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Chapter 1

BACKGROUND

1.1 Introduction

The flow of water over a surface is a ubiquitous physical phenomenon of practical inter-

est to many scientists and engineers. For instance, flows such as ocean tides, wind waves,

dam breaches, river floods, and tsunamis support a large interest from diverse fields for

diverse reasons. Despite the everyday familiarity of water flow, the governing equations for

the internal flow comprise an intractable set of equations, too complex to be of practical

use for most applications. Accordingly, approximate descriptions of the flow are often of

more use, assuming the approximation is acceptable for the particular application. An ap-

proximation of common use for many applications leads to the shallow water equations—a

system of nonlinear partial differential equations approximating the surface and horizontal

momentum of the flow. Although simplified from the complete governing equations, the

shallow water equations can nonetheless rarely be exactly solved and even present many

difficulties for numerical computation. Furthermore, many real applications introduce fur-

ther complications, such as variable topography and evolving dry regions within the domain.

Recently much progress has been made using Godunov-type finite volume methods for the

shallow water equations (see for example [2, 7, 12, 1]), however no single numerical method

is without weakness and few, if any, are reliable for all types of shallow flows.

A robust numerical method that can reliably and accurately solve the shallow water

equations over variable topography in diverse conditions is sought. Here I present a high-

resolution Godunov-type finite volume method with a novel Riemann solver that has some
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promising features for the one-dimensional case, and ultimately might be the basis for a

two-dimensional high-resolution method.

1.2 Derivation of the Shallow Water Equations

The applications mentioned above are described by a subset of fluid dynamical theory, in

which an incompressible fluid under gravity has a free surface at an unknown location. Fur-

ther, the viscosity of the fluid is usually ignored as it is negligible relative to the large scales

of these flows. The nonlinear shallow water equations arise when some additional assump-

tions about the flow are included; several equivalent assumptions lead to the same set of

equations. Most formally, starting with the full three dimensional equations describing an

inviscid and incompressible fluid, the shallow water equations are the lowest order approxi-

mation when a perturbation procedure is developed for all quantities. In this perturbation

procedure, the parameter ε, which is the ratio of the water depth to some characteristic

horizontal length of the flow, is assumed to be small. This procedure results in the vertical

acceleration of water particles that is zero (to lowest order), which is equivalent to a verti-

cally hydrostatic pressure distribution. The most straight-forward derivation of the shallow

water equations, and the one shown below, comes from starting with this hydrostatic as-

sumption a priori. Adding this assumption to the inviscid and incompressible assumptions,

the shallow water equations follow immediately from conservation of mass and momentum.

Variable bottom topography contributes a source of momentum. See [16] or [19] for a more

complete description of the shallow water assumptions.

Consider an incompressible fluid of depth h over a bottom surface z = b(x, y), with a

velocity field u = [u, v, w]. See Figure 1.1. It can be shown that u is independent of z since

the pressure gradient is independent of z. For conservation of momentum we start with an

arbitrary region Ω3, in three dimensions, with the bottom surface b(x, y) and free surface

h(x, y) defining the top and bottom boundaries. Conservation of momentum in this region
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Figure 1.1: Depiction of the variables for the shallow water equations. For the full two-dimensional shallow

water equations, surfaces depend on x and y. The lower surface is the bottom b, with the water of depth h

over it.

gives1

d

dt

∫∫∫

Ω3
u dx dy dz +

∫∫

∂Ω3
[(u)u · n] ds +

∫∫

∂Ω3
[Π · n] ds−

∫∫∫

Ω3
G dx dy dz = 0, (1.1)

where the second integral on the left is the flux of momentum due to advection across the

boundaries, Π is the stress tensor and G is the body force density, −gk̂. Assuming an inviscid

fluid gives a stress tensor with merely the hydrostatic pressure, p(x, y, z) = g(h+b−z) on the

diagonal, Π = pI. Because of the hydrostatic assumption, the vertical component of the last

two integrals of course cancels. The the third equation for w in (1.1) is therefore neglected,

since it asserts that Dw/Dt = 0. Integrating the pressure at the top (p(x, y, h) = 0) and

bottom (p(x, y, b) = gh) surfaces, and integrating out the vertical coordinate, leads to

d

dt

∫∫

Ω
hu dx dy +

∫

∂Ω
[(hu)u · n] ds +

∫

∂Ω

[
1
2
gh2n

]
ds = −

∫∫

Ω
gh∇b dx dy. (1.2)

1The constant density has been dropped from all equations.
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The third integral is due to pressure at the boundaries of the two-dimensional region Ω,

after the vertical coordinate has been integrated. The term on the right is a source of

momentum due to variable bottom topography, and comes from integrating the pressure at

the bottom. Conservation of mass over an arbitrary fixed region Ω in the x–y plane comes

from considering the two-dimensional velocity field u = [u, v]

d

dt

∫∫

Ω
h dx dy +

∫

∂Ω
hu · n ds = 0, (1.3)

where the second integral on the left is the flux of mass into the region due to flow crossing

the boundaries.

Conservation of mass, equation (1.3), and the two conservation of momentum equations

in (1.2) together comprise the set of governing equations for the depth and momentum of

the flow. This set of equations belongs to a broader class of conservation laws, which can

be compactly written as

d

dt

∫∫

Ω
q dx dy +

∫

∂Ω
F (q) · n ds =

∫∫

Ω
ψ dx dy, (1.4)

where for the shallow water equations,

q =




h

hu

hv



, F =




hu hv

hu2 + 1
2gh2 huv

huv hv2 + 1
2gh2



, ψ =




0

−ghbx

−ghby



.

The system (1.4) is the integral form of the conservation laws, and is more fundamental

than further manipulated forms of the system.2 This integral form admits discontinuous

solutions provided that they satisfy certain conditions at the discontinuity; see Section 1.3.

Manipulation of the integral form into a system of PDEs requires continuity of the solution,

and is therefore not always valid. A numerical method based on the conservative integral

form is therefore preferable to one based solely on the derived PDEs. However, deriving the

PDE form is helpful for theoretical reasons and is shown below.

2Conservation laws modified by a source term are often called “balance laws,” yet here I will continue to
refer to them as “conservation laws,” it being understood that the source term contributes to the quantity
normally conserved.
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Applying the divergence theorem to the second integral in (1.4) and moving the time

derivative into the first integral, assuming that the solution is continuous and differentiable,

results in the following system:
∫∫

Ω
qt dx dy +

∫∫

Ω
[f(q)x + g(q)y] dx dy =

∫∫

Ω
ψ dx dy (1.5)

where the flux components f and g are the first and second columns of F, respectively. The

arbitrariness of the domain Ω implies the following system of PDEs:

qt + f(q)x + g(q)y = ψ. (1.6)

Taking the derivatives of f and g, again assuming that the solution is continuous and

differentiable, results in the quasi-linear system

qt + f ′(q)qx + g′(q)qy = ψ (1.7)

where f ′(q) and g′(q) are the Jacobian matrices of the functions f and g. A conservation law

such as (1.7) is hyperbolic if every linear combination of f ′(q) and g′(q) has real eigenvalues,

and can be diagonalized. The shallow water equations are hyperbolic conservation laws.

In this thesis I present a method for the one-dimensional shallow water equations, where

the integral and PDE form of the conservation laws become respectively

d

dt

∫ x2

x1

q(x, t) dx + f(q(x2, t))− f(q(x1, t)) =
∫ x2

x1

ψ dx (1.8)

and

qt + f(q)x = ψ. (1.9)

As in two dimensions, if the solution is continuous and differentiable, equation (1.9) is

equivalent to

qt + f ′(q)qx = ψ. (1.10)

The system (1.10) is hyperbolic if f ′(q) has real eigenvalues and is diagonalizable. For the

shallow water equations

q =




h

hu


, f =




hu

hu2 + 1
2gh2


, ψ =




0

−ghbx


,
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so when put in the form of (1.10) the one-dimensional shallow water equations become




h

hu




t

+




0 1

−u2 + gh 2u







h

hu




x

=




0

−ghbx


 . (1.11)

The system (1.11) is hyperbolic since the Jacobian matrix

f ′(q) =




0 1

−u2 + gh 2u




has eigenvalues λ1 = u − √
gh and λ2 = u +

√
gh. These values are obviously real and

distinct as long as h is positive.

For hyperbolic systems such as (1.10) information travels from one point to another

at speeds equal to the eigenvalues of the Jacobian matrix. For reasons that will become

clear below, these eigenvalues are sometimes called “characteristic speeds” and curves in

space-time upon which the information travels are sometimes called “characteristic curves.”

