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Abstract

Finite Volume Methods and Adaptive Refinement
for Tsunami Propagation and Inundation

David L. George

Chair of the Supervisory Committee:
Professor Randall J. LeVeque

Department of Applied Mathematics

The shallow water equations are a commonly accepted governing system for tsunami prop-
agation and inundation. In their most generally valid form, the equations are a set of
hyperbolic integral conservation laws—a general class of systems for which an extensive
body of numerical theory exists. In this thesis, finite volume wave propagation methods—
high resolution Godunov-type methods—are extended to this form of the shallow water
equations in the context of tsunami modeling. A novel approximate Riemann solver is
developed in order to handle the diverse flow regimes exhibited by tsunamis. This solver
provides well-balanced source term inclusion required for accurate resolution of near steady
state solutions—a necessity when modeling transoceanic tsunami propagation. The solver
also preserves nonnegative water depths and accurately captures discontinuities and moving
shorelines, making it appropriate for inundation modeling. Adaptive refinement algorithms
are extended to this application. These algorithms allow evolving sub-grids of various resolu-
tions to move with features in the solution. Extending the adaptive algorithms to tsunami
modeling requires some new interpolation and integrating strategies in order to preserve
steady states. Finally, the methods are extended to solution on a sphere or idealized earth-
fitted reference ellipsoids. Together, the methods developed allow modeling transoceanic
tsunami propagation as well as coastal inundation in single global-scale simulations.
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Chapter 1

INTRODUCTION

1.1 Statement of Purpose

Whenever a mathematical model is used to represent or predict the behavior of a real phys-
ical system there are two possible sources of error that should be carefully distinguished.
First, the set of equations assumed to govern the system will always oversimplify the true
physical system. Second, given the complexity of most physical applications, the govern-
ing equations will rarely be exactly solved—either analytical approximations or numerical
computations will only be estimates of solutions to the already oversimplified system. Inter-
preting the source of error when models fail to represent reality is not always easy, yet, the
first source of error is typically more appreciated in the scientific community. This thesis
primarily concerns the latter issue.

The purpose of the work leading to this thesis was to develop accurate, robust and
efficient numerical methods for solving the shallow water equations when they are used for
tsunami modeling. Tsunamis exhibit a wide variety of diverse fluid dynamical features and
no single set of governing equations approximated by a numerical method will ideally model
all of the features. However, general patterns and important characteristics of tsunamis can
be predicted by various sets of governing equations—the shallow water equations being one
important and commonly used example. This thesis describes a particular class of numerical
methods that is well equipped for dealing with some of the mathematical features exhibited
by the shallow water equations. Further, it describes the development, application and
modification of algorithms to confront some of the unique difficulties presented by tsunamis.
It must be emphasized that this work is centered around the numerical issues involved when
solving a set of equations in a certain context. It is not a set of numerical experiments for
the scientific investigation of tsunamis, although some comparisons with physical data are
presented in Chapter 9 and Chapter 10.

1.2 Tsunami Modeling with the Shallow Water Equations

Computational modeling has been commonly accepted for decades by the geological and
oceanographic communities as serving an integral role in tsunami science. Numerical and
mathematical models of actual or potential tsunamis serve several purposes. First, they can
be used for potential inundation mapping, which is important for hazard mitigation such as
emergency planning and coastal infrastructure construction. Second, they can be used for
scientific studies aimed at revealing the physical processes of tsunami initiation, propagation
and inundation. These scientific studies then allow better predictions of potential tsunami
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events. Third, numerical simulations can be used to establish seismic criteria for issuing
tsunami warnings in the event of an actual tsunami, and they might eventually be used for
real-time simulations for issuing warnings. (For more information on these topics, see, for
instance, the National Oceanic and Atmospheric Administration (NOAA) tsunami research
site [79].)

Because tsunamis begin as very long wavelength disturbances, they are commonly, and
have been historically, modeled with the shallow water equations—a system of nonlinear
hyperbolic PDEs described in detail in this thesis. Like tsunamis themselves, solutions
to the shallow water equations exhibit diverse flow features and the equations serve as an
approximation to the global propagation regime, the near shore regime (which can exhibit
discontinuities such as breaking waves and propagating bores) and the inundation regime
(the flooding of dry land).

Mathematical and physical studies of wave runup on sloping beaches and other simplified
shore geometries, for the purpose of investigating tsunami inundation, have long made use
of numerical and analytical approximations to the shallow water equations. See for instance
the work of Carrier and Greenspan [13], Hibberd and Peregrine (e.g. [80, 44]), Yeh (e.g.
[104, 105, 108, 111, 106]), Briggs, Synolakis, and Liu (e.g. [11, 90, 72]) and Fujima (e.g.
[23, 24] ). For early studies of isolated flow features such as runup, numerical methods were
largely based on finite difference approximations based on Taylor series, such as the Lax-
Wendroff [60] and similar methods. For the purpose of computing real tsunami simulations
with global-scale propagation or runup, more specific and sophisticated finite difference
methods were developed in the 1990s that continue to evolve. See, for instance, Titov and
Synolakis [93, 97, 94, 98, 99, 96], Liu and Cho (e.g. [72, 71]), Mader (e.g. [73]), Goto and
Sato [36], Imamura [48], as well as Kowalik (e.g. [56]).

The shallow water equations are found in several different forms, some more generally
valid than others. The different forms of the equations present different sets of numerical
difficulties, and often certain flow regimes make one form of the equations more or less
tractable. For instance, for the global propagation regime, a primitive form of the equations
is the most tractable and provides the most reliable solutions, given standard numerical
methods. This form is typically used for modeling global propagation, for which other forms
of the equations can be problematic. However, the validity of this form of the equations
breaks down in the near shore regime if steepening or discontinuities exist, and furthermore,
standard numerical methods often exhibit spurious results near such features. Only the most
generally valid integral form of the shallow water equations is valid near discontinuities.

The shallow water equations, in their most fundamental physically relevant form, are
hyperbolic integral conservation laws. This mathematical class of equations arises in diverse
applications with wave-like behavior, and is notorious for exhibiting difficulties for numerical
solution, such as non-uniqueness of solutions as well as propagating shock-waves and similar
features that generate numerical oscillations. Nevertheless, a large body of theory and
numerical methods have been dedicated to overcoming these difficulties. Such work has
largely been in the field of compressible gas dynamics, where systems such as the Euler
equations exhibit propagating shock-waves and large variations of physical scales in the
solution, requiring adaptive refinement. One class of methods that has been particularly
successful for such applications is the Godunov-type finite volume methods and the related
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high-resolution methods. In recent years these methods have been increasingly used for
solving the shallow water equations for various applications. See, for instance, Kurganov
and Levy (e.g. [59]), Gallouet Herard and Seguin (e.g. [26]), Chinnayya and LeRoux (e.g.
[15]), Garcia-Navarro et al (e.g. [27]) and the text by Toro [101]. The aim of the research
presented in this thesis has been to extend modern developments in this field to tsunami
modeling. By taking this approach, several new difficulties are encountered. However, by
using the most generally valid form of the shallow water equations—and methods equipped
at dealing with that form—the potential to accurately and robustly model all solution
regimes might be realized. Although using this general class of numerical method for the
shallow water equations is by no means novel, tsunamis present a collection of unique
features that must be overcome. The methods described here present a unified approach at
dealing with these diverse difficulties when using Godunov-type finite volume methods for
hyperbolic conservation laws.

1.3 Numerical Challenges

We will categorize the numerical difficulties associated with tsunami modeling, as belonging
to two types—diverse flow regimes and diverse spatial scales.

1.3.1 Flow Regimes

Tsunamis exhibit diverse flow characteristics that demand diverse properties from a nu-
merical method. For instance, a tsunami begins as a tiny perturbation to the motionless
steady state, since the amplitude of a deep ocean tsunami is on the order of centimeters and
ocean depths can approach thousands of meters. Accurately modeling global propagation
therefore demands resolving this tiny deviation from the background steady state. Since
the energy of the deviation is focused and concentrated as the waves approach shore, small
errors can be amplified—much like the tsunami itself. This problem is pronounced with the
conservative integral form of the shallow water equations, since, in this form, the steady
state arises from the nontrivial balance of possibly large gradients.

As a tsunami wave approaches shallow coastal waters, its wavelength, and hence energy
is compressed and its amplitude increases. In this region nonlinearities lead to steepening
waves, or even breaking waves and propagating bores. Modeling this regime accurately with
the shallow water equations requires a numerical method that can handle steep gradients
and discontinuities robustly.

Ultimately, the inundation of dry land is of the most interest, since this is where tsunamis
unleash their destructive capacity. Modeling inundation requires a method that can accu-
rately track or capture the shoreline boundary, as well as be robust to the appearance of
dry regions. Preserving positivity of depth is a well known difficulty for these types of
methods when used in shallow and drying regions. Additionally, accurately modeling the
moving shoreline is problematic given realistic finite grid spacings, and even determining
the right governing assumptions can be difficult. However, the integral form of the shallow
water equations is valid when applied to a region that contains wet and dry regions and
this conservative form can be used to capture moving shorelines.
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An integral component of the numerical methods described in this thesis is the Riemann
solver. Here, a novel Riemann solver is presented that is designed to solve many of the
above difficulties simultaneously.

1.3.2 Spatial Scales

The diverse flow regimes of tsunamis occur at extremely different spatial scales. For instance,
in the deep ocean, tsunami wavelength is on the order of hundreds of kilometers. Modeling
this propagation requires global-scale grids, which necessitates coarse grid spacings. Luckily
these can accurately resolve the long wavelength tsunamis; however, as tsunamis shoal in
shallow waters, their wavelengths are compressed to the meter scale. In the inundation
regime, bathymetry and local coastal features (even manmade structures) can influence and
focus the inundation patterns in unpredictable ways. These features can occur at the spatial
scale of several meters. Modeling all of these flow features must involve some form of grid
refinement. Refining all coastal areas to an ideal scale is prohibitively costly; however, rarely
does a given tsunami impact every potential shoreline—allowing selective refinement. Since
bathymetry focuses tsunami energy in unpredictable ways, knowing which areas to refine a
priori is problematic.

For these reasons this thesis presents the use of adaptive refinement methods for tsunami
modeling. Algorithms previously developed for hyperbolic problems generally are modified
and extended to this application.

1.4 Thesis Overview

In Chapter 2 some mathematical properties of hyperbolic conservation laws and related
hyperbolic PDEs will be discussed in general terms. This discussion will provide the proper
mathematical context for the numerical methods described in this thesis. Chapter 3 intro-
duces Godunov-type finite volume methods and Riemann solver techniques as well as the
specific wave propagation algorithms that underly all of the numerical methods described in
later chapters. For the most part, Chapter 2 and Chapter 3 provide background material
for readers less familiar with hyperbolic conservation laws in a general setting. However,
Section 3.5 on the vacuum problem and Section 3.6 on source term integration might in-
troduce some new concepts to readers familiar with hyperbolic conservation laws in other
contexts. Chapter 4 provides a detailed look at the shallow water equations, specifically
some analytical problems that will be important for later chapters. Chapter 5 provides an
introduction into some aspects of numerical tsunami modeling. This chapter is intended to
provide a background on tsunami modeling, as well as emphasize some of the difficulties
that motivate later numerical techniques. Chapter 6 describes the approximate Riemann
solver that is intended to overcome many of the difficulties of this application in a uni-
fied manner. Chapter 7 describes the adaptive mesh refinement techniques—specifically
the modifications that were necessary for this application. Chapter 8 describes how these
numerical methods can be generalized to modeling on the curved Earth. The following two
chapters show various numerical results, meant to validate and legitimize the mathemati-
cal methods described. A comprehensive comparison of numerical experiments with field
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work data and empirical tsunami data is not shown here. However, as mentioned in the
Chapter 11, extensive comparison with empirical tsunami data is one of the future goals for
applying this work.
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Chapter 2

HYPERBOLIC CONSERVATION LAWS AND RELATED SYSTEMS

This chapter introduces hyperbolic conservation laws and addresses the mathematical
properties of these and related systems of equations before a discussion of numerical methods
in Chapter 3. It begins with an introduction to the shallow water equations—a commonly
accepted approximation governing tsunamis as well as other types of fluid flows.

2.1 The Shallow Water Equations

The shallow water equations are a system of PDEs for depth and momentum

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (2.1a)

∂

∂t
(hu) +

∂

∂x
(hu2 +

1
2
gh2) +

∂

∂y
(huv) = −gh ∂b

∂x
, (2.1b)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(
1
2
gh2 + hv2) = −gh∂b

∂y
, (2.1c)

where g is the gravitational constant, h(x, y, t) is the nonnegative fluid depth, u(x, y, t) is the
fluid velocity in the x-direction, v(x, y, t) is the fluid velocity in the y-direction and b(x, y) is
the elevation of the bottom surface (see Figure 2.1). The system (2.1) governs free surface
flows where the fluid acceleration in the vertical z-direction is zero and horizontal velocities
are uniform in the vertical direction. These simplifying assumptions will be discussed and
the equations (2.1) derived in Chapter 4. In this chapter we will confine our attention to
solutions to systems such as (2.1), and save any discussion regarding the relevance of the
shallow water approximation until Chapter 4 and Chapter 5.

For theoretical examination, frequently it will be convenient to discuss the one dimen-
sional form of the shallow water equations

ht + (hu)x = 0, (2.2a)

(hu)t + (hu2 +
1
2
gh2)x = −ghbx, (2.2b)

where subscripts denote partial derivatives (()t ≡ ∂
∂t). If the bottom elevation is flat, bx ≡ 0,

(2.2) reduces to the homogeneous shallow water equations:

ht + (hu)x = 0, (2.3a)

(hu)t + (hu2 +
1
2
gh2)x = 0. (2.3b)
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Figure 2.1: Cross section of a free surface flow governed by the shallow water equations
(2.1). The fluid depth is h(x, y, t), the fluid velocities are u(x, y, t) and v(x, y, t), and b(x, y)
is the bottom elevation. The moving free surface is at z = h(x, y, t) + b(x, y).

2.2 Hyperbolic Conservation Laws

2.2.1 Conservation Laws

The shallow water equations belong to a more general class of conservation laws

∂q(x, t)
∂t

=
n∑
j=1

∂fj(q)
∂xj

= ψ(q, x), x = (x1, . . . , xn)
T ∈ lRn, (2.4)

where q ∈ lRm is a vector of m state variables, fj(q) ∈ lRm is a vector of the corresponding
fluxes in the jth direction, and ψ(q, x) ∈ lRm is a vector of source terms. If ψ(q, x) is nonzero,
then (2.4) is often referred to as a balance law, however, we will use conservation law to
refer to all such systems, and use homogeneous conservation law if we wish to emphasize
that ψ(q, x) ≡ 0. The terminology follows from the fact that, if ψ(q, x) ≡ 0, the system
(2.4) implies the conservation of the m state variables or conserved quantities. That is, in
any region Ω ⊆ lRn, the change in the amount of q in that region is due only to the flux
through the boundary ∂Ω, plus any contribution from a nonzero source term in the region.
This can be seen by integrating (2.4) over Ω and applying the divergence theorem, which
gives

d

dt

∫
Ω
q dx =

n∑
j=1

∫
∂Ω
fjωj dS =

∫
Ω
ψ dx, (2.5)

where ω = (ω1, . . . , ωn)T ∈ lRn is the unit outward normal vector on the boundary ∂Ω.
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2.2.2 Hyperbolic Conservation Laws

The system (2.4) is said to be hyperbolic if the flux functions satisfy certain properties.

Definition 2.1. Hyperbolicity. Let
∂fj
∂q

denote the Jacobian matrix of the function fj(q), and consider the matrix

A(q, ω) =
n∑
j=1

ωj
∂fj
∂q

where ω = (ω1, . . . , ωn)T is a unit vector. The system (2.4) is hyperbolic, if A(q, ω) has m
real eigenvalues λp(q, ω), p = 1, . . . ,m, and m linearly independent eigenvectors rp(q, ω),
p = 1, . . . ,m, for all ω ∈ lRn, |ω| = 1. Further, the system (2.4) is strictly hyperbolic at a
state q0 if the eigenvalues λp(q0, ω), p = 1, . . . ,m, are distinct.

The integral conservation law (2.5) will also be referred to as hyperbolic, if the corre-
sponding system of PDEs (2.4) is hyperbolic. Note that the matrix A(q, ω) is the Jacobian of
the flux in the direction ω. The arbitrariness of ω implies that hyperbolicity is independent
of any particular choice of coordinate directions.

The shallow water equations are hyperbolic conservation laws. As we will see, solutions
to hyperbolic conservation laws will share certain properties, and by identifying the shallow
water equations with this broader class of equations, we will be able to exploit the body of
theory and numerical methods previously developed for these mathematically challenging
systems.

2.3 Discontinuities and Weak Solutions

Although hyperbolic conservation laws were introduced as a system of PDEs (2.4) that
implied the integral system (2.5), in most applications the integral system is derived from
first principles and is the more fundamental governing system. The two are equivalent if
the solution is continuously differentiable, however, the integral system (2.5) admits non-
smooth, even discontinuous solutions for which the PDEs are not defined in the classical
sense. We seek solutions to the more fundamental integral system, which can be shown
to be equivalent to weak solutions to (2.4)—more generalized nonclassical solutions in the
sense of distributions. See, for intstance, [22] for a general treatment of distribution theory
and generalized solutions to PDEs.

2.3.1 The Rankine-Hugoniot Jump Conditions

The weak solutions that arise in physical applications are characterized by regions of smooth
variation separated by propagating jump discontinuities. We can therefore isolate weak
solutions by requiring that they satisfy the PDEs where smooth, and meet appropriate
jump conditions across discontinuities derived by the integral form. If we apply the integral
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conservation law (2.5) to a region around a jump discontinuity, it is easy to derive (e.g.
[67, 32]) the following condition:

|s|
(
q+ − q−

)
=

n∑
j=1

ŝj
(
fj(q+)− fj(q−)

)
, (2.6)

where |s| is the instantaneous speed of the propagating discontinuity, ŝ is a unit vector in the
direction of the propagation, and the superscripts denote the limiting value of the solution
on either side of the discontinuity. The condition (2.6) on discontinuous solutions is known
as the Rankine-Hugoniot jump condition. It is easy to show that (2.6) is unaffected by a
source term that is bounded in the neighborhood of the discontinuity.

For a one-dimensional system, (2.6) is simply

s [[q]] = [[f(q)]] , (2.7)

where s is the speed of the discontinuity, and [[·]] denotes the jump in the quantity across
the discontinuity.

2.3.2 Entropy Conditions

While uniqueness is guaranteed for smooth classical solutions to the hyperbolic PDEs (2.4),
uniqueness of discontinuous solutions to the integral conservation laws (2.5) is not guaran-
teed, and additional admissability conditions based on physical considerations are required
to isolate the physically relevant solution. These admissability conditions are called entropy
conditions, owing to the Euler equations of gas dynamics—a hyperbolic system for which
entropy plays this role. An entropy function ν(q) is an additional conserved quantity when
the solution is smooth, obeying another conservation law

ν(q)t + ψ(q)x = 0, (2.8)

where ψ(q) is an entropy flux—some function based on physical considerations. For the shal-
low water equations, ν(q) is the mechanical energy, ψ(q) is the energy flux, and (2.8) can be
shown to be equivalent to the shallow water PDEs (2.2). For discontinuous solutions, (2.8)
becomes an inequality based on the physical admissability considerations. For the shallow
water equations, mechanical energy must decrease in a region containing a discontinuity,
and the equality in (2.8) is replaced by an inequality, ≤, for more general solutions.

An alternative formulation of entropy conditions can be found for systems satisfying
certain mathematical properties, of which the shallow water equations belong. That formu-
lation will be more convenient for our purposes, and will be discussed further below.

2.3.3 Steepening Waves

It should be realized that the admissability of discontinuous solutions to the integral form
of hyperbolic conservation laws is not merely a mathematical technicality. The existence
of smooth initial conditions by no means implies that the solution to a hyperbolic system
will remain smooth, and depending on the form of the flux function, various smooth initial
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data leads to steepening waves—eventually leading to a shock discontinuity. Therefore, for
most applications, the existence of discontinuous solutions cannot be ignored by merely
considering smooth initial data.

2.4 Linear and Quasilinear Hyperbolic Systems

2.4.1 One-Dimensional Linear Systems

Some basic properties of solutions to hyperbolic conservation laws are elucidated by con-
sidering the simple linear homogeneous case in one dimension, where the flux f(q) = Aq
implies the system

qt +Aqx = 0. (2.9)

In order for (2.9) to be hyperbolic, the constant matrix A ∈ lRm×m must have real eigen-
values λ1, . . . , λm, and a corresponding set of linearly independent eigenvectors r1, . . . , rm.
Since A is therefore diagonalizable, (2.9) is equivalent to the diagonal system

wt + Λwx = 0, (2.10)

where w = R−1q, R is the matrix of eigenvectors, and Λ = R−1AR is the diagonal matrix
of eigenvalues. Since (2.10) is a decoupled system of m scalar advection equations, we note
that the initial profile of each characteristic variable wp, p = 1, . . . ,m, is advected at the
constant speed of the corresponding eigenvalue λp. (For a review of the solution to scalar
advection equations, see for instance [67]). The characteristic curves of (2.9) in the x–t plane
are therefore straight lines of unvarying slope, carrying the “weight” of each eigenvector at
the speed of an associated eigenvalue.

2.4.2 Quasilinear Hyperbolic Systems

In general f(q) is a nonlinear function of q, but we can write the one dimensional conserva-
tion law

qt + f(q)x = 0, (2.11)

as a quasilinear system

qt + f ′(q)qx = 0, (2.12)

where f ′(q) denotes the Jacobian matrix of the flux. Although hyperbolicity implies that
f ′(q) is diagonalizable, the eigenvalues and eigenvectors are generally functions of q. As
with linear systems, however, all solution information is carried at the local speed of the
eigenvalues of f ′(q). The characteristics associated with a particular eigenpair {λp, rp} will
be referred to as the pth characteristic family or pth characteristic field.

The conservative system (2.12) belongs to a larger class of hyperbolic systems of PDEs

qt +B(q, x)qx = 0, (2.13)
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where B(q, x) ∈ lRm×m is a nonlinear diagonalizable matrix with real eigenvalues. In
general, however, B(q, x)qx need not be a full derivative of any function, and so (2.13)
is not necessarily a conservation law. Nevertheless, many of the properties of solutions to
(2.12) and the larger class of systems (2.13), are shared. For instance, the wave-like behavior
of solutions to hyperbolic conservation laws is due to the fact that information propagates
at the finite speed of the eigenvalues. This remains true for (2.13).

2.5 Riemann Problems

We will be interested in weak solutions to one-dimensional hyperbolic conservation laws,
and hyperbolic systems generally, given a specific form of initial data that happens to be
tractable to analytical solution techniques. Consider the one-dimensional system

qt + f(q)x = 0, x ∈ lR, t > 0, (2.14a)

with piecewise constant initial conditions

q(x, 0) =

{
ql if x < 0,
qr if x > 0.

(2.14b)

The initial value problem (2.14) is known as the Riemann problem.

2.5.1 Linear Waves

If f(q) happens to be linear, we know that the initial profile of each characteristic variable wp

translates at the speed of the corresponding eigenvalue λp. This implies that the solution to
(2.14) in the linear case is a set of constant states separated bym discontinuities propagating
away from the origin at the speed of the eigenvalues. The jump (q+ − q−) across the pth

discontinuity must be proportional to the pth eigenvector, since it represents the initial
jump in the characteristic variable, wp, where q = Rw. The solution to the linear Riemann
problem can therefore be determined by decomposing the initial jump into the eigenvectors
rp of f ′(q) = A,

qr − ql =
m∑
p=1

αprp, (2.15)

and noting that each discontinuity αprp propagates at the speed λp. We will denote the
discontinuity Wp = αprp, and refer to it as the pth−wave. Note that each wave satisfies the
Rankine-Hugoniot conditions (2.7) for discontinuities since f(q) = Aq.

2.5.2 Nonlinear Waves

For the nonlinear case, the solution also consists of a set of transitions in each characteristic
family that connect the states ql and qr. These transitions separate regions where the
solution is constant, however, the transitions are not necessarily discontinuous. Three types
of transitions can be distinguished: rarefactions, shock waves, and contact discontinuities.
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A rarefaction is a type of smooth differentiable transitions in a particular characteristic
field, that if parameterized, is an integral curve of the associated eigenvector in phase space.
That is, the solution satisfies q(x, t) = q̃(ξ(x, t)) throughout the wave, where

q̃′(ξ) = α(ξ)rp(ξ), (2.16)

for some function ξ(x, t), where α(ξ) is some scalar depending on the particular function
ξ. A solution with such properties is known as a simple wave, of which, a rarefaction is
one type arising in Riemann problems. Shock waves and contact discontinuities are both
discontinuities satisfying (2.7). In order to distinguish the two, the following definitions are
required:

Definition 2.2. The pth characteristic field is called genuinely nonlinear if

∇λp(q) · rp(q) 6= 0, ∀q ∈ Ω. (2.17a)

Alternatively, the pth characteristic field is called linearly degenerate if

∇λp(q) · rp(q) ≡ 0, ∀q ∈ Ω. (2.17b)

Shock waves are discontinuities in a genuinely nonlinear field. A contact discontinuity
conversely, is a jump in a linearly degenerate field. If a field is linearly degenerate, the eigen-
value would be unchanged through any simple wave satisfying (2.16), because of (2.17b).
The field is similar to a linear field then, in the sense that the characteristic curves have a
constant slope through any transition that remains proportional to the pth eigenvector. A
contact discontinuity in the pth field may be thought of as a jump from one point to another
on an integral curve of rp. In this case, s = λp(q+) = λp(q−), where s is the speed of the
discontinuity. For each of the three types of waves, the characteristics of the corresponding
field are shown in Figure 2.2.

It can be shown (e.g. [32]) that the Riemann problem (2.14) has a unique entropy
satisfying weak solution if all of the m characteristic fields are either genuinely nonlinear or
linearly degenerate, provided that |qr− ql| is sufficiently small. Furthermore, the solution is
a similarity solution depending only on (x/t), where (m+ 1) constant states are separated
by waves—shock waves, rarefactions or contact discontinuities. Solutions to a linear and
nonlinear Riemann problem with m = 2 are depicted in Figure 2.3.

2.5.3 Entropy

For strictly hyperbolic conservation laws where each field is genuinely nonlinear, an alterna-
tive formulation of the entropy condition holds that does not explicitly require an entropy
function (2.8). This is known as the Lax entropy condition, and the following definition is
borrowed from [67] .

Definition 2.3. Lax entropy condition. A discontinuity separating states ql and qr, prop-
agating at speed s, satisfies the Lax entropy condition if there is an index p such that

λp(ql) > s > λp(qr), (2.18a)
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(a) (b) (c)
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t
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t

x = 0

t

Figure 2.2: Characteristics of the three wave-types in Riemann solutions are shown in the x–
t plane. (a) A rarefaction in the pth field: the p-characteristics emanating from x = 0 move
at a speed x/t. If the solution is parameterized through the rarefaction, it smoothly varies
along an integral curve of rp. (b) A shock in the pth field: the p-characteristic impinge on the
shock according to the Lax entropy condition (Definition 2.3). (c) A contact discontinuity
in the pth field: the discontinuity and p-characteristics on either side of the discontinuity all
propagate at the same speed.

so that p-characteristics are impinging on the discontinuity, while the other characteristics
are crossing the discontinuity,

λj(ql) < s and λj(qr) < s for j < p, (2.18b)

λj(ql) > s and λj(qr) > s for j > p, (2.18c)

where, in this definition, the eigenvalues are ordered so that λ1 < λ2 < · · · < λm in each
state.

2.5.4 The Shallow Water Riemann Problem and Characteristic Structure

For the homogeneous shallow water equations in one dimension (2.3), we have

q =
[
h
hu

]
, f(q) =

[
hu

hu2 + 1
2gh

2

]
. (2.19)

(The flux and the following quantities derived from it will frequently be denoted as functions
of the conserved variable q, but their formulas will be written in terms of the more familiar
variables, h and u.) The Jacobian matrix (differentiated with respect to q) for the flux is

f ′(q) =
[

0 1
−u2 + gh 2u

]
, (2.20)

which has eigenvalues

λ1(q) = u−
√
gh, λ2(q) = u+

√
gh, (2.21)
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(a) (b)

t

ql qrq∗

W1
= α1r1 W2

= α2r2

λ1 λ2

x = 0

s

qrql q∗

x = 0

t

λ1(q)

Figure 2.3: (a) The solution to a Riemann problem for a linear system in the x–t plane. The
solution consists of m waves—each a jump discontinuity Wp proportional to the eigenvector
rp of A, moving at the speed of the corresponding eigenvalue λp. (b) An example of a
solution to a nonlinear Riemann problem in the x–t plane showing each of the waves or
characteristic transitions. The example shows 1-characteristics for a rarefaction in the first
field, and shows a propagating discontinuity—a shock in the second field. In both (a) and
(b) regions where the solution is constant are separated by the moving waves. For m = 2,
there is a single constant middle state denoted q∗.

and corresponding eigenvectors

r1(q) =
[

1
λ1

]
, r2(q) =

[
1
λ2

]
. (2.22)

It is easy to show that both characteristic fields are genuinely nonlinear. Therefore, the
Riemann problem must consist of two waves—each wave being either a rarefaction or a
shock—separating a single constant middle state from the adjacent state, ql or qr. The
single constant middle state will be denoted q∗, and the region it occupies in the x–t plane
will occasionally be referred to as the middle region (see Figure 2.3). The unique entropy
satisfying weak solution to the Riemann problem for the shallow water equations can be
determined, though this entails nonlinear root finding. This will be described in more detail
in Chapter 4 (see also [64, 101]). Several concepts that help elucidate this process will be
briefly introduced below.

It is possible to show that an integral curve in the phase plane of a genuinely nonlinear
field corresponds to a constant contour of a function of q (e.g. [64, 32]). These functions
are called Riemann invariants since the value of the function is invariant along an integral
curve. For the shallow water equations, the Riemann invariant of the first and second field
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are

w1(q) = u+ 2
√
gh, (2.23a)

w2(q) = u− 2
√
gh. (2.23b)

If a rarefaction connects the left state to the middle state, then w1(ql) = w1(q∗), and for a
right state connected through a rarefaction, w2(qr) = w2(q∗).

