This

136

error dominates when the pulse is well-resolved on the grid, so that the first type of error
is small.

Table 9.2: Errors for interface 1 problem

TVD2 WENO5 UC7 Clawpack

mx Error Order Error Order Error Order Error Order

200 2.73e-01 nan 2.10e-01 nan 6.76e-02 nan 1.98e-01 nan
400 9.70e-02 1.50 5.98e-02 1.81 5.05e-03 3.74 7.26e-02 1.45
800 3.56e-02 1.45 1.25e-02 2.26 1.01e-03 2.31 2.21e-02 1.71

1600 1.17e-02 1.61 1.17e-03 3.42 2.51e-04 2.01 7.86e-03 1.49
3200 3.35e-03 1.80 1.39e-04 3.07 6.28e-05 2.00 3.18e-03 1.31

Table 9.3: Errors for interface 1 problem with wide pulse (a=4)

TVD2 WENO5 UC7 Clawpack

mx Error Order Error Order Error Order Error Order

200 4.70e-02 nan 9.67e-03 nan 4.04e-03 nan 5.23e-02 nan
400 1.30e-02 1.85 2.01e-03 2.27 1.01e-03 2.01 2.32e-02 1.17
800 3.46e-03 1.91 4.89e-04 2.04 2.51e-04 2.00 1.09e-02 1.09

1600 8.91e-04 1.96 1.22e-04 2.00 6.28e-05 2.00 5.26e-03 1.05
3200 2.26e-04 1.98 3.04e-05 2.00 1.57e-05 2.00 2.58e-03 1.02

For the next test we take

ρl = cl = 1 ρr = 4000 cr = 1/2,

yielding an impedance ratio of 2000. This is a much more difficult problem. The solution
has a larger jump in the first derivative while the pulse is passing through the interface
(see Figure 9.1). The linear reconstruction methods UC3 and UC7 fail completely (are
unstable) in this case. Again we use two different initial conditions to illustrate the two
different types of errors. Results are shown in Tables 9.4 and 9.5. We see that the WENO5
methods are significantly more accurate than the 2nd order methods, and that using
characteristic-wise decomposition improves the accuracy further. Between the 2nd order

137

Pressure Velocity

(a) ρr = 4, cr = 1/2

Pressure Velocity

(b) ρr = 4000, cr = 1/2

Figure 9.1: Evolution of an acoustic pulse at an interface, for two different values of
density of the right-side material. In both cases, ρl = cl = 1. The exact solution is plotted
for the interval x ∈ [−1, 1]. Note the more significant lack of smoothness at x = 0 in the
case of large jump in parameters.

methods, Clawpack is more accurate when the traditional truncation error dominates,
while TVD2 is more accurate when the interface error dominates.

Table 9.4: Errors for interface 2 problem

TVD2 WENO5 WENO5 Char Clawpack

mx Error Order Error Order Error Order Error Order

200 5.32e-01 nan 3.60e-01 nan 2.58e-01 nan 3.18e-01 nan
400 1.94e-01 1.45 9.72e-02 1.89 2.50e-02 3.37 1.16e-01 1.45
800 6.75e-02 1.52 1.97e-02 2.30 3.20e-03 2.97 3.52e-02 1.72
1600 2.11e-02 1.68 1.96e-03 3.33 3.56e-04 3.17 1.22e-02 1.53
3200 5.93e-03 1.83 2.72e-04 2.85 7.37e-05 2.27 4.85e-03 1.33

138

Table 9.5: Errors for interface 2 problem with wide pulse

TVD2 WENO5 WENO5 Char Clawpack

mx Error Order Error Order Error Order Error Order

200 9.73e-02 nan 1.75e-02 nan 6.60e-03 nan 8.23e-02 nan
400 2.53e-02 1.94 4.02e-03 2.12 1.18e-03 2.49 3.55e-02 1.22
800 6.42e-03 1.98 9.91e-04 2.02 2.92e-04 2.01 1.65e-02 1.11

1600 1.61e-03 2.00 2.47e-04 2.00 7.34e-05 1.99 7.91e-03 1.06
3200 4.07e-04 1.98 6.17e-05 2.00 1.84e-05 2.00 3.88e-03 1.03

9.2.2 Several Interfaces

We now consider a medium with periodic material parameters. We use the material
considered in [103], for which

(ρ(x), K(x)) =

 (1, 1) 0 < x mod L < θL

(3, 3) θL < x mod L < L
, (9.12)

and we take θ = 1/2, L = 4. As above we consider the domain [−10, 10] and initial
condition (9.9), now with x0 = −1, a = 1. The exact solution is as smooth as the initial
condition at integer times; we compare computed and exact solutions at t = 8. Results
are shown in Table 9.6. We see that the interface error dominates the convergence rate
now even though the pulse is not so wide. The errors for most of the methods are similar
to but larger than those for a single interface (compare with Tables 9.2 and 9.4). However,
the WENO5 Char method converges much more slowly on this problem; in fact, it is less
accurate than the component-wise WENO5 method on the finer grids. This problem (with
a different domain and initial condition) was also considered in [37].

9.2.3 A Sonic Crystal

In this section we model sound propagation in a sonic crystal. A sonic crystal is a peri-
odic structure composed of materials with different sounds speeds and impedances. The
periodic inhomogeneity can give rise to bandgaps – frequency bands that are completely
reflected by the crystal. This phenomenon is widely utilized in photonics, but its signifi-
cance for acoustics has only recently been considered. Photonic crystals can be analyzed
quite accurately using analytic techniques, since they are essentially infinite size struc-

139

Table 9.6: Errors for periodic problem

TVD2 WENO5 WENO5 Char Clawpack

mx Error Order Error Order Error Order Error Order

500 6.11e-01 nan 3.26e-01 nan 3.02e-01 nan 1.51e-01 nan
400 2.14e-01 1.51 6.61e-02 2.30 4.82e-02 2.65 5.89e-02 1.36
800 6.57e-02 1.71 9.20e-03 2.84 1.21e-02 1.99 2.52e-02 1.22
1600 1.84e-02 1.84 1.86e-03 2.31 2.57e-03 2.24 1.16e-02 1.13
3200 4.92e-03 1.90 4.29e-04 2.12 5.71e-04 2.17 5.55e-03 1.06

tures relative to the wavelength of the waves of interest. In contrast, sonic crystals are
typically only a few wavelengths in size, so that the effects of their finite size cannot be
neglected. For more information on sonic crystals, see for instance the review paper [90].

We consider a square array of square rods in air with a plane wave disturbance in-
cident parallel to one of the axes of symmetry. The array is infinitely wide but only
five periods deep. The lattice spacing is 10 cm and the rods have a cross-sectional side
length of 4 cm, so that the filling fraction is 0.16. This crystal is similar to one studied in
[101], and it is expected that sound waves in the 1200-1800 Hz range will experience se-
vere attenuation in passing through it, while longer wavelengths will not be significantly
attenuated.

A numerical instability very similar to that observed in 1D simulations in [36, 37] was
observed when the standard Clawpack method was applied to this problem. The WENO5
Char method with characteristic- wise limiting showed no such instability.

Figure 9.2 shows the RMS pressure for a plane wave with k = 15 incident from the
left. This wave has a frequency of about 800 Hz, well below the partial band gap. As
expected, the wave passes through the crystal without significant attenuation. In Figure
9.3, the pressure is plotted along a slice in the x-direction approximately midway between
rows of rods.

Figure 9.4 shows the RMS pressure for an incident plane wave with with frequency
1600 Hz, inside the partial bandgap. Notice that the wave is almost entirely reflected,
resulting in a standing wave in front of the crystal. Figure 9.5 shows the rms pressure
along a slice in the x-direction.

140

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.05

0
0.05

q(1) at time 0.0058

x

y

Figure 9.2: Pressure in the sonic crystal for a long wavelength plane wave incident from
the left.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 9.3: Pressure in the sonic crystal for a long wavelength plane wave incident from
the left.

141

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.05

0
0.05

RMS Pressure

x

y

Figure 9.4: RMS pressure in the sonic crystal for a plane wave incident from the left.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

2

4

6

8

10

12
RMS Pressure at y=−0.5

x

R
M

S
 P

re
ss

ur
e

Figure 9.5: RMS pressure in the sonic crystal along a slice at y=-0.05.

142

9.3 Fluid Dynamics

We now consider the one-dimensional Euler equations of fluid dynamics:

ρt + (ρu)x = 0 (9.13)

(ρu)t + (ρu2 + p)x = 0 (9.14)

Et + ((E + p)u)x = 0 (9.15)

where ρ, u, p, and E are the density, velocity, pressure, and total energy, respectively. It is
important that the solution satisfy the physical constraints that the density, pressure, and
internal energy remain positive. This can be very difficult to maintain numerically. Often,
WENO spatial discretization and SSP Runge-Kutta time discretization are applied to this
system with the intent of better preserving positivity. However since the WENO semi-
discretization of (9.13) is not provably TVD, the theory of strong stability preservation
does not strictly apply. Nevertheless, good results are generally observed.

In this section we apply our wave propagation method to investigate the usefulness
of SSP methods for integrating fifth-order WENO discretizations of (9.13). We discretize
using component-wise fifth order WENO reconstruction and the two-wave HLL Riemann
solver. We consider a Riemann problem similar to Test 2 of [116, Section 8.5], with pres-
sure and density equal to 1 everywhere and ur = 3.1, ul = −3.1. The solution consists of
two rarefaction waves and a near-vacuum state in the middle. It is thus a very challenging
problem in terms of maintaining positivity.

We solve the problem using several time integrators and determine the largest CFL
number that maintains positive density and pressure. Results are given in Table 9.7. The
NSSP methods are so-called non-SSP methods proposed in [121]. Method RK(4,4) is the
classical fourth order method and RK(6,5) is a fifth-order method of Butcher [12]. We see
that, in general, the SSP methods allow a significantly larger timestep.

143

Table 9.7: Largest positivity-preserving timestep for double-rarefaction problem.

Method ∆t/∆x ∆t/s∆x
NSSP(2,1) 0.14 0.070
NSSP(3,2) 0.40 0.133
NSSP(3,3) 0.26 0.087
NSSP(5,3) 0.50 0.100
RK(4,4) 0.77 0.193
RK(6,5) 0.60 0.100
SSP(3,3) 0.77 0.257
SSP(4,3) 1.13 0.283
SSP(9,3) 2.33 0.259
SSP(5,4) 0.95 0.190
SSP(10,4) 2.70 0.270

144

Chapter 10

Stegotons

In this chapter we present numerical and analytical investigations of a class of solitary
waves known as stegotons. These waves, originally discovered in [82] and studied in
[84], arise from the interaction of nonlinearity and an effective dispersion due to material
interfaces in layered media. In Section 10.1, we review previous work on stegotons. In
Section 10.2, we investigate the stegotons through analysis of homogenized equations, and
relate those equations to other interesting PDEs. In Section 10.4, we investigate solitary
waves in smoothly varying periodic elastic media.

10.1 Previous Work

10.1.1 Nonlinear Elasticity in 1D

Elastic compression waves in one dimension are governed by the equations

εt(x, t)− ux(x, t) = 0 (10.1a)

(ρ(x)u(x, t))t − σ(ε(x, t), x)x = 0. (10.1b)

where ε is the strain, u the velocity, ρ the density, and σ the stress. This is a conservation
law of the form (8.24), with

q(x, t) =

 ε

ρ(x)u

 f (q, x) =

 −u

−σ(ε, x)

 . (10.2)

145

Note that the density and the stress-strain relationship vary in x. We will also refer to the
sound speed c(x), impedance Z(x), and linearized bulk modulus K(x), given by

c(x) =
√

σ(ε, x)ε/ρ(x) (10.3)

Z(x) = ρ(x)c(x) (10.4)

K(x) = σ(ε, x)ε|ε=0 . (10.5)

The Jacobian of the flux function is

f ′(q) =

 0 −1/ρ(x)

−σ(ε, x)ε 0

 , (10.6)

with eigenvectors

r1 =

 1

−Z(q, x)

 , r2 =

 1

Z(q, x)

 (10.7)

In the case of the linear stress-strain relation σ(x) = K(x)ε(x), (10.1) is just the one-
dimensional wave equation, and is equivalent to the acoustics equations studied in the
last chapter. In this chapter we are interested in studying phenomena that arise in the
presence of a nonlinear stress-strain relationship and a periodically varying medium.