For a system of n equations there are n eigenvalues, and hence n families of characteristic

curves. If the eigenvalues are distinct, the n curves are never parallel at a given point in the

space-time plane. For a more complete discussion of the properties of hyperbolic systems

see for example [15] or [8].

1.3 Discontinuities and the Rankine-Hugoniot Condition

The more fundamental integral form of conservation laws (1.8) admits discontinuous solu-

tions or “shocks.”3 In manipulating the integral conservation laws into the PDEs, smooth-

ness of the solution was assumed. Since the PDEs contain derivatives that are undefined at

a discontinuity, a solution must always satisfy the more fundamental integral form across a

discontinuity. Consider a propagating jump discontinuity moving at speed s. By applying

3The term “shock” is borrowed from gas dynamics, where the physical manifestation of a mathematical
discontinuity is a shock-wave. In shallow water theory a discontinuity is usually referred to as a “bore,”
however, to maintain consistent terminology for equivalent mathematical properties, I will use the term
shock throughout.
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Figure 1.2: Depiction of a shock moving at speed s with states ql and qr immediately to the left and right

of the shock respectively. To satisfy the Rankine-Hugoniot jump condition the following relation must hold:

s (qr − ql) = f(qr)− f(ql).

(1.8) to an arbitrarily small region surrounding the discontinuity, it is easy to show that the

discontinuity must satisfy the following condition known as the Rankine-Hugoniot condition

s (qr − ql) = f(qr)− f(ql), (1.12)

where qr and ql are the solutions immediately to the right and left of the discontinuity

respectively; see Figure 1.2. A solution that satisfies the integral conservation laws, and

hence the PDEs where smooth, and satisfies the Rankine-Hugoniot condition across a dis-

continuity is known as a “weak solution” to the conservation laws; see [15].

By allowing discontinuous solutions subject to (1.12), uniqueness of a weak solution is

not always guaranteed and often other admissibility conditions must be imposed based on

physical considerations above and beyond the conservation laws. These additional con-

straints often take the form of an “entropy” function that is conserved except across a

discontinuity; see [15].
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1.4 Conservative Finite Volume Methods

From a numerical viewpoint, shock waves pose a difficulty that precludes the use of many

methods. Use of a naive method can lead to spurious oscillations near a shock wave, com-

puting shocks with the wrong strength, or propagating shocks with the wrong speed; see

[15] or [18]. The numerical method proposed in this paper is based on the type of finite

volume methods developed in [15]. These methods are particularly suited for dealing with

hyperbolic systems that allow various discontinuities such as shocks in the weak solution,

and were largely developed for the Euler equations of gas dynamics—a hyperbolic system

with many similarities to the shallow water equations. With a finite volume approach, the

numerical solution approximates the average value of the solution in each discrete computa-

tional cell. Consider the integral form of the conservation laws (1.8), neglecting the source

term temporarily,

d

dt

∫ x2

x1

q(x, t) dx dy = − [f(q(x2, t))− f(q(x1, t))] . (1.13)

Applying (1.13) exactly over a computational cell Ωi =
[
xi− 1

2
, xi+ 1

2

]
,

d

dt

∫

Ωi

q(x, t) dx = −
[
f(q(xi+ 1

2
, t))− f(q(xi− 1

2
, t))

]

and integrating over a time interval τn =
[
tn, tn+1

]
, gives

∫

Ωi

q(x, tn+1) dx =
∫

Ωi

q(x, tn) dx−
∫

τn

[
f(q(xi+ 1

2
, t))− f(q(xi− 1

2
, t))

]
dt.

This system can be rewritten as

Qn+1
i = Qn

i −
∆t

∆x

[
Fn

i+ 1
2
− Fn

i− 1
2

]
(1.14)

where Qi is the spatial average of q over the cell Ωi

Qi =
1

∆x

∫

Ωi

q(x, t) dx (1.15)

and Fn
i± 1

2

are the time-averaged fluxes at the boundaries over a time-step τn

Fn
i± 1

2
=

1
∆t

∫

τn
f(q(xi± 1

2
)). (1.16)
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Equation (1.14) is exactly met by the true solution over a time interval if Fn
i± 1

2

are the

true time averaged fluxes at the boundaries. Additionally (1.14) is the basis of conservative

finite volume methods for (1.13), where Fn
i± 1

2

are numerical fluxes—approximations to the

true time-averaged fluxes at the cell boundaries.

Equation (1.14) is a conservative numerical method since it conserves the numerical

variable Qi on the computing domain (aside from any input or output at the boundaries).

When numerically approximating integral conservation laws with discontinuous weak solu-

tions, a conservative method based on the integral conservation laws can converge properly

to a discontinuous weak solution, where a method based on the PDEs alone often fails to

converge to a correct weak solution. In fact, Hou and LeFloch [11] proved that if a non-

conservative method is used, it converges to the wrong solution if it contains a shock wave.

For a more complete discussion of pathological behavior of nonconservative methods, and

the convergence of conservative methods to the right weak solution, see [15] or [18].

1.5 Godunov’s Method and the Riemann Problem

Developing a conservative flux-differencing method based on (1.14) essentially amounts to

establishing a proper estimate for the time averaged fluxes (1.16). The method developed

in this paper is a Godunov-type method—a class of numerical methods that have proven to

be successful at dealing with many of the difficulties of hyperbolic conservation laws, such

as shocks. Godunov-type methods are upwind methods where a Riemann problem

qt + f ′(q)qx = 0

q(x, 0) =





ql x < 0

qr x > 0

(1.17)

is solved at each cell interface before each time-step. The relevance of the Riemann problems

can be seen from considering the solution to be a piecewise constant function with the cell

average value Qi, throughout each cell. At the cell interfaces xi− 1
2
, there are discontinuities

with ql = Qi−1 to the left and qr = Qi to the right. In Godunov’s method the numerical
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fluxes used in (1.14) come from evaluating the true flux function with the solution from the

Riemann problem (1.17) at each cell interface

Qn+1
i = Qn

i −
∆t

∆x

[
f(qn

i+ 1
2
)− f(qn

i− 1
2
)
]

(1.18)

where qn
i± 1

2

are the solutions to the Riemann problems at xi± 1
2

given initial data

q(x, tn) =





Qn
i−1 x < xi− 1

2

Qn
i x > xi− 1

2
.

(1.19)

At the end of a time-step the data is re-averaged and the process is begun again. By using

Riemann solutions, Godunov’s method has a proper upwind bias, even when characteristic

information moves in both directions. For a first-order accurate method, this upwind bias

is necessary for stability; see [15] or [17].

For many systems, such as the shallow water equations, an exact solution to the Riemann

problem (1.17) is a similarity solution depending on x and t only as a single variable x/t.

That is, the solution to the Riemann problem, q(x, t) is of the form q̃(x/t). The particular

values of x/t are of course rays in the space-time plane connected at the initial discontinuity

at x = 0. I will refer to this spreading region in the x–t plane as the “Riemann solution.”

At a given time, to the far right and far left of the Riemann solution, the solution is still

constant and the same as the initial conditions since the characteristic information from the

initial discontinuity has not had time to reach these regions. Since the characteristic curves

for each family must be unique at any point in space-time, the characteristic speeds in the

Riemann solution either make a smooth transition into the characteristic speeds outside the

Riemann solution, or are separated by a shock from the speeds outside the solution. This

set of transitions can be viewed as waves emanating from the initial discontinuity, as the

solution only varies across each transition. For the shallow water equations there are two

characteristic families, and hence two such transitions or waves. A smooth transition occurs

when the speeds of a characteristic family increase from left to right, and is known as a

“rarefaction” as it usually corresponds to a solution that is rarefied, or less dense, behind

the wave. If the speeds of a characteristic family decrease from left to right, the regions are
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Figure 1.3: An example of a Riemann solution to the shallow water equations with a rarefaction in the first

characteristic family and a shock in the second family. Left: Characteristic transitions, or waves emanating

from the initial discontinuity are shown in the x–t plane. Right: The first component of the solution, the

water depth h, is shown at some time after t = 0

separated by a shock. A Riemann solution may be composed of any combination of shocks

or rarefactions in the particular characteristic families, depending on the particular initial

data.4 Figure 1.3 is an example of a Riemann solution to the shallow water equations, with

a shock in one characteristic family and a rarefaction in the other.

For the homogeneous shallow water equations, the Riemann problems can be solved

exactly, yet at a considerable expense due to the nonlinear flux function; see [15]. Further-

more, the entire Riemann solution is not even needed, just the constant value at the cell

interface, x/t = 0. Therefore, it is often preferable to use an approximate Riemann solution.