It turns out that shocks can also be represented as smooth curves in phase space that
connect two states. Recall that a discontinuous shock must satisfy the Rankine-Hugoniot
jump conditions (2.7). If we consider the state on one side of the shock as a given, these
conditions comprise m equations in (m+ 1) variables—the m unknown state variables plus
the speed of the shock s. It is therefore potentially possible to eliminate s and relate each
state variable through a single parameter. The corresponding curve in phase space repre-
sents states that may be connected through a shock, and this curve, or the set of states on
it, is known as a Hugoniot locus. In practice, multiple solutions for such parameterizations
appear. For the shallow water equations, two such curves appear at a given point in phase
space yet it is possible to identify each curve with a shock in one of the respective charac-
teristic families. If we parameterize a curve by the depth h, then the Hugoniot loci for each
family as a function of the velocity are

u(h) = ul − (h− hl)

√
g

2

(
1
h

+
1
hl

)
, (2.24a)

u(h) = ur + (h− hr)

√
g

2

(
1
h

+
1
hr

)
. (2.24b)

The curve defined by (2.24a) represents states that may be connected to ql through a shock
in the first family, or a 1-shock, and (2.24b) represents states that may be connected to qr
through a 2-shock. See, for example, [67] for details on determining (2.24).

If we know the type of wave that exists in each family, the middle state q∗ is determined
by the intersection of the appropriate curve in each respective family. This is explained in
more detail in Chapter 4. Note that this is fundamentally the same as for a linear Riemann
problem with m = 2, yet, in that case the curves are the eigenvectors in phase space.
Figure 2.4 shows integral curves and Hugoniot loci for the shallow water equations.

2.5.5 Higher-Dimensional Normal Riemann Problems

Although we will only consider the Riemann problem in one dimension, it is possible to solve
one-dimensional Riemann problems of higher dimensional systems. This problem naturally
arises if one considers a higher-dimensional system with initial conditions that only vary in
one direction. For instance, for the two-dimensional homogeneous shallow water equations,
which we will write in the general form

qt + f(q)x + g(q)y = 0, (2.25)
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Figure 2.4: (a) Integral curves of the shallow water equations: each curve is tangent to
one of the eigenvectors at each point in the phase plane and corresponds to a constant of
a Riemann invariant wp(q). (b) Hugoniot loci of the shallow water equations: each curve
represents states that can be connected through a shock in the 1st or 2nd family.

we consider the Riemann problem (2.14), with

q =

 hhu
hv

 , f(q) =

 hu
hu2 + 1

2gh
2

hvu

 . (2.26)

Since now m = 3, we expect the Riemann solution to contain an additional wave. The
eigenvalues of f ′(q) are

λ1(q) = u−
√
gh, λ2(q) = u, λ3(q) = u+

√
gh, (2.27)

and corresponding eigenvectors

r1(q) =

 1
λ1

v

 , r2(q) =

0
0
1

 , r3(q) =

 1
λ3

v

 . (2.28)

Considering this eigenstructure, it is apparent that the solution to the Riemann problem for
the first two variables, h and hu, is identical to that for the one-dimensional system. The new
second field is linearly degenerate, and a contact discontinuity, moving at the intermediate
speed of u∗, separates the fluid that was initially in contact at x = 0. On either side of
the discontinuity the initial transverse velocities remain. Therefore, the transverse velocity
can be thought of as a passive tracer that has no effect on the dynamics of the Riemann
solution. For more details see [67] . The Riemann solution in the x–t plane is depicted in
Figure 2.5.
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Figure 2.5: A solution to a one-dimensional normal Riemann problem of the two-dimensional
shallow water equations. The example shown has 3 waves—a 1-rarefaction and a 3-shock,
and the ubiquitous contact discontinuity in the 2nd field, separating the fluid that was
initially in contact. Only v varies across the contact discontinuity: h∗ and hu∗ are identical
to the solution for the one-dimensional system. The speed of the propagating waves are
shown above them.

2.6 Balance Laws and Source Terms

For most of this chapter we have neglected source terms, such as the one due to variable
bathymetry for the shallow water equations. In general it is not possible to solve a Riemann
problem exactly when it includes a source term. However, the characteristic structure of
a hyperbolic conservation law due to the eigenstructure of the flux Jacobian is unchanged
by the existence of a source term. The complication occurs since the solution information
carried on a characteristic is literally changed by the source term.

If we consider a linear conservation law with a source term

qt +Aqx = ψ, (2.29)

we can still decouple the system into the characteristic variables w = R−1q, which leads to
the following system of decoupled scalar advection equations with source terms:

wt + Λwx = R−1ψ. (2.30)

The characteristics are straight lines in the x–t plane as before, carrying the weight wp of
the pth eigenvector at the constant speed of the eigenvalue λp. Along a characteristic curve,
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X(t) = x0 + λpt, each component obeys the ODE

d

dt
(wp(X(t), t)) = (R−1ψ)p, (2.31)

suggesting that the decomposed source term is carried on characteristics as well. For in-
stance, if the source term ψ happens to be proportional to an eigenvector rp, then it affects
only the wp characteristic variable.

For a nonlinear system, the effect of the source term is considerably more complex since
the eigenvalues and eigenvectors are functions of the solution. The solution to a Riemann
problem with a source term would not, in general, be a similarity solution—a function of
(x/t) only—since the characteristics can curve with the changing eigenvalues. Similarly, if
the source term is bounded, the instantaneous speed of a shock still obeys the Rankine-
Hugoniot conditions, however, the value of the solution on either side of a shock can change
due to the source term, curving the shock in the x–t plane.

An alternative view of the effect of a source term is provided by considering a concen-
trated point source. Suppose that the source term acts at a single point, ψ(q, x) = Ψδ(x),
where δ(x) is the delta function defined by the functional

f(0) =
∫
f(x)δ(x) dx. (2.32)

By applying conservation to a vanishingly small neighborhood around x = 0, it is easy to
show (e.g. [67] ) that the flux must satisfy

f(q(0+, t))− f(q(0−, t)) = Ψ. (2.33)

Away from the concentrated source the conservation law is essentially homogeneous, since
ψ(q, x) = 0. The solution to a Riemann problem with a source term at the initial discon-
tinuity is therefore a similarity solution. Like the homogeneous conservation law, a set of
waves propagate away from the interface into regions with no source term, yet, a contact
discontinuity remains at x = 0 where the flux obeys (2.33). This view will help elucidate
numerical methods where the source term is idealized as a point source ψ(q, x) = Ψ∆xδ(x),
where ∆x is some interval that the point source “acts for.” That is, Ψ ≈ ψ(q(0, t), 0) so
that

∫ x2

x1
ψ(q, x) dx ≈ Ψ∆x, where ∆x = (xr − xl).



19

Chapter 3

FINITE VOLUME METHODS AND WAVE PROPAGATION
ALGORITHMS

This chapter gives an overview of a class of numerical methods developed for hyperbolic
conservation laws (2.4). Originally, these methods were developed largely in the context
of solving the Euler equations of compressible gas dynamics, however, they are generally
applicable to other systems such as the shallow water equations. Additionally, we will
consider wave propagation algorithms—finite volume methods that are applicable to more
general hyperbolic systems (2.13). Ultimately, as will be described in this and later chapters,
the more general wave propagation algorithms will be used to solve the shallow water
equations. This chapter describes the basic methods—modifications specific to tsunami
modeling will be taken up in later chapters.

3.1 Finite Volume Methods for Conservation Laws

For numerically solving systems that obey integral conservation laws, finite volume methods
provide a natural intuitive approach. In this approach, the numerical solution can be
viewed as a piecewise constant function in space rather than a set of values at discrete
points. The spatial domain is divided into a set of grid cells where the numerical solution
has a given value at each time step. In one dimension, the grid cells are simply intervals
Ci = [xi−1/2, xi+1/2] of length ∆x, around the point xi = x0+i∆x, where xi±1/2 = xi± 1

2∆x,
i ∈ Zc ⊆ Z. (For simplicity we will assume that the intervals are all of equal length
∆x, however, this is not strictly necessary.) The numerical solution Qni ∈ lRm is then an
approximation to the average value of the true solution in the grid cell

Qni ≈
1

∆x

∫
Ci

q(x, tn) dx. (3.1)

(For analysis of smooth solutions, note that Qni ≈ q(xi, tn).) If we wish to approximate a
homogeneous conservation law, the numerical solution can be updated from time tn to tn+1,
with ∆t = tn+1 − tn, by the explicit flux-differencing scheme

Qn+1
i = Qni −

∆t
∆x

[
Fni+1/2 − Fni−1/2

]
, (3.2)

where Fni±1/2 are the numerical fluxes—approximations to the fluxes at the grid cell bound-
aries. Note that (3.2) is a direct approximation to the integral conservation law applied to
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the domain Ci, which integrated from time tn to tn+1 and divided by ∆x gives

1
∆x

∫
Ci

q(x, tn+1) dx =
1

∆x

∫
Ci

q(x, tn) dx

− 1
∆x

[∫ tn+1

tn
f(q(xi+1/2, t)) dt−

∫ tn+1

tn
f(q(xi−1/2, t)) dt

]
. (3.3)

Considering (3.1) and (3.3), note that the numerical fluxes in (3.2) should be approximations
to the time averaged fluxes at the cell boundaries:

Fni±1/2 ≈
1

∆t

∫ tn+1

tn
f(q(xi±1/2, t)) dt. (3.4)

Because (3.3) is exact, the accuracy and stability of the numerical method (3.2) is deter-
mined by the approximation (3.4). Developing an explicit flux differencing scheme of the
form (3.2), therefore, entails developing consistent and stable numerical fluxes.

Note that (3.2) is a conservative numerical scheme regardless of the form of Fni±1/2.
That is, the numerical solution is conserved on the computing domain (aside from any
contribution from the boundaries), since the same Fni−1/2 is used to update Qni−1 and Qni .
This implies that whatever quantity enters one grid cell must leave another, as with the
true conservation law. It turns out that numerical conservation is a necessary condition for
converging to the correct discontinuous solutions to conservation laws [47].

3.2 Godunov-Type Methods

A class of methods that provide a stable and consistent approximation to the numerical
fluxes (3.4), are the Godunov-type methods. The original Godunov method [33], is a first-
order upwind-type scheme, where Riemann problems are solved at each grid cell interface
before each time step to determine the numerical flux for that time step. That is, at time
tn, ∀i ∈ Zc, we solve the Riemann problem (2.14), with data ql = Qni−1 and qr = Qni . If we
denote the similarity solution to the Riemann problem, described in the previous chapter,
as q̃(x/t, ql, qr), then our numerical flux Fni−1/2 becomes f(q̃(0, Qni−1, Q

n
i ))—the actual flux

function evaluated with the solution to the Riemann problem at x = 0. At first glance,
solving the Riemann problem seems like an overly involved procedure for estimating the
flux (3.4), however, it turns out that it provides several essential properties. First, the
explicit time update in (3.2) requires proper upwinding of the flux estimate for stability.
For a first order method, the Riemann solution provides the proper upwinding, even when
there are m characteristic curves. Second, the Godunov method converges to entropy sat-
isfying discontinous weak solutions, provided that the Riemann solutions satisfy entropy
conditions. The standard Godunov method is only first order accurate but standard sec-
ond order methods, based on the validity of Taylor series, break down near discontinuities.
If fact, it can be shown that no linear second order method can converge to discontinu-
ous solutions in general (where linearity is in the sense of the abstract updating function
Qn+1
i = L(∆x,∆t, Qn1 , . . . , Q

n
i , . . . )). See, for example, [32, 67, 100] for a full discussion of
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these topics. Later in this chapter we will discuss the extension of the standard Godunov
method to higher order methods for smooth solutions that maintain the ability to converge
to discontinuities.

In practice, it is often sufficient to approximate the solution to the Riemann problem,
and various approximate Riemann solvers have been developed specifically for Godunov-
type methods. Some standard approaches will be discussed in the next section.

3.3 Approximate Riemann Solvers

Approximate Riemann solvers are typically based on using a solution to some related linear
problem at each grid cell interface that approximates the true nonlinear Riemann solution.
Recall that a solution to a linear Riemann problem consists of a set of discontinuities or
waves propagating at speeds equal to the eigenvalues of the constant Jacobian. All of the
approximate solvers discussed in this section will be of that same basic form. That is, the
approximate solutions consist of a set ofMw waves,Wp ∈ lRm, propagating at corresponding
speeds sp, p = 1, . . . ,Mw, where

qr − ql =
Mw∑
p=1

Wp. (3.5)

The new notation Mw is used for the number of waves, and sp for the speeds, since, for an
approximate solution, it is not strictly necessary that Mw = m, nor that sp correspond to
actual eigenvalues λp of some Jacobian.

One approach for creating an approximating linear solution is to use a local lineariza-
tion of the Jacobian, where f ′(q) is replaced with a constant matrix A(ql, qr). The resulting
linear Riemann problem is then solved to determine the numerical flux. In order to main-
tain hyperbolicity, A(ql, qr) must have real eigenvalues and a full set of linear independent
eigenvectors. Additionally, it must be consistent in the following sense: A(ql, qr) → f ′(q),
as ql, qr → q.

If the approximate solution is conservative, that is, if it obeys the conservation law when
applied to a region surrounding the Riemann solution, it must satisfy

f(qr)− f(ql) =
Mw∑
p=1

spWp. (3.6)

The right hand side represents the time rate of change of the solution due to the moving
jump discontinuities Wp, and the left hand side represents the flux evaluated at the far sides
of the changing region. Not all linearizations will satisfy (3.6).

3.3.1 The Roe Solver

A particular linearization that is endowed with several nice properties is the Roe lineariza-
tion, or the Roe solver. This was originally developed for the Euler equations by Roe [82],
but it has since been extended to the shallow water equations. The Roe solver is based
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on evaluating the flux Jacobian f ′(q) with a special average of qr and ql in the Riemann
problem. If we denote this matrix Â, we have

Â(ql, qr) = f ′(q̂(ql, qr)), (3.7)

where q̂(ql, qr) denotes the special Roe average of ql and qr. Because the Roe matrix is
determined by evaluating the true flux Jacobian with a valid state q̂, all of the essential
hyperbolic eigenstructure is maintained. The essential and unique property of the average
q̂ is that the resulting linear Riemann solution is conservative with respect to the original
flux. That is, the following property is satisfied:

f(qr)− f(ql) = Â(ql, qr) (qr − ql) . (3.8)

By considering a decomposition of (qr−ql) into the eigenvectors of Â(ql, qr), it is easy to see
that if (3.8) is satisfied, the solution to a linear Riemann problem with Jacobian Â satisfies
the conservation condition (3.6). The actual Roe average q̂(qr, ql) depends on the particular
system of equations. For the shallow water equations,

ĥ(ql, qr) =
1
2

(hl + hr) , (3.9a)

û(ql, qr) =
ul
√
hl + ur

√
hr√

hl +
√
hr

, (3.9b)

where, as usual, the formulas have been written in terms of the more familiar variables h
and u rather than q. Roe averages and the functions evaluated with them will be denoted
with a hat throughout this thesis.

A beneficial feature of the Roe solver is the approximate solution that it produces in the
neighborhood of a shock. Suppose that the true solution to the Riemann problem is a single
shock wave propagating at speed s satisfying the Rankine-Hugoniot conditions. The Roe
solver produces the exact solution in this case, following from its conservative properties:

s(qr − ql) = f(qr)− f(ql) = Â(ql, qr)(qr − ql). (3.10)

The first equality in (3.10) is the Rankine-Hugoniot condition governing the true solution,
and the second equality follows from (3.8). Recall that the solution to a linear problem
can be determined by decomposing the initial jump (qr − ql) into the eigenvectors of the
Jacobian and translating the resulting waves at the speed of the corresponding eigenvalues.
Since (3.10) implies that (qr − ql) is an eigenvector of Â(ql, qr) with eigenvalue s, clearly
the Roe solver produces the exact solution in this case. This can also be interpreted in the
following way: if the data ql and qr lie on the same Hugoniot locus of the pth characteristic
family, the vector (qr − ql) is the eigenvector r̂p of Â(ql, qr).

3.3.2 The HLL and HLLE solvers

The HLL solver, introduced by Harten, Lax and Van Leer [42], provides a simple con-
servative alternative to the Roe linearization. The HLL solver does not use an explicit
linearization of the Jacobian, but rather constructs a conservative solution by requiring
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that two discontinuities propagate at predetermined speeds, s1 and s2, s2 > s1, where the
speeds are based somehow on ql and qr. (The solver actually uses two speeds even when
the system has m > 2 equations.) The middle state q∗ between the two discontinuities is
then determined by applying the conservation law to the region

s1(q∗ − ql) + s2(qr − q∗) = f(qr)− f(ql), (3.11a)

⇒q∗ =
1

s1 − s2
(
s1ql − s2qr + f(qr)− f(ql)

)
. (3.11b)

The properties of the HLL solver are strongly tied to the pre-chosen speeds s1 and s2. For
the shallow water equations, where m = 2, if s1 and s2 correspond to the Roe eigenvalues—
the eigenvalues of f ′(q) evaluated at q̂—then the HLL solver is identical to the Roe solver,
which follows from conservation.

The HLLE solver is an HLL type of solver that arises when a particular choice of speeds
are used:

s1 = min
p

min(λp(ql), λ̂p(ql, qr)), (3.12a)

s2 = max
p

max(λp(qr), λ̂p(ql, qr)), (3.12b)

where λ̂(ql, qr)p are the Roe eigenvalues, or the Roe speeds. The speeds (3.12) were advocated
by Einfeldt [20], and we will refer to them as the Einfeldt speeds, and denote them s1E and
s2E . For the shallow water equations, it is easy to show that (3.13) is simply

s1E = min(λ1(ql), λ̂1(ql, qr)), (3.13a)

s2E = max(λ2(qr), λ̂2(ql, qr)). (3.13b)

The Einfeldt speeds endow the approximate solver for the shallow water equations with
some special properties that will be discussed further below and in Section 3.5. See also
[20, 21].

3.3.3 Entropy Fixes

As mentioned previously, the Godunov-type methods converge to the correct entropy satis-
fying discontinuous solutions, provided that the Riemann solutions are the correct entropy
satisfying weak solutions. Since approximate Riemann solvers are discontinuous, even when
the true solution is a smooth rarefaction, they can generate convergence to discontinuous
entropy violating solutions. This well known problem occurs when the true solution to a
Riemann problem contains a transonic rarefaction—a rarefaction in the pth field where λp

passes through zero. In this case the true solution has a wave spreading out in both direc-
tions. Since an approximate solver uses a single discontinuity to represent this rarefaction,
it allows convergence to the pathological stationary expansion shock—a stationary discon-
tinuity at a cell interface that violates entropy. The Roe solver is prone to this problem,
however, numerous entropy fixes have been developed for the Roe solver (e.g. [19, 40, 41]).

The HLLE method provides a natural fix to this problem, since, in the case of a transonic
rarefaction, the speeds (3.12) bound the true speeds of the spreading rarefaction.
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3.4 Wave Propagation Algorithms

The standard Godunov-methods are flux differencing methods (3.2), where exact or approx-
imate solvers are used to determine a numerical flux (3.4), sometimes called an interface
flux. These methods are conservative regardless of the form of the approximate Riemann
solution. Alternatively, the structure of an approximate Riemann solution can be used di-
rectly to update the numerical solution. That is, the effect of moving waves Wp ∈ lRm

can be directly re-averaged onto the computational grid cells. This is the idea behind the
wave propagation algorithms, such as those developed by LeVeque [65, 67]. For instance,
an approximate Riemann solution at xi−1/2 with data ql = Qi−1 and qr = Qi, produces a
set of waves:

Qi −Qi−1 =
Mw∑
p=1

Wp
i−1/2, (3.14)

and a corresponding set of speeds spi−1/2, p = 1, . . . ,Mw. If these waves are re-averaged
onto the adjacent grid cells, they produce a change of the average value to the right

Qn+1
i −Qni = −∆t

∆x

∑
n
p: sp

i−1/2
>0
o s

p
i−1/2W

p
i−1/2, (3.15)

and to the left

Qn+1
i−1 −Qni−1 = −∆t

∆x

∑
n
p: sp

i−1/2
<0
o s

p
i−1/2W

p
i−1/2. (3.16)

The net effect of the two Riemann problems on the boundaries of Ci is then

Qn+1
i = Qni −

∆t
∆x

 ∑
n
p: sp

i−1/2
>0
o s

p
i−1/2W

p
i−1/2 +

∑
n
p: sp

i+1/2
<0
o s

p
i+1/2W

p
i+1/2

 . (3.17)

Adopting the notation from [67] , we will denote the sum in (3.15) as A+∆Qi−1/2 and the
sum in (3.16) as A−∆Qi−1/2, and refer to them as fluctuations. The update (3.17) can then
be written as

Qn+1
i = Qni −

∆t
∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
. (3.18)

The wave propagation method is more generally applicable than the flux differencing
approach (3.2), since (3.18) can be applied to non-conservative hyperbolic systems of the
form (2.13). In fact, (3.18) is a generally valid approach even when the Riemann solution has
a discontinuity at x = 0, or in the case of the numerical update, at a cell interface. If (3.18)
is used for a conservation law, the following property is required to maintain conservation

f(Qi)− f(Qi−1) = A−∆Qi−1/2 +A+∆Qi−1/2. (3.19)
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Note that if approximate solvers of the form described in Section 3.3 are used, (3.19) is
equivalent to the requirement

f(Qi)− f(Qi−1) =
Mw∑
p=1

spi−1/2W
p
i−1/2, (3.20)

which is equivalent to (3.6)—the condition that an approximate solution obeys conservation.

3.4.1 The f-wave Method

Decomposing the solution at a grid cell interface (3.14), and then requiring (3.20), suggests a
simpler approach where the jump in the flux is simply decomposed into some set of vectors,

f(Qi)− f(Qi−1) =
Mw∑
p=1

Zpi−1/2, (3.21)

where Zpi−1/2 ∈ lRm is called an f-wave, since it carries the same dimension as the flux, like
spi−1/2W

p
i−1/2 (see [6]). As before, some set of speeds spi−1/2, p = 1, . . . ,Mw are associated

with the waves. The fluctuations can then be defined by

A−∆Qi−1/2 =
∑

n
p: sp

i−1/2
<0
oZ

p
i−1/2, (3.22a)

A+∆Qi−1/2 =
∑

n
p: sp

i−1/2
>0
oZ

p
i−1/2. (3.22b)

If all of the speeds are nonzero, decomposing the flux into any set of vectors will maintain
conservation since, by (3.21) and (3.22), (3.19) is automatically satisfied. However, for con-
sistency, as with the solution the flux should typically be decomposed into the eigenvectors
of the Jacobian. This follows from the fact that through any rarefaction of the pth family,
f(q)x = f ′(q)qx = λprp. Additionally, across a shock in the pth family, [[f(q)]] = s [[q]].
Note that if the Roe eigenvectors and speeds are used, the f -wave approach is the same as
the standard Roe solver, and each flux wave is exactly Zpi−1/2 = λ̂p(Qi−1, Qi)Wp

i−1/2, where
the waves Wp

i−1/2 are defined by a Roe decomposition of (Qi−Qi−1). This follows from the
conservative property of the Roe solver (3.8).

In general, in order to ensure conservation, special measures have to be taken if one of
the speeds spi−1/2 happens to be zero, such as splitting the wave into two waves moving in
either direction. However, this is not the case if Zpi−1/2 is also zero. If a flux wave Zpi−1/2

is nonzero, and it is stationary, spi−1/2 = 0, this represents a jump in the flux that does not
change the solution. For certain systems, such as systems with a source term, this may be
desired and in fact we will exploit this property in Chapter 6.
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3.4.2 The CFL Condition

Recall that the CFL condition is a necessary condition for stability, and it requires that
the numerical domain of dependence include the true domain of dependence. Since the
wave propagation method uses the adjacent values to any grid cell to determine an explicit
numerical update, it is required that the time step satisfy

maxp(|spi−1/2|)∆t
∆x

≤ 1, (3.23)

∀i ∈ Zc. Recall that the left hand side of (3.23) is the Courant number.

3.5 Depth Positivity and Vacuum States

For some applications, certain properties might be desired in the approximate Riemann
solution that are guaranteed in a true weak solution to the Riemann problem, such as
positivity of one of the conserved variables. For the shallow water equations, the depth
satisfies h ≥ 0, and it might be desired that approximate Riemann solution always reflect
this. However, the appearance of nonphysical negative values for the depth in the shallow
water equations as well as the density in the Euler equations of gas dynamics, is a well
known problem. This problem is sometimes called the vacuum state problem, named from
the latter application.

3.5.1 The Roe Solver

Unfortunately the Roe solver fails to maintain positivity of the depth h for the shallow water
equations. (This same difficulty is encountered for the density in the Euler equations.) Since
the Roe decomposition for the shallow water equations

qr − ql =
2∑
p=1

αpr̂p =
2∑
p=1

Wp (3.24)

corresponds to two discontinuities on either side of a constant middle state q∗, the single
middle state depth

h∗ = hl + α1(r̂1)1 = hr − α2(r̂2)1 (3.25)

corresponds to the intersection of the vectors r̂1 and r̂2 in phase space. In general, this is
not necessarilly positive—particularly if the initial data induces large rarefactions, such as
when hur >> hul. This type of Riemann problem will be described in detail in Chapter 4.
Figure 3.1 compares the approximate middle states for the Roe and HLLE solver—the
intersection of constant vectors—with the true middle state—the intersection of the two
integral curves.
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Figure 3.1: Comparison of the Roe and HLLE solvers for a Riemann problem with two strong
rarefactions. (a) The true middle-state solution is the intersection of the two integral curves
connected to the left and right states, ql and qr. The intersection of the Roe eigenvectors
r̂1 and r̂2 occurs at q̂∗, which corresponds to a negative depth. In this case of symmetrical
rarefactions, the HLLE solution can be shown as the intersection of two vectors tangent to
the integral curves at ql and qr. The intersection at q∗E corresponds to the positive depth
h∗E . (b) The depth of the Riemann solutions at some time t > 0. The true solution has two
symmetrical rarefactions spreading outward, and the two approximate solutions have jump
discontinuities of different strengths moving at different speeds. All of the solutions are
conservative implying that the total mass of all three solutions is the same. Since the wave
speeds of the Roe solution are much slower, a negative depth results in order to conserve
mass.

3.5.2 The HLLE Method

One of Einfeldt’s motivations for suggesting the speeds (3.12), was that the net positivity of
density is then maintained for the Euler equations [21]. The HLLE method also guarantees
positivity of h∗ in the shallow water equations by using the Einfeldt speeds. This is easily
proved, and as in [29] it will be stated as a theorem for later reference.

Theorem 3.1. The middle state Einfeldt depth h∗E

h∗E =
(hu)l − (hu)r + s2Ehr − s1Ehl

s2E − s1E
, (3.26)

defined by using (3.11b) and (3.13) for the shallow water equations, is always non-negative.

Proof. Since the Roe speeds are such that λ̂2(ql, qr) > λ̂1(ql, qr) for any states ql and qr, the
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denominator of (3.26) is always positive. For the numerator,

h∗E = (hu)l − (hu)r + s2Ehr − s1Ehl

≥ hlul − hrur + (ur +
√
ghr)hr − (ul −

√
ghl)hl

= hr
√
ghr + hl

√
ghl

≥ 0. (3.27)

Theorem 3.1 is intuitively clear if one considers the nature of the Einfeldt speeds. These
speeds are intended to bound the maximum and minimum speeds of waves arising out of the
true Riemann solution. If the true Riemann solution maintains positivity of h for all (x/t),
and it is replaced by a single constant state extending beyond the lower and upper values of
(x/t) where the true solution varies—conservation ensures that the approximate solution is
also nonnegative. In fact, note from the proof of Theorem 3.1, that if the Eindeldt speeds
were replaced by speeds s̃E1,2 that bound them from below and above:

s̃E
1 ≤ s1E < s2E ≤ s̃E

2, (3.28)

then positivity would still be maintained.

3.5.3 The f-wave Method

In the f -wave approach, the flux, not the solution is not decomposed into waves. A middle
state solution q∗ is therefore not explicitly constructed since the jumps across the waves
Zp do not correspond directly to jumps in q. However, for the shallow water equations,
if one considers the numerical effect of the f -waves in defining the fluctuations (3.22), it
is possible to define what we will call the effective middle state depth(s). That is, in the
standard decomposition of the solution, one has

h∗ = hl + (W1)1 = hr − (W2)1. (3.29)

The fluctuations that update the solution are then constructed by multiplying the waves
Wp by the corresponding speed sp. In the f -wave approach, the fluctuations are defined
by using Zp directly and these are associated with a speed sp. Note that if we decomposed
the flux directly, and then defined the fluctuations in the standard way, using Wp = Zp/sp,
this would produce exactly the same numerical result as if Wp, representing jumps in the
solution, were determined by some other means.

Definition 3.1. Effective middle-state depths. If the fluctuations used in (3.18) are defined
by a decomposition of the (shallow water) flux according to (3.22), then the effective middle
state depths are given by

h∗l = hl +
(Z1)1

s1
, (3.30a)

h∗r = hr −
(Z2)1

s2
. (3.30b)
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More generally, given any wave-type approximate Riemann solver based on a flux decompo-
sition, if the resulting numerical update is equivalent to that from a wave-type solver based
on a solution decomposition, the middle-state depths of the latter will be referred to as the
effective middle-state depths of the former.

In general, h∗r 6= h∗l , and for the f -wave approach, one may imagine a jump in the solution
at the cell interface, even if it is not explicitly constructed. (If the Roe eigenstructure is
used, it is easy to show that h∗l = h∗r , so a jump at the cell interface is due to a deviation
from the Roe eigenstructure.) If two middle states were explicitly constructed using (3.30),
and the fluctuations were defined in the standard way, the update to the mass equation
would be identical to that of the f -wave decomposition.