10.1.2 An F-wave Riemann Solver

To apply the wave propagation method of Chapter 8 to (10.1), we need to define a Rie-
mann solver for this system. We will use the f -wave solver used in [82]. We assume that
ρ, σ are independent of x in each cell, so they can be written as ρ(x) = ρi, σ(ε, x) = σi(ε).
Given a Riemann problem at xi− 1

2
we use the approximate wave speeds

s1
i− 1

2
= −

√√√√√σ′i−1(ε−
i− 1

2
)

ρ−
i− 1

2

s2
i− 1

2
=

√√√√√σ′i (ε+
i− 1

2
)

ρ+
i− 1

2

. (10.8)

and the eigenvectors

r1
i− 1

2
=

 1

−
√

ρ−
i− 1

2
σ′i−1(ε−

i− 1
2
)

 , r2
i− 1

2
=

 1√
ρ+

i− 1
2
σ′i (ε+

i− 1
2
)

 . (10.9)

146

We decompose the flux difference as

f (q+
i− 1

2
)− f (q−

i− 1
2
) = β1

i− 1
2
r1

i− 1
2
+ β2

i− 1
2
r2

i− 1
2
. (10.10)

Then the fluctuations are simply

A−∆qi− 1
2

= β1
i− 1

2
r1

i− 1
2

A+∆qi− 1
2

= β2
i− 1

2
r2

i− 1
2

(10.11)

To begin, we consider the piecewise constant medium studied in [82, 84], with expo-
nential stress-strain relation

σ(ε, x) = exp(K(x)ε)− 1 (10.12)

and

(ρ(x), K(x)) =

 (ρA, KA) if jδ < x < (j + α)δ for some integer j

(ρB, KB) otherwise.
(10.13)

We take δ = 1, α = 1/2, and

ρA = 4 KA = 4 (10.14)

ρB = 1 KB = 1. (10.15)

The initial condition is uniformly zero, and the boundary condition at the left generates
a half-cosine pulse.

As discussed extensively in [82, 83, 84], the initial pulse breaks up into a train of
solitary waves. These waves all have similar shape (under an appropriate rescaling), and
appear to interact like solitons, though it is not clear whether they are solitons in the strict
mathematical sense. Figure 10.1 shows the result of a very highly resolved simulation
(192 cells per layer) of this phenomenon.

Figure 10.2 shows a comparison of results using Clawpack and our high order wave
propagation method (WENO5 of Chapter 9) on this problem, with only 24 cells per layer.
The WENO5 results are significantly more accurate.

10.1.3 Homogenized Equations

These solitary waves can be understood by examining the behavior of long-wavelength
waves in the periodic medium. To first order, the effect of the layering is an effective
dispersion. When this balances with the steepening due to nonlinearity, solitary waves

147

20 30 40 50 60 70 80
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Strain at time 600.0000

(a) Stress

20 30 40 50 60 70 80
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Stress at time 600.0000

(b) Stress

Figure 10.1: Stegotons

148

73 74 75 76 77 78 79
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Strain at time 600.0000

(a) Strain

73 74 75 76 77 78 79
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Stress at time 600.0000

(b) Stress

Figure 10.2: Comparison of Clawpack (red circles) and WENO5 (blue squares) solution of
the stegoton problem using 24 cells per layer. For clarity, only every third solution point
is plotted. The black line represents a very highly resolved solution.

arise. The remarkable aspect of these solitary waves is that they satisfy an equation
with no explicit dispersion; rather, the dispersion is an effect of the spatially varying
coefficients.

To understand this further, LeVeque & Yong derived a system of effective or homog-
enized equations that describe the evolution of stegotons. This is done by first changing
variables to write (10.1) as a pair of evolution equations for σ and u, which are continuous
even across material interfaces:

σt − K(x)G(σ)ux = 0 (10.16)

ρ(x)ut − σx = 0. (10.17)

Here G(σ) = σε(ε, x)/K(x). In the case of the exponential stress-strain relationship
(10.12), G(σ) = σ + 1. The homogenized equations are written in terms of σ and u,
since these variables are continuous across material interfaces (whereas ε, ρu are not). In-
troducing a fine spatial scale δ and performing an asymptotic expansion of the solution
in powers of δ, one obtains a system of equations with homogeneous coefficients that de-
scribes the evolution of long-wavelength waves in this medium. To order δ2, the resulting

149

equations are [84]

σt = K̂
(

G(σ)ux − δC11G(σ)uxx − δ2C12G(σ)uxxx − δ2C13

(
G′(σ)σxuxx +

1
2

G′′(σ)σ2
x ux

))
+O(δ3),

(10.18a)

ρt =
1
ρ̂

(
σx − δC21σxx − δ2C22σxxx

)O(δ3) (10.18b)

For the case of a piecewise-constant bilayered medium, the coefficients in (10.18) are
given by (note that the equation for C13 contains a small typo in [84]):

C11 = C21 = 0 (10.19a)

C12 = − 1
12

α2(1− α)2 (ρA − ρB)(Z2
A − Z2

B)
KAKBK̂−1ρ̂2

(10.19b)

C22 = − 1
12

α2(1− α)2 (KA − KB)(Z2
A − Z2

B)
K2

AK2
B(K̂−1)2ρ̂

(10.19c)

C13 = − 1
12

α2(1− α)2 ρ̂2(KA − KB)2 + (Z2
A − Z2

B)2

K2
AK2

B(K̂−1)2ρ̂2
. (10.19d)

10.2 Analysis of the Homogenized Equations

In this section we investigate two simplifications of the homogenized equations (10.18).
These simplifications are obtained by choosing special values for the coefficients Cij.

10.2.1 Reduced Equations and Phase-Plane Analysis

In this section we introduce a simplified system of equations based on (10.18). This system
produces the same qualitative behavior, but is more amenable to analysis. To this end,
consider (10.18) with C11 = C21 = C22 = C13 = 0:

σt − (σ + 1)K̂ux = −(σ + 1)K̂C12uxxx (10.20a)

ρ̂ut − σx = 0. (10.20b)

Note that the terms on the left correspond to the original equations with homogenized
coefficients. By adding the single nonlinear dispersive term on the right, solitary wave
solutions arise. To see this, we use a traveling wave ansatz:

σ(x, t) + 1 =W(x−Vt) (10.21a)

u(x, t) =U(x−Vt). (10.21b)

150

Here V is a constant velocity. Substituting these into (10.20) gives

−VW ′ = K̂(WU′ − C12WU′′′) (10.22a)

−ρ̂VU′ = W ′. (10.22b)

Using the second equation we can eliminate U in the first to obtain

W ′ =
K̂

ρ̂V2 (WW ′ − C12WW ′′′) (10.23a)

Since

WW ′ =
(

1
2

W2
)′

(10.24a)

WW ′′′ = (WW ′′)′ −W ′W ′′ =
(

WW ′′ − 1
2

W ′2
)′

, (10.24b)

we can integrate by parts to obtain (defining the mach number M =
√

ρ̂

K̂
V = V

ĉ)

W =
1

M2

(
1
2

W2 − C12

(
WW ′′ − 1

2
W ′2

))
+ γ

The constant of integration γ is determined by the physical boundary conditions at ∞:
W → 1, W ′ → 0. This yields

γ = 1− 1
2M2 .

Rearranging (and assuming W 6= 0), we have

W ′′ =
W ′2

2W
+

W
2C12

− M2

C12

(
1− 2−M−2

2W

)
. (10.25)

This can be rewritten as a first order system by setting w1 = W, w2 = W ′:

w′1 = w2 (10.26a)

w′2 =
w2

2
2w1

+
w1

2C12
− M2

C12

(
1− 2−M−2

2w1

)
. (10.26b)

151

1 2

−2

0

2

w
1

w
2

Figure 10.3: Phase plane topology for solitary wave solutions of (10.20).

Solving w′1 = w′2 = 0, we find that the equilibria of this system occur at (1, 0) and
(2M2 − 1, 0). The Jacobian of system (10.26) is

J =

 0 1

− w2
2

2w2
1
+ 1

2C12
− 2M2−1

2C12w2
1

w2
w1

 . (10.27)

We find that the eigenvalues for the equilibrium at (1,0) are

λ = ±
√

1−M2

C12
.

For the layered medium given by (10.13)-(10.14), we have C12 < 0. Thus this equilibrium
is a saddle if M2 > 1 and it is a center if M2 < 1. Meanwhile, the eigenvalues for the
equilibrium at (2M2 − 1, 0) are λ = ±

√
M2−1

C12(2M2−1) . Hence this equilibrium is a saddle for
1√
2

< M2 < 1 and is a center otherwise.

Since the physical boundary conditions for |x| → ∞ correspond to the (1,0) equilib-
rium, we expect the stegotons to correspond to a homoclinic connection for this node.
We see that this can occur only in the case |M| > 1. This agrees with what has been
observed in simulations: contrary to intuition based on their name, stegotons are super-
sonic. Figure 10.3 shows the phase plane for M = 1.2; the homoclinic connection is shown
in red.

152

1 1.2 1.4 1.6
−1

−0.5

0

0.5

1

σ+1

σ’

Figure 10.4: Phase plane topology for solitary wave solutions of (10.18).

The convenience of the simple system (10.20) is that it can be reduced to the single
second order ODE (10.25), allowing for 2D phase plane analysis. Applying the stationary
solution ansatz (10.21) to the homogenized equations (10.18), we obtain a pair of 3rd-order
ODEs that may be integrated numerically. By integrating an appropriate trajectory and
projecting onto the σ, σ′-plane, we obtain the homoclinic connection shown in Figure 10.4,
with the same qualitative behavior. Figure 10.4 also shows an example of a nearly-periodic
solution.

10.2.2 Riemann Invariants

LeVeque & Yong [83] observed that the stegotons appear to be related to the Riemann
invariants of the lowest-order homogenized system

ut − 1
ρ̂

σx = 0 (10.28a)

σt − K̂ exp(K̂ε)ux = 0. (10.28b)

153

This system cannot give rise to solitary waves, since it includes no dispersive effects.
However, the Riemann invariants for this system are

w1 =ρu− 2
ĉ

√
σ + 1 (10.29a)

w2 =ρu +
2
ĉ

√
σ + 1. (10.29b)

It is observed in [83] that w1 is essentially constant for right-going stegotons, while
w2 is essentially constant for left-going stegotons. In other words, these stegotons are
essentially simple wave solutions to the homogenized first-order system:

εt − ux = 0 (10.30a)

ρ̂ut − exp(K̂ε)x = 0 (10.30b)

For stegotons, u and σ vanish as |x| → ∞, so if w2 or w1 is constant (for a right-going
stegoton), then

u = ± 2
Ẑ

(1−√σ + 1), (10.31)

where the plus (minus) sign corresponds to right- (left-) going stegotons. If we substitute
the relation (10.31) into the homogenized equations (10.28), we get (to third order)

1
ĉ

ut =
√

σ + 1ux − δC21

(√
σ + 1uxx +

Ẑ
2

u2
x

)
− δ2C22

(√
σ + 1uxxx +

3
2

Ẑuxuxx

)
,

(10.32a)
1
ĉ

ut =
√

σ + 1ux − δC11
√

σ + 1uxx − δ2
(

C12
√

σ + 1uxxx + C13Ẑuxuxx

)
. (10.32b)

Observe that (10.32a) and (10.32b) are equivalent if

C11 = C21 = 0 (10.33a)

C12 = C22 (10.33b)

C22 =
2
3

C13. (10.33c)

The first condition is fulfilled for any piecewise constant medium, as well as for the
sinusoidal media considered below. For a piecewise-constant, two-material medium, the
condition C12 = C22 is always satisfied if we take α = 1/2 (that is, if the half-layers of
material A and material B have the same width). Remarkably, these conditions correspond
precisely to the case considered in detail by LeVeque & Yong. The final condition, C22 =

154

2
3 C13, turns out to be impossible to satisfy for a piecewise-constant two-layer periodic
medium. Nevertheless, we proceed to consider (10.32a) for the stegoton medium. In this
case, (10.32a) can be written

1
ĉ

ut =
(

1± Ẑ
2

u
)

ux − δ2C22

((
1± Ẑ

2
u
)

uxxx +
3
2

Ẑuxuxx

)
. (10.34)

Taking the plus sign and setting v = 1 + uẐ/2, this reduces to

1
ĉ

vt =vvx − δ2C22

(
vvxxx +

3
2

Ẑvxvxx

)
. (10.35)

The case studied by LeVeque & Yong has Ẑ = 2. This turns out to be a very special value;
in this case, the quantity in parentheses in (10.35) is a total derivative and (10.35) can be
written as

vt =
ĉ
2
(
v2)

x −
ĉ
2

δ2C22
(
v2)

xxx , (10.36)

which is the K(2,2) compacton equation, first studied by Rosenau & Hyman [95]. How-
ever, note that the boundary conditions here are v → 1 as |x| → ∞, which precludes
compacton solutions. Instead, the equation has ’shelf soliton’ solutions, as noted in [95].
To see this, we look for traveling wave solutions of the form v(x, t) = V(x − λt). This
gives (setting b = −δ2C22)

−λV ′ =
ĉ
2
(V2)′ + b

ĉ
2
(V2)′′′. (10.37)

Integrate once to find

−λV =
ĉ
2

V2 + b
ĉ
2
(V2)′′ + P1. (10.38)

The conditions V(±∞) = 1, V ′(±∞) = 0 yields P1 = −λ− ĉ
2 , giving

−λV =
ĉ
2

V2 + b
ĉ
2
(V2)′′ − λ− ĉ

2
. (10.39)

Now we multiply by VV ′:

−λV2V ′ =
ĉ
2

V3V ′ + b
ĉ
2
(V2)′′VV ′ −

(
λ− ĉ

2

)
VV ′, (10.40)

and integrate again to obtain

−λ

3
V3 =

ĉ
8

V4 + b
ĉ
2
(VV ′)2 −

(
λ− ĉ

2

)
1
2

V2 + P0. (10.41)

155

Applying the boundary conditions at infinity yields P0 = − 3
8 ĉ + 1

6 λ. Dividing by V2, we
have

−λ

3
V =

ĉ
8

V2 + b
ĉ
2

V ′2 − 1
2

(
λ− ĉ

2

)
+ V−2

(
−3

8
ĉ +

1
6

λ

)
(10.42)

which simplifies to

V ′2 =
1
b

(
λ

ĉ
− 1

2

)
− 2

3
λ

bĉ
V − 1

4b
V2 − 1

b
1

V2

(
λ

3ĉ
− 3

4

)
. (10.43)

The solutions of (10.43) are elliptic functions.