1.6 Linear Problems

Approximate solutions to Riemann problems are often based on solutions to a linear Rie-

mann problem, that is, (1.17) with a linear flux function f(q) = Aq. Consider a hyperbolic

4A full discussion of exact solutions to Riemann problems and how to construct such solutions is beyond
the scope of this thesis, but can be found in [15],[17].
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system with such a flux function:

qt + Aqx = 0. (1.20)

In order to be hyperbolic, A must have distinct real eigenvalues and can therefore be

diagonalized: A = RΛR−1, where Λ is the diagonal matrix of eigenvalues, and R is the

matrix of right eigenvectors. Substituting A = RΛR−1 in (1.20) and multiplying by R−1

gives 5

wt + Λwx = 0 (1.21)

where w is the vector of characteristic variables

w = R−1q, w = [ w1 · · · wn ]T .

Because of the diagonal matrix, equation (1.21) is a system of n decoupled scalar advection

equations

wp
t + λpwp

x = 0, p = 1, . . . , n . (1.22)

Therefore, the initial profile of each characteristic variable wp simply advects at its charac-

teristic speed—the corresponding eigenvalue λp. Converting back to the original variables

shows that the solution consists of a weighted superposition of the eigenvectors of A, where

the profile of each weight advects at the speed of the corresponding eigenvalue, or

q = Rw where wp(x, t) = wp(x− λpt, 0), p = 1, . . . , n. (1.23)

Now consider a Riemann problem with (1.20), where initially there is a single discontinuity,

qt + Aqx = 0

q(x, 0) =





ql x < 0

qr x > 0.

(1.24)

Considering (1.23), it can be seen that the solution to (1.24) is a piecewise constant with

discontinuities spreading out from the initial interface at the speeds of the eigenvalues. The

5This requires R to be constant since therefore R−1qt =
(
R−1q

)
t
= wt.
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q1 = h, shown at some time after t = 0.

jump across the pth discontinuity (a vector with n components) will be denoted Wp. It can

also be seen by considering (1.23) that the jump across each propagating discontinuity is

proportional to the corresponding eigenvector

Wp = (wp
r − wp

l )r
p = αprp (1.25)

where rp is the pth eigenvector of A or pth column of R. Note that these discontinuities

automatically satisfy the Rankine-Hugoniot condition (1.12), which when applied to a linear

flux function simply requires a discontinuity to be an eigenvector of A propagating at a speed

s equal to the corresponding eigenvalue, λp.

If there are two equations in the system (1.20), then a linear Riemann solution has three

states: the original state to the left, ql, the original state to the right, qr, and a middle state

between the two discontinuities or waves, W1 and W2. This middle state will be denoted

with a star: q∗. See Figure 1.4, which illustrates a typical linear Riemann solution to a

system of two equations.
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1.7 The Roe Approximate Riemann Solver

One method for approximately solving a nonlinear Riemann problem (1.17) is to simply

replace the nonlinear Jacobian matrix f ′(q) with a diagonalizable constant matrix, so that

the solution is equivalent to (1.23). Given different Riemann problems at each cell interface,

it seems logical to base the constant matrix on the local data for each Riemann problem.

Furthermore, evaluating f ′(q) at some value, say q̂, based on Qi−1 = ql and Qi = qr will

preserve the eigenstructure of f ′(q) and hence will be diagonalizable

Â(ql,qr) = f ′ (q̂(ql,qr)) . (1.26)

In the event that the exact solution to the Riemann problem consists of a single shock, we

might require the linear solution to match the exact solution. This requirement is satisfied

if the following condition on Â(ql,qr) is imposed:

Â(qr − ql) = f(qr)− f(ql) (1.27)

for arbitrary ql and qr. The matrix Â then has an eigenstructure that gives the exact

solution in the event of a single shock. This can be seen by recalling the Rankine-Hugoniot

condition (1.12), which must be satisfied by the single shock

f(qr)− f(ql) = s(qr − ql). (1.28)

Together (1.27) applied at a cell interface and (1.28) lead to

Â(qr − ql) = f(qr)− f(ql) = s(qr − ql) (1.29)

implying that the single shock is an eigenvector of Â. The intermediate value q̂ in (1.26)

such that (1.27) is satisfied, is known as the Roe average and Â = f ′(q̂) the Roe matrix.

For the one-dimensional shallow water equations

q̂ =




ĥ

ĥû
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where

ĥ =
hl + hr

2
, and û =

ul

√
hl + ur

√
hr√

hl +
√

hr
.

The motivation for the properties of the Roe matrix come from the fact that for a typical

application the solution is likely smooth in the majority of the domain, or if a discontinuity

exists it is most likely a single shock. Therefore, when a solution is discretized the adjacent

cells in smooth regions have data that is nearly continuous, 6 and cells next to a single shock

when discretized generate a Riemann problem with nearly a single shock solution; see [15].

1.8 Dry States and Failure of the Roe Solver

The Roe solver works well for many shallow water flows but in certain situations can produce

negative depths. In addition to being obviously physically incorrect, these negative depths

usually crash the computation. Consider the solution to a linear Riemann problem (1.24)

with a Roe matrix Â. The solution’s middle state, q∗, is connected to the state on the

left, ql, by a jump in the first eigenvector of Â and is connected to the state on the right,

qr, by a jump in the second eigenvector. The left and right states are therefore joined in

phase space by the two eigenvectors, the middle state, q∗, being the intersection of the two

vectors. This intersection corresponds to a negative depth when the left and right states

lay in particular regions of phase space; see Figure 1.5. For instance, if the velocity on the

right is much greater than the velocity on the left and the flow is already very shallow,

the intersection often corresponds to a negative depth. For applications where the flow is

very shallow in parts of the domain, or in fact becomes dry in regions, the Roe solver is

almost certain to produce negative depths. One way around this difficulty is to compute the

exact Riemann solution, which as mentioned is possible for the homogeneous shallow water

equations. However, this is computationally expensive, and it is not clear how to extend

this satisfactorily to a Riemann problem with a source term.

6In regions with at least one continuous derivative, if the grid spacing is ∆x, then ||Qi−Qi−1|| = O(∆x)
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Figure 1.5: Failure of the Roe solver when the left and right states, ql and qr, lay in particular regions of
phase space. In this example the left and right states are shallow, with opposite velocities. The arrows are
in the direction of the Roe eigenvectors, the intersection of which is the middle state q∗, corresponding to a
negative depth h.

1.9 The HLL Approximate Riemann Solvers

The HLL Riemann solvers are another class of linear approximation methods, originally

developed for the Euler equations of gas dynamics, that are easily extended to the homoge-

neous shallow water equations; see [10]. These solvers are based on estimating the speeds

that information or waves propagate away from a Riemann problem. A linear solution with

two discontinuities is then constructed7, using estimates for the speeds of the propagating

discontinuities.8 The estimates for the speeds are based on the initial data, and general

properties of exact Riemann solutions. A number of different estimates for the speeds

have been used, and the particular choice of estimates gives an HLL method its particular

7Two speeds are used in the original HLL method even for equations with more than two characteristic
families.

8Contrast this to a method such as the Roe solver, where a constant estimate to the Jacobian matrix
is constructed first, and the eigenvalues of this estimate subsequently affect the approximate Riemann
solution.



17

6

-

t

xl xr

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶
¶7

S
S

S
S

S
S

S
S

S
S

Sos1 s2

ql

q∗

qr

Figure 1.6: Constructing a solution using conservation and estimated speeds. If the speeds s1 and s2 are
predetermined estimates, an approximate solution can be uniquely determined by applying the conservation
law to the region Ω = [xl, xr] surrounding the interface.

properties; see [17].

Once estimates of the speeds are established, the approximate Riemann solution is con-

structed based on applying the original integral form of the conservation laws (1.13) to

a region surrounding the Riemann solution. Imagine evaluating the flux function at two

points, xl and xr, to the far left and far right of the Riemann solution. The Riemann solu-

tion is approximated as a piecewise constant solution with two discontinuities spreading out

with the estimated speeds s1 and s2; see Figure 1.6. The value of the middle solution, q∗

can be determined uniquely (neglecting the source term for now) from (1.13), which when

applied to the region gives

d

dt

∫ xr

xl

q(x, t) dx = − [f(q(xr, t))− f(q(xl, t))]

⇒ −s2 (qr − q∗)− s1 (q∗ − ql) = − [f(q(xr, t))− f(q(xl, t))] . (1.30)

Solving for the middle state q∗ in (1.30), assuming s2 − s1 is greater than zero, gives

q∗ =
(

1
s2 − s1

) (
f(ql)− f(qr)− s1ql + s2qr

)
. (1.31)

Note that (1.31) is two equations, one for each component of q∗.



18

Riemann solutions of this form are conservative, in the sense that the structure of the

approximate Riemann solution obeys the original conservation laws (1.13) when applied

to the region surrounding the Riemann solution. This is not necessarily the case with

any approximate Riemann solution, even if the overall numerical method is conservative.