Considering the positive preserving properties of the HLLE solver, it might seem that by
using some set of vectors with corresponding speeds equivalent to the Einfeldt speeds, that
positivity of the f -wave method should be maintained based on conservation. However, this
is not the case since two effective middle state depths exist. It can be shown that the sum

s2Eh
∗
r − s1Eh

∗
l , (3.31)

representing the net mass (divided by ∆t) of the Riemann solution between the two waves
would be positive for such a method. However, there is no guarantee in general that both
h∗l and h∗r are positive with the f -wave method.

3.5.4 Depth-Positive-Definite Riemann Solvers

We will summarize some of these ideas as a definition for later reference.

Definition 3.2. Depth-positive-definite Riemann Solvers. An approximate Riemann solver
for the shallow water equations with initial data hl, hr ≥ 0, that produces only nonnegative
middle states, or effective middle states as defined by Definition 3.1, will be referred to as
a depth-positive-definite Riemann solver.

It might also simply be said that the Riemann solver maintains positivity of the solution.
It should be noted that using a depth positive definite Riemann solver is not the only
requirement for maintaining a nonnegative numerical solution. However, if the first order
update (3.18) is used in one dimension, and if the Courant number is restricted to 1/2 (1/4
in two dimensions), it is sufficient. An additional fix is discussed in Section 3.9 if these
restrictions are not met.

3.6 Numerical Treatment of Source Terms

3.6.1 The Fractional Step Method

The numerical methods described so far have been based on solving a homogeneous conser-
vation law. When a source term exists, the numerical method described for homogeneous
conservation laws can be implemented unaltered, by incorporating the source term with a
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separate integration step. This is called the fractional step method, or fractional stepping.
The idea is to first solve the homogeneous conservation law

qt + f(q)x = 0, (3.32)

followed by an integration of the set of ODEs

qt = ψ(q, x) (3.33)

in each time step. The effect of alternating between these two steps incorporates the source
term. Accuracy of the individual methods can be inherited by the overall method (yet only
up to second order, see [67] ) given specific formulations of the order and size of the time
steps (see Strang [88]).

The popularity of this approach is due to the fact that it is very simple and is very
robust for many applications. The approach fails for applications where there is a prevalent
steady state that exists due to a nontrivial balance f(q)x ≈ ψ. In this case it is well known
(see, for instance, [66, 6]) that fractional stepping fails to preserve the steady state, or
resolve small deviations to it. This is quite intuitive, since if f(q)x ≈ ψ(q, x), and both
terms are large, the distinct steps for (3.32) and (3.33) must nearly and precisely undo one
another, while resolving the small deviation. This situation is precisely what occurs with
the shallow water equations, where the “lake at rest” steady state over variable bathymetry
is due to a nontrivial balance 1

2g(h
2)x = −ghbx. This situation is exacerbated for tsunami

modeling, where the tsunami is actually a tiny, nearly infinitesimal deviation, considering
the background steady state. This will be discussed in more detail in Chapter 5.

3.6.2 An f-wave Approach to Source Terms

The wave propagation methodology of LeVeque uses the waves arising from a Riemann
solver to directly update the solution. This same methodology can be applied to source
terms as well; rather than treating source and flux terms separately, the effect of the source
term can be added directly to the updating waves in the fluctuations A±∆Q. This is the
approach suggested by Bale et al in [6]. This is accomplished, and is consistent with the
original conservation law, if the source term is subtracted from the flux difference before
performing the decomposition

f(Qi)− f(Qi−1)−∆xΨi−1/2 =
Mw∑
p=1

Zpi−1/2, (3.34)

where Ψi−1/2∆x is some approximation to
∫ xi+1

xi−1
ψ(q, x) dx. The fluctuations at grid cell

interfaces are then defined in the standard way (3.22), and the standard updating formula
(3.18) can be used. If the source term is interpreted as a point source at the grid cell
interface, ψ(q, x) = Ψi−1/2∆xδ(x − xi−1/2), equation (3.34) amounts to subtracting the
jump in the flux at the grid cell interface

f(q(x+
i−1/2, t))− f(q(x−i−1/2, t)) = ∆xΨi−1/2 (3.35)
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from the flux difference before decomposing into the propagating waves. If the Riemann
problem arises near a steady state where f(q)x ≈ ψ(q, x), then

f(Qi)− f(Qi−1)
∆x

≈ Ψi−1/2, (3.36)

and nonzero waves in the decomposition (3.34) will be due to the deviation from the steady
state.

Equation (3.34) is said to upwind the source term, in the sense that the source term is
decomposed into the eigenvectors of the Jacobian and propagated at the wave speeds. This
approximates the true solution, as was pointed out for linear problems in Section 2.6. In
fact, this form of upwinding has been commonly advocated (e.g. [83, 52]).

3.7 High Resolution Methods

The Godunov-type methods, as described so far, converge to discontinuous entropy satis-
fying weak solutions, however, they are only first-order accurate and numerically diffusive.
Various second-order methods, such as the Lax-Wendroff method, can be derived based on
Taylor series expansions of the PDEs—requiring smoothness of the solution. These methods
not only fail to be second-order accurate near discontinuities, they exhibit large spurious
oscillations near such features and are overly dispersive in general near steep gradients—
problematic since hyperbolic equations typically exhibit steepening. This problem is circum-
vented by the high-resolution methods—nonlinear methods that use standard second-order
formulas where the solution is smooth yet resort to the first-order Godunov methods near
shocks or steep gradients. This is accomplished by adding second-order corrections to the
first-order method, together with the use of a limiter function φ that measures the local
smoothness of the solution.

The wave propagation algorithm (3.18) can be extended to a second-order accurate
method

Qn+1
i = Qni −

∆t
∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
+

∆t
∆x

(F̃i+1/2 + F̃i−1/2), (3.37)

where F̃i±1/2 are limited second-order correction fluxes. These corrections can be defined
in terms of the first-order waves,

F̃i−1/2 =
1
2

Mw∑
p=1

|spi−1/2|
(

1− ∆t
∆x

|spi−1/2|
)
W̃p
i−1/2, (3.38)

where W̃p
i−1/2 = φWp

i−1/2 is a limited wave. For the f -wave approach, the corresponding
correction flux must be

F̃i−1/2 =
1
2

Mw∑
p=1

sgn(spi−1/2)
(

1− ∆t
∆x

|spi−1/2|
)
Z̃pi−1/2, (3.39)

where Z̃pi−1/2 = φZpi−1/2. If the limiters are absent (or φ=1), (3.37) is an extension of the
second-order Lax-Wendroff method for systems (see [63, 67] for details). Note that in the
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case of a source term, if the f -waves are defined by (3.34), then it is the deviations from
the steady state that get limited.

Limiter functions interpret the smoothness of the solution by comparing the jump in the
solution in neighboring grid cells, and in the case of a potential shock, limit the waves in
(3.38) or (3.39). Ideally, the limiter functions should isolate when a steep gradient or shock
exists in one characteristic family and limit that corresponding wave. This is accomplished
by comparing the wave Wp

i−1/2 with Wp
I−1/2 where

I =

{
i− 1 if spi−1/2 > 0,

i+ 1 if spi−1/2 < 0.
(3.40)

Some variable θ that measures the local smoothness in the pth field at xi−1/2 is then defined.
For instance,

θpi−1/2 =
Wp
I−1/2 · W

p
i−1/2

|Wp
i−1/2|

(3.41)

is small if |Wp
i−1/2| >> |Wp

I−1/2|, or if the pth eigenvector varies significantly. A limiter
function φ(θ) is then chosen that approaches zero if θ → 0, and is otherwise bounded by a
small constant. For instance, the minmod function

φ(θ) = max(0,min(1, 0)) (3.42)

produces a method that varies between the diffusive Godunov method and the dispersive
Lax-Wendroff method. Another choice of limiter, the MC limiter

φ(θ) = max(0,min(1 + θ)/2, 2, 2θ) (3.43)

produces a method that varies between Fromm’s method (φ = 2), the Lax-Wendroff method
(φ = 1) and the first-order Godunov method (φ = 0) (see [67] ). For finite grid spacings the
MC limiter produces a more accurate method than the minmod limiter (e.g. [84]), though
both are formally second order accurate for smooth solutions.

It can be shown that the high resolution methods with the limiters (3.42) or (3.43), and
a reasonable definition of θ, produce a method that is total variation diminishing. For proof
and details see the work by Harten [40] and Sweby [89]. The total variation of a numerical
solution is defined by

TV (Qn) =
∑
i∈Zc

|Qni −Qn+1
i |. (3.44)

A total variation diminishing method, or TVD method, satisfies TV (Qni ) ≤ TV (Qi). This
in turn allows convergence to shocks without spurious oscillations.
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3.8 Extension to Multiple Dimensions

The wave propagation algorithms can be extended to higher dimensions by solving, at
each grid cell interface, one-dimensional normal Riemann problems—described in the last
section of Section 2.5. High resolution can again be accomplished by including limited flux
corrections at each interface (though the total variation diminishing property is not strictly
accomplished in more that one dimension [67] ). Additionally, for full second-order accuracy,
some transverse terms must be included that approximate cross derivatives.

We consider the two-dimensional conservations law (neglecting the source term)

qt + f(q)x + g(q)y = 0. (3.45)

The numerical solution Qnij is an approximation

Qnij ≈
1

∆x∆y

∫
Cij

q(x, y, tn) dxdy, (3.46)

where Cij =
{
[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]

}
is the rectangular grid cell. A first-order

extension to the wave propagation algorithm (3.18) can be written

Qn+1
ij = Qnij −

∆t
∆x

(A+∆Qi−1/2,j +A−∆Qi+1/2,j)

− ∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qi,j+1/2), (3.47)

where the fluctuations A±∆Qi±1/2,j are defined as in Section 3.4, using the solution to
one-dimensional normal Riemann problems at the two cell interfaces of Ci,j at x = xi±1/2,
and B±∆Qi,j±1/2 are defined in the same logical way at the other two cell interfaces.

If we include the limited correction fluxes we can write the two dimensional method as

Qn+1
ij = Qnij

− ∆t
∆x

(A+∆Qi−1/2,j +A−∆Qi+1/2,j)−
∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qi,j+1/2)

− ∆t
∆x

(
F̃i+1/2,j − F̃i−1/2,j

)
− ∆t

∆x

(
G̃i,j+1/2 − G̃i,j−1/2

)
, (3.48)

where G̃i,j±1/2 are defined in the same logical way as F̃i±1/2,j , described in Section 3.7.
The method (3.48), as so far described, is not formally second-order accurate for smooth

solutions, since a Taylor expansion shows that cross derivatives (qxy) are neglected. An
alternative way to view this same problem, is that, in multiple dimensions waves should
generally propagate at an angle to the grid, and in a single time step, the solution in all of
the cells Ci±1,j±1 effects the solution in Ci,j . This is discussed in detail in [67] . The effect
of these cross derivatives can be included in (3.48), by introducing new terms to F̃i±1/2,j

and G̃i,j−1/2. It turns out that this can be done in the context of the wave propagation
methods by splitting the right- and left-going fluctuations A±∆Qi±1/2,j into additional up-
and down-going components, and the up- and down-going components B±∆Qi,j±1/2 into
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additional right- and left-going components. This procedure requires transverse Riemann
solvers, which are similar to normal Riemann solvers, yet, the fluctuations not the solution
are decomposed into transversely propagating waves. This procedure also improves the
stability of the two-dimensional methods, allowing Courant numbers up to 1 (like the one-
dimensional methods). The details are omitted and can be found in [67] .

3.9 Preserving Positivity by Limiting

Even when depth-positive-definite Riemann solvers are used, it is possible to generate non-
physical negative depths for the shallow water equations due to the correction fluxes (second
order terms) in the wave propagation method (3.48). This can be circumvented by intro-
ducing additional limiting to these terms to maintain nonnegativity when near a dry state.
Since interface fluxes affect more than one cell, it is necessary to limit the gross outward
mass fluxes, even when the net flux does not generate a negative depth. That is, if the gross
outward mass flux from a grid cell is more than the remaining mass, those mass flux terms
must be limited even if inward mass flux at another boundary prevents a negative depth.
This is because, if limiting was based only on the net mass flux, preventing a negative
depth in one cell might actually generate a negative depth on an adjacent cell, by limiting
its inward mass flux. Therefore, only the outward mass fluxes from a given grid cell may
be considered. This is demonstrated below.

The second order method (3.48) can be written as

Qn+1
ij = Qnij

∗ − ∆t
∆x

(
F̃i+1/2,j − F̃i−1/2,j

)
− ∆t

∆x

(
G̃i,j+1/2 − G̃i,j−1/2

)
, (3.49)

where Qnij
∗ represents the solution due only to the first order update:

Qnij
∗ = Qnij

− ∆t
∆x

(A+∆Qi−1/2,j +A−∆Qi+1/2,j)−
∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qi,j+1/2). (3.50)

Now, let Pij be the total gross mass-flux out of the cell Cij , due to the first component of
the second order fluxes:

Pij = ∆y∆t
(
max(0, F̃ 1

i+1/2,j)−min(0, F̃ 1
i−1/2,j)

)
+ ∆x∆t

(
max(0, G̃1

i,j+1/2)−min(0, G̃1
i,j−1/2)

)
. (3.51)

Let Mij be the amount of mass (the first component of Qij times the area of Cij) remaining
in the cell after the first-order update:

Mi = ∆x∆y(Qnij
∗)1. (3.52)

We now define the limiter

φi,j =

{
1 if Pij = 0,
min(1,Mij/Pij) if Pij 6= 0.

(3.53)
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We then redefine the fluxes using the limiter from the cell that those fluxes take mass away
from,

F̃i−1/2,j → φi,jF̃i−1/2,j if F̃ 1
i−1/2,j < 0, (3.54a)

F̃i−1/2,j → φi−1,jF̃i−1/2,j if F̃ 1
i−1/2,j > 0, (3.54b)

G̃i,j−1/2 → φi,jG̃i,j−1/2 if G̃1
i,j−1/2 < 0, (3.54c)

G̃i,j−1/2 → φi,j−1G̃i,j−1/2 if G̃1
i,j−1/2 > 0. (3.54d)

It is easy to show that this will prevent generating negative depths from the second
order correction fluxes. When Courant numbers are allowed to approach 1, it might be
necessary to include the first order fluxes (easily determined from the fluctuations [67] ) in
this procedure, even when using a depth-positive-definite Riemann solver. However, note
that since the procedure is overly agressive (fluxes might be limited even when the net
flux does not generate a negative value), use of a depth-positive-definite Riemann solver is
nonetheless advantageous for accuracy.
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Chapter 4

THE SHALLOW WATER EQUATIONS

In this chapter we will take a closer look at the shallow water equations before addressing
tsunami modeling specifically in Chapter 5. First we will look at the shallow water assump-
tions and a derivation of the equations, followed by a closer investigation of solutions to the
Riemann problem. Finally, we will look at the source term due to variable bathymetry and
consider some properties of analytical steady state solutions.

4.1 The Shallow Water Approximation and Derivation

The shallow water equations can be derived in a number of ways, all of which are consistent
with a hydrostatic assumption about the flow—that fluid parcels are in vertical equilibrium
due to a balance of gravity and the vertical pressure gradient. Once this assumption is
made, the shallow water equations can be derived from the full three dimensional equations
for an incompressible inviscid free surface flow. However, if the hydrostatic assumption
and its implications are accepted a priori, a more generally valid system of equations in
conservative form can be derived from first principles.

We start with an incompressible inviscid fluid of uniform density ρ and a flow velocity
u ≡ (u, v, w), with a free (unknown) upper boundary z = η(x, y, t) and a fixed bottom
boundary z = b(x, y). The flow is governed by the incompressibility condition

∇ · u = 0, (4.1)

and the Euler equations for an inviscid fluid

Du
Dt

= −1
ρ
∇P − gẑ, (4.2)

where
D

Dt
≡ ∂

∂t
+ u · ∇ (4.3)

is the material derivative, gẑ is the gravitational force in the z-direction and P (x, y, z, t)
is the pressure. The PDEs (4.1) and (4.2) are complemented with kinematic and dynamic
boundary conditions on z = b(x, y) and z = η(x, y, t) (e.g. [103, 87]). Determining η(x, y, t)
is one of the goals of the problem. The crucial simplifying assumption for shallow water
theory is that the pressure is strictly hydrostatic,

∂P (x, y, z, t)
∂z

= −ρg, (4.4)

which upon integrating vertically implies

P (x, y, z, t) = ρg (η(x, y, t)− z) . (4.5)
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From (4.1) and (4.2), this assumption implies (e.g. [103, 87]) that the velocity field is
independent of z,

uz ≡ vz ≡ wz ≡ 0, (4.6)

and that w ≡ 0. Clearly no realistic dynamic flow is strictly hydrostatic, however, we are
interested in the leading order behavior of flows that approximately satisfy (4.5).

The relevant question is then—what types of flows are approximately hydrostatic? Using
(4.1), (4.2) and boundary conditions on the free surface η(x, y, t) and bottom surface b(x, y),
a perturbation procedure can be developed for all quantities using relevant physical scales of
a particular problem. For flows where the relevant horizontal length scale L is long compared
to a characteristic depth H, the hydrostatic condition is the leading order approximation to
the pressure P (x, y, z, t). That is, if the equations are developed using the nondimensional
quantity

ε =
H

L
, (4.7)

and the pressure is written as an asymptotic series,

P (x, y, z, t) = P0(x, y, z, t) + εP1(x, y, z, t) + ε2P2(x, y, z, t) + · · · , (4.8)

it can be shown (e.g. [50, 87, 103])that

P0(x, y, z, t) = ρg (η(x, y, t)− z) . (4.9)

For shallow water theory then, (4.9) is taken to be the pressure, and higher order corrections
are ignored. No assumption is made about the amplitude of shallow water waves relative
to the depth—all such nonlinearities are retained in shallow water theory.

If we take the hydrostatic pressure assumption and its consequences for granted, we can
derive the shallow water equations directly from conservation. Since the velocity field is
independent of z, we can integrate out the vertical dimension and reduce the problem to
two dimensions. Consider a three dimensional control volume:

V = {(x, y, z) : (x, y) ∈ Ω, b(x, y) ≤ z ≤ η(x, y, t)} , (4.10)

where Ω ⊆ lR2 is an arbitrary region of the x–y plane (see Figure 4.1). Conservation of
mass requires

∂

∂t

∫
V
ρ = −

∫
∂V
ρu · n, (4.11)

where n is the unit outward normal vector to the surface ∂V. It should be clear that there
is no contribution to the surface integral in (4.11) from the top and bottom boundaries:

∂Vη = {(x, y, z) : (x, y) ∈ Ω, z = η(x, y, t)} and, (4.12a)
∂Vb = {(x, y, z) : (x, y) ∈ Ω, z = b(x, y)} . (4.12b)

Integrating out the vertical dimension and dropping the constant density gives

∂

∂t

∫
Ω
h = −

∫
∂Ω
hu⊥ · n⊥, (4.13)
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x

y

V

η(x, y, t)

b(x, y)

Ω

Figure 4.1: Deriving the shallow water equations from conservation principles. The three
dimensional control volume V and the two dimensional region Ω that remains after the ver-
tical dimension is integrated out, are shown. The shallow water equations are a hyperbolic
conservation law in the two dimensional x-y plane.

where u⊥ = (u, v)T is the horizontal velocity field, n⊥ = (nx, ny)T—the outward direction
normal to ∂Ω—and h(x, y, t) = η(x, y, t) − b(x, y). Note that if u⊥ is considered a depth
averaged velocity field, (4.13) requires none of the shallow water assumptions.

Conservation of momentum on the control volume V requires

∂

∂t

∫
V
ρu⊥ = −

∫
∂Vs

(ρu⊥)u · n−
∫
∂Vs

Pn⊥ −
∫
∂Vb

Pn⊥, (4.14)

where ∂Vs denotes the vertical boundaries of V:

∂Vs = ∂V − {∂Vη ∪ ∂Vb} . (4.15)

All of the vertical forces have been neglected from (4.14) since the hydrostatic assumption
implies that they balance. The third equation for ρw has therefore been neglected from the
system since it reduces it to (ρw)t = 0. The first surface integral in (4.14) is due to the
advection of momentum across the boundaries, and the last two integrals are simply the net
horizontal force due to the pressure on the boundaries. The surface integral of the pressure
at the top surface z = η(x, y, t) is zero since the pressure is defined to be zero there. Using
(4.5) for P and then integrating out the vertical dimension in (4.14) gives,

∂

∂t

∫
Ω
ρhu⊥ = −

∫
∂Vs

ρu⊥ (u · n)−
∫
∂Vs

ρg(η − z)n⊥ −
∫
∂Vb

ρg(η − z)n⊥,

= −
∫
∂Ω
ρhu⊥ (u⊥ · n⊥)−

∫
∂Ω
ρ
1
2
gh2n⊥ −

∫
Ω
ρgh∇⊥b, (4.16)
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where ∇⊥ ≡ ( ∂∂x ,
∂
∂y )

T . The final integral results from parameterizing the surface integral
on ∂Vb, and noting that η − z = h on that surface. The constant density can again be
dropped from (4.16).

We can write (4.13) and (4.16) in the more familiar form

∂

∂t

∫
Ω
q +

∫
∂Ω
f(q)nx +

∫
∂Ω
g(q)ny =

∫
Ω
ψ, (4.17a)

where

q =

 hhu
hv

 , f(q) =

 hu
hu2 + 1

2gh
2

huv

 , g(q) =

 hv
huv

hv2 + 1
2gh

2

 ,
and

ψ =

 0
−ghbx
−ghby

 . (4.17b)

In deriving the shallow water equations from conservation principles, note that no as-
sumptions were made about smoothness of the top boundary z = η(x, y, t). The conservative
integral form (4.17a) admits solutions with discontinuities in the solution as discussed more
generally for hyperbolic conservation laws in Chapter 2. This is important since steepen-
ing can lead to discontinuities given any form of shallow water equations. The physically
relevant conservative form of the equations provides the proper governing system for these
discontinuities.

4.2 The Riemann Problem

In Chapter 2 and Chapter 3 Riemann problems were discussed in the context of hyperbolic
conservation laws and finite volume methods. In this section we will look more closely at
the Riemann problem for the homogeneous shallow water equations,

ht + (hu)x = 0, (4.18a)

(hu)t + (hu2 +
1
2
gh2)x = 0, (4.18b)

with

q(x, 0) =

{
ql if x < 0,
qr if x > 0,

where q =
[
h
hu

]
. (4.18c)

Recall that the solution to (4.18) is a similarity solution with two waves or characteristic
transitions emanating from the initial discontinuity at x = 0. Since the characteristic fields
for the shallow water equations are genuinely nonlinear, the waves can be either smooth
rarefactions defined by integral curves or shock discontinuities. For the purpose of easing
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discussion in this section, zero-strength transitions (or lack of a wave in a family) will be
considered a rarefaction. For the shallow water equations the Riemann invariants

w1(q) ≡ u+ 2
√
gh, (4.19a)

w2(q) ≡ u− 2
√
gh, (4.19b)

hold through an integral curve of the first and second characteristic fields respectively.
Discontinuities must obey the Rankine-Hugoniot jump conditions (2.7), which take the
form

s

[[
h
hu

]]
=
[[

hu
hu2 + 1

2gh
2

]]
, (4.20)

where [[·]] indicates the difference across the jump discontinuity and s is the propagation
speed of the discontinuity. Recall that the Rankine-Hugoniot conditions can be used to
derive the Hugoniot loci, or curves in phase space that can connect two states through a
shock. For the shallow water equations, states q∗ that can be connected to ql through a
1-shock satisfy

u∗ + h∗

√
g

2

(
1
h∗

+
1
hl

)
= ul + hl

√
g

2

(
1
h∗

+
1
hl

)
, (4.21a)

and states q∗ that can be connected to qr through a 2-shock satisfy

u∗ − h∗

√
g

2

(
1
h∗

+
1
hr

)
= ur − hr

√
g

2

(
1
h∗

+
1
hr

)
. (4.21b)

Discontinuities must also obey entropy conditions, such as the Lax entropy condition—
Definition 2.3— which applies to strictly hyperbolic genuinely nonlinear systems such as
the shallow water equations. For the shallow water equations, simple admissability criteria
can be derived from the Lax entropy condition.

Theorem 4.1. A solution to (4.18) is the correct entropy satisfying solution if and only if
it has the following properties:

(i). A 1-shock connects ql to q∗ if and only if h∗ > hl.

(ii). A 2-shock connects qr to q∗ if and only if h∗ > hr.

(iii). Otherwise rarefactions defined by smooth integral curves of the first or second
characteristic field connect q∗ to ql or qr respectively.

Proof. This is a simple consequence of the Lax entropy condition with (4.19) and (4.21).
Since the homogeneous shallow water equations are strictly hyperbolic and genuinely nonlin-
ear, q∗ is connected to ql by either a 1-shock or a rarefaction in the first characteristic field,
and q∗ is connected to qr by either a 2-shock or a rarefaction in the second characteristic
field. It will therefore suffice to prove the contrapositive to (i) and (ii).
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(⇒) Suppose that a 2-wave connecting qr to q∗ is a rarefaction. By (4.19) and the Lax
entropy condition,

0 ≤ λ2(qr)− λ2(q∗)

= ur+
√
ghr −

(
u∗+

√
gh∗
)

= w2(qr) + 3
√
ghr −

(
w2(q∗) + 3

√
gh∗
)

= 3(
√
ghr −

√
gh∗), (4.22)

implying h∗ ≤ hr.

(⇐) Conversely, suppose that h∗ ≤ hr. If a 2-shock connects q∗ to qr, then the Lax entropy
condition implies: u∗ +

√
gh∗ > ur +

√
ghr,

⇒ u∗ − ur >
√
ghr −

√
gh∗,

≥ 0 by supposition. (4.23)

Additionally, the two states must lie on the Hugoniot loci for a 2-shock, implying that

u∗ − h∗

√
g

2

(
1
h∗

+
1
hr

)
= ur − hr

√
g

2

(
1
h∗

+
1
hr

)
, (4.24)

⇒ u∗ − ur = (h∗ − hr)

√
g

2

(
1
h∗

+
1
hr

)
≤ 0 by supposition. (4.25)

However, (4.23) and (4.25) are contradictory since they imply 0 ≥ u∗ − ur > 0.
Therefore, if h∗ ≤ hr, then a rarefaction not a 2-shock must connect qr to q∗. An
entirely analogous proof can be used for 1-waves.

Theorem 4.1 allows us to uniquely determine the middle solution q∗ by using (4.19) and
(4.21) such that the properties (i)-(iii) are satisfied. If we define the function

ϕ1(h;hl) =

2
(√
gh−

√
ghl
)

if h ≤ hl,

(h− hl)
√

g
2

(
1
h + 1

hl

)
if h > hl,

(4.26)

then we have
u(h) = ul − ϕ1(h;hl), (4.27)

for u and h through any 1-wave connected to ul. Similarly, if we define the function

ϕ2(h;hr) =

2
(√
gh−

√
ghr
)

if h ≤ hr,

(h− hr)
√

g
2

(
1
h + 1

hr

)
if h > hr,

(4.28)
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then through any 2-wave we have

u(h) = ur + ϕ2(h;hr). (4.29)

The middle state must occur in phase space where the curves defined by (4.27) and (4.29)
intersect. If we subtract the right hand side of (4.27) from (4.29) we have

f(h) = ϕ1(h;hl) + ϕ2(h;hr) + ∆u, h > 0, (4.30)

where ∆u ≡ ur − ul. A root of f(h) determines an intersection in phase space,

f(h∗) = ϕ1(h∗;hl) + ϕ2(h∗;hr) + ∆u = 0, (4.31)

and hence corresponds to a middle state depth h∗. If a root h∗ is found to f(h), then u∗

can be found by evaluating either (4.27) or (4.29).
Clearly f(h) is nonlinear, however it has several nice properties in terms of root finding.

These are stated as a theorem for clarity.

Theorem 4.2. The function f(h) defined by (4.30) has the following properties:

(i). It is a monotonically increasing function of h.

(ii). It is continuous and has continuous derivatives, even at h = hl and h = hr.

(iii). It is convex: f ′′(h) < 0.

Theorem 4.2 can be demonstrated through straightforward analysis. See Toro [101] for
more details.