10.3 Time Reversal

Because system (10.1) is invariant under the transformation

u→− u, (10.44a)

x →− x, (10.44b)

its solutions are time-reversible up to when shocks form. The dispersion induced by ma-
terial inhomogeneities can be used to delay the onset of shocks and allow time-reversible
nonlinear wave propagation over longer distances than otherwise possible. In the case
of the stegoton medium, since shocks apparently do not form at all, the solution is time-
reversible over any time interval.

This provides a useful numerical test. Namely, one may solve the stegoton problem
numerically up to time T, then negate the velocity and continue solving to time 2T. The
solution at any time 2T − t0, with t0 ≤ T, should be exactly equal to the solution at
t0. As a numerical test, we take T = 600 and t0 = 60. In Figure 10.5(a) we plot the
solution obtained using WENO5 on a grid with 24 cells per layer. The t = 1140 solution
(blue squares) is in excellent agreement with the t = 60 solution (black line). In fact, the
maximum pointwise difference has magnitude less than 2× 10−2. Using a grid twice as
fine, with 48 cells per layer, reduces the pointwise difference to 1× 10−3. The Clawpack
solution, computed on the same grid (24 cells per layer), is shown in Figure 10.5(b). This
lower order accurate solution shows significant numerical errors.

It is interesting to consider the time-reversibility of the stegotons in terms of the ho-
mogenized equations. In [84], it was noted that when deriving homogenized equations,
for the special case of a piecewise constant medium, all of the terms with even numbers of
spatial derivatives vanish. Thus, the resulting equations are invariant under the transfor-
mation In other words, the homogenized equations are exactly time-reversible. However,

156

30 35 40 45 50 55
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Stress at time 1140.0000

(a) WENO5

30 35 40 45 50 55
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Stress at time 1140.0000

(b) Clawpack

Figure 10.5: Comparison of forward solution (black line) and time-reversed solution (sym-
bols).

it is not true that waves that obey the 1D elasticity equations (10.1) are time-reversible
in any piecewise constant medium. If we modify the stegoton medium by decreasing
the impedance contrast between layers (by taking a homogeneous medium, for instance),
shocks form and the solution is not time-reversible.

10.4 Smoothly Varying Media

We now consider the case of a smoothly varying medium, with

ρ(x) =a + b sin
(

2π
x
δ

)
(10.45a)

K(x) =a + b sin (2π (x + θ)) . (10.45b)

To achieve true high order accuracy in our numerical simulations, we would need to
use quadrature to evaluate certain terms, as discussed in Chapter 9. For simplicity, we
instead approximate the medium by a piecewise constant medium that is uniform in
each computational cell. This easily provides sufficient accuracy to determine the correct
qualitative behavior in the following examples.

We first consider the case θ = 0, δ = 0, so that K(x) = ρ(x) and thus the linearized
sound speed is constant, just as in the medium of LeVeque & Yong. As for that medium, it
can be shown that the coefficients of the dissipative terms in the homogenized equations
vanish in this case. Taking a = 5/2, b = 3/2 yields a smoothly varying medium that

157

approximates the original stegoton medium, as ρ and K vary between a maximum of 4
and minimum of 1. We observe solitary waves similar to the piecewise constant case, as
shown in Figure 10.6. Since the medium is smoothly varying, the strain is a continuous
function (in contrast to the stegotons). The peaks occur at the local minima of ρ(x) and
K(x). However, when plotted as a function of time for a given point in space, the solitary
waves are smooth functions.

Next we take the same parameters except for θ = 1/2, so that the fluctuations in the
density and the bulk modulus are precisely out of phase (and thus the linearized sound
speed varies dramatically). Again, it can be shown that the coefficients of the dissipative
terms in the homogenized equations vanish in this case. However, the observed behavior
(shown in Figure 10.7) is quite different from the previous example. Now the solution
evolves in a manner similar to Burgers equation, with the nonlinearity dominating. The
dispersion, rather than leading to solitary waves, appears only to generate noise-like
oscillations.

Now we consider the same parameter values except we take θ = 1/4. In this case, the
coefficients of the dissipative homogenized terms are nonzero. Localized structures are
observed, but there is a lot of incoherence between and behind them.

Finally, consider the case θ = 0 but with the period of the density variation doubled
(while the bulk modulus variation remains the same). In this case, dispersion seems to
dominate and little coherent structure remains after even a short time.

10.5 1 1
2 D Stegotons

In this section we briefly investigate a simple 2D generalization of system (10.1):

εt − ux − vy = 0 (10.46a)

(ρ(x)u)t − σ(ε, x)x = 0 (10.46b)

(ρ(x)v)t − σ(ε, x)y = 0. (10.46c)

Here v denotes the velocity in the y-coordinate direction. This system is intended to be
the simplest possible generalization, rather than to model a particular physical system.
In particular, observe that (10.46) reduces to (10.1) if all partial derivatives with respect to
y vanish. Consider a 2D analog of the stegoton medium obtained by simply extending
uniformly in y. Clearly the 1D stegotons (again extended uniformly in y) are solutions
of this system. The question we investigate is whether they are still globally attracting,
stable solutions, or whether they are subject to transverse instabilities like those that arise
in other important systems.

158

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

x

ε

82 84 86 88
0

0.1

0.2

0.3

0.4

0.5

x

ε

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

ρ
K
c
Z

Figure 10.6: Results for the medium (10.45) with θ = 0.

159

60 80 100 120 140

0

0.05

0.1

0.15

0.2

0.25

0.3

x

ε

60 80 100 120 140

0

0.05

0.1

0.15

0.2

0.25

0.3

x

σ

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

ρ
K
c
Z

Figure 10.7: Strain (left) and stress (right) for the medium (10.45) with θ = 1/2.

160

60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

x

ε

60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

x

σ

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

ρ
K
c
Z

Figure 10.8: Strain (left) and stress (right) for the medium (10.45) with θ = 1/4.

161

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

x

ε

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

x

σ

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

ρ
K
c
Z

Figure 10.9: Strain (left) and stress (right) for the medium (10.45) with θ = 0 and the
period of the density variation equal to twice the period of the bulk modulus variation.

162

Figure 10.10: Time evolution of 1 1
2 D Stegotons

We consider a long thin domain, with periodic boundary conditions in the y-direction
and reflecting boundaries in the x-direction. The initial condition consists of a circular
gaussian stress distribution centered at (0, 0) and zero velocity. Figure 10.10 shows the
time evolution. We observe that stegotons arise, suggesting that they are stable, globally
attracting solutions. Figure 10.11 shows two 1D slices of the solution, corresponding to
y-values at the middle and edge of the domain.

163

Figure 10.11: Time evolution of 1 1
2 D Stegotons: two slices in the x-direction

164

Chapter 11

Conclusions and Future Directions

In this chapter we review the main contributions of this thesis and outline avenues for
ongoing and future work.

11.1 SSP Theory and Methods

This thesis extends the theory of strong stability preservation in several important ways.
The principal contribution is the determination of optimal threshold factors R and optimal
SSP coefficients C, as well as corresponding optimal methods, for many important classes
of methods. The determination of optimal explicit Runge-Kutta and linear multistep
methods has been the main focus of SSP and contractivity research over the past decade,
and the open questions in this area were answered rather completely, for methods of
high order with many stages and/or steps, in Chapters 4, 5, and 6. Furthermore, optimal
methods and coefficients were found for classes of methods that had not been investigated
previously, including:

• Threshold factors for general linear methods (Section 4.5)

• Threshold factors for multistage methods with downwinding (Section 4.6)

• SSP coefficients for implicit linear multistep methods, including methods with down-
winding (Chapter 5)

• SSP coefficients for implicit Runge-Kutta methods (Section 6.3)

165

The most important results from all of this are:

• The new explicit Runge-Kutta methods that are simultaneously optimal in terms of
both time-stepping efficiency and storage. The existence of such methods is both
surprising and fortunate.

• The conjecture that C ≤ 2s for implicit Runge-Kutta methods. Ongoing work sug-
gests that this conjecture generalizes to general linear methods, which would be
even more remarkable.

While many of the important open questions on SSP methods have been answered in
this thesis, many others have been created or remain open. The following are areas in
which we are currently conducting ongoing research:

• Despite the many improvements in SSP methods that are presented in this thesis,
no very efficient methods of order greater than four have been given. Some such
methods do exist (see [97, 98]), but they have large storage requirements or use
downwinding. We are currently investigating SSP multistep Runge-Kutta methods
of fifth and higher order, and this class seems to hold promise for efficient low-
storage methods.

• For RKDG methods, the timestep restriction imposed by linear stability analysis is
smaller than the SSP timestep restriction. We are investigating methods that are
optimized in terms of the minimum of these two timestep restrictions.

• Many important systems have a dominant hyperbolic part along with a parabolic
part. In such cases, traditional SSP methods are inefficient because of the stiffness of
the parabolic operator. We are developing SSP methods of Chebyshev-Runge-Kutta
type for application to such systems.

Many other important questions await future efforts. Among them we mention the
following:

• Although Conjecture 6.5.3 is in a sense a negative result, its proof would provide
a very satisfying theoretical support for the results on implicit SSP Runge-Kutta
methods in Chapter 6.

• As has been noted in the literature, the SSP timestep restriction is not generally
sharp for a given problem and method[74, 43]. It would be helpful to quantify the

166

importance of the SSP timestep restriction and the advantage conferred by using
SSP methods for classes of PDEs and semi-discretizations of interest.

• The optimization formulation using absolute monotonicity can also be applied to
search for optimal SSP Runge-Kutta methods with downwinding, as suggested in
[32]. This would probably lead to improved downwind methods and allow devel-
opment of downwind methods for higher order and more stages than has so far
been undertaken.

• An important theoretical question regarding downwind methods, was posed in [51]:
given a Runge-Kutta method, how may one best split the matrix K in order to
maximize C̃? We have found some promising heuristic approaches, but a rigorously
justified general answer to this question is still lacking.

11.2 Low-Storage Time Integrators

The new class of low-storage Runge-Kutta methods introduced in Chapter 7 is more
economical than any existing methods. It is expected that these methods will become
increasingly important in the future since computational power is expected to grow much
more quickly than available (fast) memory.

The following are interesting avenues of research regarding low-storage methods:

• A thorough search for 2S, 2S embedded, etc. methods that are optimized for vari-
ous stability and accuracy properties, or designed to be paired with specific semi-
discretizations (similar to [66]). This will require the application of more sophisti-
cated numerical optimization methods than were employed in Chapter 7.

• We are currently investigating a rigorous theoretical framework for low-storage
methods, in order to be able to guarantee optimality of methods under given con-
straints on the number of memory registers and function evaluations.

• The various classes of low-storage Runge-Kutta methods could be extended to con-
sider low-storage general linear methods. These would generally require more than
two registers, since they would have multiple input vectors.

• Many more low-storage algorithms are possible with the addition of a third register
(and even more with a fourth, etc.). In this case it is much more difficult to find all
possible low-storage algorithms by hand. We hope eventually to use the rigorous

167

theoretical framework mentioned above to systematically analyze these, and then
develop optimal methods.

11.3 High Order Numerical Wave Propagation

The high order wave propagation method of Chapter 8 is one of the first high order
(higher than 3rd order) numerical methods applicable to general hyperbolic systems. It
shares many of the advantages of Clawpack over traditional flux-differencing systems;
for instance, it can easily be applied to problems not written in conservation form (pro-
vided that a meaningful Riemann solution can be obtained). Also, it can easily handle
problems in which convective and source terms are nearly balanced, by use of the f -wave
formulation.