For instance, if the numerical method is based on using interface fluxes as in (1.14), the

numerical solution is conserved overall even if the interface fluxes are based on Riemann

solutions that are not conservative. However, if the numerical updating is based on using

the actual structure of the solutions to the Riemann problems, rather than using interface

fluxes as in (1.14), then the Riemann solutions must be conservative in order for the overall

method to be conservative.9 For a discussion of “wave-propagation” methods that use the

structure of the Riemann solution for updating, see [15].

1.10 Source Terms from Topography

In most real applications there is variable bottom topography that adds a source term to the

shallow water equations. All of the solutions discussed so far have dealt with homogeneous

equations of the form (1.13), rather than the full form with a source term

qt + f(q)x = ψ. (1.32)

A standard and easy way to deal with a source term is to treat it independently by using a

fractional step method. That is, alternate between two problems

qt + f(q)x = 0 (1.33)

qt = ψ. (1.34)

First, problem (1.33) is solved and the solution is advanced partially, followed by problem

(1.34) in each time-step. With this technique the homogeneous equation can be solved by

9The requirement (1.27) on the Roe matrix has an added benefit to that discussed in Section 1.7—it
ensures that the structure of the solution is conservative.
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any traditional method, and the source term merely adds the need for a step with any

appropriate numerical method for a system of ordinary differential equations.10

One drawback of fractional step methods is their inability to preserve certain steady-

states; see [14]. A common situation in applications involving the shallow water equations

is the physically trivial situation of undisturbed motionless water over topography, time

independent steady-flows, or perhaps small perturbations from such situations. Numerically,

such situations are not so trivial, and the numerical preservation of such steady-states is a

very desirable property in any numerical method for the shallow water equations; see [9].

The failure of fractional step methods in such situations can be foreseen by considering

nearly time independent flow of any kind, where the flux gradient and source terms must

approximately balance

qt + f(q)x = ψ

qt ≈ 0

⇒ f(q)x ≈ ψ.

Given steep topography, the source term and flux gradient can be quite large, and each frac-

tion of the update in (1.33) and (1.34) must undo the other in order to preserve the balance.

Clearly this is not the best way to preserve steady-states or resolve small perturbations from

steady-states, since preserving a delicate balance requires precise cancellation.

The method proposed in [1] circumvents this problem by taking advantage of the balance

between the source and flux gradient. Recall that with a linear Riemann solution, such as

that obtained when using a local approximation to the Jacobian such as a Roe matrix Â,

the jump initially at the cell interface,qr−ql = Qi−Qi−1, is broken up into the eigenvectors

of Â

qr − ql = α1r̂1 + α2r̂2 (1.35)

10By using a fractional step method the problem of negative states mentioned in Section (1.8) can be
circumvented by using the exact Riemann solution, however the expense of the exact Riemann solution
remains as a deterrent, as well as the drawbacks of fractional step methods in general.
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where r̂p are the eigenvectors and αp are scalar multiples. Given a Roe matrix, the flux

difference at a cell interface f(qr)− f(ql) satisfies (1.27), which together with (1.35) implies

f(qr)− f(ql) = Â (qr − ql) = λ̂1α1r̂1 + λ̂1α2r̂2 (1.36)

where λ̂p are the eigenvalues corresponding to r̂p. Note from (1.36) that the flux difference

at a cell interface is ultimately decomposed into the eigenvectors of the Roe matrix Â11

f(qr)− f(ql) = β1r̂1 + β2r̂2. (1.37)

In the wave propagation algorithms described in [15], the structure of the Riemann solution

arising from a cell interface is used to update or re-average the solution. Considering the

structure of linear solutions discussed in Section 1.6, the right hand side of equation (1.36)

represents the propagation of discontinuities αprp propagating at speeds λp, and it is this

structure that can be used to update the solution. Therefore, ultimately the right hand

side of equation (1.37), the decomposition of the flux difference, can be used to update the

solution. In [1] it is proposed that, when there is a source term, the flux difference minus the

source term should be projected onto the eigenvectors arising from the Riemann problem

and subsequently used to update the solution

f(qr)− f(ql)− ψ∆x = β1r̂1 + β2r̂2. (1.38)

By using (1.38) it is the difference in the flux gradient and source that is used to update

the solution, so that if the flux gradient and source term nearly balance—the situation for

a steady-state—the updating will be small and the steady-state preserved.

Unfortunately the method described above does not circumvent the difficulty encoun-

tered with near dry states.

11The same conclusion can be reached more generally for other types of linear methods that do not
necessarily use a Roe matrix. In the wave propagation formulation used in [15] the discontinuities arising
from an interface can be viewed as waves spreading out from an interface. If these waves and their travelling
speeds are used as a basis for updating the average in a cell, conservation dictates that the jump in flux
must be the sum of these waves multiplied by the speeds. The flux difference is therefore decomposed into
a linear combination of these waves, equivalent to (1.36); see [15] for a detailed discussion.
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Chapter 2

A HIGH-RESOLUTION GODUNOV-TYPE SCHEME FOR THE

SHALLOW WATER EQUATIONS

2.1 Desirable Properties

The utility of a numerical method for the shallow water equations depends on its ability

to deal with various difficulties arising simultaneously in applications. Since the shallow

water equations admit shocks, a method should be able to accurately capture moving jump

discontinuities. Many applications have realistic arbitrary topography and regions of the

domain that are sometimes dry and sometimes wet, so a method should be robust enough

to deal with the appearance, or preexistence, of dry-states while at the same time handle a

reasonably wide range of bottom topographies. For instance, it should be able to accurately

resolve water advancing onto dry topography. Furthermore, it should be able to preserve

steady-states as well as resolve small perturbations from steady-states, even when adjacent

to dry regions.

In this chapter a high-resolution Godunov-type scheme is developed. It has given satis-

factory results for the above conditions in one dimension. Like other Godunov-type schemes

it can accurately capture moving shocks, and avoids spurious oscillations near those shocks.

Moving dry-states within the computing domain are captured without the appearance of

negative-states. The method maintains important steady-states, such as the physically triv-

ial situation of a motionless pool of water over variable and steep topography, even when

surrounded by dry regions.
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2.2 A Positive-Depth Preserving Approximate Riemann Solver for the Homo-

geneous Shallow Water Equations

The problem of negative depths in approximate Riemann solutions mentioned in Section 1.8

must be overcome if a method is to handle very shallow flows with moving dry regions in the

domain. The exact Riemann solution is one way to circumvent this problem, but even aside

from its computational expense, it is not clear how to incorporate the source term into such

a solution. There are so-called “positivity-preserving” approximate Riemann solutions that

are based on an extension to the original HLL method discussed in Section 1.9. These were

originally developed for gas dynamics, where near vacuum densities create an analogous

problem to that of near dry-states in the shallow water equations. One such method is the

HLLE method, where the estimates for the two speeds used in (1.31) are particular estimates

for the maximum possible characteristic or shock speeds arising from a Riemann problem;

see [5] or [6]. The estimates are based on the general structure of exact Riemann solutions

discussed in Section 1.5. In an exact Riemann solution to systems such as the Euler and

shallow water equations, a shock in a characteristic family occurs when the characteristic

speed is less to the right of the shock than the left. The opposite is true in the case of a

rarefaction. Based on these facts the estimates used in the HLLE method are

s1 = min
p

(
min

(
λp

l , λ̂
p
))

(2.1)

s2 = max
p

(
max

(
λp

r , λ̂
p
))

(2.2)

where λp is the pth eigenvalue to the left or right, and λ̂p are the eigenvalues of the Roe

matrix Â from the interface. The eigenvalues of the Roe matrix serve as estimates of the

shock speeds arising from the Riemann problem, and the other values are the true maximum

characteristic speeds in the case of rarefactions.

The relevance of the maximum speeds when trying to preserve positivity is elucidated

in the following intuitive argument: regardless of the structure of the Riemann solution,

the total change in mass in the region is determined by the flux at the two far boundaries

where the solution is constant; see (1.30). If the flux-difference is large and positive, there
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will be a large rate of decrease in mass in the region between the spreading discontinuities.

The further this region spreads in a given amount of time, the less concentrated the given

decrease in the solution is, and the less likely the solution will become negative in this

region. It can be shown that by using proper estimates for the maximum speeds, such as

(2.1) and (2.2), the solution in the middle region, q∗, will always be non-negative. This is

formulated as a theorem for emphasis.

Theorem 1. For the homogeneous shallow water equations—equation (1.11) with no

source term—if the middle state q∗ is determined from (1.31), using (2.1) and (2.2) for the

speeds s1 and s2, the depth h∗ in the middle state is always non-negative.