By using Theorem 4.1 and Theorem 4.2, a complete characterization of the Riemann
structure can be determined, even without root finding [101]. That is, we can determine if
each respective wave in the Riemann solution is a shock or rarefaction, simply by evaluating
f(hl) and f(hr). To see this, let

hmin = min(hl, hr), (4.32a)
hmax = max(hl, hr). (4.32b)

Now, by Theorem 4.1 and the fact that f(h) is monotonically increasing we have

case 1: f(hmin) ≥ 0 ⇔ two rarefactions,
case 2: f(hmax) ≥ 0 > f(hmin) ⇔ one shock, one rarefaction,
case 3: f(hmax) < 0 ⇔ two shocks,

 . (4.33)

The basis of (4.33) is clear when one considers where the root h∗ must lie relative to hmin
and hmax. Determining whether case 2 has a 1-shock or 2-shock simply depends on which
is greater hl or hr. Figure 4.2 shows an example of f(h) for each of the three cases. Note
that since f(h) is only defined for h > 0, it is possible that no root will exist. This will be
discussed in detail in the next section, when we consider dry states h = 0.
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h

f(h)

hmin

hmin

hmin

hmax

hmax

hmax

case 1

case 2

case 3

Figure 4.2: Characterization of the Riemann problem for the shallow water equations by
function evaluation. The middle state depth h∗ is the root of f(h). The graph shows an
example of f(h) for each of the three possible cases in (4.33). Note that ∆u shifts the curve
for f(h) up or down. Large values of ∆u can therefore ensure case 1, or may even eliminate
a positive root h∗

The fact that f(h) is convex will allow us to exploit various root finding techniques when
estimating h∗. This will be discussed in Chapter 6 when we discuss approximate Riemann
solvers in detail. Note that f(h) is linear in

√
gh when h ≤ hmin. This means that the root

can be determined exactly in the case of a double rarefaction—when h∗ is less than hmin.
Solving for h∗ in (4.31) gives

h∗ =
1

16g

(
2
(√

ghl +
√
ghr

)
−∆u

)2
. (4.34)

Note that if
∆u > 2

(√
ghl +

√
ghr

)
, (4.35)

then the quantity squared in (4.34) is negative, and (4.34) is no longer valid. This is called
the incipient dry bed or incipient cavitation problem [101], and will be discussed in the next
section. Following Toro [101], we will denote

(∆u)crit = 2
(√

ghl +
√
ghr

)
, (4.36)

and refer to
(∆u)crit > ∆u, (4.37)

as the depth positivity condition.
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4.3 Dry State Riemann Problems

4.3.1 Incipient Cavitation

If ∆u > (∆u)crit, then f(h) does not have a physical root, and the middle state h∗ cannot be
determined by (4.31). Physically this occurs in the case of a strong double rarefaction that
leads to a dry middle state depth h∗. Figure 4.3 shows the depth from an incipient cavitation
Riemann problem, where initially hl = hr = 1, and ur = −ul = 8. Mathematically,
cavitation occurs when the integral curves in the first and second fields reach h = 0 before
intersecting in the phase plane. Figure 4.4 shows the integral curves in the h–hu and h–u
phase planes for the same Riemann problem. The Riemann invariants hold through these
integral curves as h −→ 0. A dry middle state h∗ = 0 is still physically admissable, since
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Figure 4.3: An incipient cavitation Riemann problem. (a) The Riemann problem at t = 0,
with ∆u > (∆u)crit. (b) The Riemann problem at t = 3. The strong double rarefaction
creates an expanding dry middle region.

conservation is maintained throughout the smooth integral curve.
The speed of the dry/wet interfaces can be determined by the integral curves. For

instance, to determine the speed of the wet/dry interface to the left of the dry bed, the
1-Riemann invariant holds throughout the integral curve connecting the left state ql to the
state just to the left of the dry region, denoted q∗− . Since h∗− = 0, applying (4.19) gives

u∗− = ul + 2
√
ghl. (4.38)

The wet/dry interface is moving at the speed of these particles,

λ1(q∗−) = u∗− = ul + 2
√
ghl. (4.39)

By similar analysis, the speed of the wet/dry interface to the right of the dry region is

λ2(q∗+) = u∗+ = ur − 2
√
ghr. (4.40)
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Figure 4.4: Integral curves for the incipient cavitation problem with ∆u > (∆u)crit. (a)
Curves plotted in the h–hu phase plane. The curves reach the origin h = 0 before inter-
secting. (b) Curves in the h–u plane. The r1 integral curve approaches h = 0 at the point
u∗− = ul +2

√
ghl and the r2 integral curve approaches h = 0 at u∗+ = ur− 2

√
ghr. For the

solution shown in these figures g = 1.

Figure 4.5 shows the characteristics in x-t plane of the rarefactions surrounding the expand-
ing dry region.

Note that ∆u > (∆u)crit implies that

λ2(q∗+) > λ1(q∗−), (4.41)

which is consistent with existence of a growing dry region. In fact, ∆u = (∆u)crit precisely
when

λ2(q∗+) = λ1(q∗−), (4.42)

and the dry region appears as a single point. At a wet/dry interface each respective char-
acteristic field becomes linearly degenerate, since at this point in the phase plane ∇λ1,2(q)
are undefined. Because of this, it is useful to think of each wet/dry interface as a contact
discontinuity in its respective characteristic field, and note that the fluid at each respective
interface was initially in contact at x = 0 in the Riemann problem.

4.3.2 Initial Dry Bed

Another type of dry state Riemann problem occurs when initially either hl = 0 or hr = 0.
In this type of Riemann problem, the wet state must be connected to the dry state through
some set of waves. For instance, consider Figure 4.6, where initially hl > 0 and hr = 0.
Conceivably some combination of a 1-wave and 2-wave could connect ql to q∗ and q∗ to qr
respectively. However, if h∗ > 0, Theorem 4.1 requires that a 2-shock connect q∗ to the dry



46

x = 0

t ↑

qrql q∗

λ1(ql) λ2(qr)λ1(q∗−) λ2(q∗+)

Figure 4.5: The incipient cavitation Riemann problem in the x-t plane. A strong double
rarefaction leads to a dry middle state h∗ = 0. The wet/dry interface on the left moves
with speed λ1(q∗−) = ul + 2

√
ghl and the wet/dry interface on the right moves with speed

λ2(q∗+) = ur − 2
√
ghr.

state qr. But this impossible since the Rankine-Hugoniot jump conditions require

s (hr − h∗) = hur − hu∗, (4.43a)

s (hur − hu∗) =
(
hu2 +

1
2
gh2

)
r

−
(
hu2 +

1
2
gh2

)∗
, (4.43b)

where s is the speed of the shock. Since hr = 0, eliminating s and solving for h∗ in (4.43)
gives h∗ = 0. Clearly then, the middle state must also be a dry state, h∗ = 0, and the
2-wave is nonexistent (see also [101]). Since the left state ql is connected to the dry middle
state through a 1-wave, Theorem 4.1 implies that the 1-wave is a rarefaction.

Since the 1-Riemann invariants hold through the r1 integral curve, the speed of the
wet/dry interface can be found to be

λ1(q∗−) = u∗− = ul + 2
√
ghl. (4.44)

This is exactly analogous to the incipient cavitation problem described previously, except
that only the left rarefaction exists. For the initial dry bed problem where hr > 0 and
hl = 0, only the 2-rarefaction exists, and the speed of the wet/dry interface is

λ2(q∗+) = u∗+ = ur − 2
√
ghr. (4.45)

Figure 4.7 shows the characteristic structure for dry bed Riemann problems. If ql and qr are
the same as in the incipient cavitation problem, the 1-waves when hr = 0 and the 2-waves
when hl = 0 are identical to the corresponding waves in the incipient cavitation problem.
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Figure 4.6: An initial dry bed Riemann problem. (a) The Riemann problem initially has a
dry state hr = 0 adjacent to a wet state hl. (b) The solution at t = 3 where ql is identical
to that shown in Figure 4.3. The rarefaction has the same structure as the 1-rarefaction in
Figure 4.3.

This is physically intuitive, since, for the incipient cavitation problem, the structure of each
rarefaction wave should not depend on the other wave since they are separated by a dry
region, and the waves should be identical to the corresponding single rarefaction waves in the
dry bed problems. Figure 4.7 shows the individual rarefaction waves for the two respective
dry bed problems.

Of course, in the case of an initial dry bed, a rarefaction connects the wet state to the
dry state regardless of the initial velocity in the wet state. Contrary to the examples shown
in the Figure 4.7, the wet/dry front can advance at considerable speeds, ul,r ± 2

√
ghl,r,

which can be large if the wet state has significant depth. In fact, the advancing speeds are
much larger than standard shock speed estimates in the case of very shallow or vanishing
depth Riemann problems. For instance, the Roe speed estimates for Riemann problems
where hr,l → 0 are ul,r ± 1√

2

√
ghl,r. See [101] for a further discussion about the possibility

of underestimating the speed of the advancing wet/dry front.

4.4 Steady States and Source Terms

In this section we will discuss steady state solutions to the homogeneous and nonhomo-
geneous shallow water equations. We begin with a theorem about hyperbolic systems in
general that applies to the homogeneous shallow water equations.

Theorem 4.3. The only smooth (differentiable) steady state solution of a strictly hyperbolic
fully nonlinear system

qt + f(q)x = 0, (4.46)

is the trivial steady state qx ≡ 0.
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(a) x = 0

t ↑
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λ1(ql) λ1(q∗−)

hr = 0

(b) x = 0

t ↑
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λ2(qr)λ2(q∗+)

hl = 0

Figure 4.7: The initial dry bed Riemann problems in the x-t plane. (a) The 1-wave when
hr = 0. The wet/dry interface moves with speed λ1(q∗−) = ul + 2

√
ghl. (b) The 2-wave

when hl = 0. The wet/dry interface moves with speed λ2(q∗+) = ur − 2
√
ghr.

Proof. A steady state solution q(x, ·) to (4.46) implies that

f(q)x = f ′(q)qx = 0. (4.47)

If qx is nonzero, then (4.47) implies that qx is an eigenvector of f ′(q) with eigenvalue equal
to zero. This implies that the solution is a simple wave

q̃′(ξ) = α(ξ)rp (q̃(ξ)) , (4.48)

where q̃(ξ) ≡ q(x, ·), and

λp(q̃(ξ)) ≡ 0. (4.49)

However, the simple wave is an integral curve of rp, a fully nonlinear field, which requires
that ∇λp(q̃) · rp(q̃) 6= 0. Therefore λp cannot be identically zero through the simple wave,
and it must be that qx ≡ 0.

Theorem 4.3 means that steady state solutions to systems such as the homogeneous
shallow water equations, are either trivial uniformly constant functions, or perhaps piecewise
constant functions with stationary jump discontinuities. If stationary jump discontinuities
exist, they are governed by the Rankine-Hugoniot conditions

s [[q]] = [[f(q)]] . (4.50)

Since s = 0,

f(q+) = f(q−), (4.51)

across the discontinuity, where q+ and q− are the constant states to the immediate left
and right of the jump. For the shallow water equations, (4.51) implies that hu and the
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momentum flux (hu2 + 1
2gh

2) do not vary across a stationary discontinuity. Since the
momentum flux is a nonlinear function of h and hu, in general it is possible to have a
stationary jump in h. This jump must also satisfy entropy conditions.

4.4.1 Source Terms

More complex steady states exist when source terms are included,

qt + f(q)x + ψ, (4.52)

since the balance of ψ and the flux gradient f(q)x imply that qt = 0. Note that for the
shallow water equations over variable bathymetry,

ht + (hu)x = 0, (4.53a)

hut +
(
hu2 +

1
2
gh2

)
x

= −ghbx, (4.53b)

this occurs when

(hu)x = 0, (4.54a)(
hu2 +

1
2
gh2

)
x

= −ghbx. (4.54b)

As with the homogeneous shallow water equations, (4.54a) implies that hu is always constant
for steady states, otherwise mass would accumulate in certain regions. However, (4.54b)
implies that the momentum flux must balance the source term for steady states. Since the
momentum flux is only a function of h and hu, h must vary through a steady state where
bx 6= 0. If we differentiate the momentum flux in (4.54b), while holding hu constant, we
have (

−u2 + gh
)
hx = −ghbx. (4.55)

Since the eigenvalues for the shallow water equations satisfy −λ1λ2 = −u2 + gh, it should
be noted that a smooth steady state over sloping bathymetry cannot have a sonic point.
Therefore, for regions with monotonically varying bathymetry, steady-state flow is either
entirely subsonic or entirely supersonic. If the flow is subsonic

(
−u2 + gh > 0

)
, hx and bx

are opposite in sign, with the opposite being true if the flow is supersonic. The transition
can only occur at an extremum of the bathymetry where bx = 0.

In section Section 2.3, it was mentioned that the Rankine-Hugoniot conditions are un-
changed in the presence of a bounded source term. Therefore, for a steady state in the form
of a stationary jump discontinuity, (4.51) still holds as long as bx is defined continuously, or
if bx is bounded in a neighborhood of the jump. However, for developing numerical methods,
it is useful to consider b(x) as a piecewise constant function, and allow bx to be a sum of
generalized distributions equal to a delta function at each jump discontinuity,

bx ≡
∑
xj∈X

(
b(x+

j )− b(x−j )
)
δ(x− xj), (4.56)
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where X contains the locations of the jump discontinuities in b(x), and δ(x) is the delta
function defined by ∫

δ(x)f(x) = f(0). (4.57)

The source term in the shallow water equations, −ghbx, is not necessarily well defined by
(4.56), even in the sense of a distribution, since it involves h, which is possibly (in fact
necessarily for steady states) discontinuous at xj ∈ X . This creates a problem for the
theory of distributions involving overlapping discontinuities. See also [26], and for some
discussion of overlapping discontinuities and distribution theory, see [18]. However, we
suspend uncertainty temporarily and assume that the source term is a sum of point sources
at the locations xj . We write the source term as a sum of distributions

−ghbx = ψ =
∑
xj∈X

Ψjδ(x− xj), (4.58)

which integrated across a jump discontinuity gives∫ x+
j

x−j

ψ dx = Ψj . (4.59)

If we then apply the integral conservation law to a neighborhood around the single discon-
tinuity at xj , we have

(hu)+ = (hu)−, (4.60a)(
hu2 +

1
2
gh2

)+

−
(
hu2 +

1
2
gh2

)−
= Ψj , (4.60b)

where for notational ease the superscripts (·)+, (·)− denote evaluation at x+,−
j . The condi-

tions (4.60) are similar to the Rankine-Hugoniot conditions for a stationary discontinuity
over continuous bathymetry (4.51), except now the infinite source term contributes a right
hand side to (4.60b). This follows physical intuition, since if the jump in momentum flux did
not balance the point source of momentum, the solution would quickly become unbounded
in the neighborhood of the discontinuity. As with (4.51), the momentum hu is constant and
so a jump in momentum flux implies that only h varies across the stationary discontinuity.
This is what causes the difficulty in defining the source term by (4.56) and (4.57), since∫

−gh(x)
(
b(x+

j )− b(x−j )
)
δ(x− xj), (4.61)

is not clearly defined when h is discontinuous at xj . Note however that (4.60) defines Ψj in
terms of the left and right states, q−,+, on either side of the discontinuity.

It is informative to consider the steady state problem with zero velocity, where η ≡
h + b ≡ 0 everywhere. Based on physical intuition, this is obviously the correct limiting
steady state solution even when b(x) is a piecewise constant function. Evaluating (4.60)
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using u+ = u− = 0 and h = −b gives

Ψj =
(

1
2
gh2

)+

−
(

1
2
gh2

)−
=
g

2
(
h+ + h−

) (
h+ − h−

)
= −g (h+ + h−)

2
(
b+ − b−

)
= −gh̄j

(
b+ − b−

)
, (4.62)

where h̄j is the arithmetic average of h to either side of the discontinuity. For this steady
state problem then, note that the source term could be defined as a distribution using (4.56)
and the definition ∫

f(x)δ(x) ≡ 1
2
(
f(0+) + f(0−)

)
, (4.63)

when f is piecewise continuous. However, as will be shown, this is not correct for more
general cases, since (4.60) requires a more complex average of h involving the velocities on
either side of the discontinuity.

4.4.2 Conditions on Smooth Steady States

When discussing a point source approximation for
∫
−ghbx dx, what we are really seeking is

the correct limiting behavior of smooth solutions over variable bathymetry as b approaches
a piecewise constant function, so that we can determine a value for

∫
−ghbx dx when the

solution is only known outside of regions where bx is nonzero. It is not immediately clear
that this will be possible, however, it is possible to make some precise statements regarding
all differentiable steady state solutions over regions of variable bathymetry. If we allow b to
vary only in isolated regions then, we can analyze the difference in the solution across these
regions.

Suppose that b is a slightly smoothed version of a piecewise constant that is differentiable
everywhere, so that bx is classically defined everywhere, and is nonzero only in neighbor-
hoods [xj−εj , xj+εj ] of isolated points xj . In the smoothed version, b varies monotonically
from b(xj − ε) to b(xj + ε), so that bx does not change sign in the interval [xj − ε, xj + ε],
and of course ∫ xj+εj

xj−εj
bx dx = (∆b)j , (4.64)

where (∆b)j is the magnitude of the jump at xj in the piecewise constant version. (Details
of such a construction—a smoothed infinitely differentiable function satisfying the above
properties—can be found in [22].) For simplicity, in the following discussion we will assume
that b varies on only one interval around x = 0, Iε = [−ε, ε], and that b(x) = bl for x < −ε
and b(x) = br for x > ε. Figure 4.8 shows an example of a smoothed function b with such
properties.

For smooth steady state solutions, Theorem 4.3 implies that the solution is uniform
outside of (−ε, ε), and we denote q(x, t) = ql for x < −ε, and q(x, t) = qr for x > ε. We
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0−ǫ ǫ

bl

br

Figure 4.8: A smoothed version of piecewise constant bathymetry. The function shown is
C∞(lR), and bx has compact support on [−ε, ε]. Additionally the function is symmetric,
b(0) = (br + bl)/2.

can derive some conditions relating the left and right states, ql and qr, and the “jump” in
bathymetry

∆b = (br − bl). (4.65)

(In many of the equations that follow, the operator ∆ will refer to differencing the quan-
tities from the right to the left ∆(·) = (·)r − (·)l, where the subscripts refer to evaluating
the quantities in the constant region to the right and left respectively.) First, (hu)x = 0
everywhere, so

∆hu = hur − hul = 0. (4.66)

Using this fact, we can relate the jump in the momentum flux,

∆
(
hu2 +

1
2
gh2

)
=
(
hu2 +

1
2
gh2

)
r

−
(
hu2 +

1
2
gh2

)
l

, (4.67)

to the difference or jump in the depth

∆h = (hr − hl) . (4.68)
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We rearrange (4.60b),

∆
(
hu2 +

1
2
gh2

)
=
(

(hu)2

hr
− (hu)2

hl

)
+
g

2
(hr + hl) (hr − hl)

=
(
|(hu)r(hu)l|

hr
− |(hu)l(hu)r|

hl

)
+
g

2
(hr + hl) (hr − hl)

= (hl|urul| − hr|+ ulur|) +
g

2
(hr + hl) (hr − hl)

= ∆h
(
−|urul|+

g

2
(hr + hl)

)
, (4.69)

where h ≥ 0 and hur = hul together imply that urul = |urul|. If we denote the averages

h̄ = 1
2(hr + hl), (4.70a)

ũ2 = |urul|, (4.70b)

we can rewrite (4.69) as

∆φ =
(
−ũ2 + gh̄

)
∆h, (4.71)

where φ is the momentum flux φ = (hu2 + 1
2gh

2). This notation for the momentum flux
will be used frequently in the remaining chapters. The ratio implied by (4.71) is essentially
a discrete version of the partial derivative of the momentum flux φ with respect to h, while
holding hu constant, (

∂φ

∂h

)
hu

= −u2 + gh, (4.72)

and requires the special averages (4.70) of the left and right states when ∆q is not infinites-
imal. Equation (4.71) may also be viewed as an exact first order Taylor expansion, where
the partial derivative is evaluated at the intermediate state defined by (4.70).

We can also relate ∆h to ∆b for smooth solutions. Consider (4.55), which is exactly
true for differentiable steady state solutions. Dividing by h gives(

−(hu)2

h3
+ g

)
hx = −gbx. (4.73)

By noting that (hu)x ≡ 0 for steady states, it can be seen that (4.73) is equivalent to(
1
2

(hu)2

h2
+ gh+ gb

)
x

= 0, (4.74)

which implies that
(

1
2u

2 + gh+ gb
)

is a constant for a differentiable steady state. So it must
be true that (

1
2
u2 + gh+ gb

)
r

=
(

1
2
u2 + gh+ gb

)
l

. (4.75)
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Multiplying (4.75) by h̄ = 1
2(hr + hl) and rearranging gives,

−gh̄∆b− gh̄∆h =
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hr + hl

2

)(
u2
r − u2

l

2

)
=
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1
2

)2 (
hru

2
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2
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2
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2
l

)
=
(

1
2

)2 ((
2hru2

r − hru
2
r

)
+ hlu

2
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2
l −

(
2hlu2
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2
l
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=
(

1
2

)2 ((
2hlulur − hru

2
r

)
+ hlu

2
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2
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2
l
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=
(
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l + 2hlulur + hlu

2
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)
−
(
hru

2
l + 2hrulur + hru

2
r
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=
(

1
2

)2 (
hl (ur + ul)

2 − hr (ur + ul)
2
)

= −
(
ur + ul

2

)2

∆h, (4.76)

where the fourth equality makes use of hlul = hrur. Equation (4.76) implies the relationship(
−ū2 + gh̄

)
∆h = −gh̄∆b, (4.77)

where ū is the arithmetic average 1
2 (ul + ur). Note that this is a discrete representation

of (4.55), or an exact first order Taylor expansion for steady states, using the arithmetic
averages of h and u.

Since (4.71) relates ∆h to ∆φ, equation (4.77) allows us to relate ∆φ to ∆b,

∆φ = −gh̄∆b

(
−ũ2 + gh̄

−ū2 + gh̄

)
. (4.78)

By applying conservation,

∆φ =
∫
Iε

−ghbx dx, (4.79)

the right hand side of equation (4.78) provides the correct formulation of the source term
for all smooth steady states across an interval of varying bathymetry. For these solutions,
it must be true that ∫

Iε

−ghbx dx = −S+
−gh̄∆b. (4.80)

where,

S+
− =

(
−ũ2 + gh̄

−ū2 + gh̄

)
. (4.81)

The ratio S+
− is a nondimensional quantity that provides the correct source term inte-

gral when multiplied by −gh̄∆b, for smooth steady states across any region of varying
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bathymetry br− bl = ∆b. (The notation is meant to resemble an integral, since the product
−S+

−gh̄∆b is equal to the value of the integral −
∫
Iε
ghbx dx.) Note that for smooth solu-

tions, if ql → qr, then S+
− → 1. It might at first seem curious that S+

− could be negative,
even if bx does not change sign, or worse, the denominator might vanish. However, recall
that we have found that steady flow cannot have a sonic point when b varies monotonically
by (4.55), therefore, such flows must be entirely subsonic or supersonic. By requiring the
Froude number, |u/gh|, to be either strictly less than or more than one for all x, it is easy
to demonstrate that the ratio (4.81) is always positive for these flows. In fact, since

ū2 ≥ urul, ∀ul, ur ∈ lR, (4.82)

with equality only when ur = ul, it follows that S+
− is less than unity for supersonic flow, and

greater than or equal to unity for subsonic flow, with equality only for stationary flow with
zero velocity—following from the fact that ul = ur implies that hl = hr unless ul = ur = 0.
(Equality of depth across variable bathymetry is a contradiction because of (4.55).) For
u ≡ 0, the ratio S+

− = 1 produces the desired result (4.62) for the source term.
Equation (4.55) relating hx and bx for smooth steady flows, allows further characteriza-

tion of −gh̄∆bS+
− . Since the flow in question has no sonic points, hx cannot change sign,

and h must vary monotonically from hl to hr across the interval where b varies. Therefore,
the integral for the source term can be bounded,

|S+
−gh̄∆b| = |

∫
Iε

ghbx dx|

≤ gmax(hl, hr)|
∫
Iε

bx dx|

= gmax(hl, hr)|∆b|, (4.83)

and similarly
|S+
−gh̄∆b| ≥ gmin(hl, hr)|∆b|. (4.84)

We can therefore state
min(hl, hr) ≤ S+

− h̄ ≤ max(hl, hr), (4.85)

for smooth steady states.

4.4.3 Steady State Data

In this final section, the properties of smooth steady state solutions over monotonically
varying bathymetry will be summarized by presenting them in a simple unified manner.
A discontinuous steady state will be briefly discussed as well. We will consider only a
continuously differentiable bathymetry function b(x), such as that discussed in the previous
section and depicted in Figure 4.8, where b(x) = bl to the left of an interval Iε and b(x) = br
to the right of the interval, and b(x) varies monotonically in the interval. It has been
shown that this implies that the steady state solution must also be uniform to the left and
right of the interval, and h varies monotonically in the interval. Concisely summarizing the
properties that must be satisfied by the left and right states is the goal of this section.
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It will be convenient to define some of the averages discussed above, as operators acting
on two states ql and qr. First, we will define the operators

λ1λ2(ql, qr) = −

(
−
(
ul + ur

2

)2

+ g

(
hr + hl

2

))
, (4.86)

and

λ̃1λ2(ql, qr) = −
(
−ulur + g

(
hr + hl

2

))
. (4.87)

The negative signs are introduced in the right hand sides of (4.86) and (4.87), so that the
operators represent an approximation to the product of the eigenvalues of the shallow water
equations λ1(q)λ2(q) = (u2 − gh). We also introduce the operator

S+
− (ql, qr) = −g

2
(hr + hl)

λ̃1λ2(ql, qr)

λ1λ2(ql, qr)
, (4.88)

which is equivalent to (4.81), except that we have absorbed the −gh̄. The operator then
satisfies the following property,

S+
− (ql, qr)∆b = −

∫
ghbx dx, (4.89)

if it is evaluated by left and right states that correspond to a smooth steady state. We now
state some results as a theorem, for emphasis and for convenient reference in the following
chapters.

Theorem 4.4. Given a monotonically varying smooth bathymetry function such as that
described above, the following property must be satisfied for all smooth steady state data, ql
and qr,

∆


h
hu
φ
b

 = ∆b


S+
−(ql,qr)

−gλ1λ2(ql,qr)

0
S+
− (ql, qr)

1

 , (4.90)

where ∆ implies subtracting the quantities evaluated with data ql from those evaluated with
qr.

Proof. The theorem follows from simply considering the ratios developed in the previous
section, and the fact that (hu)x ≡ 0.

It is interesting to consider what happens if we allow a discontinuity in the steady state
over monotonically varying smooth bathymetry. For instance, suppose that the solution
to the left of the interval Iε, q(x < −ε, t) = ql, is joined to solution to the right of Iε,
q(x > ε, t) = qr, through a smooth transition on either side of a discontinuity at x = 0,
with q(0−, t) = q− and q(0+, t) = q+. Recall that when b is continuously differentiable,
a discontinuous solution is still governed by the Rankine-Hugoniot (4.50) conditions for a
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shock. For a steady state, the shock is stationary, and the fluxes must be constant across
the discontinuity (4.51). So we have, assuming that b(x) is continuously differentiable,

∆


h
hu
φ
b

 = ∆h


1
0
0
0

 , (4.91)

where ∆ is the difference just across the discontinuity.
It should be noted that the relation (4.71) is valid across the discontinuity, and because

the flux is constant it must be that λ̃1λ2(q−, q+) = 0. In fact, λ̃1λ2(q−, q+) = 0 for any
stationary discontinuity where q− and q+ are the states to the left and right of the discon-
tinuity, which follows from relating (4.55) to the Rankine-Hugoniot conditions governing a
stationary shock.)

Conservation applied around the interval Iε still requires that

f(qr)− f(ql) = −
∫
Iε

ghbx dx. (4.92)

Since the right hand side of (4.92) is nonzero, f(q−) = f(q+), and hu does not vary, h
must vary through the smooth regions and the total change (hr − hl) must be nonzero.
Therefore, over a region of monotonically varying bathymetry, ql cannot be connected to
qr with a single stationary shock. Since (4.71) still holds using ql and qr, it cannot be that
λ̃1λ2(ql, qr) = 0. Therefore, the total jump ∆h = (hr−hl) is well defined by (4.71). Since a
stationary shock implies that the flow is supersonic to one side of the shock and subsonic to
the other, it is not clear if a general statement can be made about the sign of λ̃1λ2(ql, qr),
however, it is apparent that hx is positive to one side of the discontinuity and negative to
the other because of (4.55). We can summarize these properties most easily by first defining
the augmented state variable

q̃(q, b) =


h
hu
φ
b

 . (4.93)

For all steady state data, ql and qr, to the left and right of a region of monotonically smoothly
varying bathymetry, q̃(qr, br) and q̃(ql, bl) can be connected by a linear combination of the
two vectors 

1
0
0
0

 , and


−
R
ghbx

−λ̃1λ2(ql,qr)

0
−
∫
ghbx

br − bl

 , (4.94)

where λ̃1λ2(ql, qr) is guaranteed to be nonzero. Additionally, when the solution is continu-
ously differentiable

−
∫
ghbx dx = S+

− (ql, qr)∆b. (4.95)
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Chapter 5

NUMERICAL TSUNAMI MODELING

Physical aspects of tsunamis will be addressed in this chapter, and the resulting chal-
lenges that must be confronted by numerical modelers will be described. We begin by first
considering the generation of tsunamis and governing approximations for tsunami flows.

5.1 Tsunami Generation and Governing Assumptions

Tsunamis can be generated by a variety of geophysical disturbances—most commonly earth-
quakes, landslides, or some combination of the two. Because of the diverse physical nature
of these disturbances, tsunamis can vary greatly in their size and extent, however, all can
be destructive and deadly. Typically, landslide generated tsunamis are more localized, yet,
large submarine landslides can generate oceanic tsunamis impacting an entire region. For
instance, the Papua New Guinea Tsunami of 1998, which killed over 2000 people, is believed
to have been caused by a submarine landslide following an earthquake. A more localized
tsunami due to an underwater landslide occurred in 1994 at Skagway Harbor, Alaska, where
a cruise ship wharf undergoing construction collapsed [57].

The most notable tsunamis are the large earthquake-generated global-scale tsunamis
that can affect coastlines around an entire oceanic region, such as the recent Indian Ocean
Tsunami. The generating mechanism for these tsunamis is believed to be the vertical
uplift of the water column due to the displacement of the ocean floor, not the seismic
waves or the horizontal momentum of the fault plane. It is therefore the geometry of a
fault mechanism that determines whether a seismic event is tsunamigenic. If the vertical
displacement of the water column is the principle tsunamigenic mechanism, then tsunami
waves begin as long waves—waves governed by the shallow water equations. This is because
the horizontal length scales of most fault displacements are far greater than the depth of the
ocean, and additionally, vertical displacement of the ocean floor creates initial conditions
that are invariant in the vertical direction—the entire water column is lifted and remains
hydrostatic. Recently, it has been argued by some (e.g. Rivera [81]) that the horizontal
motion of the fault plane is a significant ingredient in tsunami initiation by imparting
momentum to the water column. If this is true, then vertically varying horizontal fluid
momentum would play a significant role in tsunamigenesis, and these effects would not be
governed by the shallow water approximation. However, it is more traditionally believed
that such motion is not transferred to the long-wave gravity waves of tsunami propagation.
See [92] for a discussion of tsunamigenic sea-floor deformations.

There is growing evidence that dispersive effects may be more important in tsunami
propagation than previously thought. See, for instance, [34],[46] and [58] for some empir-
ical arguments. The largest terms neglected in the shallow water equations are dispersive
terms, which might be desirable for more accurate modeling of tsunamis in certain cases.
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Various equations can be derived that include these terms, by making some assumptions
about the flow regime (depth, wavelength, amplitude, etc.). Solutions to such equations
are often called weakly-dispersive, and exist due to a balance of nonlinearities, of the kind
present in the shallow water equations, and weakly nonlinear to linear dispersive terms
involving third-order spatial derivatives. See a theoretical water-wave treatment such as
[50] or [103] for derivations of the classic types of these equations and properties of their
solutions. Boussinesq-type equations that include various nonlinear dispersive terms have
been used as governing equations for tsunami modeling, however, they are generally valid
only for smooth differentiable solutions in particular flow regimes where wavelength and
depth are predictably related. Since advection nonlinearities, of the type present in the
shallow water equations, dominate as waves shoal in coastal waters, potential steepening
and breaking render Boussinesq systems problematic in these regions. Additionally, steep
gradients can pose a difficulty for the finite difference solution of high-order derivatives
present in Boussinesq systems. However, despite the difficulties, Boussinesq methods con-
tinue to be a valuable approach for ocean modeling in certain regimes. See Peregrine [80]
for the classic derivation of the conventional depth averaged Boussinesq model, or for more
recent advances that are more broadly applicable see [1], [31], [53], [74], [75] or [78].