The wave propagation methods discussed in this thesis are implemented in a software
package named SharpClaw, which is available from the Clawpack website (www.clawpack.org).
We would like to extend the numerical wave propagation method and its implementation
in several ways:

• Generalize the implementation of WENO reconstruction to handle mapped logically
quadrilateral grids

• Incorporate the adaptive mesh refinement algorithms available in AMRClaw

• Provide parallel implementations for both shared and distributed memory machines

11.4 Stegotons

The analysis and experiments in Chapter 10 further our understanding of these interest-
ing waves in several ways. The analysis of the homogenized equations indicates that the
stegotons correspond to a homoclinic connection in phase space and suggests that they
may be related to other non-variable-coefficient systems that exhibit solitary waves. The
numerical experiments indicate that the solitary waves arise for a range of materials, pro-
vided that the impediance variation generates a sufficient degree of effective dispersion.

The analysis and experiments raise many new and interesting questions. Among them
are the following:

• Is it possible to predict, in general, when nonlinear first-order hyperbolic systems
with spatially varying coefficients will give rise to solitary waves?

168

• Are these waves true solitons – i.e., are the equations integrable for some particular
choice of nonlinearity and coefficients?

• Can we better explain the time-reversibility of the stegotons and predict for what
parameters this will persist?

169

BIBLIOGRAPHY

[1] Luca Baiotti, Ian Hawke, Pedro J. Montero, Frank Loffler, Luciano Rezzolla, Niko-
laos Stergioulas, José A. Font, and Ed Seidel. Three-dimensional relativistic simu-
lations of rotating neutron-star collapse to a Kerr black hole. Physical Review D, 71,
2005.

[2] Jorge Balbás and Eitan Tadmor. A central differencing simulation of the Orszag-
Tang Vortex system. IEEE Transactions on Plasma Science, 33(2):470–471, April 2005.

[3] Derek S. Bale, Randall J. LeVeque, Sorin Mitran, and James A. Rossmanith. A wave
propagation method for conservation laws and balance laws with spatially varying
flux functions. SIAM Journal of Scientific Computing, 24(3):955–978, 2002.

[4] Edmondo Bassano. Numerical simulation of thermo-solutal-capillary migration of
a dissolving drop in a cavity. IJNMF, 41:765–788, 2003.

[5] A. Bellen, Z. Jackiewicz, and M. Zennaro. Contractivity of waveform relaxation
Runge-Kutta iterations and related limit methods for dissipative systems in the
maximum norm. SIAM Journal of Numerical Analysis, 31:499–523, 1994.

[6] A. Bellen and L. Torelli. Unconditional contractivity in the maximum norm of
diagonally split Runge-Kutta methods. SIAM Journal of Numerical Analysis, 34:528–
543, 1997.

[7] J. Berland, C. Bogey, and C. Bailly. Low-dissipation and low-dispersion fourth-order
Runge-Kutta algorithm. Computers & Fluids, 35:1459–1463, 2006.

[8] E.K. Blum. A modification of the Runge-Kutta fourth-order method. Mathematics of
Computation, 16:176–187, 1962.

170

[9] C. Bogey and C. Bailly. A family of low dispersive and low dissipative explicit
schemes for flow and noise computations. Journal of Computational Physics, 194:194–
214, 2004.

[10] C. Bolley and M. Crouzeix. Conservation de la positivité lors de la discrétisation
des problémes d’évolution paraboliques. R.A.I.R.O. Analyse Numérique, 12:237–245,
1978.

[11] J. C. Butcher. On the implementation of implicit Runge–Kutta methods. BIT, 17:375–
378, 1976.

[12] J.C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2003.

[13] Rachel Caiden, Ronald P. Fedkiw, and Chris Anderson. A numerical method for
two-phase flow consisting of separate compressible and incompressible regions.
Journal of Computational Physics, 166:1–27, 2001.

[14] D.A. Calhoun, C. Helzel, and R.J. LeVeque. Logically rectangular grids and fi-
nite volume methods for pdes in circular and spherical domains. SIAM Review,
50(4):723–752, 2008.

[15] M. Calvo, J.M. Franco, and L. Rández. Minimum storage Runge-Kutta schemes for
computational acoustics. Computers and Mathematics with Applications, 45:535–545,
2003.

[16] M. Calvo, J.M. Franco, and L. Rández. A new minimum storage Runge-Kutta
scheme for computational acoustics. Journal of Computational Physics, 201:1–12, 2004.

[17] Mark H. Carpenter and Christopher A. Kennedy. Fourth-order 2N-storage Runge-
Kutta schemes. Technical Report TM 109112, NASA Langley Research Center, June
1994.

[18] Mark H. Carpenter and Christopher A. Kennedy. Third-order 2N-storage Runge-
Kutta schemes with error control. Technical report, NASA, 1994.

[19] José Carrillo, Irene M. Gamba, Armando Majorana, and Chi-Wang Shu. A weno-
solver for the transients of boltzmann-poisson system for semiconductor devices:
performance and comparisons with monte carlo methods. Journal of Computational
Physics, 184:498–525, 2003.

[20] M.-H. Chen, B. Cockburn, and F. Reitich. High-order RKDG methods for computa-
tional electromagnetics. Journal of Scientific Computing, 22-23:205–226, 2005.

171

[21] Li-Tien Cheng, Hailiang Liu, and Stanley Osher. Computational high-frequency
wave propagation using the level set method, with applications to the semi-classical
limit of Schrodinger equations. Comm. Math. Sci., 1(3):593–621, 2003.

[22] Vani Cheruvu, Ramachandran D. Nair, and Henry M. Turfo. A spectral finite vol-
ume transport scheme on the cubed-sphere. Applied Numerical Mathematics, 57:1021–
1032, 2007.

[23] Bernardo Cockburn, Fengyan Li, and Chi-Wang Shu. Locally divergence-free dis-
continuous Galerkin methods for the Maxwell equations. Journal of Computational
Physics, 194:588–610, 2004.

[24] Bernardo Cockburn, Jianliang Qian, Fernando Reitich, and Jing Wang. An accurate
spectral/discontinuous finite-element formulation of a phase-space-based level set
approach to geometrical optics. Journal of Computational Physics, 208:175–195, 2005.

[25] E.M. Constantinescu. Optimal explicit strong-stability-preserving general linear
methods. submitted, 2009.

[26] G. Dahlquist and R. Jeltsch. Generalized disks of contractivity for explicit and
implicit Runge-Kutta methods. Technical report, Department of Numerical Analysis
and Computational Science, Royal Institute of Technology, Stockholm, 1979.

[27] K. Dekker and J. G. Verwer. Stability of Runge-Kutta methods for stiff nonlinear dif-
ferential equations, volume 2 of CWI Monographs. North-Holland Publishing Co.,
Amsterdam, 1984.

[28] L. Del Zanna and N. Bucciantini. An efficient shock-capturing central-type scheme
for multidimensional relativistic flows: I. hydrodynamics. Astronomy and Astro-
physics, 390:1177–1186, 2002.

[29] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hybrid particle
level set method for improved interface capturing. Journal of Computational Physics,
183:83–116, 2002.

[30] Long-Long Feng, Chi-Wang Shu, and Mengping Zhang. A hybrid cosmological
hydrodynamic/n-body code based on a weighted essentially nonoscillatory scheme.
The Astrophysical Journal, 612:1–13, 2004.

[31] L. Ferracina and M. N. Spijker. Stepsize restrictions for the total-variation-
diminishing property in general Runge-Kutta methods. SIAM Journal of Numerical
Analysis, 42:1073–1093, 2004.

172

[32] L. Ferracina and M. N. Spijker. Computing optimal monotonicity-preserving
Runge-Kutta methods. Technical Report MI2005-07, Mathematical Institute, Leiden
University, 2005.

[33] L. Ferracina and M. N. Spijker. An extension and analysis of the Shu-Osher repre-
sentation of Runge-Kutta methods. Mathematics of Computation, 249:201–219, 2005.

[34] L Ferracina and MN Spijker. Stepsize restrictions for total-variation-boundedness
in general runge-kutta procedures. Applied Numerical Mathematics, 53:265–279, 2005.

[35] Luca Ferracina and Marc Spjker. Strong stability of singly-diagonally-
implicit Runge-Kutta methods. Applied Numerical Mathematics, 2008.
doi:10.1016/j.apnum.2007.10.004.

[36] Tiernan R. Fogarty. High-Resolution Finite Volume Methods for Acoustics in a Rapidly-
Varying Heterogeneous Medium. PhD thesis, University of Washington, 1998.

[37] Tiernan R. Fogarty and Randall J. LeVeque. High-resolution finite-volume methods
for acoustic waves in periodic and random media. Journal of the Acoustical Society of
America, 106:17–28, 1999.

[38] David J. Fyfe. Economical evaluation of Runge-Kutta formulae. Mathematics of
Computation, 20(95):392–398, 1966.

[39] S. Gill. A process for the step-by-step integration of differential equations in an au-
tomatic digital computing machine. Proceedings of the Cambridge Philosophical Society,
47:96–108, 1950.

[40] D. Gottlieb and E. Tadmor. The CFL condition for spectral approximations to hy-
perbolic initial-boundary value problems. Mathematics of Computation, 56:565–588,
1991.

[41] Sigal Gottlieb. On high order strong stability preserving Runge-Kutta and multi
step time discretizations. Journal of Scientific Computing, 25:105–127, 2005.

[42] Sigal Gottlieb and Lee-Ad J. Gottlieb. Strong stability preserving properties of
Runge-Kutta time discretization methods for linear constant coefficient operators.
Journal of Scientific Computing, 18:83–109, 2003.

[43] Sigal Gottlieb, David I. Ketcheson, and Chi-Wang Shu. High order strong stability
preserving time discretizations. Journal of Scientific Computing, 38(3):251, 2009.

[44] Sigal Gottlieb and Steven J. Ruuth. Optimal strong-stability-preserving time-
stepping schemes with fast downwind spatial discretizations. Journal of Scientific
Computing, 27:289–303, 2006.

173

[45] Sigal Gottlieb and Chi-Wang Shu. Total variation diminishing Runge-Kutta
schemes. Mathematics of Computation, 67:73–85, 1998.

[46] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability preserving high-
order time discretization methods. SIAM Review, 43:89–112, 2001.

[47] E. Hairer, S.P. Norsett, and G. Wanner. Solving ordinary differential equations I: Nonstiff
Problems. Springer Series in Computational Mathematics. Springer, Berlin, 1993.

[48] E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and
differential-algebraic problems, volume 14 of Springer Series in Computational Mathe-
matics. Springer-Verlag, Berlin, 1991.

[49] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R. Chakravarthy. Uni-
formly high order accurate essentially non-oscillatory schemes, iii. Journal of Com-
putational Physics, 71:231–303, 1987.

[50] I Higueras. On strong stability preserving time discretization methods. Journal of
Scientific Computing, 21:193–223, 2004.

[51] I Higueras. Representations of Runge-Kutta methods and strong stability preserv-
ing methods. Siam Journal On Numerical Analysis, 43:924–948, 2005.

[52] I. Higueras. Characterizing strong stability preserving additive runge-kutta meth-
ods. Journal of Scientific Computing, 39(1):115–128, 2009.

[53] Inmaculada Higueras. Strong stability for additive Runge-Kutta methods. SIAM J.
Numer. Anal., 44:1735–1758, 2006.

[54] R. Hixon, V. Allampalli, M. Nallasamy, and S.D. Sawyer. High-accuracy large-step
explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics. AIAA
paper 2006-797, AIAA, 2006.

[55] Zoltan Horvath. Positivity of Runge-Kutta and diagonally split Runge-Kutta meth-
ods. Applied Numerical Mathematics, 28:309–326, 1998.

[56] Zoltan Horvath. On the positivity of matrix-vector products. Linear Algebra and its
Applications, 393:253–258, 2004.

[57] Zoltan Horvath. On the positivity step size threshold of Runge-Kutta methods.
Applied Numerical Mathematics, 53:341–356, 2005.

[58] KJI Hout. A note on unconditional maximum norm contractivity of diagonally split
runge-kutta methods. Siam Journal On Numerical Analysis, 33:1125–1134, 1996.

174

[59] F.Q. Hu, M.Y. Hussaini, and J.L. Manthey. Low-dissipation and low-dispersion
Runge-Kutta schemes for computational acoustics. Journal of Computational Physics,
124:177–191, 1996.

[60] C. Huang. Strong stability preserving hybrid methods. Applied Numerical Mathe-
matics, 2008. doi: 10.1016/j.apnum.2008.03.030.

[61] W.H. Hundsdorfer and J.G. Verwer. Numerical solution of time-dependent advection-
diffusion-reaction equations, volume 33 of Springer Series in Computational Mathematics.
Springer, 2003.