Proof: For the shallow water equations, the speeds (2.1) and (2.2) are equivalent to

s1 = min
(

ul −
√

ghl, û−
√

gĥ

)
(2.3)

s2 = max
(

ur +
√

ghr, û +
√

gĥ

)
(2.4)

where the Roe averages û and ĥ are defined in Section 1.7. The first equation in (1.31) for

the depth h∗ of the middle state gives

h∗ =
hlul − hrur + s2hr − s1hl

s2 − s1
. (2.5)

Inserting (2.3) and (2.4) into (2.5) gives

h∗ =
hlul − hrur + max

(
ur +

√
ghr, û +

√
gĥ

)
hr −min

(
ul −

√
ghl, û−

√
gĥ

)
hl

max
(

ur +
√

ghr, û +
√

gĥ

)
−min

(
ul −

√
ghl, û−

√
gĥ

) . (2.6)

The denominator of (2.6) is always positive in regions with water:

max
(

ur +
√

ghr, û +
√

gĥ

)
−min

(
ul −

√
ghl, û−

√
gĥ

)

≥
(

û +
√

gĥ

)
−

(
û−

√
gĥ

)

= 2
√

gĥ

> 0.

(2.7)
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And the numerator is always non-negative

hlul − hrur + max
(

ur +
√

ghr, û +
√

gĥ

)
hr −min

(
ul −

√
ghl, û−

√
gĥ

)
hl

≥ hlul − hrur +
(
ur +

√
ghr

)
hr −

(
ul −

√
ghl

)
hl

= hr
√

ghr + hl

√
ghl

≥ 0.

(2.8)

These results are for the homogeneous shallow water equations. How the HLLE method

has been extended for the inclusion of a source term is described in the following sections.

2.3 Treatment of the Source Term

Because of the problems associated with a fractional step method described in Section 1.10,

the method developed and described in this chapter incorporates the source term from

topography directly into the Riemann problem. That is, the actual approximate Riemann

solution includes the effect of a source term, and the updating of the solution is based solely

on the structure of the solution.

Recall that the source term in the shallow water equations (1.11) arises from the deriva-

tive of the bottom elevation b,

ψ =




0

−ghbx


 . (2.9)

Given a piecewise discretization of the bottom topography bi, constant over each cell interval

Ωi =
[
xi− 1

2
, xi+ 1

2

]

bi = b(xi) (2.10)

the idealized source formally becomes a delta function at each cell interface

ψ(x) → ∑
i Ψi− 1

2
δ

(
x− xi− 1

2

)
, Ψi− 1

2
=




0

−gh̄i− 1
2
(bi − bi−1)


 . (2.11)

Several options are available for the depth h̄i− 1
2
, used in (2.11) to approximate h in (2.9). To

avoid the problem of overlapping discontinuities, the source term can be treated explicitly
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in the sense that the value h̄i− 1
2

is determined from the starting values before the Riemann

problem is solved. For instance it can be taken to be the arithmetic average of the depth

to the right and left of the interface xi− 1
2

before each time-step, h̄i− 1
2

= 1
2(hi + hi−1). This

is the approach used in the method developed in this section. However, it could be treated

implicitly in that an average based on the solution to the Riemann problem is used.

A delta function source (2.11) might presumably lead to a discontinuity in the solution.

To investigate how such a source might affect a solution, consider a stationary source at a

cell interface, Ψδ(x− xi− 1
2
). By applying the conservation law (1.8) to an arbitrarily small

interval surrounding the source, the following jump condition can be shown:

f (q∗r)− f (q∗l ) = Ψ (2.12)

where q∗l and q∗r represent the solution to the right and left of the source respectively.

The result (2.12) is valid if the source itself is not a function of the solution, which is

discontinuous at the source, creating a problem for the theory of distributions as it involves

overlapping discontinuities; see [4].

If the source term is treated explicitly, Ψ depends on constant values determined before

the start of the Riemann problem

Ψi− 1
2

=




0

−gh̄i− 1
2
(bi − bi−1)


 (2.13)

where h̄i− 1
2

= 1
2(hi + hi−1). The source term at an interface is therefore fixed during the

Riemann problem, and not a function of the solution q∗l and q∗r, to either side.

2.4 A Riemann Solver that Accommodates Source Terms

Considering the treatment of the source term described above, the goal is to approximately

solve the following Riemann problem that arises at a cell interface x = xi− 1
2

qt + f ′(q)qx = Ψδ(x− xi− 1
2
)

q(x, 0) =





ql = Qi−1 x < xi− 1
2

qr = Qi x > xi− 1
2

.
(2.14)
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In this section, the features described in the previous section are used to modify the HLLE

method in order to adapt the method for the inclusion of a source term. Consider the

HLL-type methods described in Section 1.9, where, given predetermined estimates for the

wave-speeds arising from the Riemann solution, the original conservation law (1.13) (without

a source term) is applied to a region surrounding the Riemann solution in order to determine

the middle solution q∗. Inclusion of a source term in the conservation law alters equation

(1.30). Furthermore, considering the jump condition at the cell interface, equation (2.12),

the solution is no longer constant at the cell interface. If a Riemann solution overlaps the

cell interface, the interior of the Riemann solution is no longer a single middle state q∗,

but two middle states: q∗l to the left, and q∗r to the right of the interface; see Figure 2.1.

Considering these facts and applying conservation laws with a source term (1.8) to a region

[xl, xr] surrounding a Riemann solution, gives

d

dt

∫ xr

xl

q(x, t) dx = − [f(q(xr, t))− f(q(xl, t))] +
∫ xr

xl

Ψδ(x) dx

⇒ −s2 (qr − q∗r)− s1 (q∗l − ql) = − [f(qr)− f(ql)] + Ψ (2.15)

where for notational simplicity ql,r = q(xl,r, t).

It is not obvious what estimates for s1 and s2 in (2.15) are appropriate, given that there

is now a source term in the Riemann problem. The same HLLE speeds, (2.3) and (2.4),

are proposed as suitable estimates for the wave-speeds since the addition of a source term

to a hyperbolic system does not change the eigenvalues of the Jacobian matrix. That is,

even for the nonhomogeneous shallow water equations, the characteristic speeds are still

u±√gh. Additionally, it can be shown that the Rankine-Hugoniot condition is unchanged

if the source term is finite. Therefore, wave-speeds are the same in analytical solutions

to the homogeneous and nonhomogeneous shallow water equations. Of course, over time,

the source term has an indirect effect on the speed of wave propagation by its effect on

the solution and hence u ± √
gh. This indirect effect will be reflected in the numerical

solution as well, as the source term affects the solution in each time-step. Therefore, at

least heuristically, using the same HLLE speeds for s1 and s2 in (2.15) is justified.
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Figure 2.1: Depiction of the approximate Riemann solution of when the HLLE method is extended to
accommodate a source term. Top: The discontinuities in the x–t plane, when the approximate Riemann
solution overlaps a cell interface. Bottom Left: The water depth h of the approximate Riemann solution
at a particular time. Bottom Right: The momentum depth hu of the approximate Riemann solution at a
particular time.
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For a system of two equations such as the shallow water equations, (2.15) is two equations

for the unknown middle states, q∗l and q∗r. The jump condition (2.12)

f(q∗r)− f(q∗l ) = Ψ, (2.16)

provides two more equations for the four unknowns. Together (2.15) and (2.16) is a closed

system of four equations for the four unknown variables—both components of the two middle

states q∗l and q∗r. However, it is not yet clear if the middle states can be uniquely determined

from the system of equations; for the shallow water equations, (2.16) is a nonlinear system.

Furthermore, if a unique solution can be found, it is not yet clear if positivity will be ensured

for the middle-state depth variables h∗l and h∗r . In order to address these questions, it is

necessary to investigate the specific properties of (2.15) and (2.16) for the shallow equations.

For the shallow water equations, (2.15) gives the following two equations:

−s2 (hr − h∗r)− s1 (h∗l − hl) = − [(hu)r − (hu)l] (2.17)

−s2 ((hu)r − (hu)∗r)− s1 ((hu)∗l − (hu)l) = (2.18)

−
[
(hu2 +

1
2
gh2)r − (hu2 +

1
2
gh2)l

]
− gh̄i− 1

2
(bi − bi−1)

and the jump condition (2.16) gives the equations:

(hu)∗r − (hu)∗l = 0 (2.19)

(hu2 +
1
2
gh2)∗r − (hu2 +

1
2
gh2)∗l = −gh̄i− 1

2
(bi − bi−1). (2.20)

Since there is no source of mass at the interface, equation (2.19) implies that the mass flux,

which happens to be the second component of the solution—the momentum—is continuous

across the interface. Therefore, there is only one middle state for the second component of

the solution, (hu)∗ = (hu)∗l = (hu)∗r, and it can be determined immediately from conserva-

tion by solving (2.18)

−s2 ((hu)r − (hu)∗)− s1 ((hu)∗ − (hu)l) = − [f(q(xr, t))− f(q(xl, t))]− gh̄i− 1
2
(bi − bi−1)

⇒ (hu)∗ =
(

1
s2−s1

) (
(hu2 + 1

2gh2)l − (hu2 + 1
2gh2)r − s1(hu)l + s2(hu)r

)
.