Like the PDE form of the shallow water equations, Boussinesq equations are free-surface
depth-averaged equations, where the effects of nontrivial vertical flow dynamics appear as
additional terms to the shallow water equations. An interesting alternative approach for
incorporating dispersion is taken by Walters in [102], where the effects of vertical flow accel-
eration are incorporated directly into the shallow water equations by essentially absorbing
nonhydrostatic effects into a spatially and temporally varying gravitational constant. Since
the nonlinear shallow water equations can be maintained in this formulation, near-shore
flows where nonlinearity dominates could potentially be modeled by methods that can con-
verge to discontinuous weak solutions of the shallow water equations.

Occasionally, modelers have used full three dimensional equations for free surface flows
for the purpose of tsunami modeling. These are sometimes referred to as Navier-Stokes
solutions, however, often simple elliptic equations are solved for the incompressible internal
flow, with appropriate boundary conditions for the free surface. These methods are often
too expensive for global-scale tsunami modeling, but rather serve as a test case, or “reality
check” on the more efficient approximate governing equations, or for detailed studies of a
specific area or event. See, for instance, Mader [73], Gisler et al [30], Fujima, Masamura
and Goto [25].

Although other governing equations are important for tsunami modeling in certain cases,
the shallow water equations describe the general characteristics of tsunamis surprisingly well
in many of the important flow regimes—from global propagation to inundation in coastal
areas. Moreover, the additional computational cost accrued by solving more computation-
ally expensive systems must be weighed carefully against the added information, even if an
accurate numerical solution to such systems can be taken for granted. Certainly for some
cases, these benefits will warrant the costs, however, because of their wide applicability and
proven empirical success, solutions to the shallow water equations will continue to serve as
an invaluable asset for tsunami modelers. Furthermore, the purpose of this chapter is not
to advocate the use of a particular set of governing equations, but to demonstrate some
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properties that are required of numerical methods used for solving the shallow water equa-
tions for tsunami modeling. Other governing systems present their own set of numerical
challenges—a modern approach for solving Boussinesq systems can be found in [86], and
the use of Navier-Stokes equations for tsunami modeling is covered in [73].

5.2 The Diverse Regimes of Tsunami Flow

In this section, we will take the governing equations—the shallow water equations—for
granted, and discuss the diversity of flow regimes exhibited by solutions to these equations in
the context of tsunamis. These diverse flow regimes demand diverse properties of numerical
methods, and it must be emphasized that not all consistent numerical methods for the
shallow water equations will produce accurate solutions for flows in these regimes.

In the deep ocean, the wavelength of a typical tsunami wave is very long—on the order of
several hundred kilometers—while the depth of the ocean is typically only a few kilometers.
If we define the parameter δ to be the ratio of depth divided by wavelength, the shallow
water approximation comes from assuming that δ is small resulting in the implication that
vertical variation in the flow is negligible. These properties are what allow tsunami energy to
propagate thousands of miles away from a source before being dissipated. (This is another
argument for the shallow water approximation—large vertical variations in the water column
are more quickly dissipated, and not transmitted in the transoceanic waves. Certainly on
the sea floor near a rupturing fault, complex, even turbulent flows must exist, but this
energy is quickly dissipated, and the potential energy associated with the vertical uplift is
what is carried away with the tsunami.) Contrasted to the wavelength, the amplitude of
tsunami waves in the deep ocean are very small—typically less than a meter, sometimes
only a few centimeters. Given the destructive capacity of tsunamis, this seems peculiar
until one considers the potential energy associated with a surface deviation, even less than
a meter, spread over hundreds of kilometers. Figure 5.1 shows a cross section of the Bay of
Bengal from a simulation of the 2004 Sumatra-Andaman tsunami, demonstrating the scales
involved.

As tsunami waves enter shallower waters, or shoal, the diffuse energy associated with
the long wavelength is compressed and focused. Recall that the wave speeds for the shallow
water equations are u±

√
gh. In the deep ocean then, the wave speeds are roughly propor-

tional to the square root of depth. As the leading edge of the waves slow in shallow coastal
regions, the faster moving tails of the long-waves catch up, and the waves are compressed.
As the energy is compressed, the flow regime can change dramatically becoming much more
violent. For instance, the waves can steepen dramatically leading to breaking waves and
propagating bores, as described in section Section 5.4. The flow is further complicated as
waves inundate dry land, and interact with complex shoreline features.

5.3 Deep Ocean Propagation

If one considers the length scales shown in Figure 5.1, a deep ocean tsunami can be thought
of as a tiny perturbation to the steady state, albeit spread over vast areas. Consider
the common steady state—a motionless pool of water over variable bathymetry—with an
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(a) (b)

Figure 5.1: Tsunami scales: cross-section of the Bay of Bengal from a simulation of the 2004
Sumatra-Andaman Tsunami. (a) Cross-section showing the entire depth of the ocean—the
tsunami is a small (invisible) perturbation to the steady state. (b) Cross-section of the
surface for the same simulation. Note the scales of the axes—the wavelength is much
greater than the depth, and the amplitude is less than a few meters.

undisturbed depth H = −b (see Figure 5.2). The motionless steady state arises from a
nontrivial balance of the source term due to variable bathymetry, and the gradient of the
pressure term in the momentum flux,(

hu2 +
1
2
gh2

)
x

= gHHx

= −gHbx. (5.1)

If we consider a small deviation η to the steady state depth,

h(x, t) = H(x) + η(x, t), (5.2)

with some velocity u(x, t), then we can rewrite the shallow water equations

ht + (hu)x = 0, (5.3a)

(hu)t + (hu2)x + ghηx = 0. (5.3b)

Note that the change in the solution comes from the gradient of the small deviations η and
u (small compared to the conserved variables h and hu). When modeling this flow regime
numerically, we are attempting to resolve the tiny deviations from the steady state since
H(x) = −b(x) is a large fixed constant. If we numerically solve the shallow water equations
in conservative form, the flux gradient ghhx and the source term −ghbx are magnitudes
larger than the actual deviation of interest. These terms must be treated precisely or the



62

0
←− η(x, t)

b(x)

H(x)

6

?

Figure 5.2: Deviation from the physically common steady state: a small perturbation of
amplitude η propagates against the background state with depth H(x) = −b(x). The figure
does not depict a realistic scale, since for a real tsunami |η| << H.

solution of interest would be completely lost in noise. For instance, use of the fractional
step methods described in Section 3.6, where the homogeneous shallow water equations
are solved by standard methods followed by an integration of the source term, would fail
miserably for modeling this regime accurately—the numerical noise for typical grid spacings
might be larger than the actual tsunami that we are trying to model!

It has been more standard practice in global tsunami modeling to use an alternative
form of the shallow water equations, using the non-conserved primitive variables,

ηt + ((η − b)u)x = 0, (5.4a)
ut + uux + gηx = 0, (5.4b)

where η ≡ h+ b. The system (5.4) can be easily derived by manipulating the shallow water
equations in their conservative form. Note that for the motionless steady state, all of the
gradients in (5.4) are zero. The motionless steady state balance has essentially been removed
from the equations (5.4) by canceling terms after taking derivatives. Therefore, numerically
preserving the motionless steady state, or resolving small deviations to the steady state is
much more easily accomplished. In fact, most standard finite difference methods based on
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(5.4) will produce accurate solutions in this regime. The drawback to using (5.4) arises in
the other flow regimes of tsunamis.

5.4 Shoaling: Bores and Discontinuities

As the tsunami waves enter shallow waters, the wave energy is compressed and focused
leading to more violent flow characteristics. The nonlinearities in the shallow water equa-
tions dominate in this flow regime, which can lead to breaking waves and turbulent bores.
Figure 5.3 depicts the shoaling of a deep water wave, showing the compression. (Recall the

b(x)

−→

Figure 5.3: Tsunami shoaling: a deep ocean wave is compressed and steepens as the leading
edge of the wave slows before the trailing edge. Further steepening would lead to a breaking
wave followed by a turbulent bore.

steepening phenomenon present in hyperbolic systems leading to shock-waves, described at
the end of Section 2.3.) Standard finite difference solutions to the shallow water equations
can be problematic in this regime, leading to spurious numerical artifacts. In fact, the ac-
tual governing equations (5.4) are no longer valid near shock waves. In this regime we seek
weak solutions to the PDEs (2.1), or solutions to the physically relevant integral form of
the shallow water equations.

Here we must digress briefly to draw a careful distinction between what we will call a
shock-wave—a valid discontinuous mathematical solution to the shallow water equations,
and a turbulent bore—a physical phenomenon prevalent in the near shore region. This
semantic distinction seems to be the source of a large amount of misconception and misun-
derstanding. There are two issues at hand here: first, for modelers, the issue of computing a
true shock-wave solution to the shallow water equations is a difficulty, and second, it is not
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clear how well a shock-wave solution to the shallow water equations represent the physical
turbulent bore or breaking wave. The resolution of the latter issue seems to be that shock-
waves represent turbulent bores surprisingly well, if one considers only the macroscopic
properties of the bore, such as when it forms, its propagation speed, and how it affects
inundation (see [44, 97, 98, 108]). Certainly the shallow water equations do not describe
the flow features right at the edge of the turbulent region of the bore. However, if the bore
is represented mathematically as a discontinuity, the shallow water equations with appro-
priate entropy conditions provide the correct conservation principles for hydrostatic flow
surrounding the bore. For the standard mathematical treatment of this topic, see [50],[87]
or [103]. The empirical success of the shallow water equations is nicely summarized by Titov
and Synolakis in [97]: “... further manifestation of the well-documented but unexplained
ability of the shallow water wave equations to provide quantitatively correct runup results
even in parameter ranges where the underlying assumptions of the governing equations are
violated.”

This work is more concerned with the first issue—numerically converging to correct
discontinuous solutions of the shallow water equations. (Regardless of the crudeness of the
shock-wave approximation to a true physical bore, certainly a correct solution to the shallow
water equations is a better approximation to the bore than a spurious one.) Shock-waves
pose a difficulty for numerical solution for several reasons. First, PDE forms that are conve-
nient for many of the flow regimes, such as (5.4), are no longer valid near discontinuities—
only the physically relevant integral form of the shallow water equations provides the cor-
rect formulation for a shock-wave. Second, nonconservative numerical methods, even those
based on the physically conserved quantities, can converge to spurious discontinuous so-
lutions propagating at incorrect speeds. And finally, discontinuities and steep gradients
can generate spurious oscillations in numerical methods that destroy accuracy, especially
in standard finite difference methods that are based on the validity of Taylor series. It is
necessary to use a conservative numerical method that is based on the integral form of the
shallow water equations, and use appropriate up-winding near shocks, such as that provided
by solving Riemann problems, if we are to converge to correct weak solutions to the shallow
water equations. This creates a difficulty for modeling global propagation, as described in
the previous section.

5.5 Shorelines and Inundation

Ultimately, the goal of tsunami modeling is to determine what happens at the shoreline, since
this is where tsunamis unleash their energy. The difficulties posed by the diverse regimes
already described are further exacerbated by the existence of dry regions and shorelines,
especially if one attempts to model inundation. Inundation modeling poses several numerical
difficulties. First, the shoreline itself is a discontinuity, and methods based on PDEs must
use some form of appropriate up-winding at this interface. Second, these regions have
vanishing depths, and spurious negative solutions are a ubiquitous problem for numerical
methods in this regime. Third, it is not obvious how to determine the movement of the
shoreline based on the flow variables and bathymetry near the shore, and rectifying accurate
shore movement with positivity is difficult.
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There are various types of approaches that have been used for treating the shoreline, the
most common of which is to simply avoid inundation modeling by treating the shoreline as
a fixed wall boundary. Inundation can then be estimated by runup at the boundary. This
approach is certainly not without merit, though it is less common recently since various
methods for modeling inundation have become available. Most shoreline treatments might
be referred to as shoreline-tracking methods. These methods attempt to track the shoreline
explicitly in some way, usually by a heuristic argument. Appropriate boundary conditions,
or up-winding for finite difference methods, are then implemented near the shoreline. Some
of the early shoreline-tracking methods can be found in [2] and [44]. A method developed by
Titov and Synolakis [97], extrapolates the velocity of the fluid at the shoreline to determine
the movement and the position of the shoreline at the next time-step. Grid points are
added or removed appropriately, so that the computational grid covers the wet domain,
with points right at the estimated shoreline. This method produces good comparison with
analytical solutions [97], and surprisingly good comparison with actual tsunami data [99, 96,
98]—another testament to the use of the shallow water equations for inundation modeling.
Another shoreline tracking method used by Knight, found in [70], extrapolates the surface
elevation of the water near the shoreline in the direction perpendicular to linearly sloping
bathymetry, as if water existed beyond the shoreline below the land. The location where
the water surface intersects the land elevation after the time-step determines the shoreline
location for the next time-step.

We will take a different approach, described more fully in the next chapter, by attempt-
ing to capture the shoreline rather than explicitly track it. This is similar in philosophy to
the shock-capturing property of Godunov-type methods, where shocks are captured auto-
matically by solving Riemann problems appropriately near these features.
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Chapter 6

APPROXIMATE AUGMENTED RIEMANN SOLVERS FOR THE
SHALLOW WATER EQUATIONS AND TSUNAMI MODELING

Specialized Riemann solvers are one of the components that allow the finite volume
methods and the wave propagation algorithms to satisfy the requirements demanded by
tsunami modeling—described in Chapter 5. For instance, Riemann solvers can be used to
incorporate the source term from the shallow water equations directly into the updating
waves, allowing accurate near-steady-state calculations required for transoceanic propaga-
tion modeling. Additionally, Riemann solvers allow convergence to entropy satisfying dis-
continuous solutions—the main impetus for which they were originally developed—allowing
convergence to solutions in regions that exhibit shocks and bores. Finally, dry regions and
shorelines can be handled by developing Riemann solvers that maintain positivity, as well
as model the moving wet-dry interface directly—allowing inundation modeling. Typical
Riemann solvers, such as those introduced in Chapter 3, often deal with one or several of
the above difficulties but often fail to handle all of the above difficulties simultaneously.

In this chapter, a novel Riemann solver will be described that we have developed to
deal with the simultaneous difficulties described above. The Riemann solver will be shown
to be well-balanced, a concept that will be described in Section 6.4. This will allow mod-
eling the global propagation regime accurately, since the property implies that the waves
used in defining the numerical update represent deviations from the delicate steady state.
The Riemann solver will also be shown to be depth-positive-definite as well as accurate at
solving the dry-state Riemann problem, making it appropriate for inundation modeling and
shoreline capturing. Further, the solver is well suited for shock-capturing, and in fact will
be shown to be equivalent to the Roe solver near shocks. Lastly, the solver does not require
an entropy fix such as the Roe solver. It should be emphasized that although this particular
solver is novel, recently there has been considerable research directed toward developing
solvers with these properties (e.g. [26, 5]). However, the form of this solver is particularly
well suited for use with the wave propagation algorithms described in Chapter 3.

6.1 Augmented Systems

We can write the shallow water equations as a homogeneous hyperbolic system, by defining
the vector q̃ to be the original conserved quantities q augmented by the bathymetry function
b,

q̃ =

 hhu
b

 . (6.1)
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(In this thesis q̃ will be used to denote various different augmented state variables.) The
shallow water equations (in PDE form) are then equivalent to the following larger system,

q̃t +B(q̃)q̃x = 0, (6.2)

where

B(q̃) =

 0 1 0
−u2 + gh 2u gh

0 0 0

 . (6.3)

The system (6.2) is no longer a conservation law since B(q̃) is not a Jacobian, but it is a
nonlinear hyperbolic system. The nonlinear matrix B(q̃) has a full set of eigenvectors—two
are the same as the eigenvectors for the homogeneous shallow water equations (with a zero
third component for b),

r1 =

 1
u−

√
gh

0

 , r2 =

 1
u+

√
gh

0

 , (6.4)

with the associated eigenvalues

λ1 = u−
√
gh, λ2 = u+

√
gh. (6.5)

The third eigenvector of the matrix (6.3)

r3 =

 −gh
0

−u2 + gh

 (6.6)

has a zero eigenvalue λ3 ≡ 0. The characteristic field associated with r3 is therefore linearly
degenerate and the characteristics are straight vertical lines in the x–t plane that carry the
variation in b. We will refer to this characteristic field as the steady state field, since a
smooth steady state is equivalent to variation in this field

q̃t = 0
⇒B(q̃)q̃x = 0, (6.7)

(we know from Theorem 4.3 in Section 4.4, that smooth variation cannot coexist with an
identically zero eigenvalue in one of the other nonlinear characteristic fields). It is interesting
to note that the eigenspace of B(q̃) becomes degenerate if one of the eigenvalues λ1 or λ2

becomes zero. However, recall from Section 4.4 that this can only occur where bx = 0, and
hence it is irrelevant since all variation in the augmented state vector occurs in the phase
direction of the standard fields r1 and r2 at that point in phase space.

Although the system (6.2) is only valid for smooth solutions, the Riemann problem for
the system can be analyzed by including the Rankine-Hugoniot relations for shock solutions
from the standard shallow water equations. See, for example, [16] or [26] for a discussion of
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some properties of systems such as (6.2). Of course, unlike Riemann problems for homoge-
neous integral conservation laws, (6.2) is not classically defined for problems where part of
the solution (b(x)) is non-differentiable. For this system, the Riemann problem might better
be thought of as an approximation to a slightly smoothed problem. For a more rigorous
discussion involving more generalized functions, see [35]. Augmented systems that elimi-
nate the source term by introducing an additional variable and nonconservative products
are described more generally in [10]. Some methods for the shallow water equations with
bathymetry that include additional solution variables and transformations of the solution
variables are described in [26].

An additional augmented system can be derived by first considering a governing equation
for the flux of a hyperbolic conservation law. Consider a general hyperbolic conservation
law (with source term)

qt + f(q)x = ψ(q, x). (6.8)

Multiplying (6.8) by the Jacobian f ′(q) gives

f ′(q)qt + f ′(q)f(q)x = f ′(q)ψ(q, x). (6.9)

By noting that f ′(q)qt = f(q)t, equation (6.9) implies a hyperbolic system for the flux f(q),

ft + f ′(q)fx = f ′(q)ψ(q, x), (6.10)

where the dependence of f on q has been dropped. For the shallow water equations, where
q2 = f1, the first equation of (6.10) simply reproduces the momentum equation for the
shallow water equations. The second equation in (6.10) is a governing equation for f2 =
φ = (hu2 + 1

2gh
2), which can be written as

φt + (−u2 + gh)(hu)x + (2u)φx + (2ugh)bx = 0. (6.11)

Of course, the flux is entirely determined by the solution to the shallow water equations,
but (6.11) will provide some theoretical insight into how the flux behaves. By defining the
additional augmented state variable (first introduced in Section 4.4)

q̃ =


h
hu
φ
b

 , (6.12)

and including equation (6.11), the shallow water equations can be written as an overdeter-
mined, augmented homogeneous system

q̃t + B̃(q̃)q̃x = 0, (6.13)

where

B̃(q̃) =


0 1 0 0

−u2 + gh 2u 0 gh
0 −u2 + gh 2u 2ugh
0 0 0 0

 . (6.14)
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The matrix B̃(q̃) has the eigenvectors

r1 =


1

u−
√
gh(

u−
√
gh
)2

0

 , r2 =


1

u+
√
gh(

u+
√
gh
)2

0

 , r3 =


0
0
1
0

 , r4 =


−gh

−u2+gh

0
−gh

1

 , (6.15)

with associated eigenvalues

λ1 = u−
√
gh, λ2 = u+

√
gh, λ3 = 2u, λ4 = 0. (6.16)

Note that r1 and r2 correspond to the nonlinear fields associated with the standard shallow
water equations. The field associated with r4 is the linearly degenerate steady state field
described in the preceding discussion, yet now the vector also dictates how the flux φ should
vary through the steady state field. The eigenvector r3 has a nonzero component only in
the “direction” (in phase space) of φ. This field is physically irrelevant, since the flux is only
a function of h and hu, and cannot vary independently. Since the system (6.13) is valid for
smooth solutions, it must be that solutions to the shallow water equations are never simple
waves corresponding to this field. This is confirmed if we note that through any simple wave

f(q)x = f ′(q)qx = c(x)λprp, (6.17)

for p = 1, 2, and some scalar function c(x). Considering the eigenstructure for the shallow
water equations, (6.17) implies that through a simple wave of the first or second family,

∂

∂x

 hhu
φ

 = c(x)

 1
λp

(λp)2

 , (6.18)

where (λp)2 is the pth eigenvalue squared. Although nonphysical, we might heuristically
interpret r3 as a field that would carry variation in the flux φ if it was another variable
independent of h and hu.

6.2 An Approximate Riemann Solver Based on an Augmented System

In this section we will introduce an approximate Riemann solver, before describing its
features more fully in the following sections while showing its relation to various other
Riemann solvers. It is hoped that this solver will be viewed as unifying many of the strengths
of several solvers with diverse properties. The solver is introduced first in a simplified basic
form, before describing some corrections in the sections that follow that supply some added
properties.

Given a Riemann problem for the shallow water equations, we consider the corresponding
Riemann problem for the augmented system (6.13),

q̃t + B̃(q̃)q̃x = 0, (6.19a)
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with piecewise constant initial data

q̃(x, 0) =

{
q̃l if x < 0
q̃r if x > 0

, (6.19b)

where, of course,

q̃l =


hl

(hu)l
φl
bl

 , and q̃r =


hr

(hu)r
φr
br

 . (6.19c)

We then approximate the solution to (6.19), by the decomposition

∆q̃ = q̃r − q̃l =
4∑
p=1

αpr̃p, (6.20a)

where r̃p are local approximations to the eigenvectors of B̃,

r̃1 =


1
s1E

(s1E)
2

0

 , r̃2 =


1
s2E

(s2E)
2

0

 , r̃3 =


0
0
1
0

 , r̃4 =


S+
−(ql,qr)

−λ̃1λ2(ql,qr)

0
S+
− (ql, qr)

1

 . (6.20b)

The values s1,2E are the Einfeldt speeds defined in Section 3.3, and S+
− (ql, qr) and λ̃1λ2(ql, qr)

are the averages defined in Section 4.4. We then propagate the waves defined by the de-
composition at speeds

s1 = s1E , s2 = s2E , s3 =
1
2
(s1E + s2E), s4 = 0. (6.20c)

The third eigenpair, r3 and s3, are only one of several options presented here for complete-
ness. Properties of this eigenpair and other options will be discussed in Section 6.7 when we
discuss entropy fixes. We will refer to (6.20) as an augmented approximate Riemann solver.

Note that we only need two components of the waves defined by (6.20) in order to update
the solution. In order to maintain conservation, we will use the waves associated with the
flux components to update the solution directly, based on the f -wave method described in
Chapter 3. This will be described more in Section 6.4.

A Riemann solver that decomposes an augmented variable, such as that defined by (6.20),
can be related to simple relaxation schemes such as those described in [49]. This connection
is described by LeVeque and Pelanti [69] and also in the text [10]. These connections are
not further explored here.
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6.3 Shock Preservation and Relation to the Roe Solver

Solutions to the shallow water equations, and hyperbolic systems in general, typically consist
of regions that are smoothly varying punctuated by abrupt jump discontinuities correspond-
ing to shocks. Numerically then, Riemann problems that are typically encountered are of
two types: those that correspond to a discretization of smoothly varying data, and those
with data corresponding to a shock discontinuity. The latter case was one of the original
motivations for solving Riemann problems to begin with. For this latter case, where the true
solution is a jump discontinuity, a Riemann solver that approximates the true solution with
jump discontinuities should at least produce the true shock. This was one of the strengths
of the Roe solver and the Roe averages introduced in Chapter 3, and we would like to en-
sure that our Riemann solver maintains this property. That is, given initial data ql and qr
that lie on a Hugoniot locus, our Riemann solver should produce the exact solution. Recall
that the Roe solver accomplished this by ensuring conservation, which must correspond to
the Rankine-Hugoniot conditions in the case of a single discontinuity. That is, the set of
relations

s(qr − ql) = f(qr)− f(qr) = Â(qr − ql), (6.21)

imply that (qr − ql) is an eigenvector of Â with eigenvalue s. The Roe decomposition
therefore reproduces the exact solution. Considering the shallow water equations, (6.21)
implies that the following relationship is satisfied by the exact solution hr

(hu)r
φ(qr)

−
 hl

(hu)l
φ(ql)

 = (hr − hl)

 1
λ̂p

(λ̂p)2

 = (hr − hl)

 1
sp

(sp)2

 . (6.22)

Also, the fact that the Roe eigenvalue λ̂p corresponds to the true shock speed implies that the
Einfeldt speed spE will be the Roe speed λ̂p. This follows from considering the characteristic
structure of a shock wave in either family, and recalling that entropy satisfying shocks must
have the characteristics impinging on the shock wave. Therefore, in the case where the
Riemann data lies on a Hugoniot locus and the true solution corresponds to a single shock,
the decomposition (6.20) will produce the exact solution since

hr
(hu)r
φ(qr)
br

−


hl
(hu)l
φ(ql)
bl

 = (hr − hl)


1
spE

(spE)
2

0

 . (6.23)

More typically near a shock, the Riemann data will have a large jump that corresponds
to the shock wave, and very small deviations that correspond to the small transitions in
the other fields. For instance, a small variation in bathymetry from adjacent grid cells will
produce weak waves for rk, k 6= p. However, the large jump that corresponds to the shock
is propagated correctly.

If we ignore variable bathymetry, note that if both Einfeldt speeds s1,2E correspond to the
Roe speeds λ̂1,2, the the approximate solver (6.20) corresponds to the Roe solver, regardless
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of the form of r3. This is because the jump in q̃ lies in the two dimensional space spanned
by 

1
λ̂1

(λ̂1)2

0

 , and


1
λ̂2

(λ̂2)2

0

 , (6.24)

which follows from the conservative property of the Roe solver:

f(qr)− f(ql) = Â(qr − ql) = Â
2∑
p=1

αpr̂p =
2∑
p=1

αpλ̂pr̂p. (6.25)

Considering the shallow water equations, (6.25) implies that hr
(hu)r
φ(qr)

−
 hl

(hu)l
φ(ql)

 =
2∑
p=1

αp

 1
λ̂p

(λ̂p)2

 . (6.26)

Therefore, the decomposition (6.20) would result in α3 = 0. For typical Riemann problems
that correspond to discretized smooth data, or perhaps shocks, we expect |α3| << |αp|,
p 6= 3, since, if one of the Einfeldt speeds is not the Roe speed the two will typically be very
close. An exception occurs in the case of a strong rarefaction, where either ul−

√
ghl << λ̂1

or ur +
√
ghr >> λ̂2. This will be explored more fully when we discuss entropy fixes and

strong rarefactions in Section 6.7.

6.4 Source Terms and Well-Balancing

In Section 5.3 it was shown that accuracy for tsunami modeling will require our numerical
method to perfectly preserve certain steady states, and more importantly, resolve tiny de-
viations to the steady state. The steady state arises from a nontrivial balance of the source
term and the flux gradient, as described in Chapter 4 and Chapter 5. At first glance it
might seem that the Riemann solver defined by (6.20) does not include the source term,
since it does not appear in the variables decomposed into the propagating waves. However,
recall that our numerical update comes from the re-averaging effect of waves moving into
the grid cells and second order corrections based on those waves. The wave associated with
the linearly degenerate steady state field, r̃4, is a contact discontinuity that remains at x = 0
producing the contribution of the source term.

6.4.1 Relation to the f-wave Method

In Section 3.3 the f -wave method was introduced as an approach for dealing with problems
where the solution is discontinuous at the cell interfaces, either due to a variable coefficient
flux function, or in the case described in Section 3.6, due to a point source terms concentrated
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at the cell interfaces. In this latter case, recall that the point source term is accounted for
by subtracting it from the flux function before performing the decomposition

f(qr)− f(ql)−Ψ∆x =
Mw∑
p=1

βprp, (6.27)

where Ψ∆x is some approximation of the source term,
∫ xr

xl
ψ dx, and rp, p = 1, · · · ,Mw,

are some set of suitable approximations to the eigenvectors of the Jacobian. The resulting
waves Zp = βprp moving into the surrounding grid cells then update the solution directly.
For the shallow water equations, (6.27) takes the form[

(hu)r − (hu)l
φr − φl −

∫ xr

xl
ψ dx

]
=

2∑
p=1

βp
[

1
λp

]
, (6.28)

where
∫ xr

xl
ψ dx is some approximation to −

∫ xr

xl
ghbx dx, based on ql,bl,br and qr, and λp

are approximations to the eigenvalues of the Jacobian. If we now consider the augmented
decomposition (6.20), it must be that α4 = (br − bl), since this is the only eigenvector with
a nonzero fourth component. Therefore, ultimately the decomposition is equivalent to that
obtained by first subtracting (br − bl)r̃4 from q̃, followed by a decomposition of the first
three components of q̃ onto the first three components of the remaining eigenvectors. If we
consider just the flux components of such a decomposition, which are what get used for the
numerical update, we have[

(hu)r − (hu)l
φr − φl − S+

− (ql, qr)(br − bl)

]
=

2∑
p=1

αpspE

[
1
spE

]
+ β3r̃3. (6.29)

Since S+
− (ql, qr)(br − bl) is an approximation to

∫ xr

xl
−ghbx dx, as shown in Section 4.4,

equation (6.29) elucidates the relation between the standard f -wave approach, equation
(6.28), and the augmented decomposition (6.20). Note that the form of r̃4 and the first
component of q̃—the depth h—ultimately determine the difference since they affect the
decomposition of the flux into the three vectors in (6.29) rather than the two in (6.28).