[62] Willem Hundsdorfer and Steven J. Ruuth. On monotonicity and boundedness prop-
erties of linear multistep methods. Mathematics of Computation, 75(254):655–672,
2005.

[63] Willem Hundsdorfer, Steven J. Ruuth, and Raymond J. Spiteri. Monotonicity-
preserving linear multistep methods. SIAM Journal of Numerical Analysis, 41:605–
623, 2003.

[64] Rolf Jeltsch and Olavi Nevanlinna. Stability of explicit time discretizations for solv-
ing initial value problems. Numerische Mathematik, 37:61–91, 1981.

[65] Shi Jin, Hailiang Liu, Stanley Osher, and Yen-Hsi Richard Tsai. Computing multi-
valued physical observables for the semiclassical limit of the Schrodinger equation.
Journal of Computational Physics, 205:222–241, 2005.

[66] Christopher A. Kennedy, Mark H. Carpenter, and R. Michael Lewis. Low-storage,
explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Applied
Numerical Mathematics, 35:177–219, 2000.

[67] David I. Ketcheson. Personal webpage. http://www.amath.washington.edu/ ketch/.

[68] David I. Ketcheson. An algebraic characterization of strong stability preserving
Runge-Kutta schemes, 2004. BS Thesis.

[69] David I. Ketcheson. Highly efficient strong stability preserving Runge-Kutta
methods with low-storage implementations. SIAM Journal on Scientific Computing,
30(4):2113–2136, 2008.

[70] David I. Ketcheson. Computation of optimal monotonicity preserving general linear
methods. Mathematics of Computation, 2009. to appear.

[71] David I. Ketcheson, Sigal Gottlieb, and Colin B. Macdonald. Strong stability pre-
serving two-step Runge-Kutta methods. 2008. in preparation.

175

[72] David I. Ketcheson, Colin B. Macdonald, and Sigal Gottlieb. SSP website.
http://www.cfm.brown.edu/people/sg/ssp.html.

[73] David I. Ketcheson, Colin B. Macdonald, and Sigal Gottlieb. Optimal implicit strong
stability preserving Runge-Kutta methods. Applied Numerical Mathematics, 52(2):373,
2009.

[74] David I. Ketcheson and Allen C. Robinson. On the practical importance of the
SSP property for Runge-Kutta time integrators for some common Godunov-type
schemes. International Journal for Numerical Methods in Fluids, 48:271–303, 2005.

[75] J. F. B. M. Kraaijevanger. Absolute monotonicity of polynomials occurring in the
numerical solution of initial value problems. Numerische Mathematik, 48:303–322,
1986.

[76] J. F. B. M. Kraaijevanger. Contractivity of Runge-Kutta methods. BIT, 31:482–528,
1991.

[77] Simon Labrunie, José Carrillo, and Pierre Bertrand. Numerical study on hydro-
dynamic and quasi-neutral approximations for collisionless two-species plasmas.
Journal of Computational Physics, 200:267–298, 2004.

[78] H W. J. Lenferink. Contractivity-preserving explicit linear multistep methods. Nu-
merische Mathematik, 55:213–223, 1989.

[79] H W. J. Lenferink. Contractivity-preserving implicit linear multistep methods. Math.
Comp., 56:177–199, 1991.

[80] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Uni-
versity Press, 2002.

[81] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations. SIAM, 2007.

[82] R.J. LeVeque. Finite-volume methods for non-linear elasticity in heterogeneous
media. IJNMF, 40:93–104, 2002.

[83] R.J. LeVeque and D.H. Yong. Phase plane behavior of solitary waves in nonlinear
layered media. In T. Hou and E. Tadmor, editors, Proeedings of the 9’th Intl. Conf. on
Hyperbolic Problems: Theory, Numerics, Applications, pages 43–51. Springer, 2002.

[84] R.J. LeVeque and D.H. Yong. Solitary waves in layered nonlinear media. SIAM
Journal of Applied Mathematics, 63:1539–1560, 2003.

176

[85] X. D. Liu and P. D. Lax. Positive schemes for solving multi-dimensional hyperbolic
systems of conservation laws. Computational Fluid Dynamics Journal, 5:133–156, 1996.

[86] Tiao Lu, Wei Cai, and Pingwen Zhang. Discontinuous Galerkin time-domain
method for GPR simulation in dispersive media. IEEE Transactions on Geoscience
and Remote Sensing, 43(1):72–80, 2005.

[87] Colin MacDonald, Sigal Gottlieb, and Steven Ruuth. A numerical study of diago-
nally split Runge-Kutta methods for PDEs with discontinuities. Journal of Scientific
Computing, 2008. doi:10.1007/s10915-007-9180-6.

[88] Colin B. Macdonald. Constructing high-order Runge-Kutta methods with embed-
ded strong-stability-preserving pairs. Master’s thesis, Simon Fraser University, Au-
gust 2003.

[89] A. Mignone. The dynamics of radiative shock waves: linear and nonlinear evolu-
tion. The Astrophysical Journal, 626:373–388, June 2005.

[90] T. Miyashita. Sonic crystals and sonic wave-guides. Meas. Sci. Technol, 16:R47–R63,
2005.

[91] C. Pantano, R. Deiterding, D.J. Hill, and D.I. Pullin. A low numerical dissipation
patch-based adaptive mesh refinement method for large-eddy simulation of com-
pressible flows. Journal of Computational Physics, 221:63–87, 2007.

[92] S. Patel and D. Drikakis. Effects of preconditioning on the accuracy and efficiency
of incompressible flows. IJNMF, 47:963–970, 2005.

[93] Danping Peng, Barry Merriman, Stanley Osher, Hongkai Zhao, and Myungjoo
Kang. A PDE-based fast local level set method. Journal of Computational Physics,
155:410–438, 1999.

[94] Jianxian Qiu and Chi-Wang Shu. On the construction, comparison, and local char-
acteristic decomposition for high-order central WENO schemes. Journal of Computa-
tional Physics, 183:187–209, 2002.

[95] Philip Rosenau and James M. Hyman. Compactons: Solitons with finite wavelength.
Physical Review Letters, 70(5):564–567, 1993.

[96] S. J. Ruuth and R. J. Spiteri. High-order strong-stability-preserving Runge-Kutta
methods with downwind-biased spatial discretizations. SIAM Journal of Numerical
Analysis, 42:974–996, 2004.

177

[97] Steven Ruuth. Global optimization of explicit strong-stability-preserving Runge-
Kutta methods. Math. Comp., 75:183–207, 2006.

[98] Steven J. Ruuth and Willem Hundsdorfer. High-order linear multistep methods
with general monotonicity and boundedness properties. Journal of Computational
Physics, 209:226–248, 2005.

[99] Steven J. Ruuth and Raymond J. Spiteri. Two barriers on strong-stability-preserving
time discretization methods. Journal of Scientific Computation, 17:211–220, 2002.

[100] N. V. Sahinidis and M. Tawarmalani. BARON 7.2: Global Optimization of Mixed-
Integer Nonlinear Programs, User’s Manual, 2004. Available at http://www.gams.
com/dd/docs/solvers/baron.pdf.

[101] L. Sanchis, F. Cervera, J. Sanchez-Dehesa, J. V. Sanchez-Perez, C. Rubio, and
R. Martinez-Sala. Reflectance properties of two-dimensional sonic band-gap crys-
tals. J. Acoust. Soc. Am., 109:2598–2605, 2001.

[102] J. Sand. Circle contractive linear multistep methods. BIT, 26:114–122, 1986.

[103] F. Santosa and W. Symes. A dispersive effective medium for wave propagation in
periodic composites. SIAM Journal of Applied Mathematics, 51:984–1005, 1991.

[104] L.F. Shampine. Storage reduction for runge-kutta codes. ACM Transactions on Math-
ematical Software, 5(3):245–250, 1979.

[105] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory
shock-capturing schemes. Journal of Computational Physics, 77:439–471, 1988.

[106] Chi-Wang Shu. ENO and WENO schemes for hyperbolic conservation laws.
preprint.

[107] Chi-Wang Shu. Total-variation diminishing time discretizations. SIAM J. Sci. Stat.
Comp., 9:1073–1084, 1988.

[108] C.W. Shu. High order weighted essentially nonoscillatory schemes for convection
dominated problems. SIAM Review, 51:82, 2009.

[109] M. N. Spijker. Contractivity in the numerical solution of initial value problems.
Numerische Mathematik, 42:271–290, 1983.

[110] M. N. Spijker. Stepsize conditions for general monotonicity in numerical initial
value problems. Siam Journal On Numerical Analysis, 45:1226–1245, 2007.

http://www.gams.com/ dd/docs/solvers/baron.pdf
http://www.gams.com/ dd/docs/solvers/baron.pdf

178

[111] Raymond J. Spiteri and Steven J. Ruuth. A new class of optimal high-order strong-
stability-preserving time discretization methods. SIAM Journal of Numerical Analysis,
40:469–491, 2002.

[112] Raymond J. Spiteri and Steven J. Ruuth. Nonlinear evolution using optimal fourth-
order strong-stability-preserving Runge-Kutta methods. Mathematics and Computers
in Simulation, 62:125–135, 2003.

[113] D. Stanescu and W.G. Habashi. 2N-storage low dissipation and dispersion Runge-
Kutta schemes for computational acoustics. Journal of Computational Physics,
143:674–681, 1998.

[114] Yuzhi Sun, Z.J. Wang, and Yen Liu. Spectral (finite) volume method for conservation
laws on unstructured grids VI: Extension to viscous flow. Journal of Computational
Physics, 215:41–58, 2006.

[115] Michel Tanguay and Tim Colonius. Progress in modeling and simulation of shock
wave lithotripsy (swl). In Fifth International Symposium on cavitation (CAV2003), num-
ber OS-2-1-010, 2003.

[116] E.F. Toro. Riemann solvers and numerical methods for fluid dynamics- a practical
introduction(book). Berlin: Springer-Verlag, 1997., 1997.

[117] K. Tselios and T.E. Simos. Optimized Runge-Kutta methods with minimal disper-
sion and dissipation for problems arising from computational acoustics. Physics
Letters A, 363:38–47, 2007.

[118] J. A. van de Griend and J. F. B. M. Kraaijevanger. Absolute monotonicity of rational
functions occurring in the numerical solution of initial value problems. Numerische
Mathematik, 49:413–424, 1986.

[119] P.J. van der Houwen. Explicit Runge-Kutta formulas with increased stability bound-
aries. Numerische Mathematik, 20:149–164, 1972.

[120] J. G. Verwer. Explicit Runge-Kutta methods for parabolic partial differential equa-
tions. Applied Numerical Mathematics, 22:359–379, 1996.

[121] Rong Wang and Raymond J. Spiteri. Linear instability of the fifth-order weno
method. SIAM Journal on Numerical Analysis, 45(5):1871–1901, 2007.

[122] Z.J. Wang and Yen Liu. The spectral difference method for the 2D Euler equations
on unstructured grids. In 17th AIAA Computational Fluid Dynamics Conference. AIAA,
2005.

179

[123] Z.J. Wang, Yen Liu, Georg May, and Antony Jameson. Spectral difference method
for unstructured grids II: Extension to the Euler equations. Journal of Scientific Com-
puting, 32(1):45–71, 2007.

[124] J. H. Williamson. Low-storage Runge-Kutta schemes. Journal of Computational
Physics, 35:48–56, 1980.

[125] Weiqun Zhang and Andrew I. MacFayden. RAM: A relativistic adaptive mesh re-
finement hydrodynamics code. The Astrophysical Journal Supplement Series, 164:255–
279, April 2006.

180

APPENDIX A

Coefficients of Runge-Kutta Methods

The coefficients of all optimal SSP methods in this thesis are available from the SSP
website [72].

A.1 Optimal Implicit SSP RK Methods

A.1.1 Fourth-order Methods

Table A.1: Coefficients of the optimal 3-stage implicit SSP RK method of order 4.

µ11 = 0.157330905682085
µ21 = 0.342491639470766
µ22 = 0.047573123554705
µ32 = 0.338136048168635
µ33 = 0.157021682372699

µ41 = 0.081822264233578
µ42 = 0.079106848361263
µ43 = 0.267698531248384
λ21 = 0.703541497995214
λ32 = 0.694594303739345

λ41 = 0.168078141811591
λ42 = 0.162500172803529
λ43 = 0.549902549377947

181

Table A.2: Coefficients of the optimal 4-stage implicit SSP RK method of order 4.

µ11 = 0.119309657880174
µ21 = 0.226141632153728
µ22 = 0.070605579799433
µ32 = 0.180764254304414
µ33 = 0.070606483961727
µ43 = 0.212545672537219

µ44 = 0.119309875536981
µ51 = 0.010888081702583
µ52 = 0.034154109552284
µ54 = 0.181099440898861
λ21 = 1
λ32 = 0.799340893504885

λ43 = 0.939878564212065
λ51 = 0.048147179264990
λ52 = 0.151029729585865
λ54 = 0.800823091149145

Table A.3: Coefficients of the optimal 5-stage implicit SSP RK method of order 4.