(2.21)



29

It remains to find the two depths h∗l and h∗r in the middle states from conservation and the

remaining jump condition. Considering conservation first, the total depth integrated over

the approximate Riemann solution will be positive. To see why, consider the source term:

the first component is zero as there is no source of mass. Therefore, if the depth arising

in the approximate Riemann solution is integrated across the entire Riemann solution, the

value will be identical to that of the homogeneous case since they both obey the same

conservation equation

d

dt

∫ xr

xl

h(x, t) dx = − [hu(xr, t)− hu(xl, t)] , (2.22)

and the entire middle solution in the homogeneous case is positive as proved in Section 2.2.

This suggests a convenient way to solve for the two middle states h∗l and h∗r. First, a single

middle state is calculated which if integrated would give the amount of mass in the Riemann

solution, then, by enforcing conservation of this amount and applying the jump condition

(2.20), the single middle state can be divided into two. Now it is possible that enforcing the

jump condition could produce one negative middle depth that is offset by the other positive

middle depth when integrated across the Riemann solution. However, upon inspecting the

jump condition (2.20), and noting that (hu)∗ is predetermined, there must always be a

solution that satisfies conservation and the jump-condition as either h∗l or h∗r approaches

zero.1 The difficulty with the nonlinear jump condition comes not in finding a solution, but

in isolating the correct solution; more than one solution corresponding to positive middle

states may exist. There are two possible resolutions to this difficulty: one, adding some

other criterion to constrain the possible solutions, or two, accepting an approximation to

the nonlinear jump condition that can be solved uniquely.

Since the Riemann solver developed in this chapter is an approximate solver, the idea

of circumventing the nonlinear jump condition by using an approximation comes naturally.

1The two middle states h∗l and h∗r appearing in the jump condition are related by conservation of a
single finite middle state, so if one increases the other must decrease. Since hu∗ is a single predetermined
constant c, determined by conservation, then hu2 = (hu)2/h = c2/h →∞ as h → 0. Inserting this into
the jump condition gives (c)2(1/h∗r − 1/h∗l ) + ( 1

2
gh∗2r − 1

2
gh∗2l ) = −gh̄i− 1

2
(bi − bi−1). A root can always

be found by letting either h∗l or h∗r approach zero, depending on the sign of −gh̄i− 1
2
(bi − bi−1).
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Furthermore, an approximation to the jump condition can be based on physical grounds.

Equation (2.20) implies that the difference in momentum flux on either side of the delta

source must balance the source. Of the two terms in the momentum flux, one comes from

advection of momentum and the other comes from a horizontal pressure gradient due to

variable depth. In the standard derivation of the shallow water equations it is assumed that

u = O(
√

gh), which is consistent with the vertical hydrostatic assumption. However, for

flows that are nearly static, the pressure gradient alone must nearly balance source terms

from topography. For flows in this regime it can be assumed that u ¿ √
gh, which is

consistent with the vertical hydrostatic assumption as well as an additional assumption.

Many geophysical flows of interest fall into this regime; see [19]. Imposing this assumption

on the jump condition, equation (2.20), leads to the following lowest order asymptotic

approximation:

(
1
2
gh2)∗r − (

1
2
gh2)∗l = −gh̄i− 1

2
(bi − bi−1). (2.23)

Equation (2.23) can be loosely interpreted as a statement that variable bottom topography

results in variable depth such that the water surface elevation is approximately constant.2

Although equation (2.23) is nonlinear, when combined with the conservation constraint

relating h∗l and h∗r, an explicit solution can be found. It is possible that the solution

corresponds to one negative middle state and one positive, which is resolved by setting the

negative state to zero and choosing the other state such that conservation is maintained.

This is not as pathological as it sounds, as it occurs when the pressure gradient cannot

completely balance the source term, or when a body of water is adjacent to a dry region

with steep sloping topography. In such a case the discrete version of the source term may

not be physically realistic anyway, as it involves the height of the topography in the dry

region which is irrelevant.

For flows that are far from static the above approximation may be inappropriate. How-

ever, it suggests a way to find the physically relevant solution to the nonlinear jump

2In fact, an alternative formulation of the source term using h̄ = 1
2
(h∗l + h∗r), reduces equation (2.23) to

h∗r + br = h∗l + bl.
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condition—equation (2.20). If the term hu∗ in equation (2.20) increases continuously from

zero, the physically relevant solution should vary continuously from the approximate solu-

tion to (2.23).

It should be noted that in the above derivations it was assumed that the Riemann

solution overlaps the cell interface. In the event of both positive or both negative speeds

s1 and s2, the Riemann solution is entirely to one side of the interface. In such an event it

is only necessary to calculate a single middle state based on conservation. It can be shown

that enforcing the jump condition at the cell interface in such a situation has no effect on

the solution, and therefore the Riemann problem is simplified considerably in this case since

q∗r = q∗l .

2.5 Improving Dry Interfaces with Altered Speed Estimates

The resolution of moving wet-dry interfaces can be improved by using alternative estimates

for the speeds s1 and s2 in such a case. The idea is to use knowledge of the exact Riemann

solution when the left or right state has zero depth. Such solutions have a single rarefaction

(and a zero-strength shock) in either the first or second characteristic family, depending on

which side is dry; see figure (2.2). Therefore, the true maximum speeds arising from the

Riemann problem correspond to the right and left edges of the rarefaction fan, and these

known speeds can be used as s1 and s2 in determining the middle-states q∗l and q∗r. For a

complete description of the exact Riemann solution in such a case see [18].

2.6 A Positive-Depth Preserving Godunov-Type Scheme

The numerical method is implemented as a wave-propagation algorithm as described in

[15]. That is, once the approximate Riemann solution at each cell interface is constructed

as described in the previous discussion, with qr = Qi and ql = Qi−1, the wave structure

of each Riemann solution is used to update the solution, by re-averaging the grid cells

due to the waves. Although an interface flux isn’t specifically used as suggested in (1.14),
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Figure 2.2: Exact Riemann Solution when the right or left state is dry. Top: Initial depth of water is
dry on the left or right. Middle: The water depth at some time after the initial profile. Bottom: Riemann
solution in the x–t plane. The dry state is connected to the wet one through a single rarefaction. The speeds
of the far edges of the rarefaction are shown.
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the method is still conservative since the approximate Riemann solution was based on

applying conservation to the region surrounding the Riemann solution. Before writing a

general updating formula, it is convenient to introduce some notation for the Riemann

solution at the interface between the cells i and i − 1. Following Section (1.6) for linear

problems, the following notation will be used for the discontinuities or waves arising from

the Riemann problems: W1
i− 1

2

= q∗l − Qn
i−1 and W2

i− 1
2

= Qn
i − q∗r . For the speeds of

these propagating waves, the following notation will be used: (sp

i− 1
2

)− = min(0, sp

i− 1
2

) and

(sp

i− 1
2

)+ = max(0, sp

i− 1
2

). Using this notation, the updating formula can be written as

Qn+1
i = Qn

i −
∆t

∆x

n∑

p=1

[
(sp

i+ 1
2

)−Wp

i+ 1
2

+ (sp

i− 1
2

)+Wp

i− 1
2

]
. (2.24)

Stability restrictions for Godunov-type methods typically require max
i

(s1
i− 1

2

, s2
i− 1

2

)∆t <

∆x; see [15]. This implies that a particular wave arising from a Riemann problem remains

entirely within a grid cell of width ∆x. Increasing this restriction on the time step to

max
i

(s1
i− 1

2

, s2
i− 1

2

)∆t < 1
2∆x guarantees maintaining a non-negative numerical solution given

non-negative Riemann solutions q∗l,r. This can be understood by interpreting the updating

as re-averaging the solution due to a set of piecewise-constant discontinuities that move into

a grid cell from either side, stopping short of the middle of the cell. The smallest possible

value behind any discontinuity is zero, and so the new average value in a cell can be no less

than zero.

2.7 Extension to a Second-Order Accurate Method

The Godunov-type methods discussed so far are limited to first-order accuracy, since they

are based on a piecewise constant reconstruction of the solution at each time-step. However,

this restriction can be lifted to second-order accuracy based on a higher-order approximation

to the PDEs.