6.4.2 Well-Balancing and Preservation of Steady States

A well-balanced method generally is one that perfectly preserves certain discrete steady state
data. That is, if we take a smooth steady state solution to a hyperbolic conservation law
with a source term, and use some relevant spatial discretization of that solution for an initial
condition, a well-balanced method will have an identically zero numerical update. Often
a method might be referred to as well-balanced even if it preserves only certain important
steady states. For instance, various well-balanced schemes have been developed for the
“lake at rest” Riemann problem for the shallow water equations, where ul = ur = 0, and
hl+ bl = hr + br (e.g. [5, 12, 27, 77]). For a discussion of well-balanced schemes in the more
general context of hyperbolic systems with source terms see the work of Greenberg, LeRoux
et al [38, 39], or the recent text [10] by Bouchut.
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The augmented Riemann solver (6.20) is well-balanced with respect to the lake at rest
problem, as well as the steady states with nonzero velocities described in Section 4.4. Note
that if Riemann data comes from evaluating any smooth steady state at two points, xl and
xr, surrounding monotonically varying bathymetry, the Riemann solver (6.20) will produce
no updating waves. This follows immediately from Theorem 4.3, and the form of the steady
state vector, r̃4, which must span the initial jump (q̃r − q̃l). Such steady state Riemann
data is preserved as a contact discontinuity at x = 0, which has no effect on the solution.
Figure 6.1 depicts the depths and bathymetry of a Riemann solution given steady state data
for a motionless steady state as well as a steady flow where hur = hul 6= 0. This property of

(a) (b)
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br
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Figure 6.1: Depths of steady state Riemann solution, for the motionless steady state and
steady flow with velocity. (a) The motionless steady state problem, ul = ur = 0. The
jump in the depth hr − hl satisfies hr + br = hl + bl. This jump is maintained as a contact
discontinuity in the approximate augmented Riemann solver (6.20), due to the form of r̃4.
(b) A steady state problem where hul = hur 6= 0. The steady state is maintained again as
a contact discontinuity, due to the form of r̃4. However, in this case, the nonzero velocities
dictate that hr + br 6= hl + bl.

the solver (6.20) when given Riemann data that approximates a smooth steady state might
be thought of as analogous to the Roe solver in the event of a single shock. Note however, in
the former case the Riemann solution is numerically the correct approximation to a relevant
smooth steady state, whereas in the latter case the approximate Riemann solution is exactly
the true solution to the Riemann problem.

For smooth steady states surrounding regions of monotonically varying bathymetry, we

know that the averages S+
− (ql, qr) and

S+
−(ql,qr)

−λ̃1λ2(ql,qr)
are well defined because of the results of

Section 4.4. (In fact, the quantities are well defined even when b has an extremum whenever
br − bl 6= 0, yet S+

− might be zero if there is a sonic point where bx = 0.) We also know the
bound

−gmax(hl, hr) ≤ S+
− (ql, qr) ≤ −gmin(hl, hr), (6.30)

for such problems. Of course, the initial Riemann data, q̃l and q̃r might not be steady
state data, in which case we must ensure that r̃4 is defined appropriately, and produces a
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consistent Riemann solver. This can be accomplished by enforcing the bound (6.30) on the
third component of the steady state vector, (r̃4)3, which is only guaranteed for the smooth
steady state Riemann data. Considering (6.28) and (6.29), this is equivalent to requiring

gmin(hl, hr)|br − bl| ≤ |Ψ|∆x ≤ gmax(hl, hr)|br − bl| (6.31)

in the f -wave method, where typically Ψ∆x = −gh̄(br − bl), where h̄ is some consistent
average of hl and hr. When viewed in this light, enforcing the bounds (6.30) is simply
equivalent to ensuring that (r̃4)3 is a consistent approximation to −

∫ xr

xl
ghbx dx based on

hl and hr, even when the Riemann data is far from a steady state.
We also must ensure that the first component of the steady state vector, (r̃4)1, which

corresponds to the jump in depth across the contact discontinuity at x = 0, is bounded
appropriately when the initial Riemann data is far from a steady state. This will be taken
up in Section 6.5, where bounds on this term will be introduced to ensure positivity of the
Riemann solution. Recall that for the steady state problems discussed in Section 4.4, this
term must be negative for problems that are entirely subsonic, and positive for problems
that are entirely supersonic.

Typically (r̃4)1 and (r̃4)3 are well defined simply by the averages S+
− (ql, qr) and λ̃1λ2(ql, qr),

and bounds on these terms will not change there value. An exception occurs for Riemann
problems that have a sonic point, either as a transonic rarefaction or a stationary shock.
The simple pratical fix for this type of problem will be taken up Section 6.6.

6.5 Preserving Positivity and Relation to the HLLE Solver

6.5.1 Relation to the HLLE solver

In Section 3.3 the HLL type of approximate solvers were introduced. Recall that these
solvers approximate the Riemann solution with two simple discontinuities propagating at
predetermined speeds. Conservation then determines the middle state q∗. Recall also that
the HLLE solver was a type of HLL solver that arises when the Einfeldt speeds s1,2E are
used for the propagation speeds. This solver had several nice properties such as providing
a simple entropy fix as well as preserving positivity of the middle state depth—the Einfeldt
depth h∗E . In this section we will show that the augmented solver (6.20) is equivalent to the
HLLE solver for the mass update when the source term is neglected, implying that, over
constant bathymetry, the solver is depth positive definite in the sense of Definition 3.2. For
variable bathymetry, we will introduce some bounds on the first component of the steady
state vector, r̃4, that will maintain this property in the presence of a source term.

Consider a simple Riemann solver for the homogeneous shallow water equations, where
the initial jump in the conserved quantities is decomposed into the two vectors[

hr
(hu)r

]
−
[
hl

(hu)l

]
=

2∑
p=1

αp
[

1
spE

]
, (6.32)

and the resulting waves Wp = αprp are propagated at the speeds spE . This Riemann solver is
not necessarily conservative, except for the case that s1,2E = λ̂1,2, resulting in the conservative
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Roe solver. However, considering the re-averaging effect of the first component of the
propagating waves W1,2, conservation of mass requires

α1s1E + α2s2E = (hu)r − (hu)l. (6.33)

Since this condition is exactly the second equation of (6.32), the method must conserve
mass. Note also that since the second component of each vector rp corresponds to the speed
of the wave, using the jump in depth multiplied by speed of the moving discontinuity to
define the update to the mass equation—as in the standard wave propagation algorithm—
must be the same as using the jumps in the momentum directly to update the mass—as
in the f -wave approach. Therefore, the two effective middle state depths (Definition 3.1)
implied by the second equation in (6.32) are equivalent to the actual single middle state
depth implied by the first equation. Stated more broadly, a consistent use of the first or
second equation in (6.32) to update the mass equation produces the same numerical result.

Since the HLLE method conserves mass with only two jump discontinuities propagating
at the same speeds as (6.32), the HLLE method and (6.32) must be identical for the mass
component. (This can be further verified—the mass decomposition in (6.32) implies a
middle state depth h∗, where, α1 = hr−h∗ and α2 = h∗−hl. Therefore, (6.33) is equivalent
to (3.26)—the equation that defines h∗E from Theorem 3.1.) Since we saw that the HLLE
method preserves positivity of depth from Theorem 3.1, the method implied by (6.32) must
also preserve positivity in the sense of Definition 3.1.

6.5.2 Preserving Positivity with the Augmented Decomposition

For the augmented decomposition (6.20), the initial jump q̃r − q̃l is ultimately decomposed
into four vectors, representing four propagating discontinuities or waves. Writing the de-
composition in (6.20) as


hr

(hu)r
∗
∗

−


hl
(hu)l
∗
∗

 =


1 1 0

S+
−(ql,qr)

−λ̃1λ2(ql,qr)

s1E s2E 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



α1

α2

α3

α4

 , (6.34)

allows us to concentrate on the depth and momentum components of the decomposition.
For the case of constant bathymetry, where br − bl = α4 = 0, it is clear that (6.34) is
identical to the decomposition (6.32) for depth and momentum. Like the HLLE method
then, when there is constant bathymetry our method (6.20) must preserve positivity of
depth in the sense of Definition 3.2. Of course, once variable bathymetry is introduced to
the Riemann problem, there exists a jump in depth at x = 0 due to a nonzero α4, thereby
changing the terms α1 and α2, and creating two middle state depths—h∗l and h∗r . See
Figure 6.2 depicting such an approximate Riemann solution. Recall from Section 3.3, where
it was shown that the existence of two effective middle state depths, h∗l and h∗r , prevented
maintaining effective positivity when using the f -wave approach, where the momentum
decomposition alone updated the mass equation. However, decomposing both the depth
and momentum in the augmented decomposition (6.20), will allow us to control the effective
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middle state depths that come from the momentum decomposition, by controlling the actual
middle state depths h∗l and h∗r . That is, note that the jumps in the second component of
the decomposition (6.34) are precisely the jumps in the first component multiplied by the
speeds of the propagating waves. Therefore, the effective middle state depths defined by
the second component of (6.34) are exactly the same as the actual depths defined by the
first component. Therefore, if we can ensure that the actual middle state depths remain
non-negative, then (6.20) will be depth positive definite in the sense of Definition 3.2.

(a) (b)
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Figure 6.2: Preserving the depth positive definite property of the augmented solver when
variable bathymetry exists. The depth of an approximate Riemann solution to a subsonic
problem with two rarefactions is shown at some time t > 0. The single middle depth h∗E
that would arise if there was no source term is shown as a dashed line. If a momentum
source term from variable bathymetry exists, it implies that there is a jump in the depth at
the interface x = 0. Since there is no source of mass, the amount of mass between the two
propagating discontinuities is fixed, regardless of the jump in depth at x = 0 . Since this
total amount of mass is equivalent to that from the HLLE solver, positivity of the actual
and effective depths—h∗l and h∗r—are maintained as long as the jump at the interface is
bounded. (a) The maximum jump (h∗r − h∗l ) that allows conservation together with h∗r ≥ 0.
For subsonic flow, this situation implies br − bl > 0. (b) A similar case when br − bl < 0.

Since the second component of (6.34) ensures conservation of mass, we can relate h∗l and
h∗r to the single conservative middle state depth that would arise if there was no jump in
depth at x = 0. We will denote this depth, h∗E , since it corresponds to the HLLE depth.
For a subsonic problem, where s1E < 0 < s2E , conservation of mass requires

s2E (hr − h∗E) + s1E (h∗E − hl) = s2E (hr − h∗r) + s1E (h∗l − hl) , (6.35)

implying intuitively that as we increase either h∗l or h∗r the other must decrease. If we
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increase h∗r until h∗l = 0, (6.35) implies that

h∗r =
(s2E − s1E)

s2E
h∗E . (6.36)

Similarly, if h∗r = 0, we have

h∗l =
(s2E − s1E)
−s1E

h∗E . (6.37)

If we prevent h∗l or h∗r from becoming negative, then (6.36) and (6.37) imply a bound on
h∗r − h∗l ,

(s2E − s1E)
s1E

h∗E ≤ h∗r − h∗l ≤
(s2E − s1E)

s2E
h∗E . (6.38)

Since, the method (6.20) implies

h∗r − h∗l = (br − bl)(r̃4)1, (6.39)

(6.38) would be satisfied if

(s2E − s1E)
s1E

h∗E ≤ (br − bl)(r̃4)1 ≤
(s2E − s1E)

s2E
h∗E . (6.40)

Note that the first term in (6.40) is negative and the last is positive for subsonic flow.
Since (r̃4)1 is an approximation to

(
−gh/(−λ1λ2)

)
, we expect this term to be negative for

subsonic flow and positive for supersonic flow. For steady state problems, we know that
(r̃4)1 will be appropriately defined by

(r̃4)1 =
S+
− (ql, qr)

−λ̃1λ2(ql, qr)
. (6.41)

However, for subsonic problems that are far from a steady state, we may need to bound
(r̃4)1 by the conditions,

(s2E − s1E)
s1E

h∗E
(br − bl)

≤
(
r̃4
)1 ≤ −1 if br − bl > 0, (6.42a)

(s2E − s1E)
s2E

h∗E
(br − bl)

≤
(
r̃4
)1 ≤ −1 if br − bl < 0, (6.42b)

These bounds will ensure that the middle state depths are positive in the case of subsonic
flow.

For supersonic flow, we expect (r̃4)1 to change sign, however, bounding this term is not
necessary for guaranteeing positivity since all of the waves move in one direction. This is
because conservation of mass ensures that multiple middle state depths arising from the
multiple waves integrate to the single nonnegative middle state depth, h∗E . Since all of the
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waves move in the same direction, the numerical effect of a negative middle state depth is
balanced by a positive one. In fact, the term (r̃4)1 has no effect on the numerical solution
at all for supersonic flow, at least when considering the first order update. (Since limiters
applied to second-order corrections are based on comparing individual wave families from
adjacent cells, bounding the term (r̃4)1 for supersonic flow may have some unforeseen benefit,
since it would change the weights in the decomposition (6.20) into different wave families.
This has not yet been explored, however, the bounds that prevent negative middle state
depths are easily determined.) To maintain positivity of all of actual and effective middle
state depths, using arguments similar to those above for subsonic problems, the following
bounds suffice:

0 ≤
(
r̃4
)1 ≤ s2E − s1E

s1E

h∗E
(br − bl)

if br − bl > 0, (6.43a)

0 ≤
(
r̃4
)1 ≤ −hl

(br − bl)
if br − bl < 0, (6.43b)

when 0 < s1E < s2E , and

0 ≤
(
r̃4
)1 ≤ hr

(br − bl)
if br − bl > 0, (6.44a)

0 ≤
(
r̃4
)1 ≤ s2E − s1E

s2E

h∗E
(br − bl)

if br − bl < 0, (6.44b)

when s1E < s2E < 0.
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6.6 The Resonant Problem and Near-Sonic Problems

In defining the steady state vector r̃4 for the augmented solver, it has been assumed that all
of the averages used for the components are well defined. For problems that are subsonic,
λ1λ2(ql, qr) and λ̃1λ2(ql, qr) are negative, and S+

− (ql, qr) is a consistent approximation for

−gh. The same is true for supersonic problems, accept that λ1λ2(ql, qr) and λ̃1λ2(ql, qr)
are each positive. This reflects the fact that for steady subsonic problems, hx and bx have
opposite signs and for steady supersonic problems they have the same sign. However, it is
possible to have Riemann problems where either λ1λ2(ql, qr) and λ̃1λ2(ql, qr) are opposite
in sign or perhaps one is zero. This problem can be better understood by considering the
augmented system discussed in Section 6.1. Note that if one of the eigenvalues λ1(q) or λ2(q)
passes through zero, the corresponding eigenvector r1(q) or r2(q) (in (6.4)) is identical to the
steady state eigenvector r3(q) (in (6.6)), and a full set of linearly independent eigenvectors no
longer exists. Therefore, at such a point, there is no eigenvector with a component allowing
variation in the additional variable b. This is a more general problem for augmented systems
where a nonhomogeneous system is converted to a homogeneous one with nonconservative
products, such as (6.2). This is known as the resonant problem, and it is discussed in more
detail in [16]. In Section 6.1, it was pointed out that this is not relevant for exact physical
solutions, since a sonic point cannot occur over variable bathymetry, and must occur at
an extremum in b. However, it is possible to encounter Riemann problems with data that
results in a critical point in the homogeneous solution, together with a jump in (br − bl).
For instance, if a steady state with a critical point at a local extremum in b is discretized,
such a Riemann problem might result. For such a problem, recall from Section 4.4, that bx
and hx are of the same sign to one side of the critical point and opposite sign to the other.
The same relationship exists for a stationary shock over smoothly varying bathymetry. For
the resulting Riemann problems, the relationship between (hr−hl) and (br− bl), and hence
the sign of (r̃4)1, is unclear.

We can deal with problems where the standard definitions used in r̃4 are inconsistent, by
simply checking if the problem has data that reflects a possible sonic point. In such a case,
(r̃4)1 is set to zero, and S+

− (qr, ql) is defined as −gh̄. A simple sonic check can be performed

by simply looking at the quantities, λ1(ql)λ1(qr), λ2(ql)λ2(qr) and λ̃1λ2(ql, qr)λ1λ2(ql, qr).
If any of these quantities is less than or equal to zero, the Riemann data contains a sonic
point. In practice it makes sense to compare the sign of λ1λ2 and λ̃1λ2 with the sign of s1Es

2
E ,

so that for subsonic or supersonic problems, all of the definitions used in the eigenvectors
are consistent with the direction that the waves propagate.

Perhaps fortuitously, the two dimensional space spanned by r̃4 and r̃k does not depend
on (r̃4)1, when skE = 0. Therefore, setting (r̃4)1 = 0 has no effect on the approximate
solution for problems where skE is zero—a portion of the jump (q̃r− q̃l) is projected onto this
two-dimensional space, and these two waves remain at the interface. Considering (4.94),
the space spanned by r̃4 and r̃k approximates the true jump in the steady state solution
when there is a stationary shock in the kth family over variable bathymetry.
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6.7 Rarefactions and Entropy Fixes

In this section we will discuss alternatives for the approximate eigenvector r̃3 used in the
Riemann solver (6.20). Although the Einfeldt speeds provide an entropy fix for the patholog-
ical expansion shock, which can result from trancritical rarefactions, these large speeds can
produce approximate solutions with poor accuracy for these and similar types of Riemann
problems. It will be shown that the vector r̃3 can be used to produce better numerical
approximation for Riemann problems with strong, possibly transcritical rarefactions. In
this section we will consider Riemann solutions to the homogeneous shallow water equa-
tions with no variable bathymetry, since Riemann problems with large transitions in the
two nonlinear fields are our main concern here.

6.7.1 The Commonly Encountered Riemann Problem and Weak Transitions

When the augmented decomposition (6.20) was introduced in Section 6.2, it included

r̃3 =
[
0 0 1 0

]T
, (6.45)

as an additional eigenvector in the decomposition of (q̃r−q̃l). This is in fact an eigenvector of
the augmented system (6.3), but as pointed out in Section 6.1, this eigenvector is nonphysical
since the flux φ is a function only of h and hu. For smooth solutions, f(q)x = f ′(q)qx,
therefore, at any point the vector  hhu

φ


x

, (6.46)

must lie in the two dimensional space spanned by
 1
λ1(q)

(λ1(q))2

 ,
 1
λ2(q)

(λ2(q))2

 . (6.47)

As described in Section 6.3, solutions to hyperbolic conservation laws typically have
regions with smooth variation in the solution, punctuated by abrupt shock wave disconti-
nuities. If we consider a discretized smooth solution, evaluated at two points xl and xr with
xr − xl = ∆x, using Taylor series it is easy to show that hhu

φ


r

−

 hhu
φ


l

=
2∑
1

αp

 1
λ̄p

(λ̄p)2

+O(∆x2), (6.48)

where λ̄p is any consistent approximation to λp(q) based on ql and qr. For typical Riemann
problems in smooth varying regions, spE ≈ λp(ql) ≈ λp(qr), and for the decomposition hhu

φ


r

−

 hhu
φ


l

=

 1 0 1
s1E s2E 0

(s1E)
2 (s2E)

2 1

α1

α2

α3

 , (6.49)
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we expect α3 to be much smaller in magnitude than α1 and α2. This type of Riemann
problem has weak or small transitions in the characteristic families, whether they be small
shocks or slight rarefactions. This is depicted in Figure 6.3 (a). However, in the presence of a
physical shock wave in the solution, the Riemann problem might contain much larger jumps
(q̃r − q̃l), and because of nonsmoothness, (6.48) is no longer valid. However, as described in
Section 6.3, in the presence of a shock wave, α3 ≈ 0 in the decomposition (6.49). In fact,
because of the conservative properties of the Roe solver, if s1,2E = λ̂1,2, then α3 = 0 in (6.49).

For typical Riemann problems (6.45) is therefore an appropriate choice for r̃3, due to
several reasons. First, it allows maintaining the positive preserving properties described
previously. Second, as described in Section 6.5, by setting the first two components of r̃3 to
zero, the propagating discontinuities implied by (6.20) are conservative with respect to mass,
even when the Roe speeds are not used. Third, we need a complete set of linearly indepen-
dent eigenvectors for the approximate Riemann solver, and preferably a well-conditioned
R̃.

6.7.2 Strong Rarefactions

Although much less common for typical grid spacings, we might encounter an exceptional
type of Riemann problem that contains a large rarefaction in one or both of the characteristic
families. For instance, if we have a strong rarefaction in the first characteristic family, as

(a) (b)

x = 0

t

q∗ qrql

x = 0

t

q∗ qrql

Figure 6.3: A common Riemann problem compared to one with a large rarefaction. Both
Riemann problems depict a small shock in the second family, and a rarefaction in the first
family. The 2-characteristics are shown only near the shock wave, and the 1-characteristics
are shown through the rarefaction in both figures. (a) A typical Riemann problem that
arises for regions where the solution is smoothly varying, showing that the characteristic
transitions are very small in both families. For these types of problems, ql ≈ qr, implying
that λp(ql) ≈ λp(qr) ≈ spE . (b) An exceptional Riemann problem with a large transonic
rarefaction in the first characteristic family. Note that s1E = λ1(ql) << λ1(q∗).
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shown in Figure 6.3 (b), it is no longer true that s1E ≈ λ1(q∗). If we consider such a Riemann
solution in h-hu phase plane as shown in Figure 6.4, the rarefaction traces out a smooth
integral curve that is not well approximated by the vector[

1
s1E

]
, (6.50)

which is tangent to the integral curve at one of its endpoints. In fact, for a strong rarefaction,
the vectors [

1
λ1(ql)

]
and

[
1

λ1(q∗)

]
, (6.51)

might be far from parallel in phase space. The decomposition (6.49) approximates the first
wave with only one vector based on λ1(ql) = s1E . Since the augmented decomposition (6.20)
provides a larger set of vectors, we can better approximate the solution in phase space as a
linear combination of vectors, by using r̃3 as another approximation to the integral curve.
For instance, the decomposition hhu

φ


r

−

 hhu
φ


l

=

 1 1 1
s1E s2E λ1(q∗)

(s1E)
2 (s2E)

2 (λ1(q∗))

α1

α2

α3

 , (6.52)

would produce a much better approximation to the actual Riemann problem in phase space
when λ1(q∗) >> s1E . See Figure 6.4.

It therefore makes sense to use an approximation to
1

λk(q∗)
(λk(q∗))2

0

 , (6.53)

for r̃3 in (6.20), when there is a strong rarefaction in the kth characteristic family. Recall
from section Section 4.2 that the entire Riemann structure can be determined by the simple
evaluation (4.33). If a rarefaction exists in either family, the Riemann invariants (4.19) hold
through those rarefactions, and we can use that to determine, or at least to estimate, the
characteristic speed on the inside of a rarefaction. For instance, suppose that there is a
rarefaction in the first characteristic family, so that the first Riemann invariant holds for
the middle star region:

ul + 2
√
ghl = u∗ + 2

√
gh∗. (6.54)

Since λ1(q∗) = u∗ −
√
gh∗, we can subtract 3

√
gh∗ from both sides of (6.54), giving

λ1(q∗) = ul + 2
√
ghl − 3

√
gh∗. (6.55a)

Similarly, for a rarefaction in the second family we have,

λ2(q∗) = ur − 2
√
ghr + 3

√
gh∗. (6.55b)
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Moreover, the differences

λ1(q∗)− λ1(ql) = 3
(√

ghl −
√
gh∗
)
, (6.56a)

λ2(qr)− λ2(q∗) = 3
(√

ghr −
√
gh∗
)
, (6.56b)

indicate the strength of the rarefaction in the first and second field respectively. If we have
an estimate h∗, denoted h∗0, then we can estimate (6.55) and (6.56). Recall that in the case
of two rarefactions, the middle state depth could be exactly determined, and h∗0 = h∗. If
only one rarefaction exists, considering Theorem 4.2 and (4.33), a single secant iteration
provides an estimate h∗0 ≥ h∗. This provides a conservative estimate for (6.55a) or (6.55b),
and for the strength of the single rarefaction.

6.7.3 Choosing the Vector r̃3

Allowing various forms for the eigenvector r̃3 presents an additional task when developing
algorithms for an approximate Riemann solver, however, it also endows the Riemann solver
(6.20) with flexibility that will allow it to accommodate diverse types of Riemann prob-
lems. The choice can be systematically made, based on some practical considerations and
observations.

First, note that in the augmented Riemann solver (6.20), when using a vector of the
form

r̃3 =
[
1 s (s)2 0

]T
, (6.57)

where s is the speed of the wave, the effective depths defined by the second component
of the decomposition are equivalent to the actual depths defined by the first component.
Therefore, positivity of the effective depths can be easily checked after the decomposition.
If any are negative, the decomposition can be re-performed with (6.45) for r̃3, ensuring
positivity. In practice this may only be necessary for Riemann problems near a potential
dry state.

For problems where there is no strong rarefaction, the vectors in (6.51) might become
nearly co-linear, and (6.52) might become poorly conditioned, suggesting that (6.45) is a
better choice for r̃3. For problems with two large rarefactions, positivity can be an issue
due to incipient cavitation—described in Section 4.3—and so (6.45) might again be the
appropriate choice. As one last caveat, it is possible to have a very large rarefaction where
λ1(q∗0) approaches s2E , or similarly for λ2(q∗0), however, this possibility is reduced by the
estimate h∗0 ≥ h∗, since the inequality produces conservative estimates for the speeds (6.55).
Therefore, if this occurs, it must be due to inadequate estimations of s1E or s2E in the case of
a shock. This problem is pronounced in regions of vanishing depths, and will be discussed
in detail in the next section where a unified solution will produce a robust solver for the
various types of Riemann problems.

To conclude this section, note that when a vector of the form (6.57) is used in the aug-
mented Riemann solver for r̃3, using the first two components of the decomposition and the
speeds to define waves for the update is entirely equivalent to using the flux decomposition.
The approximate Riemann solution must conserve the first two components of the solution
then, even when the Roe speeds are not used. A decomposition of this form therefore unifies
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the f -wave approach and the standard approximate Riemann solvers, by introducing an-
other wave. If maintaining this property is desired, even when linear dependence prevents
using an approximation to (6.53), the vector[

1 s̄E (s̄E)2 0
]T
, (6.58)

where s̄E = 1
2(s1E + s2E), provides an alternative that avoids linear dependence. This is also

a suitable solution to the necessary fix required if r̃3 is associated with a zero speed s̄E .
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Figure 6.4: A Riemann problem in the h-hu phase plane, showing an integral curve in the
first family when there is a large rarefaction. The intersection with the Hugoniot locus in
the second family determines the true middle state. The vector

(
1 s1E

)T is tangent to the

integral curve at ql, and
(
1 λ1(q∗)

)T is tangent to the integral curve at the intersection q∗.
The two vectors are far from parallel, and neither closely approximate the vector q∗ − ql in
phase space. The approximate middle states that result from using different Riemann solvers
are shown as points in the plane. The decomposition of the solution into the eigenvectors
associated with the Einfeldt speeds, produces the middle state marked with a plus +, and
the actual HLLE middle state q∗E is shown as a cross ×. Note that the depth of the two is the
same, but conservation of the latter implies that the momenta must be different. The Roe
eigenvector decomposition, shown as a triangle ∆, produces a better approximation since
r̂1 is not tangent to the integral curve at its furthest point. The augmented decomposition
produces two middle states since it has an extra wave, the one at x = 0 is shown as an
asterisk ∗. Ultimately, it is the f -waves arising from the augmented decomposition that
provide the numerical update, not the approximate middle state q∗, however, the figure
demonstrates that one of the weakness of the HLLE solver can be overcome by allowing
more waves.
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6.8 Inundation

One of the added benefits of using finite volume methods for the integral form of the shallow
water equations, is that the formal assumptions still hold when applied to regions surround-
ing wet and dry interfaces. Therefore, we can avoid special discretizations and specialized
tracking or ad hoc treatments of the shorelines. In fact, we can accurately model inunda-
tion by simply solving Riemann problems between wet and dry cells—using the exact same
formalism as for the rest of the domain. Of course, we must ensure that our approximate
Riemann solver accurately and robustly deals with problems between wet cells and cells with
zero or vanishing depths. In this last section of the chapter, we will describe modifications
that will be made to the augmented Riemann solver (6.20) necessary for inundation model-
ing. We will first describe some modifications to the wave speed estimates and eigenvectors
in the context of constant bathymetry. Finally, we will describe the complication that arises
when there is variable bathymetry in a Riemann problem between a wet cell and a dry cell.

6.8.1 Wave Speeds at the Wet-Dry Front

Recall from Section 4.3 that the solution to a Riemann problem between a wet cell and a dry
cell has a single rarefaction connecting the two states. The leading edge of this rarefaction,
representing the tip of the shoreline, moves at a speed of

ul + 2
√
ghl if hl > 0, (6.59a)

or

ur − 2
√
ghr if hr > 0. (6.59b)

Note that these are the same speeds as (6.55a) and (6.55b), since in this case h∗ = 0. For
finite grid spacings where the depth is positive in cells adjacent to a dry region, standard
estimates for the wave speeds underestimate the true speeds (6.59). Toro [101] discusses
standard Riemann solvers for the shallow water equations in relation to this problem. To
correctly model such Riemann problems, our Riemann solver should have waves that move
at these speeds, capturing correctly the advancing shoreline.

In the previous section it was shown that the wave associated with r̃3 could be used as
an additional vector to represent an integral curve associated with a large rarefaction. We
could use r̃3 to represent the leading edge of the rarefaction in phase space, by using (6.53)
where λk(q∗) is given by (6.59), depending on which state is dry. However, we will take a
slightly different approach that will allow the same definitions in the Riemann solver for all
Riemann problems, so that Riemann problems with vanishing depths will be treated the
same as those with exactly zero depths.