µ11 = 0.072154507748981
µ21 = 0.165562779595956
µ22 = 0.071232036614272
µ32 = 0.130035287184462
µ33 = 0.063186062090477
µ43 = 0.154799860761964
µ44 = 0.077017601068238

µ54 = 0.158089969701175
µ55 = 0.106426690493882
µ65 = 0.148091381629243
µ52 = 0.007472809894781
µ62 = 0.017471397966712
λ21 = 1
λ32 = 0.785413771753555

λ43 = 0.934991917505507
λ54 = 0.954864191619538
λ65 = 0.894472670673021
λ52 = 0.045135808380468
λ62 = 0.105527329326976

Table A.4: Coefficients of the optimal 6-stage implicit SSP RK method of order 4.

µ11 = 0.077219435861458
µ21 = 0.128204308556198
µ22 = 0.063842903854499
µ32 = 0.128204308556197
µ33 = 0.058359965096908
µ41 = 0.008458154338733
µ43 = 0.103230521234296
µ44 = 0.058105933032597
µ54 = 0.128204308556197

µ55 = 0.064105484788524
µ63 = 0.008043763906343
µ65 = 0.120160544649854
µ66 = 0.077016336936138
µ73 = 0.013804194371285
µ76 = 0.114400114184912
λ21 = 1
λ32 = 1
λ41 = 0.065974025631326

λ43 = 0.805203213502341
λ54 = 1
λ63 = 0.062741759593964
λ65 = 0.937258240406037
λ73 = 0.107673404480272
λ76 = 0.892326595519728

182

Table A.5: Coefficients of the optimal 7-stage implicit SSP RK method of order 4.

µ11 = 0.081324471088377
µ21 = 0.108801609187400
µ22 = 0.051065224656204
µ32 = 0.108801609187400
µ33 = 0.036491713577701
µ43 = 0.094185417979586
µ44 = 0.037028821732794
µ54 = 0.108801609187400
µ55 = 0.040474271914787

µ65 = 0.108801609187400
µ66 = 0.061352000212100
µ73 = 0.020631403945188
µ76 = 0.088170205242212
µ77 = 0.080145231879588
µ83 = 0.001561606596621
µ87 = 0.107240002590779
λ21 = 1
λ32 = 1

λ43 = 0.865661994183934
λ54 = 1
λ65 = 1
λ73 = 0.189624069894518
λ76 = 0.810375930105481
λ83 = 0.014352789524754
λ87 = 0.985647210475246

Table A.6: Coefficients of the optimal 8-stage implicit SSP RK method of order 4.

µ11 = 0.080355939553359
µ21 = 0.093742212796061
µ22 = 0.054617345411549
µ32 = 0.093742212796061
µ33 = 0.039438131644116
µ43 = 0.093742212796061
µ44 = 0.032427875074076
µ51 = 0.004426522032754
µ54 = 0.083174746150582
µ55 = 0.030116385482588

µ65 = 0.093742212796061
µ66 = 0.038334326442344
µ76 = 0.093742212796061
µ77 = 0.058861620081910
µ84 = 0.021977226754808
µ87 = 0.071764986041253
µ88 = 0.055606577879005
µ98 = 0.093742212796061
λ21 = 1
λ32 = 1

λ43 = 1
λ51 = 0.047220157287989
λ54 = 0.887270992114641
λ65 = 1
λ76 = 1
λ84 = 0.234443225728203
λ87 = 0.765556774271797
λ98 = 1

Table A.7: Coefficients of the optimal 9-stage implicit SSP RK method of order 4.

µ11 = 0.068605696784244
µ21 = 0.082269487560004
µ22 = 0.048685583036902
µ32 = 0.077774790319743
µ33 = 0.039925150083662
µ43 = 0.083046524401968
µ44 = 0.031928917146492
µ54 = 0.083046524401968
µ55 = 0.029618614941264
µ61 = 0.008747971137402
µ62 = 0.001326570052113
µ65 = 0.072971983212453

µ66 = 0.029699905991308
µ76 = 0.083046524401968
µ77 = 0.035642110881905
µ87 = 0.083046524401969
µ88 = 0.050978240433952
µ95 = 0.017775897980583
µ98 = 0.065270626421385
µ99 = 0.057552171403649
µ10,9 = 0.083046524401968
λ21 = 0.990643355064403
λ32 = 0.936520713898770
λ43 = 1

λ54 = 1
λ61 = 0.105338196876962
λ62 = 0.015973817828813
λ65 = 0.878687985294225
λ76 = 1
λ87 = 1
λ95 = 0.214047464461523
λ98 = 0.785952535538477
λ10,9 = 1

183

Table A.8: Coefficients of the optimal 10-stage implicit SSP RK method of order 4.

µ11 = 0.053637857412307
µ21 = 0.073302847899924
µ22 = 0.042472343576273
µ32 = 0.063734820131903
µ33 = 0.039816143518898
µ43 = 0.072590353622503
µ44 = 0.034233821696022
µ54 = 0.073302847899924
µ55 = 0.030626774272464
µ65 = 0.073302847899924
µ66 = 0.029485772863308
µ72 = 0.008896701400356

µ76 = 0.064406146499568
µ77 = 0.033369849008191
µ87 = 0.073302847899924
µ88 = 0.037227578299133
µ98 = 0.073302847899924
µ99 = 0.046126339053885
µ10,6 = 0.012892211367605
µ10,9 = 0.060410636532319
µ10,10 = 0.053275700719583
µ11,10 = 0.073302847899924
λ21 = 1
λ32 = 0.869472632481021

λ43 = 0.990280128291965
λ54 = 1
λ65 = 1
λ72 = 0.121369109867354
λ76 = 0.878630890132646
λ87 = 1
λ98 = 1
λ10,6 = 0.175875995775857
λ10,9 = 0.824124004224143
λ11,10 = 1

Table A.9: Coefficients of the optimal 11-stage implicit SSP RK method of order 4.

µ11 = 0.056977945207836
µ21 = 0.065880156369595
µ22 = 0.043484869703481
µ32 = 0.065880156369595
µ33 = 0.035790792116714
µ41 = 0.000026595081404
µ43 = 0.061212831485396
µ44 = 0.029306212740362
µ54 = 0.065880156369595
µ55 = 0.028274789742965
µ65 = 0.065880156369595
µ66 = 0.025442782369057
µ76 = 0.065880156369595
µ77 = 0.029602951078198

µ83 = 0.009935800759662
µ87 = 0.055944355609932
µ88 = 0.027887296332663
µ98 = 0.065880156369595
µ99 = 0.033340440672342
µ10,9 = 0.065880156369595
µ10,10 = 0.042024506703707
µ11,7 = 0.012021727578515
µ11,10 = 0.053858428791080
µ11,11 = 0.045164424313434
µ12,11 = 0.065880156369595
λ21 = 1
λ32 = 1
λ41 = 0.000403688802047

λ43 = 0.929154313811668
λ54 = 1
λ65 = 1
λ76 = 1
λ83 = 0.150816289869158
λ87 = 0.849183710130842
λ98 = 1
λ10,9 = 1
λ11,7 = 0.182478734735714
λ11,10 = 0.817521265264286
λ12,11 = 1

184

A.1.2 Fifth-order Methods

Table A.10: Coefficients of the optimal 4-stage implicit SSP RK method of order 5.

µ21 = 0.125534208080981
µ22 = 0.125534208080983
µ32 = 0.350653119567098
µ33 = 0.048181647388277
µ41 = 0.097766579224131
µ42 = 0.000000005345013
µ43 = 0.404181556145118
µ44 = 0.133639210602434

µ51 = 0.022869941925234
µ52 = 0.138100556728488
µ53 = 0.157510964003014
µ54 = 0.277310825799681
λ21 = 0.143502249669229
λ32 = 0.400843023432714
λ41 = 0.111760167014216
λ42 = 0.000000006110058

λ43 = 0.462033126016285
λ51 = 0.026143376902960
λ52 = 0.157867252871240
λ53 = 0.180055922824003
λ54 = 0.317003054133379

Table A.11: Coefficients of the optimal 5-stage implicit SSP RK method of order 5.

µ21 = 0.107733237609082
µ22 = 0.107733237609079
µ31 = 0.000009733684024
µ32 = 0.205965878618791
µ33 = 0.041505157180052
µ41 = 0.010993335656900
µ42 = 0.000000031322743
µ43 = 0.245761367350216
µ44 = 0.079032059834967
µ51 = 0.040294985548405
µ52 = 0.011356303341111

µ53 = 0.024232322953809
µ54 = 0.220980752503271
µ55 = 0.098999612937858
µ63 = 0.079788022937926
µ64 = 0.023678103998428
µ65 = 0.194911604040485
λ21 = 0.344663606249694
λ31 = 0.000031140312055
λ32 = 0.658932601159987
λ41 = 0.035170229692428
λ42 = 0.000000100208717

λ43 = 0.786247596634378
λ51 = 0.128913001605754
λ52 = 0.036331447472278
λ53 = 0.077524819660326
λ54 = 0.706968664080396
λ63 = 0.255260385110718
λ64 = 0.075751744720289
λ65 = 0.623567413728619

185

Table A.12: Coefficients of the optimal 6-stage implicit SSP RK method of order 5.

µ21 = 0.084842972180459
µ22 = 0.084842972180464
µ32 = 0.149945333907731
µ33 = 0.063973483119994
µ43 = 0.175767531234932
µ44 = 0.055745328618053
µ51 = 0.024709139041008
µ54 = 0.173241563951140
µ55 = 0.054767418942828
µ62 = 0.014574431645716

µ63 = 0.026804592504486
µ65 = 0.159145416202648
µ66 = 0.085074359110886
µ73 = 0.004848530454093
µ74 = 0.042600565019890
µ76 = 0.151355691945479
λ21 = 0.422021261021445
λ32 = 0.745849859731775
λ43 = 0.874293218071360
λ51 = 0.122906844831659

λ54 = 0.861728690085026
λ62 = 0.072495338903420
λ63 = 0.133329934574294
λ65 = 0.791612404723054
λ73 = 0.024117294382203
λ74 = 0.211901395105308
λ76 = 0.752865185365536

Table A.13: Coefficients of the optimal 7-stage implicit SSP RK method of order 5.

µ21 = 0.077756487471956
µ22 = 0.077756487471823
µ32 = 0.126469010941083
µ33 = 0.058945597921853
µ43 = 0.143639250502198
µ44 = 0.044443238891736
µ51 = 0.011999093244164
µ54 = 0.145046006148787
µ55 = 0.047108760907057
µ62 = 0.011454172434127
µ63 = 0.027138257330487
µ65 = 0.122441492758580

µ66 = 0.037306165750735
µ73 = 0.020177924440034
µ76 = 0.140855998083160
µ77 = 0.077972159279168
µ84 = 0.009653207936821
µ85 = 0.025430639631870
µ86 = 0.000177781270869
µ87 = 0.124996366168017
λ21 = 0.482857811904546
λ32 = 0.785356333370487
λ43 = 0.891981318293413
λ51 = 0.074512829695468

λ54 = 0.900717090387559
λ62 = 0.071128941372444
λ63 = 0.168525096484428
λ65 = 0.760345962143127
λ73 = 0.125302322168346
λ76 = 0.874697677831654
λ84 = 0.059945182887979
λ85 = 0.157921009644458
λ86 = 0.001103998884730
λ87 = 0.776211398253764

186

Table A.14: Coefficients of the optimal 8-stage implicit SSP RK method of order 5.

µ21 = 0.068228425119547
µ22 = 0.068228425081188
µ32 = 0.105785458668142
µ33 = 0.049168429086829
µ43 = 0.119135238085849
µ44 = 0.040919294063196
µ51 = 0.009164078944895
µ54 = 0.120257079939301
µ55 = 0.039406904101415
µ62 = 0.007428674198294
µ63 = 0.019703233696280
µ65 = 0.105180973170163
µ66 = 0.045239659320409
µ73 = 0.015335646668415

µ76 = 0.116977452926909
µ77 = 0.050447703819928
µ84 = 0.011255581082016
µ85 = 0.006541409424671
µ87 = 0.114515518273119
µ88 = 0.060382824328534
µ95 = 0.002607774587593
µ96 = 0.024666705635997
µ98 = 0.104666894951906
λ21 = 0.515658560550227
λ32 = 0.799508082567950
λ43 = 0.900403391614526
λ51 = 0.069260513476804
λ54 = 0.908882077064212

λ62 = 0.056144626483417
λ63 = 0.148913610539984
λ65 = 0.794939486396848
λ73 = 0.115904148048060
λ76 = 0.884095226988328
λ84 = 0.085067722561958
λ85 = 0.049438833770315
λ87 = 0.865488353423280
λ95 = 0.019709106398420
λ96 = 0.186426667470161
λ98 = 0.791054172708715

Table A.15: Coefficients of the optimal 9-stage implicit SSP RK method of order 5.