The analysis of the numerical error is facilitated considerably by first applying the meth-

ods to a linear conservation law. Recall that in Section (1.6) it was shown that such laws
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can be reduced to a set of decoupled scalar advection equations of the form

wp
t + λpwp

x = 0 (2.25)

for each characteristic family p = 1 . . . n. Consider a Taylor expansion of the solution to

(2.25) with respect to time

wp(x, t + ∆t) = wp(x, t) + ∆twp
t (x, t) +

∆t2

2
wp

tt(x, t) + O(∆t3). (2.26)

By using (2.25), the time derivatives in (2.26) can be replaced with spatial derivatives,

giving

wp(x, t + ∆t) = wp(x, t)− λp∆twp
x(x, t) +

(λp∆t)2

2
wp

xx(x, t) + O(∆t3). (2.27)

The Godunov methods discussed so far, if applied to a linear conservation law, are equivalent

to a first-order upwind finite difference approximation3 to (2.25) for each family, based on

the first two terms on the right hand side of (2.27). The methods are upwind since using the

Riemann solution as described is equivalent to using a one-sided approximation to wp
x(x, t)

that correctly takes into account the direction of wave propagation—the sign of λp—for the

pth family. For a first-order method, an upwind approximation to wp
x(x, t) is required for

stability. If the method is to be second-order, at least in smooth regions, it is necessary to

include approximations for the next term in the Taylor expansion (2.27). The approximate

Riemann solution is still of interest since it can be used to construct the approximation to
(λp∆t)2

2 wp
xx(x, t), as well as for other reasons discussed in the next section.

If a Godunov method is written as a flux-differencing method (1.14) and applied to a

single characteristic family, or scalar conservation law (2.25), the flux is equivalent to

F p

i− 1
2

= (λp)−wp
i + (λp)+wp

i−1. (2.28)

A correction term can be added to (2.28), which when used in (1.14), gives a second-

order centered approximation to (λp∆t)2

2 wp
xx(x, t). It is easy to show that the appropriate

3This is if the variable Qi in a finite-volume method is regarded as the value at the cell center, rather
than the average value throughout the cell, a difference of O(∆x2) for smooth solutions.



35

correction term is:

− ∆t

2∆x
(λp)2

(
wp

i − wp
i−1

)
. (2.29)

Furthermore, the first-order upwind approximation to wp
x(x, t) can be extended to a second-

order centered approximation by including another term in the flux (2.28)

1
2
|λp|

(
wp

i − wp
i−1

)
. (2.30)

A centered approximation to wp
x(x, t) is stable as long as (2.29) is included as well. These

two correction terms to the first-order flux can be thought of as a correction flux F̃ p

i− 1
2

that

modifies the first-order upwind method to a second-order centered method. The flux (2.28)

to be used in (1.14) then becomes

F p

i− 1
2

= (λp)−wp
i + (λp)+wp

i−1 + F̃ p

i− 1
2

(2.31)

where

F̃ p

i− 1
2

=
1
2

(
|λp| − ∆t

2∆x
(λp)2

) (
wp

i − wp
i−1

)
. (2.32)

Using the flux (2.31) in (1.14) with (2.32) as the correction flux is equivalent to the well

known Lax-Wendroff method for scalar advection. See for example [15].

Upon considering the solution to a linear system from Section (1.6), it is clear that if

the above correction terms are extended to a linear system, the correction flux becomes

F̃i− 1
2

=
n∑

p=1

[
1
2

(
|λp| − ∆t

2∆x
(λp)2

)
Wp

i− 1
2

]
(2.33)

where Wp

i− 1
2

is the pth discontinuity
(
wp

i − wp
i−1

)
rp discussed in Section (1.6). If the system

is nonlinear, the flux correction term (2.33) for a linear system can be used, but with the

approximate Riemann solution at each interface determining the speeds and waves, rather

than the exact linear solution

F̃i− 1
2

=
n∑

p=1

[
1
2

(
|sp

i− 1
2

| − ∆t

2∆x
(sp

i− 1
2

)2
)
Wp

i− 1
2

]
. (2.34)
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Using the first-order Godunov method (2.24) from the previous section together with the

correction fluxes, (2.34), gives the second-order updating formula

Qn+1
i = Qn

i −
∆t

∆x

n∑

p=1

[
(sp

i+ 1
2

)−Wp

i+ 1
2

+ (sp

i− 1
2

)+Wp

i− 1
2

]
− ∆t

∆x

[
F̃i+ 1

2
− F̃i− 1

2

]
. (2.35)

2.8 Flux-Limiters and High-Resolution Methods

In the previous section it was shown how the upwind first-order Godunov method can be

converted to a centered second-order method. The question may arise, if a centered method

with no upwind bias is used, what point is there in solving or approximating a Riemann

problem? The answer is that, in smooth regions, a Riemann problem might be avoided

altogether, however, hyperbolic conservation laws such as the shallow water equations admit

discontinuous solutions, and the analysis of the previous section assumed smoothness of the

solution. For regions with a discontinuity, not only does the updating formula (2.35) of the

previous section fail to be second-order accurate, it can lead to large spurious oscillations

near the discontinuity, and cannot accurately capture a moving discontinuity’s speed. In

such regions, the first-order Godunov method of Section (2.4) is superior, as it can converge

to a correct weak solution and can accurately capture a moving discontinuity’s speed; see [17]

or [15]. Ideally then, one would like to use the second-order accurate centered method (2.35)

where the solution is smooth, and use a Godunov method (2.24) where the solution contains

a discontinuity. This is the idea behind the “high-resolution” methods, where an attempt is

made to identify areas where a discontinuity exists, and then resort to the Godunov method

in the region surrounding the discontinuity. This can be done by modifying the updating

formula presented in the previous section,

Qn+1
i = Qn

i −
∆t

∆x

n∑

p=1

[
(sp

i+ 1
2

)−Wp

i+ 1
2

+ (sp

i− 1
2

)+Wp

i− 1
2

]
− ∆t

∆x

[
F̃i+ 1

2
− F̃i− 1

2

]
(2.36)

by adding a coefficient to the correction fluxes

F̃i− 1
2

= φi− 1
2

n∑

p=1

[
1
2

(
|sp

i− 1
2

| − ∆t

2∆x
(sp

i− 1
2

)2
)
Wp

i− 1
2

]
. (2.37)
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The coefficient φi− 1
2

is known as a “flux-limiter” and can take values between 0 and 1. If

φi± 1
2

= 1, equation (2.36) is equivalent to the method of the previous section, equation

(2.35), and if φi± 1
2

= 0, it is equivalent to the first-order Godunov method, equation (2.24).

A low value of the limiters φi± 1
2

is intended to reflect a discontinuity, or a rapidly changing

gradient in the solution near the ith grid cell. The latter case can cause spurious oscillations

in the numerical solution, even if the solution is smooth; see [15].

Many formulas for limiters have been used with these goals in mind. In practice, it

usually makes more sense to limit the correction flux by limiting the contribution from each

waveWp

i− 1
2

separately. The rationale is that the solution is composed of the superposition of

more than one characteristic family, so a discontinuity in the solution is likely a discontinuity

in one characteristic value, while the others may be smooth in the same region. Therefore,

often limiters are applied separately to each wave based on estimating the gradient of the

corresponding characteristic value, in which case (2.37) becomes

F̃i− 1
2

=
n∑

p=1

[
1
2

(
|sp

i− 1
2

| − ∆t

2∆x
(sp

i− 1
2

)2
)

φp

i− 1
2

Wp

i− 1
2

]
(2.38)

with φp

i− 1
2

∈ [0, 1]. For a complete discussion of different limiters, and how the value of the

limiter is determined from the numerical solution near a grid cell, see [15].

Aside from the usual motivation for limiters, a new issue arises with very shallow flows

with dry regions. As was shown in Section (2.6), the first-order Godunov method presented

preserves positivity. However, after adding the flux correction terms in (2.38), it is certainly

not evident that positivity will be maintained, as the net effect of the flux correction terms

F̃i± 1
2

in (2.35) might decrease the solution in the ith grid cell. This poses a new problem,

yet one that can be circumvented by a new use for limiters. Since limiters can reduce the

method (2.38) to a first-order Godunov method in the presence of discontinuities or steep

gradients, they can also be used to reduce the method to a first-order Godunov method

when a negative solution in a grid cell arises. The most obvious way to accomplish this is

to merely set the limiters to 0, whenever second-order correction fluxes drive a cell value

into negative depth. Computationally this is slightly more involved than it sounds, as a



38

correction flux F̃i− 1
2

affects the ith and (i−1)th grid cells, and necessarily increases the depth

in one by decreasing the other. If a region has very shallow water, eliminating the correction

flux at an interface might preclude a negative state in one cell, but induce a negative state

in the adjacent cell, due to a correction flux applied at the other interface. Therefore, an

iterative procedure where correction fluxes are limited to zero such that adjacent cells are

not driven negative must be taken.