When one of the initial states in a Riemann problem is dry the eigenvalues of that state
are undefined, so that s1E must be defined by the Roe speed λ̂1 when hl = 0, and similarly
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s2E = λ̂2 if hr = 0. The Roe speeds for these two cases are respectively

λ̂1 = ur −
√
ghr
2

if hl = 0, (6.60a)

λ̂2 = ul +

√
ghl
2

if hr = 0. (6.60b)

Comparing (6.60) and (6.59), we see that λ2(q∗) < λ̂1, and λ̂2 < λ1(q∗) for the two respective

(a) (b)
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hr ≈ 0

sλ1(ql) λ̂1 λ̂2 λ1(q∗0)
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qr

hr >> hl

s λ2(q∗0) λ̂1 λ̂2 λ2(qr)
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t

Figure 6.5: Insufficient speed estimates for near-dry-state Riemann problems. (a) Example
of possible wave structure when hr ≈ 0. The right edge of the 1-rarefaction moves at a speed
λ1(q∗) that is actually greater than the Roe estimate λ̂2 for the shock speed s. If λ2(qr) <
λ1(q∗0), then s2E is replaced by λ1(q∗0). Note that λ1(q∗0) is still less than λ1(q∗), which must
be less than the true shock speed because of the Lax entropy condition (Definition 2.3). (b)
The analogous situation when hl ≈ 0.

dry state problems—implying that the true single wave actually spreads faster than our
estimate for the speed of the other characteristic family. This is not unique to the dry state
Riemann problem however, but tends to occur even when one of the states is very shallow
compared to the other, hl << hr or hr << hl. In these problems, a large rarefaction in one
field produces a speed λ1,2(q∗) that actually approaches or surpasses the estimate for the
speed of the other field s2,1E . Since the Eindfeldt speeds are intended to bound all of the
characteristics emanating form the origin, and λ1,2(q∗0) are conservative estimates for (6.55),
this only occurs when s1,2E are inadequate estimates of the true shock speed. For instance,
suppose that the estimate λ1(q∗0) is greater than s2E . Then λ2(q∗) > λ1(q∗) > λ1(q∗0) > s2E ≥
ur +

√
ghr, implying that we must have a shock in the second family, as guaranteed by the

Lax entropy condition (which also guarantees that the true shock must move faster than
λ1(q∗)). See Figure 6.5 showing the characteristics and speed estimates for this situation.



89

It therefore makes sense to redefine the speeds s1E and s2E in the augmented solver (6.20),

s̃E
1 = min(s1E , λ

2(q∗0)), (6.61a)

s̃E
2 = max(s2E , λ

1(q∗0)), (6.61b)

whenever there is a rarefaction in the first or second characteristic field respectively. Note
that when there is a rarefaction, because h∗0 ≥ h∗, the new definition (6.61) only decreases
the Einfeldt speed s1E to a value still greater than the true speed of the 1-shock, and only
increases s2E to a value still less than the true speed of the 2-shock.

Note that with the expanded definition (6.61), when we have a dry state problem, the
integral curve is now approximated with r̃1 and r̃2, and the speeds of the waves associated
with these vectors are the same as the far edges of the rarefaction, including the advancing
(or receding) wet/dry front. For these problems, the vector r̃3 should be defined by (6.45),
which ensures positivity since the HLLE depth h∗E is determined using the speeds (6.61).
(See the comment after Theorem 3.1.)

It should be noted that for the practical issue of implementing the corrections described
in this section, dry state problems need no special consideration. For instance, if a rarefac-
tion exists in either family, say the first family, then the value h∗ is quickly estimated and
the speed of the rarefaction edge (6.55a) estimated. This determines the speed s̃E

2, which
typically is the same as s2E . If λ1(q∗0) is sufficiently close to either s1E (as in the case of a
weak rarefaction) or s2E (such as for a near dry state problem), then r̃3 is defined by (6.45),
and the associated wave moves at a speed s̄E = 1

2(s̃1E + s̃2E). If two strong rarefactions exist,
then r̃3 is also defined by (6.45) in order to ensure positivity. Otherwise, r̃3 can be defined
by

r̃3 =
[
1 λ1(q∗0) (λ1(q∗0))

2 0
]T
. (6.62)

It is also easy to show that defining ul = 0, when hl = 0, so that λ1(ql) = 0, will have no
effect on the numerical solution, if the above procedure for the wave speeds with a dry state
are taken.

6.8.2 Variable Bathymetry and Shorelines

As with most other approximate Riemann solvers, our wave speed estimates and approx-
imate eigenvectors will not be altered by the existence of variable bathymetry and the
resulting source term. However, we must treat the Riemann problem between a dry cell
and a wet cell carefully when there is a jump in bathymetry between the two cells. For in-
stance, suppose we are solving the Riemann problem depicted in Figure 6.6, where hr = 0,
and hl + bl < br. This situation arises naturally with any discretization near the shoreline
(unless special care is taken to ensure that hl + bl = br). Solving such a Riemann problem
with the methods described so far will be shown to produce a spurious result. This is most
easily seen by considering the steady state problem, where we expect the Riemann solution
to produce no waves, so that the shoreline remains unaffected. However, consider the initial
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x = 0

bl

hl

6

?

br

hr = 0

Figure 6.6: A Riemann problem at the shoreline, showing hl + bl < br. If this Riemann
problem represents the steady state where ul = 0, solving it without modification will result
in spurious waves from the shoreline.
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If the steady state is to be maintained with no propagating waves, then (6.63) should be a
multiple of the steady state vector r̃4, which, if we consider the averages of the initial left
and right states, is 

−1
0

−g
2hl
1

 . (6.64)

Preservation of the steady state would therefore require hl = br − bl, which would occur if
the surface on the left was equal to the dry elevation on the right, which is not the case
for this problem. This makes intuitive sense if one considers the problem from a physical
standpoint—if the water is motionless, the elevation of the dry topography on the right is
irrelevant if it is higher than hl+bl. If we solved the problem as is, spurious waves would be
generated at the shoreline, which is clearly unacceptable. These waves can be quite large
in fact for tsunami modeling, where a large domain requires large cells, so that often cells
with depths approaching hundreds of meters or more are adjacent to dry cells.

An easy solution for this steady state problem would be to simply reduce the value br
to hl + bl. However, consider what would happen if a small positive velocity was added to
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the cell on the left, so that ul > 0. A resulting nonzero jump in hur − hul would again
cause propagating waves, and water would inundate the cell to the right. If br was actually
significantly greater than hl+bl, then the inundation would be spurious. The same problem
would again be repeated for the Riemann problem one cell to the right, and large spurious
inundations would occur as a pure numerical artifact. It is imperative that these problems
be treated correctly if inundation is to be correctly modeled.

The approach we take in this situation is to solve a preliminary Riemann problem, where
we replace the values in the dry cell with ghost cell values—values used simply to determine
the Riemann solution. (That is, we do not actually change the values stored in the dry
cell.) Consider again the Riemann problem depicted in Figure 6.6, where hl + bl > hr, but
assume that ul can have any value. We first solve the homogeneous Riemann problem with
ghost cell values in the right cell that approximate a wall boundary condition:

hr
(hu)r
φr
br

 =


hl

−(hu)l
φl
bl

 . (6.65)

The solution to such a Riemann problem is easy to determine, since it must be symmetrical
about x = 0. Clearly, if ul < 0, then we have a double rarefaction, with h∗ < hl. Conversely,
if ul > 0, then we have a double shock, with shocks propagating away at the same speeds
with opposite signs, with h∗ > hl. Due to the symmetry of either case, it is easy to show
that the decomposition (6.20) will produce only two waves with equal strength, W1 moving
to the left and W2 moving to the right, regardless of the form of r̃3. We then estimate h∗,
either by checking our approximate Riemann solution, or by approximating the root of the
function f described in Section 4.2. (Since we are solving a homogeneous problem, h∗ can
be easily and confidently determined.) We then determine if h∗ is large enough to inundate
the “wall,” i.e. the jump in bathymetry. That is if h∗ + bl < br, then no inundation would
occur if the jump in bathymetry was actually a wall. In this case, the solution to the ghost
cell problem serves to update ql, by using the leftward moving waves from the Riemann
solution. However, if h∗ + bl ≥ br then the jump in bathymetry does not form a large
enough barrier to prevent inundation. In this case, the ghost problem is discarded, and the
actual Riemann problem is solved with the actual values from the right cell. This ensures
that the full source term is realized when the inundating water has enough momentum to
overcome the entire slope. This approach in depicted in Figure 6.7, showing the ghost cell
problem and the actual Riemann problem for the two possible cases.
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(a) (b)

(c) (d)

Figure 6.7: The wall boundary condition Riemann problem as a test for the source term.
The left panel shows the ghost cell Riemann problems for two different cases, and the right
panel shows the update for the actual Riemann problem in the same cases. (a) The ghost
cell problem has equal and opposite velocities in each cell, with ul > 0, resulting in two
shocks propagating away from the initial interface. The resulting middle depth h∗ is not
high enough to overtop the jump in bathymetry, h∗ < br − bl. (b) The actual Riemann
problem corresponding to (a). The leftward moving waves from the ghost cell problem get
used to update the solution in the left cell. (c) A ghost cell problem similar to that shown
in (a), yet with greater initial velocities, causing h∗ > br − bl. (d) The actual Riemann
problem gets used to update the solution in both cells.
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6.9 Extension to the Two-Dimensional Problem

Recall from Chapter 3 that we extend the basic wave propagation algorithms to multiple
dimensions by solving normal one-dimensional Riemann problems corresponding to the
higher-dimensional system. For the shallow water equations in two dimensions, recall from
Section 2.5 that the Riemann problem is unchanged, except for an additional wave carrying
the jump in the transverse velocity (vr − vl), moving at the speed u∗. For an f -wave type
of approach, where the transverse flux huv is decomposed into a set of waves, the two-
dimensional Riemann problem is solved exactly as the one-dimensional problem, except
that the waves defined in the one-dimensional problem have another component carrying
the corresponding jumps in huv, and one additional wave carrying the remaining jump in
huv, moving at an estimate to the speed u∗. For the augmented solver, the jump in huv
across the wave Zp (defined by the one-dimensional problem) is simply vl(Zp)2 if sp < u∗0,
and vr(Zp)2 if sp > u∗0, where u∗0 is an estimate to the middle state velocity. The remaining
jump

(huv)r − (huv)l −
∑

{p:sp<u∗0}
vl(Zp)2 −

∑
{p:sp>u∗0}

vr(Zp)2, (6.66)

then determines the additional f -wave moving at the speed u∗0. Therefore, the only sig-
nificant added task for the two-dimensional Riemann problem is to determine an estimate
u∗0. It is desired that this average have several properties. First, it should be a simple
and consistent estimate for u∗. Second, in the case of a strong rarefaction such as in the
initial dry state problem, the speed should not be intermediate to the speeds at the edges
of the rarefaction wave. This is because the transverse contact discontinuity in such a case
is to one side of the rarefaction. In fact, for the initial dry state problem, the transverse
contact discontinuity is precisely at the advancing wet-dry front moving at the speed of the
advancing edge of the single rarefaction. These properties are satisfied by using the value

u∗0 = min(λ2(q∗0),max(λ1(q∗0)), s̄E), (6.67)

when a rarefaction exists, and u∗0 = s̄E otherwise, where s̄E = 1
2(s̃1E+s̃2E) using the definitions

(6.61). Note that when there is no strong rarefaction, this corresponds to the speed of the
wave associated with r̃3. For a dry state Riemann problem, it corresponds to the speed of
the advancing front.
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Chapter 7

ADAPTIVE MESH REFINEMENT FOR TSUNAMI MODELING

So far our efforts have been directed at the difficulty of diverse flow regimes associated
with tsunamis—our aim has been to develop algorithms that are reasonably robust and
accurate for all of the regimes. Recall that these diverse regimes occur at extremely diverse
scales, and we have not yet dealt with the obvious difficulty of simply being able to resolve
these diverse scales in a single computation. In this chapter we confront that difficulty by
describing adaptive mesh refinement algorithms. These algorithms will “bridge the gap”
in the sense that they will allow the algorithms described previously to be simultaneously
applied to the diverse spatial scales and flow regimes in a single computation. In fact,
adaptive mesh refinement is one of the main motivations for designing algorithms that are
suitable for all of the regimes of tsunami flow, otherwise it might be feasible to switch
algorithms for different computations involving different flow regimes.

The initial profile of a tsunami is determined by the geometry and nature of the gen-
erating fault motion. For most global scale tsunamis the initial wavelength is hundreds
of kilometers, and the disturbance can be spread over thousands of kilometers. (For the
Sumatra-Andaman earthquake, the rupture zone encompassed a huge swath 400 km wide
by 1200 km long—one of the largest single ruptures ever recorded [3, 43]). Since initial
amplitudes are often less than a meter, tsunami energy is initially spread thin over large
areas, and this energy does not easily dissipate until it is more locally concentrated. This
allows tsunamis to travel across entire oceans without significant dissipation. Obviously
modeling this propagation requires a large computing domain, at least big enough to in-
clude the source and coastlines of interest—sometimes in different hemispheres. Fortunately
the wavelength of this propagation is large enough that we can capture it with a fairly coarse
discretization.

As tsunami waves enter coastal shallow water their wavelength is compressed. This
occurs due to the decreasing wave speeds—recall that the wave speeds are u ±

√
gh. In

the deep ocean this implies wave speeds of up to 200 m/s, or equivalently 720 km/hr.
In the near shore the wave speeds decrease with roughly the square root of depth so the
wave is dramatically compressed as the leading edge slows rapidly while the trailing edge
is still in the deep ocean. This compression occurs continually as the waves approach the
shore, halving the wavelengths many times over. This energy compression is what tsunamis
owe their destructive capacity to—only at the shoreline is the energy dissipated. This
decrease in wavelength near the shore requires an equivalent increase in computational grid
resolution. If specific features of inundation are to be captured, necessary grid resolutions
may be several meters—orders of magnitude smaller than in the deep ocean. With the
energy more compressed the flow exhibits more violent and erratic features contributing to
the unpredictability. These flow features add to the need for higher grid refinement.

A simple solution to this problem, and one frequently employed, is to use a set of
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fixed telescoping grids at the shoreline—typically only near a region or coastline of interest.
This is a legitimate approach for many problems, particularly for problems where one is
modeling a single community for future hazard mitigation, and can dedicate days or weeks of
computational time to the problem. However, for global-scale modeling this is less than ideal
for several reasons. First, it is inefficient when modeling the entire ocean. Although only
a relatively coarse resolution is needed to capture deep ocean propagation, this resolution
is still quite expensive if used throughout an entire ocean for an entire computation. Since
tsunami waves propagate long distances, using fixed grids requires modeling an entire ocean
at the level required to resolve the propagating tsunami. This means that a large amount
of computing effort gets dedicated to steady-state calculations in regions where nothing is
happening. Second, it requires either under-resolving the majority of coastal regions that
might be impacted by a global-scale tsunami, or perhaps using some a priori knowledge of
where inundation will be the most severe. Since depth and hence wave speeds are a function
of the variable seafloor bathymetry, the compressing energy of a tsunami as it approaches
shore is focused by bathymetry in complex and unpredictable ways. Often destruction varies
greatly even along local stretches of coastline. Determining what communities or regions are
vulnerable to a given fault event, using fixed grids, essentially requires a separate calculation
for each region. This is certainly not the most efficient use of computational resources, nor
is it practical for real-time tsunami modeling. Third, the fixed fine-scale grids are typically
integrated for the entire computation, even long before the tsunami arrives. This again is
computationally wasteful and ultimately decreases the degree to which the tsunami can be
resolved due to misappropriation of resources.

7.1 Adaptive Mesh Refinement for Hyperbolic Systems

Adaptive refinement methods in general use variable sized grid spacings depending on the
nature of the solution in different regions of the domain. The regions of refinement adapt
to the changing solution based on some set of criteria relevant to the problem. These
methods are particularly attractive for hyperbolic problems since interesting features in the
solutions are often highly localized, yet, because of the wave-like nature of the solutions, the
features often move throughout the domain. We have extended Berger-Collela-Oliger [9, 7]
adaptive mesh refinement to the problem of tsunami modeling. These methods use multiple
levels of rectangular Cartesian subgrids that use integer refinement ratios in space and time.
Multiple subgrids at a given level may exist and are adaptively arranged in patches that
cover important features in the solution (see Figure 7.1). (See Chapter 8 for a discussion of
how these Cartesian computational grids can be used for more general geometries.) Since
the size and location of the subgrids can change at any time depending on the level of
refinement needed in a specific area, the grids can effectively move with important features
in the solution. These methods were originally developed for hyperbolic systems such as
the Euler equations of compressible gas dynamics, where often shock waves and very steep
gradients are highly localized and need much higher levels of refinement than the rest of
domain. Since the shock waves move throughout the domain, fixed telescoping grids would
be ineffective.

These adaptive mesh refinement methods have previously been implemented in the gen-
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Figure 7.1: Example of adaptive mesh refinement with rectangular Cartesian grids. A
portion of the domain is shown with three levels of grids refined by factors of 4. Typically
many grids at a given level (> 1) may coexist refining important features in the solution
with rectangular patches.

eral framework of the wave-propagation algorithms [8], and are a standard extension of
the clawpack software [61], called amrclaw. Since the adaptive subgrids are rectangular
Cartesian grids, the wave propagation algorithms used for single grids can be applied vir-
tually unchanged to each subgrid. However, special treatment of the subgrid boundaries is
required, since these are in the interior of the domain, and adjacent to coarser grid cells.
For a complete discussion of this, and adaptive mesh refinement in general, see [8, 7, 9].
For the purpose of tsunami modeling, some modifications had to be made to amrclaw in
order to maintain the steady-states, and new interpolation strategies had to be developed
for proper treatment of the shoreline. These modifications and the relevant aspects of the
adaptive mesh refinement algorithms are discussed in the following sections.

7.2 Maintaining Conservation and Steady States for Tsunami Modeling

Since adaptive subgrids appear dynamically in the domain, the solution in the fine cells of a
subgrid must be determined from the next coarser level through some type of interpolation.
Additionally, when a subgrid moves or disappears, the fine grid cells that are eliminated must
be averaged in some way to determine the value in the underlying coarser cell. It is important
that the interpolation and averaging strategies do not destroy essential features of the
underlying numerical method. For instance, since we have taken special care to ensure that
our algorithms are conservative, we must require that interpolation and averaging maintain



97

numerical conservation whenever possible. Additionally, we do not want interpolation to
generate oscillations near discontinuities. For tsunami modeling, it is important that the
delicate steady state is preserved when interpolating. Additionally, interpolation must be
performed carefully near dry states and shorelines, as described in Section 7.3.

7.2.1 Conservation

Suppose that we have a level (l + 1) grid overlying the cell Clij on the coarser level l grid.
(Superscripts on variables will be used to denote their grid level.) Cell Clij will contain an
integer number of level (l + 1) grid cells

Cl+1
ks = [xk−1/2, xk+1/2]× [ys−1/2, ys+1/2] ⊂ Clij . (7.1)

For the level l grid cell Clij , the set

Γl+1
ij =

{
(k, s) : Cl+1

ks ⊂ Clij
}

(7.2)

contains the indices of the level (l+1) cells, and
∣∣∣Γl+1
ij

∣∣∣ will be used to denote the number of
such cells, which depends on the spatial refinement ratios used from level l to level (l + 1).
Figure 7.2 illustrates this situation, showing part of a level l grid and the level (l + 1)
grid cells in the cell Clij . When the grid resolution changes in a region of the domain, it is
important that conservation is maintained, i.e. that the conserved quantities integrated on
the fine grid are equal to those on the coarse grid. This is accomplished if

Qlij =
1

|Γl+1
ij |

∑
(k,s)∈Γl+1

ij

Ql+1
ks , (7.3)

where Ql+1
ks is the solution in grid cell Cl+1

ks and
Maintaining conservation during interpolation from a coarse grid can be easily accom-

plished by using cell-centered linear interpolants in each coarse grid cell for the conserved
variables. That is, the values in these finer grid cells are determined by evaluating, at their
cell centers, a simple linear interpolant

Lij(x, y) = Qlij + σxij(x− xi) + σyij(y − yj), (7.4a)

Ql+1
ks = Lij(xk, ys), (7.4b)

where σxij and σyij are slopes in the x and y directions respectively, determined by some
consistent evaluation of the surrounding coarse cells. If the interpolation (7.4) is used for all
of the fine cells within a coarse cell (7.3) is maintained, as can easily be seen by considering
symmetry of the interpolant around the coarse cell center. Note that not all forms of linear
interpolation will maintain conservation. For instance, bilinear interpolation, which could
be used to determine cell-centered values in each fine cell based on the values at the four
nearest coarse cell centers, would not preserve conservation in general.

The slopes σxij and σyij could be determined in a variety of ways based on the cells
surrounding cell Clij . In practice, we would like to avoid interpolation that might generate
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Figure 7.2: Interpolation and averaging between level l and (l+ 1) grids. Using refinement
ratios of 4 as an example, the 16 level (l + 1) grid cells within a single level l cell Clij are
shown. Linear interpolation to determine the fine grid cell values, based on (7.4), preserves
conservation as can be seen by considering symmetry. Arithmetic averaging of the fine grid
cell values to determine the coarse cell value also preserves conservation.

oscillations near steep gradients in the solution. This could occur if interpolation generates
new extrema on the fine grid. Recall from Section ??, where we considered the relationship
between slope limiters and flux limiters, our goal was to limit the interpolating slopes in
grid cells in order to prevent nonphysical oscillations in the solution by ensuring that new
extrema were not generated. We can take the same approach when interpolating from coarse
to fine grids—limited slopes can be used for σxij and σyij in order to prevent generating new
extrema. For instance, using the minmod slopes

σxij = minmod

(
Qli+1,j −Qlij

∆x
,
Qlij −Qli−1,j

∆x

)
, (7.5a)

σyij = minmod

(
Qli,j+1 −Qlij

∆y
,
Qlij −Qli,j−1

∆y

)
, (7.5b)

prevents the generation of new extrema even in two dimensions when using (7.4). Recall
that the minmod function is defined by

minmod(a, b) =


a if |a| < |b| and ab > 0,
b if |b| < |a| and ab > 0,
0 if ab ≤ 0.

(7.6)

Occasionally, areas of the domain covered by level (l+ 1) grids will no longer need high
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levels of refinement, and the level (l+1) grid cells will be averaged to determine a new level
l coarse grid cell value. Clearly, conservation is maintained if the coarse cell value Qlij is
determined by the simple arithmetic average of the solution in the level (l + 1) grid cells
within Clij , since then Qlij is determined by (7.3).

7.2.2 Steady States

In the previous section we described how conservation is maintained when refining or coars-
ening grids, by linear interpolation and arithmetic averaging of the conserved numerical
variables Q. For the shallow water equations, this implies interpolating and averaging the
depth h and momenta hu and hv. However, interpolating h will upset the delicate steady
states described in Section 5.3 and will destroy the well-balancing properties discussed in
Section 6.4. To see this, consider a motionless body of water with a constant surface ele-
vation η ≡ h + b ≡ 0 over nonlinear variable bathymetry. The bathymetry values on the
coarse grid are averages of the true bathymetry values in each grid cell. When interpolating
to a finer grid, the bathymetry is replaced by new averages of the true bathymetry within
the finer grid cells. The true bathymetry is in general not linear, so it might vary differently
than a simple linear interpolation of the coarse bathymetry would suggest. Since the depths
in fine grid cells are determined by linear interpolation of the depths in the coarse cells,
the new values of the surface elevation will no longer equal a constant—corresponding to
the simple steady state problem. Figure 7.3 shows this for a simple one dimensional prob-
lem, where the depths in two fine grid cells are determined by minmod interpolation from
the coarser grid. In this example, note that the minmod slope for the depth h would be
σxi =

(
hli+1 − hli

)
/∆x = −4/∆x, giving values of hl+1

k = 19 and hl+1
k−1 = 21 when evaluating

(7.4). The bathymetry in these cells gives nonzero values of the surface elevation η = h+ b.
The example shown in Figure 7.3 suggests a simple fix—interpolate η

Lij(x, y) = ηlij + σxij(x− xi) + σyij(y − yj), (7.7a)

ηl+1
ks = Lij(xk, ys), (7.7b)

where ηlij = hlij + blij , and the slopes σx,yij are the one-sided minmod slopes as before but
determined by η in the coarse cells. The depth is then determined by

hl+1
ks = ηl+1

ks − bl+1
ks , (7.8)

using the interpolated surface values and the fine grid bathymetry. This seems simple
enough, but we must make sure that

1
|Γl+1
ij |

∑
(k,s)∈Γij

hl+1
ks = hlij (7.9)

will still be satisfied for conservation of mass. As when interpolating depth, if linear inter-
polation (7.7) is used, the value of ηlij is the average of the surface values ηl+1

ks in the fine
cells Cl+1

ks ⊂ Clij ,
1

|Γl+1
ij |

∑
(k,s)∈Γij

ηl+1
ks = ηlij . (7.10)



100

Together with (7.8), (7.10) implies

1
|Γl+1
ij |

∑
(k,s)∈Γij

(
hl+1
ks + bl+1

ks

)
= hlij + blij ,

⇒ 1
|Γl+1
ij |

∑
(k,s)∈Γij

hl+1
ks = hlij +

blij − 1
|Γl+1
ij |

∑
(k,s)∈Γij

bl+1
ks

 . (7.11)

We see that if the bathymetry blij in the coarse cell is the average of the bathymetry val-
ues bl+1

ks in the fine cells Cl+1
ks ⊂ Clij , which is the case if both come from averaging true

bathymetry data, then the terms in parenthesis in (7.11) equal zero and (7.9) is satisfied.
We also want to conserve momentum when refining grids. Since the refined depth is

determined by (7.7) and (7.8), it is not necessarily a simple linear function within each
coarse cell. Following the idea of interpolating η, it might make sense to interpolate the
velocities ul+1

ks and vl+1
ks , and then determine the momenta hul+1

ks and hvl+1
ks by multiplying

the interpolated velocities by hl+1
ks in each fine grid cell. However, this will not conserve

momentum in general, so we will simply interpolate momentum according to (7.4). This
is not problematic for the most part, since the delicate background steady state that must
be preserved has zero velocity. However, some precautions must be taken in very shallow
regions, where the differences is depth between the interpolated cells are significant relative
to the overall depth. This and other issues that arise in shallow regions and at shorelines
will be explained and treated in the next section.
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Figure 7.3: Interpolating the water depth from coarse grid cells to fine grid cells over
nonlinear variable bathymetry. (a) A level l grid in one dimension for the common steady
state problem of a motionless body of water with a flat surface η = 0 over nonlinear variable
bathymetry. The numerical bathymetry is an average of the true bathymetry values in each
grid cell. (b) Interpolation of h to a level (l + 1) grid—refined by a factor of two—showing
the two fine grid cells in the coarse cell Cli = [xi−1/2, xi+1/2]. The bathymetry in the two
fine grid cells reflects the average of the true bathymetry in those cells. Interpolating the
depth h using minmod slopes, destroys the steady state.
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7.3 Shorelines and Shallow Regions

7.3.1 Depth

In the previous section it was shown that by interpolating the surface values η to determine
h, steady states and conservation can be simultaneously maintained when refining grids.
It was assumed that each of the coarse grid cells surrounding Clij had a positive depth,
yet, of course, in very shallow shoreline regions it’s possible that some of the coarse cells
are dry. Since the surface elevation is still defined in these cells by η = b, it’s possible to
interpolate as before using (7.7). This is not too problematic if the cell being interpolated
is wet, hlij > 0, and one or more of the surrounding cells are dry, however, it is still less
than ideal. If hlij = 0 simply interpolating η as before, with ηlij = blij , will cause spurious
waves to be generated from the shore and must be avoided.

To illustrate this situation, consider again a simple one dimensional example where a
coarse grid must be interpolated to determine two fine grid cell values, hl+1

k−1 and hl+1
k , in each

coarse cell [xi−1/2, xi+1/2]. Suppose first that hli = 0 and the cell to the left is wet with water
at rest (see Figure 7.4). This reflects the steady state situation that is encountered at the
shoreline if no waves are present. When the grid is refined, the bathymetry will be adjusted
to values that represent the average of the bathymetry in each fine cell. It is clear by looking
at Figure 7.4 what the surface elevations and depths should be in the two fine grid cells if
the steady state is to be maintained—the surface elevation should be constant across the
interface xi−1/2, implying that ηl+1

k−1 = 0 or equivalently hl+1
k−1 = −bl+1

k−1 = 1, and the depth
hl+1
k should be zero. (Any other values would generate waves at the interfaces xi−1/2 and
xk−1/2, and the steady state would not be maintained.) However, if the surface elevation
η was interpolated according to (7.7) using the minmod slope from the left, σxi = 2/∆x,
the surface elevations would be ηl+1

k−1 = 1.5 and ηl+1
k = 2.5. This would result in depths

hl+1
k−1 = −0.5 and hl+1

k = 0.5, which conserves mass, but obviously is not the desired result.
At first glance, it might seem that an easy fix to the shoreline situation is to simply

define η = 0 in dry cells, however, a near motionless steady state can exist without being
at sea level η = 0. For instance, when very long waves approach shore the sea level may
rise or fall substantially in certain areas without a pronounced wave. Arriving waves might
then be viewed as being deviations to this near steady state that is not actually at sea
level. Defining ηli = 0 in a dry cell Cli at the shore, with no regard to the level of water
in Cli−1, could generate spurious waves by introducing a large discontinuity at xi−1/2 upon
interpolation.

A preferable strategy for defining η in dry cells that are being interpolated, is to use the
surrounding wet cells. For example, if hlij = 0, then the surface value ηlij in cell Clij can be
defined by

ηlij =
1

|Ωl
ij |

∑
(m,n)∈Ωl

ij

ηli+m,j+n, (7.12)

where
Ωl
ij = {(m,n) : m,n ∈ {−1, 0, 1}, hi+m,j+n > 0} , (7.13)

and |Ωl
ij | is the number of elements of Ωl

ij—i.e. the number of wet cells in the cells sur-
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rounding Cij . When interpolating Clij , before determining slopes η should be defined in the
same way for any of the surrounding dry cells

ηli+m̄,j+n̄ =
1

|Ωl
ij |

∑
(m,n)∈Ωl

ij

ηli+m,j+n, (7.14)

where m̄, n̄ ∈ {−1, 0, 1} and (m̄, n̄) /∈ Ωl
ij . Note that the surrounding dry cells are only

defined by (7.14) for interpolating Clij . Interpolation can now be based on (7.7), yet using
(7.12) and (7.14) for the surface elevation in cells that are dry. Additionally, when using
the interpolated surface values to determine the depths, the depths should be simply held
nonnegative

hl+1
ks = max

(
0, ηl+1

ks − bl+1
ks

)
. (7.15)

By using this strategy several nice properties are realized. First, a motionless steady
state at a shoreline is easily maintained. Second, the generation of new extrema in the
water surface elevation is prevented. (This is because the average values used to define the
surface elevation in dry cells always lie between the extremes in the wet cells. Note that if η
was defined to be 0 or b in dry cells, then new extrema in wet cells could be generated since
0 or b could be an extreme value used in the interpolation.) Third, even when the shoreline
is not at a steady state, discontinuities at the cell interfaces are made as small as possible
since the dry cells have surface elevations based on their neighbors.