µ21 = 0.057541273792734
µ22 = 0.057541282875429
µ32 = 0.089687860942851
µ33 = 0.041684970395150
µ43 = 0.101622955619526
µ44 = 0.040743690263377
µ51 = 0.009276188714858
µ54 = 0.101958242208571
µ55 = 0.040815264589441
µ62 = 0.011272987717036
µ65 = 0.101125244372555
µ66 = 0.040395338505384
µ73 = 0.003606182878823
µ74 = 0.018205434656765
µ76 = 0.090586614534056

µ77 = 0.042925976445877
µ84 = 0.011070977346914
µ87 = 0.101327254746568
µ88 = 0.046669302312152
µ95 = 0.010281040119047
µ98 = 0.102117191974435
µ99 = 0.050500143250113
µ10,6 = 0.000157554758807
µ10,7 = 0.023607648002010
µ10,9 = 0.088454624345414
λ21 = 0.511941093031398
λ32 = 0.797947256574797
λ43 = 0.904133043080300
λ51 = 0.082529667434119
λ54 = 0.907116066770269

λ62 = 0.100295062538531
λ65 = 0.899704937426848
λ73 = 0.032083982209117
λ74 = 0.161972606843345
λ76 = 0.805943410735452
λ84 = 0.098497788983963
λ87 = 0.901502211016037
λ95 = 0.091469767162319
λ98 = 0.908530232837680
λ10,6 = 0.001401754777391
λ10,7 = 0.210035759124536
λ10,9 = 0.786975228149903

187

Table A.16: Coefficients of the optimal 10-stage implicit SSP RK method of order 5.

µ21 = 0.052445615058994
µ22 = 0.052445635165954
µ32 = 0.079936220395519
µ33 = 0.038724845476313
µ43 = 0.089893189589075
µ44 = 0.037676214671832
µ51 = 0.007606429497294
µ54 = 0.090180506502554
µ55 = 0.035536573874530
µ62 = 0.009295158915663
µ65 = 0.089447242753894
µ66 = 0.036490114423762
µ73 = 0.003271387942850
µ74 = 0.015255382390056
µ76 = 0.080215515252923
µ77 = 0.035768398609662
µ84 = 0.009638972523544

µ87 = 0.089103469454345
µ88 = 0.040785658461768
µ95 = 0.009201462517982
µ98 = 0.089540979697808
µ99 = 0.042414168555682
µ10,6 = 0.005634796609556
µ10,7 = 0.006560464576444
µ10,9 = 0.086547180546464
µ10,10 = 0.043749770437420
µ11,7 = 0.001872759401284
µ11,8 = 0.017616881402665
µ11,10 = 0.079160150775900
λ21 = 0.531135486241871
λ32 = 0.809542670828687
λ43 = 0.910380456183399
λ51 = 0.077033029836054
λ54 = 0.913290217244921

λ62 = 0.094135396158718
λ65 = 0.905864193215084
λ73 = 0.033130514796271
λ74 = 0.154496709294644
λ76 = 0.812371189661489
λ84 = 0.097617319434729
λ87 = 0.902382678155958
λ95 = 0.093186499255038
λ98 = 0.906813500744962
λ10,6 = 0.057065598977612
λ10,7 = 0.066440169285130
λ10,9 = 0.876494226842443
λ11,7 = 0.018966103726616
λ11,8 = 0.178412453726484
λ11,10 = 0.801683136446066

188

Table A.17: Coefficients of the optimal 11-stage implicit SSP RK method of order 5.

µ21 = 0.048856948431570
µ22 = 0.048856861697775
µ32 = 0.072383163641108
µ33 = 0.035920513887793
µ43 = 0.080721632683704
µ44 = 0.034009594943671
µ51 = 0.006438090160799
µ54 = 0.081035022899306
µ55 = 0.032672027896742
µ62 = 0.007591099341932
µ63 = 0.000719846382100
µ65 = 0.079926841108108
µ66 = 0.033437798720082
µ73 = 0.003028997848550
µ74 = 0.012192534706212
µ76 = 0.073016254277378
µ77 = 0.033377699686911
µ84 = 0.008251011235053
µ87 = 0.079986775597087
µ88 = 0.035640440183022

µ95 = 0.008095394925904
µ98 = 0.080142391870059
µ99 = 0.036372965664654
µ10,6 = 0.005907318148947
µ10,7 = 0.005394911565057
µ10,9 = 0.076935557118137
µ10,10 = 0.032282094274356
µ11,7 = 0.003571080721480
µ11,8 = 0.008920593887617
µ11,10 = 0.075746112223043
µ11,11 = 0.042478561828713
µ12,8 = 0.004170617993886
µ12,9 = 0.011637432775226
µ12,11 = 0.072377330912325
λ21 = 0.553696439876870
λ32 = 0.820319346617409
λ43 = 0.914819326070196
λ51 = 0.072962960562995
λ54 = 0.918370981510030
λ62 = 0.086030028794504

λ63 = 0.008158028526592
λ65 = 0.905811942678904
λ73 = 0.034327672500586
λ74 = 0.138178156365216
λ76 = 0.827494171134198
λ84 = 0.093508818968334
λ87 = 0.906491181031666
λ95 = 0.091745217287743
λ98 = 0.908254782302260
λ10,6 = 0.066947714363965
λ10,7 = 0.061140603801867
λ10,9 = 0.871911681834169
λ11,7 = 0.040471104837131
λ11,8 = 0.101097207986272
λ11,10 = 0.858431687176596
λ12,8 = 0.047265668639449
λ12,9 = 0.131887178872293
λ12,11 = 0.820253244225314

189

A.1.3 Sixth-order Methods

Table A.18: Coefficients of the optimal 6-stage implicit SSP RK method of order 6.

µ21 = 0.306709397198437
µ22 = 0.306709397198281
µ31 = 0.100402778173265
µ32 = 0.000000014622272
µ33 = 0.100402700098726
µ41 = 0.000015431349319
µ42 = 0.000708584139276
µ43 = 0.383195003696784
µ44 = 0.028228318307509
µ51 = 0.101933808745384
µ52 = 0.000026687930165
µ53 = 0.136711477475771
µ54 = 0.331296656179688
µ55 = 0.107322255666019
µ61 = 0.000033015066992
µ62 = 0.000000017576816

µ63 = 0.395057247524893
µ64 = 0.014536993458566
µ65 = 0.421912313467517
µ66 = 0.049194928995335
µ71 = 0.054129307323559
µ72 = 0.002083586568620
µ73 = 0.233976271277479
µ74 = 0.184897163424393
µ75 = 0.303060566272042
µ76 = 0.135975816243004
λ21 = 0.055928810359256
λ31 = 0.018308561756789
λ32 = 0.000000002666388
λ41 = 0.000002813924247
λ42 = 0.000129211130507
λ43 = 0.069876048429340

λ51 = 0.018587746937629
λ52 = 0.000004866574675
λ53 = 0.024929494718837
λ54 = 0.060412325234826
λ61 = 0.000006020335333
λ62 = 0.000000003205153
λ63 = 0.072039142196788
λ64 = 0.002650837430364
λ65 = 0.076936194272824
λ71 = 0.009870541274021
λ72 = 0.000379944400556
λ73 = 0.042665841426363
λ74 = 0.033716209818106
λ75 = 0.055263441854804
λ76 = 0.024795346049276

190

Table A.19: Coefficients of the optimal 7-stage implicit SSP RK method of order 6.

µ21 = 0.090485932570398
µ22 = 0.090485932570397
µ32 = 0.346199513509666
µ33 = 0.056955495796615
µ41 = 0.089183260058590
µ42 = 0.122181527536711
µ43 = 0.340520235772773
µ44 = 0.086699362107543
µ51 = 0.214371998459638
µ52 = 0.046209156887254
µ53 = 0.215162143673919
µ54 = 0.000000362542364
µ55 = 0.209813410800754
µ61 = 0.000000591802702
µ62 = 0.390556634551239
µ63 = 0.000000491944026
µ64 = 0.330590135449081
µ65 = 0.007410530577593
µ66 = 0.070407008959133
µ71 = 0.000000021842570
µ72 = 0.325421794191472

µ73 = 0.069025907032937
µ74 = 0.373360315300742
µ75 = 0.007542750523234
µ76 = 0.005465714557738
µ77 = 0.063240270982556
µ81 = 0.044161355044152
µ82 = 0.204837996136028
µ83 = 0.191269829083813
µ84 = 0.255834644704751
µ85 = 0.015984178241749
µ86 = 0.016124165979879
µ87 = 0.151145768228502
λ21 = 0.023787133610744
λ32 = 0.091009661390427
λ41 = 0.023444684301672
λ42 = 0.032119338749362
λ43 = 0.089516680829776
λ51 = 0.056354565012571
λ52 = 0.012147561037311
λ53 = 0.056562280060094
λ54 = 0.000000095305905

λ61 = 0.000000155574348
λ62 = 0.102670355321862
λ63 = 0.000000129323288
λ64 = 0.086906235023916
λ65 = 0.001948095974350
λ71 = 0.000000005742021
λ72 = 0.085547570527144
λ73 = 0.018145676643359
λ74 = 0.098149750494075
λ75 = 0.001982854233713
λ76 = 0.001436838619770
λ81 = 0.011609230551384
λ82 = 0.053848246287940
λ83 = 0.050281417794762
λ84 = 0.067254353278777
λ85 = 0.004201954631994
λ86 = 0.004238754905099
λ87 = 0.039733519691061

191

Table A.20: Coefficients of the optimal 8-stage implicit SSP RK method of order 6.

µ21 = 0.078064586430339
µ22 = 0.078064586430334
µ31 = 0.000000000128683
µ32 = 0.207887720440412
µ33 = 0.051491724905522
µ41 = 0.039407945831803
µ43 = 0.256652317630585
µ44 = 0.062490509654886
µ51 = 0.009678931461971
µ52 = 0.113739188386853
µ54 = 0.227795405648863
µ55 = 0.076375614721986
µ62 = 0.010220279377975
µ63 = 0.135083590682973
µ65 = 0.235156310567507
µ66 = 0.033370798931382
µ72 = 0.000000009428737
µ73 = 0.112827524882246
µ74 = 0.001997541632150
µ75 = 0.177750742549303
µ76 = 0.099344022703332
µ77 = 0.025183595544641
µ81 = 0.122181071065616
µ82 = 0.000859535946343

µ83 = 0.008253954430873
µ84 = 0.230190271515289
µ85 = 0.046429529676480
µ86 = 0.017457063072040
µ87 = 0.017932893410781
µ88 = 0.322331010725841
µ91 = 0.011069087473717
µ92 = 0.010971589676607
µ93 = 0.068827453812950
µ94 = 0.048864283062331
µ95 = 0.137398274895655
µ96 = 0.090347431612516
µ97 = 0.029504401738350
µ98 = 0.000167109498102
λ21 = 0.175964293749273
λ31 = 0.000000000290062
λ32 = 0.468596806556916
λ41 = 0.088828900190110
λ43 = 0.578516403866171
λ51 = 0.021817144198582
λ52 = 0.256377915663045
λ54 = 0.513470441684846
λ62 = 0.023037388973687
λ63 = 0.304490034708070

λ65 = 0.530062554633790
λ72 = 0.000000021253185
λ73 = 0.254322947692795
λ74 = 0.004502630688369
λ75 = 0.400665465691124
λ76 = 0.223929973789109
λ81 = 0.275406645480353
λ82 = 0.001937467969363
λ83 = 0.018605123379003
λ84 = 0.518868675379274
λ85 = 0.104656154246370
λ86 = 0.039349722004217
λ87 = 0.040422284523661
λ91 = 0.024950675444873
λ92 = 0.024730907022402
λ93 = 0.155143002154553
λ94 = 0.110144297841125
λ95 = 0.309707532056893
λ96 = 0.203650883489192
λ97 = 0.066505459796630
λ98 = 0.000376679185235

192

Table A.21: Coefficients of the optimal 9-stage implicit SSP RK method of order 6.