A more direct approach is to re-limit the already limited correction fluxes so that they

cannot drive the depth in a cell negative. This can be done by limiting the gross correction

mass-flux out of a cell to the amount of mass in the cell after the first-order Godunov

update. Writing the second-order method (2.36) as the sum of the Godunov update QG
i

and the limited correction fluxes gives

Qn+1
i = QG

i −
∆t

∆x

[
F̃i+ 1

2
− F̃i− 1

2

]
. (2.39)

The gross outward mass-flux due to these correction fluxes is

Gi =
[
max(0, F̃ 1

i+ 1
2
)−min(0, F̃ 1

i− 1
2
)
]
. (2.40)

If ∆tGi is larger than the mass after the Godunov update ∆x(QG
i )1, the correction fluxes

could potentially create a negative depth. This is precluded by re-limiting the correction

fluxes based on which cell they take mass away from

F̃i− 1
2
→ ϕi− 1

2
F̃i− 1

2
(2.41)

where

ϕi− 1
2

=





min(1, ∆x(QG
i )1/∆tGi) if F̃ 1

i− 1
2

< 0

min(1, ∆x(QG
i−1)

1/∆tGi−1) if F̃ 1
i− 1

2

> 0
. (2.42)

This way the need for an iterative procedure is avoided, and a further advantage is that

the correction fluxes are not completely eliminated should they drive the depth in a cell

negative, but rather are merely re-limited. It is possible that in some cases the correction

fluxes will be unnecessarily re-limited, such as when the net corrective mass-flux is much less

than the gross corrective mass-flux. However, this seems to be rare in the cases investigated.
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2.9 Conclusions and Future Directions

The Godunov-type method presented here has given some promising results for the one-

dimensional nonlinear shallow water equations. Like other Godunov-type methods, it can

successfully deal with difficulties such as discontinuities arising in hyperbolic PDEs such

as the shallow water equations. Additionally, it maintains positivity of the solution when

confronted with very shallow flows and captures moving wet-dry fronts in the domain, even

over topography. By incorporating the source term directly into the Riemann solution,

it also preserves steady-states, and resolves small perturbations from steady-states. Be-

cause of these properties, it is believed to be well suited for many realistic applications

that present these difficulties. Ultimately, it might be the basis for a full two-dimensional

method. Two-dimensional Godunov methods must deal with additional complications such

as cross-derivatives that must be handled with transverse Riemann waves; see [15]. Proper

extension of this method must still preserve positivity, while preserving steady-states in two

dimensions.

The following chapter contains some numerical results for several problems. The method

presented in this paper is implemented using the Clawpack software package [13].
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Chapter 3

RESULTS

3.1 Comparison With an Exact Analytical Solution

The nonlinear shallow water equations with topography cannot in general be solved exactly.

Therefore it is not possible to validate a numerical method in all cases, and the problems

where an exact solution is known are important test cases. In 1957 Carrier and Greenspan

[3] derived a solution to the shallow water equations where a wave climbs a sloping beach.

The solution is an important test case in that, not only is there variable topography, there

is a moving wet-dry front in the domain.

The specific problem consists of a linear sloping beach rising above the sea level, and a

water level that is initially depressed at the coastline. The fluid is held motionless and then

released so that the water rises up the beach. The top of figure 3.1 shows the initial profile. A

parameter ε is used in the problem, which correlates with the steepness of the initial water

surface; to guarantee that the wave doesn’t break, ε must be less than 0.23. The exact

solution is then determined as a function of transformed variables σ, λ, for which σ(x, t)

and λ(x, t) are only implicitly defined, so that finding the exact solution as a function of x

and t requires a root finding routine. For a complete description of the solution technique

see [3].

Using an exact initial profile, with ε = 0.2, the solution was computed numerically and

compared to the exact solution at various times. The solution is analyzed at early enough

times so that off-shore boundary effects have not had time to corrupt the solution near the

beach. Figure 3.1 shows the exact and computed solution after the water has progressed

up the beach. The region close to the beach is of most interest and has been enlarged in

figure 3.2, with several intermediate times shown. As can be seen in the enlarged figures,
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Figure 3.1: Solution from Carrier and Greenspan [3] on the entire computing domain. Top: depiction of
the domain and initial profile of the water surface η = h + b. The heavy line is the sloping beach, and the
lighter line the water surface. Bottom: Depiction of the exact and computed solution after the wave has
progressed up the beach. The initial profile is shown as well. Exact solution is the solid line, and computed
solution is the dotted line, with a dot at each grid cell.

there is clearly the most error near the shoreline and as one might expect the error grows

as time proceeds. The solution is shown with and without the use of the alternate speeds

from section 2.5, at the wet-dry interface. Even at this coarse resolution, some improvement

from using the alternate speeds can be seen.

As the grid is refined, the computational solution approaches the exact solution with

the shoreline posing the most difficulty. Figure 3.3 shows the solution as the grid is refined,

when the alternate speeds at the wet-dry interface are not used. Although the solution

does converge even at the shoreline, at the finest resolution shown error is still visible at

the shore, especially at later times. Figure 3.4 shows convergence of the solution as the
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Figure 3.2: A closer view of the exact and computed solutions near the shoreline. At this resolution, the
error near the shore can clearly be seen. Top: solution without the use of the alternate speeds at the wet-dry
interface. Bottom: solution when the alternate speeds from section 2.5 are used at the wet-dry interface.
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Figure 3.3: Convergence to the exact solution as the grid is refined without the alternate speeds at the
wet-dry interface. Exact solutions are the solid lines, and computed solutions are the dotted lines, with a
dot at each grid cell. The shoreline clearly poses the most difficulty
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Figure 3.4: Convergence to the exact solution as the grid is refined with the alternate speeds at the wet-dry
interface. Exact solutions are the solid lines, and computed solutions are the dotted lines, with a dot at each
grid cell. Use of the alternate speeds clearly improves the difficulty at the shoreline.
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Figure 3.5: Convergence and accuracy of the numerical method. The solid line is ∝ ∆x2, and points *

are the error, (1/2N)
∑2

p=1

∑N

i=1
|qp(xi) − Qp

i |, given increasing computational resolution. t = 0.25. Left:

Convergence of the solution away from the shoreline (−1.0 ≤ x ≤ 0). The error is O(∆x2) as ∆x → 0.
Right: Convergence of the solution at the shoreline (−0.1 ≤ x ≤ 0.1). The error is clearly larger at the
shoreline, however, convergence is observed.

grid is refined, using the alternate speeds at the wet-dry interface. Although the shoreline

still poses the most difficulty, use of the alternate speeds clearly improves the solution at

the shoreline. The method converges to the exact solution at the shoreline with nearly

second-order accuracy as can be seen in Figure 3.5.

Demonstrating convergence to this exact solution is an important test for the numerical

method, since it tests the ability to compute a moving wet-dry interface over sloping to-

pography. Furthermore, as the wave progresses up the beach the method must prevent the

appearance of negative states near the shoreline. It should be emphasized that with this

numerical method the dry region itself is part of the computational domain, and there is no

need for intervention such as tracking the shoreline in order to preserve the non-negative
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solution at the shoreline. By keeping the parameter, ε, small, the wave is not allowed to

break, and this particular solution remains smooth. Therefore, one real strength of a Go-

dunov method is not really tested on this problem as it does not present the difficulties

associated with discontinuities and shocks.

3.2 A Test Case

In order to test the robustness of this numerical method, solutions to problems with a

wide variety of topographies and initial conditions have been computed. One such problem

is shown below, which contains many of the difficulties posed by applications simultane-

ously. The domain includes moving wet and dry regions over topography, and a stationary

steady-state over steep topography. Additionally the problem has several shocks including

a stationary bore. The computational solution is shown in the following twenty snapshots

in time, Figure 3.6. The problem begins with an initial discontinuity that is released, giving

rise to a moving shock wave. Note the preservation of the stationary pool on the right until

it is upset with inflowing water. The far right side of the pool is over a steep slope, meaning

that a large source term must exactly balance a large flux-gradient in order to preserve the

stationary surface. This is followed by a stationary shock as well as a travelling shock that

moves to the far right shore and is then reflected.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3
η at time t=0

Figure 3.6: Computational solution of a challenging test case. Figures are snapshots in time.
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Figure 3.6 continued
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Figure 3.6 continued
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Figure 3.6 continued
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Figure 3.6 continued
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Figure 3.6 continued
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