µ21 = 0.060383920365295
µ22 = 0.060383920365140
µ31 = 0.000000016362287
µ32 = 0.119393671070984
µ33 = 0.047601859039825
µ42 = 0.000000124502898
µ43 = 0.144150297305350
µ44 = 0.016490678866732
µ51 = 0.014942049029658
µ52 = 0.033143125204828
µ53 = 0.020040368468312
µ54 = 0.095855615754989
µ55 = 0.053193337903908
µ61 = 0.000006536159050
µ62 = 0.000805531139166
µ63 = 0.015191136635430
µ64 = 0.054834245267704
µ65 = 0.089706774214904
µ71 = 0.000006097150226
µ72 = 0.018675155382709
µ73 = 0.025989306353490
µ74 = 0.000224116890218
µ75 = 0.000125522781582
µ76 = 0.125570620920810
µ77 = 0.019840674620006
µ81 = 0.000000149127775
µ82 = 0.000000015972341
µ83 = 0.034242827620807
µ84 = 0.017165973521939
µ85 = 0.000000000381532
µ86 = 0.001237807078917
µ87 = 0.119875131948576

µ88 = 0.056749019092783
µ91 = 0.000000072610411
µ92 = 0.000000387168511
µ93 = 0.000400376164405
µ94 = 0.000109472445726
µ95 = 0.012817181286633
µ96 = 0.011531979169562
µ97 = 0.000028859233948
µ98 = 0.143963789161172
µ99 = 0.060174596046625
µ10,1 = 0.001577092080021
µ10,2 = 0.000008909587678
µ10,3 = 0.000003226074427
µ10,4 = 0.000000062166910
µ10,5 = 0.009112668630420
µ10,6 = 0.008694079174358
µ10,7 = 0.017872872156132
µ10,8 = 0.027432316305282
µ10,9 = 0.107685980331284
λ21 = 0.350007201986739
λ31 = 0.000000094841777
λ32 = 0.692049215977999
λ42 = 0.000000721664155
λ43 = 0.835547641163090
λ51 = 0.086609559981880
λ52 = 0.192109628653810
λ53 = 0.116161276908552
λ54 = 0.555614071795216
λ61 = 0.000037885959162
λ62 = 0.004669151960107
λ63 = 0.088053362494510
λ64 = 0.317839263219390

λ65 = 0.519973146034093
λ71 = 0.000035341304071
λ72 = 0.108248004479122
λ73 = 0.150643488255346
λ74 = 0.001299063147749
λ75 = 0.000727575773504
λ76 = 0.727853067743022
λ81 = 0.000000864398917
λ82 = 0.000000092581509
λ83 = 0.198483904509141
λ84 = 0.099500236576982
λ85 = 0.000000002211499
λ86 = 0.007174780797111
λ87 = 0.694839938634174
λ91 = 0.000000420876394
λ92 = 0.000002244169749
λ93 = 0.002320726117116
λ94 = 0.000634542179300
λ95 = 0.074293052394615
λ96 = 0.066843552689032
λ97 = 0.000167278634186
λ98 = 0.834466572009306
λ10,1 = 0.009141400274516
λ10,2 = 0.000051643216195
λ10,3 = 0.000018699502726
λ10,4 = 0.000000360342058
λ10,5 = 0.052820347381733
λ10,6 = 0.050394050390558
λ10,7 = 0.103597678603687
λ10,8 = 0.159007699664781
λ10,9 = 0.624187175011814

193

Table A.22: Coefficients of the optimal 10-stage implicit SSP RK method of order 6.

µ21 = 0.054638144097621
µ22 = 0.054638144097609
µ32 = 0.094708145223810
µ33 = 0.044846931722606
µ43 = 0.108958403164940
µ44 = 0.031071352647397
µ51 = 0.004498251069701
µ52 = 0.005530448043688
µ54 = 0.107851443619437
µ55 = 0.018486380725450
µ62 = 0.015328210231111
µ63 = 0.014873940010974
µ64 = 0.000000013999299
µ65 = 0.093285690103096
µ66 = 0.031019852663844
µ73 = 0.023345108682580
µ74 = 0.000000462051194
µ76 = 0.100142283610706
µ77 = 0.037191650574052
µ84 = 0.020931607249912
µ85 = 0.007491225374492
µ86 = 0.000000004705702
µ87 = 0.094887152674486
µ88 = 0.041052752299292
µ94 = 0.000000000437894

µ95 = 0.013484714992727
µ96 = 0.012301077330264
µ98 = 0.097178530400423
µ99 = 0.039273658398104
µ10,1 = 0.000987065715240
µ10,2 = 0.000000347467847
µ10,6 = 0.004337021151393
µ10,7 = 0.011460261685365
µ10,8 = 0.002121689510807
µ10,9 = 0.104338127248348
µ10,10 = 0.042268075457472
µ11,3 = 0.000656941338471
µ11,7 = 0.015039465910057
µ11,8 = 0.004816543620956
µ11,9 = 0.031302441038151
µ11,10 = 0.071672462436845
λ21 = 0.442457635916190
λ32 = 0.766942997969774
λ43 = 0.882341050812911
λ51 = 0.036426667979449
λ52 = 0.044785360253007
λ54 = 0.873376934047102
λ62 = 0.124127269944714
λ63 = 0.120448606787528
λ64 = 0.000000113365798

λ65 = 0.755424009901960
λ73 = 0.189047812082446
λ74 = 0.000003741673193
λ76 = 0.810948446244362
λ84 = 0.169503368254511
λ85 = 0.060663661331375
λ86 = 0.000000038106595
λ87 = 0.768392593572726
λ94 = 0.000000003546047
λ95 = 0.109198714839684
λ96 = 0.099613661566658
λ98 = 0.786948084216732
λ10,1 = 0.007993221037648
λ10,2 = 0.000002813781560
λ10,6 = 0.035121034164983
λ10,7 = 0.092804768098049
λ10,8 = 0.017181361859997
λ10,9 = 0.844926230212794
λ11,3 = 0.005319886250823
λ11,7 = 0.121789029292733
λ11,8 = 0.039004189088262
λ11,9 = 0.253485990215933
λ11,10 = 0.580400905152248

194

A.2 Low-Storage Methods

Table A.23: Coefficients for the low-storage method RK44[2S]

i γi1 γi2 βi,i−1 δi

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

2 0.000000000000000 1.000000000000000 1.193743905974738 0.217683334308543

3 0.121098479554482 0.721781678111411 0.099279895495783 1.065841341361089

4 -3.843833699660025 2.121209265338722 1.131678018054042 0.000000000000000

5 0.546370891121863 0.198653035682705 0.310665766509336

Table A.24: Coefficients for the low-storage method RK4()6[2S]

i γi1 γi2 βi,i−1 δi

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

2 0.000000000000000 1.000000000000000 0.238829375897678 0.564427596596565

3 0.344088773828091 0.419265952351424 0.467431873315953 1.906950911013704

4 -0.655389499112535 0.476868049820393 0.215210792473781 0.617263698427868

5 0.698092532461612 0.073840520232494 0.205665392762124 0.534245263673355

6 -0.463842390383811 0.316651097387661 0.803800094404076 0.000000000000000

8 0.730367815757090 0.058325491591457 0.076403799554118

195

Table A.25: Coefficients for the low-storage method RK45[2S*]

i γi1 γi2 βi,i−1

1 0.000000000000000 0.000000000000000 0.000000000000000

2 0.000000000000000 1.000000000000000 0.357534921136978

3 -3.666545952121251 4.666545952121251 2.364680399061355

4 0.035802535958088 0.964197464041912 0.016239790859612

5 4.398279365655791 -3.398279365655790 0.498173799587251

6 0.770411587328417 0.229588412671583 0.433334235669763

Table A.26: Coefficients for the low-storage method RK4(3)6[2S]

i γi1 γi2 βi,i−1 δi

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

2 0.000000000000000 1.000000000000000 0.653858677151052 -1.662080444041546

3 1.587969352283926 0.888063312510453 0.258675602947738 1.024831293149243

4 1.345849277346560 -0.953407216543495 0.802263873737920 1.000354140638651

5 -0.088819115511932 0.798778614781935 0.104618887237994 0.093878239568257

6 0.206532710491623 0.544596034836750 0.199273700611894 1.695359582053809

7 -3.422331114067989 1.402871254395165 0.318145532666168 0.392860285418747

Table A.27: Coefficients for the low-storage method RK4(3)5[3S*]

i γi1 γi2 γi3 βi,i−1 δi

1 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

2 0.000000000000000 1.000000000000000 0.000000000000000 0.075152045700771 0.081252332929194

3 -0.497531095840104 1.384996869124138 0.000000000000000 0.211361016946069 -1.083849060586449

4 1.010070514199942 3.878155713328178 0.000000000000000 1.100713347634329 -1.096110881845602

5 -3.196559004608766 -2.324512951813145 1.642598936063715 0.728537814675568 2.859440022030827

6 1.717835630267259 -0.514633322274467 0.188295940828347 0.393172889823198 -0.655568367959557

7 -0.194421504490852

196

VITA

David Ketcheson is husband to Belky Ketcheson and father to two adorable daugh-
ters, Elena and Victoria. David earned the degree of Bachelor of Science, with majors
in Mathematics and Physics & Astronomy, from Brigham Young University in 2004. He
received the degrees of Master of Science and Doctor of Philosophy in Applied Mathe-
matics from the University of Washington in 2008 and 2009, respectively. He has been
appointed Assistant Professor of Applied Mathematics at King Abdullah University of
Science and Technology.

	List of Figures
	List of Tables
	Introduction
	Motivation
	High Order Numerical Methods for Hyperbolic Conservation Laws
	Strong Stability Preserving Time Integration
	Flux Differencing and Wave Propagation
	Waves in Heterogeneous Media
	Outline
	Numerical Methods for the Initial Value Problem
	The Method of Lines
	Linear Multistep Methods
	Runge-Kutta Methods
	General Linear Methods
	Additive Methods

	Strong Stability Preserving Methods and Absolute Monotonicity
	Strong Stability Preservation
	TVD Time Integration
	The Shu-Osher Form
	Strong Stability Properties

	Absolute Monotonicity and Strong Stability Preservation for Linear IVPs
	Absolute Monotonicity of Runge-Kutta Methods
	The SSP Coefficient

	Unconditional Strong Stability Preservation
	Negative Coefficients and Downwinding
	Optimal SSP Methods
	Efficiency
	The Relation Between R and C

	Optimal Threshold Factors for Linear Initial Value Problems
	Threshold Factors for General Linear Methods
	'Tall Tree' Order Conditions for Explicit General Linear Methods
	An Upper Bound
	Solution Algorithm
	Optimal Threshold Factors for Explicit Methods
	One-step methods
	One-stage multistep methods
	Multistage multistep methods

	Threshold Factors for Methods with Downwinding
	Threshold Factors for Downwinded Explicit GLMs
	Optimal One-step Methods with Downwinding

	Optimal SSP Linear Multistep Methods
	General Solution Algorithm
	Bounds on the SSP Coefficient
	Explicit Methods
	Implicit Methods

	Optimal Methods without Downwinding
	Optimal Methods with Downwinding

	SSP Runge-Kutta Methods
	Bounds on the SSP Coefficient for Runge-Kutta Methods
	Formulation of the Optimization Problem
	Implicit Runge-Kutta Methods
	Optimal Methods
	Numerical Experiments

	Explicit Runge-Kutta Methods
	Memory Considerations
	Optimal Methods
	Absolute Stability Regions
	Internal Stability
	Truncation Error Analysis
	Embedding optimal SSP methods
	Numerical Experiments

	Summary and Conjectures

	Low-Storage Runge-Kutta Methods
	Introduction
	Two-register Methods
	Williamson (2N) methods
	van der Houwen (2R) methods

	Low-Storage Methods Have Sparse Shu-Osher Forms
	2N Methods
	2R Methods

	2S Methods
	2S* Methods
	2S Embedded Pairs
	3S* Methods

	Feasibility of Low-storage Assumptions
	2N Methods
	2R Methods
	2S Methods

	Improved low-storage methods
	Conclusions

	Numerical Wave Propagation
	Linear Hyperbolic Systems
	The Semi-discrete Wave-Propagation form of Godunov's Method
	Extension to Higher Order
	Variable Coefficient Linear Systems
	Nonlinear Systems
	High Order Non-oscillatory Reconstruction of Scalar Functions
	Linear (Non-limited) Reconstruction
	TVD Reconstruction
	Weighted Essentially Non-Oscillatory Reconstruction

	Reconstruction of Vector-valued Functions
	Reconstruction of Eigencomponent Coefficients
	Characteristic-wise Reconstruction
	Wave-slope Reconstruction

	Extension to Two Dimensions

	Numerical Tests
	Methods
	Acoustics
	Single Material Interface
	Several Interfaces
	A Sonic Crystal

	Fluid Dynamics

	Stegotons
	Previous Work
	Nonlinear Elasticity in 1D
	An F-wave Riemann Solver
	Homogenized Equations

	Analysis of the Homogenized Equations
	Reduced Equations and Phase-Plane Analysis
	Riemann Invariants

	Time Reversal
	Smoothly Varying Media
	112D Stegotons

	Conclusions and Future Directions
	SSP Theory and Methods
	Low-Storage Time Integrators
	High Order Numerical Wave Propagation
	Stegotons

	Bibliography
	Coefficients of Runge-Kutta Methods
	Optimal Implicit SSP RK Methods
	Fourth-order Methods
	Fifth-order Methods
	Sixth-order Methods
	Low-Storage Methods