A similar modification must be made when fine grids are coarsened. (Coarsening was
not mentioned in Section 7.2, since, averaging the depths or the surface elevations in fine
cells produced the same result. This is because of conservation—(7.11)—and the fact that
all of the cells had positive depth by assumption.) Consider again Figure 7.4. Suppose that
the fine grid shown in Figure 7.4 (b) existed first and needed to be coarsened to determine
the value hli in Figure 7.4 (a). If the surface values ηl+1

k−1 = 0 and ηl+1
k = 5 were averaged

to determine the surface value ηli = 2.5, the resulting depth would be hli = 0.5. This would
generate a spurious wave at the shoreline. Averaging the fine cell depths would produce the
same result. A rather obvious solution is to simply average the surface values in the wet
cells,

ηli =
1

|Γ̃l+1
ij |

∑
(k,s)∈Γ̃l+1

ij

ηl+1
ks , (7.16)

where Γ̃l+1
ij =

{
(k, s) : Cl+1

ks ⊂ Clij , h
l+1
ks > 0

}
, and |Γ̃l+1

ij | is the number of wet cells. Then
the nonnegative depth can be determined by

hli = max
(
0, ηli − bli

)
. (7.17)

It should be noted that mass is not actually conserved at the shoreline when grids are
interpolated and averaged in this way. Consider Figure 7.4 where clearly mass is gained
when the dry cell hli is refined producing a wet cell hl+1

k−1. However, this should be considered
differently than a violation of conservation of mass in the deep water. In the former, violation
of conservation would be due simply to a nonconservative interpolation strategy. In the
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latter, the violation is due to an actual refinement and more accurate representation of the
shoreline. Consider a steady state problem for instance where a flat pool of water lies over
variable bathymetry. Keeping the surface elevation of the water fixed and changing grid
resolutions clearly changes the amount of mass present, since the area of the region under
water changes. Figure 7.5 shows the same set of grids from Figure 7.1, being used to cover
Sumatra. The dry cells over land have been erased showing only the wet cells. In more
refined regions the shoreline is more accurately resolved, but the mass must clearly change
as the shoreline is more accurately resolved. It should be pointed out that for the steady
state problem, repeated interpolation and coarsening of the grid would have no net effect
on mass.

7.3.2 Momentum

As might be expected, momentum must be treated carefully as well in shoreline regions. In
Section 7.2 we showed that in order to conserve momentum we must interpolate momentum
directly not velocity. However, in shoreline regions it is possible to end up with vanishing
or zero depths in fine cells. If momentum is interpolated independently, this can lead to
nonphysically large velocities in these cells since velocities are determined by dividing the
momentum by the depth. (Note that this problem is independent of the issues described in
the preceding discussion—even in regions that have positive depths in fine and coarse cells,
nonlinear bathymetry can lead to vanishing depths independent of linearly interpolated
momentum leading to unbounded velocities.) This must be avoided since the velocities are
used in several formulas including the momentum flux.

Suppose that the coarse cell Clij must be interpolated to determine values for the momen-
tum hu in the fine cells Cl+1

ks ⊂ Clij . Recall that the minmod slopes used for interpolation in
Section 7.2 were employed to prevent extrema in the fine cells Cl+1

ks ⊂ Clij , from surpassing
the bounds of the neighboring coarse cells. Based on this idea, it is possible to limit velocity
when interpolating while still actually interpolating momentum. This requires determining
bounds for the (l + 1) velocities when interpolating,

ulij = max
(m,n)∈S

(
u(i+m,j+n)

)
, (7.18a)

ulij = min
(m,n)∈S

(
u(i+m,j+n)

)
, (7.18b)

where, S = {{−1, 0, 1} × {−1, 0, 1}}. (By considering the corner cells Cli,j±1 and Ci±1,j the
bounds are less restrictive and still prevent new local extrema in u). The momentum can
then be interpolated by (7.4) as always, followed by a check of the new velocities hul+1

ks /h
l+1
ks

in all of the fine cells Cl+1
ks ⊂ Clij . If any of these violate the bounds (7.18), then all of the

fine cell momenta are defined by

hul+1
ks = hl+1

ks u
l
ij , ∀(k, s) ∈ Γl+1

ij . (7.19)

The fix (7.19) prevents new extrema in u, while still maintaining conservation if all of the
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fine cells are wet since,

1
|Γl+1
ij |

∑
(k,s)∈Γl+1

ij

hl+1
ks u

l
ij = ulij

1
|Γl+1
ij |

∑
(k,s)∈Γl+1

ij

hl+1
ks = ulijh

l
ij , (7.20)

where the last equality is due to conservation of mass which occurs when all of the fine cells
are wet and hlij > 0. Therefore, if momentum is gained or lost by employing (7.20), it must
occur because mass is gained or lost when interpolating based on the procedures discussed
in Section 7.3.1, and the momentum change is directly proportional to the mass change

1
|Γl+1

ij |

∑
(k,s)∈Γl+1

ij

hl+1
ks u

l
ij

huijl
=

1
|Γl+1

ij |

∑
(k,s)∈Γl+1

ij

hl+1
ks

hijl
. (7.21)

Therefore, if momentum is gained or lost at the shoreline it is due directly to the gain or
loss in mass. Trying to conserve momentum when mass is gained or lost at the shoreline
would not be a stable approach.

The problem of unbounded velocities can also occur when coarsening a fine grid if some
of the fine grid cells are dry. This occurs because of a loss of mass. Consider again Figure 7.4,
assuming now that the shoreline is not at the steady state, but has momentum. Suppose
that the fine cells in Figure 7.4 (b) must be averaged to determine huli in the coarse cell in
Figure 7.4 (a). Suppose that hulk−1 is nonzero. Then averaging the momenta in the two
fine cells would result in a coarse cell momentum of huli = hul+1

k−1/2. Obviously this is a
problem since coarsening the depth based on (7.16) and (7.17) resulted in the value hli = 0.
An approach similar to that described above for interpolating momentum can be taken,
where the momentum is not conserved but is related to the change in mass. The averaged
momentum is multiplied by the ratio of mass in the fine and coarse cells,

hulij =

 hli
1

|Γl+1
ij |

∑
(k,s)∈Γl+1

ij

hl+1
ks

 1
|Γl+1
ij |

∑
(k,s)∈Γl+1

ij

hul+1
ks . (7.22)

This prevents unbounded velocities that occur when the coarsened depth is far less than
the average depth in the fine cells. Note that the ratio in (7.22) is always 1, unless dry fine
cells exist.

Obviously the formulas and procedures discussed in this section apply to hv and v as
well as hu and u. It should also be noted that the interpolation and averaging formulas
presented in this section can be applied everywhere on the domain, since they reduce to the
formulas in Section 7.2 when away from the shoreline.
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(a) xi−1/2 xi+1/2
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Figure 7.4: Interpolation at the shoreline. (a) Coarse level l grid at the shoreline where
hli=0 and the cell to the left is wet with ηki−1 = 0. This reflects the common steady state
problem at the shoreline. (b) Interpolation to fine grid cells within [xi−1/2, xi+1/2]. Note that
to maintain the steady state the surface elevation should be constant across the interface
xi−1/2, implying that hl+1

k−1 = 1 and hl+1
k = 0.
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Figure 7.5: Adaptive mesh refinement around a shoreline. The grids are the same set of
grids shown in Figure 7.1, covering Sumatra and some surrounding islands. The dry cells
are erased to emphasize the shoreline, and show how refinement around the shoreline must
necessarily change the overall mass if the true bathymetry is used and the steady state is
to be maintained.
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7.4 Time Refinement

The adaptive refinement methods discussed in this chapter typically employ refinement in
time that is equal to refinement in space. That is, if a coarse level l grid is refined by a
factor of n to a finer level (l+ 1) grid, then n timesteps are taken on the fine grid for every
timestep taken on the coarse grid. This is typically required for stability, assuming that the
wave speeds on the fine grid and the coarser grids are similar. The CFL condition requires
sx∆t < ∆x and sy∆t < ∆y for every grid cell, where sx and sy are the maximum wave
speeds in the x and y directions respectively. If ∆x or ∆y are reduced by a factor of n,
then ∆t must be reduced as well. For gas dynamics—the application that these methods
were originally developed for—this is not problematic since typically the wave speeds are
as large in areas with the highest refinement—the areas with high pressure and shocks.

With tsunami modeling an interesting peculiarity arises—the wave speeds u ±
√
gh

decrease with depth, and shallow regions are typically where the most refinement is needed.
This means that temporal refinement equal to spatial refinement may be unnecessarily
restrictive. Suppose that level l grids are restricted to shallow regions to refine inundating
waves, and the deep ocean is covered by grids of levels 1, · · · , l − 1. If level l grids are
refined by a factor of n in space, timesteps reduced by a factor of n will typically have very
small Courant numbers since the wave speeds in these shallow regions are much smaller
than on level l − 1 grids and lower. It might be possible to take far fewer timesteps on
these finest grids, speeding the computation considerably. For instance, suppose that level
l grids are restricted to regions less than 100 meters deep and refined by a factor of n = 6.
A rough calculation (neglecting u) suggests that wave speeds will be faster by a factor of√

4000/100 ≈ 6 on grid levels l− 1 and less, since ocean depths can approach 4000 meters.
This implies that timesteps on level l might approach that of time-steps on level l − 1,
however, the standard methods would take 6 steps on the level l grids for every step on level
l − 1. Of course, wave speeds are also related to water velocity, which can be quite large
near the shoreline, so generally one must be more conservative than this simple calculation
suggests, and we might refine by a factor of 2 at level l

All of the strategies discussed in this chapter have been successfully implemented in
the clawpack and amrclaw routines. We have employed the interpolation and averaging
strategies discussed in Sections 7.2 and 7.3, and we have allowed for anisotropic time re-
finement, that allows specifying spatial and temporal refinement separately so that highly
refined grids restricted to shallow regions can take less restrictive timesteps. These adaptive
algorithms can also be implemented on more complex grids fitted to an idealized surface of
the earth. The procedure of mapping rectangular Cartesian grids to more general geometries
is discussed in the next chapter.
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Chapter 8

MODELING TSUNAMIS ON THE EARTH

So far we have assumed that we are solving equations on a flat Cartesian grid in a
rectangular domain, where the computational space is a direct discrete representation of
the physical space. Of course, for global-scale tsunami modeling we are interested in solving
the shallow water equations on the earth, or at least on the surface of an idealized sphere or
ellipsoid. One approach to such a problem is to recast the shallow water PDEs in spherical
coordinates, then use latitude and longitude as angular coordinates, however, this entails
transforming derivatives—requiring assumptions about smoothness in the solution that we
wish to avoid. It would be preferable to maintain the formalism that we have developed
thus far, using the same general form of the equations and simply use a more complex grid
that conforms to the physical domain. The integral conservation law can be applied to any
grid cell and approximated numerically, so the basis of the finite volume approach is still
valid on grid cells that are more complex than simple rectangles. This approach is generally
applicable to conservation laws using quite general types of grids on two dimensional curved
manifolds, and is described in detail in [67, 32, 85]. We will first consider this method on a
flat domain, before considering more general curved earth-fitted grids.

8.1 General Quadrilateral Grids on a Flat Surface

We can use the wave propagation algorithm on a more general grid with cells other than
uniform rectangles. We will consider only logically rectangular quadrilateral grids (ie. rect-
angular grids with cells in rows and columns that are labeled in a logical manner—cell
(i, j) has four neighbors (i± 1, j) and (i, j ± 1)). The simplest implementation of the wave
propagation algorithm on a nonuniform quadrilateral grid, is to use a uniform grid in com-
putational space, and then incorporate an appropriate scaling on the numerical update that
takes into account the true physical geometry of each computational cell. We will denote
generalized coordinates in computational space by ξ and η. Figure 8.1 shows two such grid
mappings for illustration. Both quadrilateral grids in physical space are mapped from a
uniform rectangular grid in computational space shown on top. The grid on the bottom left
is orthogonal whereas the grid on the bottom right is not.

For a finite volume method on a quadrilateral grid, the numerical solution Qij is an
approximation to the average value of the solution in cell (i, j), regardless of the shape
of the cell, and we can base a numerical method on the integral conservation law using
interface fluxes just as in Chapter 3. Following the notation of LeVeque [67], such a method
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can be written as

Qn+1
ij = Qnij −

∆t
|Cij |

(
hi+1/2,jF̆i+1/2,j − hi−1/2,jF̆i−1/2,j

+hi,j+1/2Ği,j+1/2 − hi,j−1/2Ği,j−1/2

)
, (8.1)

where

|Cij | = area of cell (i, j),
hi±1/2,j = length of side between cells (i± 1, j) and (i, j),
hi,j±1/2 = length of side between cells (i, j ± 1) and (i, j),
F̆i±1/2,j = flux normal to the edge between cells (i, j) and (i± 1, j),

per unit length per unit time
Ği,j±1/2 = flux normal to the between cells (i, j) and (i, j ± 1),

per unit length per unit time.

For a uniform Cartesian grid in Euclidean space, the cell area |Cij | is simply the product of
the edge lengths hi−1/2,j and hi,j−1/2, which are simply the increments of the computational
coordinates ∆x and ∆y. Additionally the flux F̆i−1/2,j is simply the flux in the x direction at
the interface between cells (i−1, j) and (i, j), denoted simply Fi−1/2,j , and similarly Ği,j−1/2

is simply the flux in the y direction at the interface between cells (i, j) and (i, j−1), denoted
simply Gi,j−1/2. The more general numerical method (8.1) then reduces to the standard
formula

Qn+1
ij = Qnij −

∆t
∆x

(
Fi+1/2,j − Fi−1/2,j

)
− ∆t

∆y
(
Gi+1/2,j −Gi−1/2,j

)
, (8.2)

where the computational coordinates are simply x and y. For more general grids, we can
write (8.1) in terms of computational coordinates following [67], if we set

κij =
|Cij |

∆ξ∆η
, (8.3a)

Fi−1/2,j =
(
hi−1/2,j

∆η

)
F̆i−1/2,j , (8.3b)

Gi,j−1/2 =
(
hi,j−1/2

∆ξ

)
Ği,j−1/2, (8.3c)

so that (8.1) becomes

Qn+1
ij = Qnij −

∆t
κij∆ξ

(
Fi+1/2,j − Fi−1/2,j

)
− ∆t
κij∆η

(
Gi+1/2,j −Gi−1/2,j

)
. (8.4)

The formulas (8.3) relate the geometry of the computational grid to that of the physical
grid. The area ratio κij is sometimes called a capacity function since it relates the capacity
or true physical area of a grid cell to the area of a cell in computational space. The length
ratios that multiply the normal fluxes are scale factors and will be denoted

γi−1/2,j = hi−1/2,j/∆η (8.5a)

γi,j−1/2 = hi,j−1/2/∆ξ. (8.5b)
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The same approach can be extended to the more general wave propagation formula,
which analogous to (8.4) becomes

Qn+1
ij = Qnij −

∆t
κij∆ξ

(
A+∆Qi−1/2,j +A−∆Qi+1/2,j

)
− ∆t
κij∆η

(
B+∆Qi,j−1/2 + B−∆Qi,j+1/2

)
. (8.6)

The fluctuationsA±∆Q and B±∆Q are due to moving waves that carry the same dimensions
as flux, and like the scaled fluxes Fi±1/2,j and Gi,j±1/2 in (8.4), these waves should be
properly scaled by the length ratios (8.5). This can be done by simply multiplying each of
the f -waves by the appropriate scale factor when determining the fluctuations

A−∆Qi−1/2,j =
∑

sp
i−1/2,j

<0

γi−1/2,jZ
p
i−1/2,j (8.7a)

A+∆Qi−1/2,j =
∑

sp
i−1/2,j

>0

γi−1/2,jZ
p
i−1/2,j , (8.7b)

and similarly for B−∆Qi,j−1/2 and B−∆Qi,j−1/2 using γi,j−1/2. Since the waves are typi-
cally determined by solving normal Riemann problems at grid cell interfaces, any necessary
rotation of the solution data or fluxes is required before determining the waves.

Second-order correction terms and transverse terms are modified by scale factors in a
similar way, allowing the algorithm to retain its same essential form as on uniform Cartesian
grids. See [67] for details.
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Figure 8.1: Logically rectangular quadrilateral grids. Top: a uniform rectangular grid in
computational space. Bottom Left: a nonuniform orthogonal quadrilateral grid. Bottom
Right: a nonuniform non-orthogonal quadrilateral grid.
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8.2 The Shallow Water Equations on Latitude-Longitude Grids

Next we will consider the shallow water equations on the surface of a sphere or more
general ellipsoid that approximates the surface of the earth. Recall that the shallow water
equations can be derived by conservation and a hydrostatic assumption, meaning that the
pressure gradient balances the gravitational force on a parcel of water at all times in these
flows. Therefore, the equivalent assumption on an ellipsoid is that the gravitational force
is balanced by hydrostatic pressure such that momentum is never in the direction normal
to the surface and that pressure depends only on depth. Given the velocity of geophysical
water flows like tsunamis, and the curvature of the earth, the validity of these assumptions
is unchanged by the curved geometry. For higher velocity shallow flows on a more curved
surface, where the pressure may depend appreciably on the velocity of the water column, a
different set of equations may be necessary.

The same basic approach described in Section 8.1 can be used to solve conservation laws
on smooth curved manifolds, assuming the conservation law is valid on the manifold. See
[85] for a general treatment. For solving the shallow water equations on the surface of an
idealized earth, the procedure is simplified from the general procedure for several reasons.
First, the surface of an ellipsoid is easily parameterized by latitude and longitude coordi-
nates, which means that we can use latitude and longitude to define a uniform quadrilateral
grid in computational space that is logically rectangular. Second, latitude and longitude
coordinates on an ellipsoid define locally orthogonal directions (ie. at any given point on the
surface of the ellipsoid, infinitesimal increases in the two coordinate directions are orthogo-
nal in the larger Euclidean space). This allows physical quantities in a grid cell to continue
to be represented in a locally orthogonal basis, while simultaneously being aligned with the
computational grid. This implies that Riemann problems and transverse corrections can be
applied in the standard way without rotation of the data. Lastly, the pole singularity is
avoided since the ice-covered poles do not need to be included in the domain. Figure 8.2
shows a portion of a uniform computational grid that is mapped to the surface of a reference
ellipsoid for the earth.

For the special case of latitude-longitude grids, we will denote the computational coor-
dinates by λ for latitude and θ for longitude, and to simplify the formulas we will assume
that λ and θ are in radians. Since the fluxes are everywhere tangent to the ellipsoid surface,
the relevant lengths, hi±1/2,j and hi,j±1/2, are the arc lengths of the curved cell edges and
the relevant area of the cell |Cij | is the surface area of a curved surface in physical space. If
we consider Euclidean space with the origin at the center of the ellipsoid, and represent the
surface in Euclidean space by the parameterized vector, ~S(θ, λ), the area of the cell (i, j) is

|Cij | =
∫ λj+1/2

λj−1/2

∫ θi+1/2

θi−1/2

∣∣∣∣∣∂~S∂θ
∣∣∣∣∣
∣∣∣∣∣∂~S∂λ

∣∣∣∣∣ dθdλ. (8.8)

Similarly the cell interface lengths are

hi−1/2,j =
∫ λj+1/2

λj−1/2

∣∣∣∣∣∂~S∂λ
∣∣∣∣∣ dλ, (8.9)
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Figure 8.2: Earth-fitted grids: mapping of latitude λ and longitude θ coordinates in uniform
computational space (left) to a curved grid on the surface of a reference ellipsoid (right).
Coordinate Mapping is locally orthogonal.

and

hi,j−1/2 =
∫ θi+1/2

θi−1/2

∣∣∣∣∣∂~S∂θ
∣∣∣∣∣ dθ. (8.10)

For general ellipsoids the integrals (8.8)–(8.10) may need to be approximated.

8.2.1 A Perfect Sphere

For a sphere of radius R, using the standard parameterization

~S(θ, λ) = (x, y, z) = (R cos(λ) cos(θ), R cos(λ) sin(θ), R sin(λ)) (8.11)

in (8.8)–(8.10) gives

|Cij | = R2
(
sin(λj+1/2)− sin(λj−1/2)

)
∆θ, (8.12a)

hi−1/2,j = R∆λ, (8.12b)

hi,j−1/2 = R cos(λi,j−1/2)∆θ. (8.12c)

The capacity function and length scale ratios are then

κij = R2
(
sin(λj+1/2)− sin(λj−1/2)

)
/∆λ, (8.13a)

γi−1/2,j = R, (8.13b)

γi,j−1/2 = R cos(λi,j−1/2). (8.13c)
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Note that the length scale ratios relate the circumference of a great circle and a constant
latitude circle to angular coordinates λ and θ respectively. Note also that as grid spacing
decreases to zero

κij = R2

(
sin(λj+1/2)− sin(λj−1/2)

)
∆λ

→ R2 cos(λj), (8.14)

resulting in the ratio relating the differential surface area of a sphere to latitude.

8.2.2 Geoids and Reference Ellipsoids

The true surface of the earth is of course not a perfect sphere, but is closely approximated
by a geoid—an equipotential surface of the earth’s own gravitational field (adjusted for
rotation) that most closely approximates the mean sea level. A geoid is a complex surface
that depends on inhomogeneities in the earth’s gravitational field, so it is often described
by its departure from a closely approximating reference ellipsoid. Reference ellipsoids are
simple oblate spheroids (a flattened sphere) with a polar radius Rb and a single equatorial
radius Ra. They are commonly described by a single equatorial radius and a flattening ratio

f =
Ra −Rb
Ra

, (8.15)

that relates the two radii. (The reference ellipsoid in common use today—the GRS80—
has an equatorial radius of 6,378,137 m and a flattening ratio of 1/298.25722.) Latitude-
longitude coordinates are still locally orthogonal on an oblate spheroid, but now we must be
precise about what latitude refers to—it is no longer the simple angular coordinate between
the equatorial plane and the vertical axis. The geographic latitude, λ, of a given point
on an oblate spheroid is the angle between the normal direction and the equatorial plane,
which, depending on the flattening, is different than the angle between the point and the
center of the spheroid—sometimes called the geocentric latitude, which we will denote by φ
(see Figure 8.3). (Note: the difference is significant even for the nearly spherical earth—
a geocentric latitude of 45◦ corresponds to a geographic latitude of 44.8◦, a difference of
more than 20 km). Since bathymetry and other data is in terms of geographic latitude
(due to historical navigational methods), we will use the true geographic latitude λ as our
computational coordinate. For an oblate spheroid longitude is unambiguous since there is
a single equatorial radius.

An oblate spheroid can be parameterized in a variety of ways—for geophysical problems
it is common to use latitude-dependent polar and equatorial radii, Nb(λ) and Na(λ), which
allows the surface to be parameterized like a spheroid with latitude and longitude playing
the role of angular coordinates. However, this is unnecessarily burdensome when evaluating
the integrals (8.8)–(8.10) for the scale factors, which are all we need for the numerical
method. To determine these scale factors, we will use a more standard parameterization
of an ellipsoid, then relate this to latitude and longitude coordinates. To do this we must
introduce a third angular coordinate ψ, such that

~S(θ, ψ) = (x, y, z) = (Ra cos(ψ) cos(θ), Ra cos(ψ) sin(θ), Rb sin(ψ)) (8.16)
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λφ

Ra

Rb

Figure 8.3: Geographic latitude on an oblate ellipse. The cross section of an oblate ellipse
with a single equatorial radius Ra and smaller polar radius Rb is shown. The geographic
latitude λ of a point is the angle between the normal direction and the equatorial plane,
not the standard angular coordinate φ.

defines the surface. Note that ψ is neither the geocentric latitude φ nor the geographic
latitude λ, but the three are related by the equation

tan(λ) =
1√

1− e2
tan(ψ) =

1
(1− e2)

tan(φ), (8.17)

where e is the ellipticity defined by

e2 =
R2
a −R2

b

R2
a

. (8.18)

Using (8.16) in the integral (8.8) gives the surface area of a grid cell Cij

|Cij | =
∫ ψ(λj+1/2)

ψ(λj−1/2)

∫ θi+1/2

θi−1/2

∣∣∣∣∣∂~S∂θ
∣∣∣∣∣
∣∣∣∣∣∂~S∂ψ

∣∣∣∣∣ dθdψ
= R2

a∆θ
∫ ψ(λj+1/2)

ψ(λj−1/2)
cos(ψ)

√
1− e2 cos2(ψ)dψ

≈ R2
a∆θ

∫ ψ(λj+1/2)

ψ(λj−1/2)
cos(ψ)

(
1− 1

2
e2 cos2(ψ)

)
dψ

= R2
a∆θ

[
sin(ψ)

(
1− 1

3
e2 − 1

6
e2 cos2(ψ)

)]ψ=ψ(λj+1/2)

ψ=ψ(λj−1/2)

. (8.19)

Although an exact closed form solution for (8.19) is possible, given the small value of the
ellipticity of the earth, the O(e4) terms are neglected in the third integral of (8.19), resulting
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in a less cumbersome formula. Using the implicit definition of ψ(λ) from (8.17) in (8.19)
gives

|Cij | =

[
∆θR2

a

√
1− e2

(
sin(λ)√

1− e2 sin2(λ)

)(
1− 1

3
e2 − 1

6
e2 cos2(λ)(

1− e2 sin2(λ)
))]λ=λi−1/2

λ=λi−1/2

.

(8.20)
Similarly, using (8.16) and (8.17) to determine the length scale factors from (8.9) and (8.10)
gives

hi,j−1/2 = ∆θRa
cos(λi,j−1/2)√

1− e2 sin2(λi,j−1/2)
(8.21a)

hi−1/2,j = Ra

∫ ψ(λj+1/2)

ψ(λj−1/2)

√
1− e2 cos2(ψ)dψ

≈ Ra

∫ ψ(λj+1/2)

ψ(λj−1/2)

(
1− 1

2
e2 cos2(ψ)

)
dψ

= Ra

[(
1− 1

4
e2
)

arctan(
√

1− e2 tan(λ))− 1
8
e2
√

1− e2 sin(λ)(
1− e2 sin2(2λ)

)]λ=λj+1/2

λ=λj−1/2

. (8.21b)

We can now use (8.20) and (8.21) to determine the capacity function κij and length scale
ratios, γi−1/2,j and γi,j−1/2, for (8.6) and (8.7).

Geoid estimates allow an even closer approximation to the true surface of the earth, and
could be incorporated into the surface area of grid cells by using locally scaled radii Ra and
Rb. However, this would have a negligible effect for tsunami modeling—geoid deviations
from the reference ellipsoid are on the order of tens of meters and vary little over hundreds
of kilometers. While this is important for applications that require the exact Euclidean
position of a point, such as GPS navigation, it would have little effect on the surface area
and length-scales used to scale computational grid cells.
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8.3 Coriolis Forces

So far in this chapter we have dealt with effects due entirely to the geometry or curvature
of the earth. In this section we deal with Coriolis forces that are due to the rotation of the
earth. Several pseudo-forces arise when Newton’s laws are written with respect to a rotating
coordinate system. When a particle confined to the surface of the earth changes latitude its
radius of rotation changes so it must accelerate relative to the rotating coordinate system,
if its momentum is conserved. This apparent acceleration is due to the Coriolis force. This
pseudo-force can act on a wave as well, if it carries momentum to different latitudes.

The Coriolis acceleration of a particle moving at velocity ~u

∂

∂t
~u = −2~ω × ~u, (8.22)

where ~ω is the angular velocity vector of the earth, and the derivative is with respect to
the rotating frame of reference. Since we are solving the shallow water equations on a
latitude longitude grid, our momentum variables are conveniently represented in the ro-
tating local orthogonal coordinates in the directions of increasing longitude and latitude,
not a rotating Euclidean set of axes. If we denote the time dependent unit vectors in the
latitude and longitude directions êλ and êθ respectively, then our momentum vector is
~hu ≡ (hu êθ + hv êλ). The rate change in momentum in the rotating coordinate system due
to the Coriolis acceleration (8.22) is then

∂

∂t
~hu = −2|ω| (cos(λ) êλ + sin(λ) êr)× (hu êθ + hv êλ) ,

= 2|ω| (hv sin(λ) êθ − hu sin(λ) êλ + hu cos(λ) êr) . (8.23)

Neglecting the acceleration in the radial direction, (8.23) gives the Coriolis force in the
tangent plane

∂

∂t

[
hu
hv

]
= 2|ω| sin(λ)

[
hv
−hu

]
, (8.24)

where as always the first and second components of the vectors are in the locally orthogonal
directions, denoted by êθ and êλ respectively. Equation (8.24) makes it clear that the
Coriolis force is essentially another source term, similar to variable bathymetry and friction.
That is, (8.24) can be written

∂

∂t
q = ψω, (8.25)

where

ψω = 2|ω| sin(λ)

 0
hv
−hu

 . (8.26)

Since there is no relevant steady state due to the Coriolis force, it can be integrated by
fractional stepping, discussed in Section 3.6.
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8.4 Frictional Forces

The shallow water equations are derived for a nonviscous fluid with a uniform velocity
profile in the vertical direction so that there is no boundary layer between the fluid and the
underlying substrate. The validity of this approximation becomes more and more tenuous
as the fluid depth decreases and the velocity of the fluid increases. These flow characteristics
are exhibited in the extreme inundation regimes, motivating the use of empirically derived
friction terms in the shallow water equations when tsunami modeling. These source terms
are often based on experimental studies of wave runup given various types of substrates
(gravel, sand, concrete etc. e.g. [17]). Friction source terms should therefore be used
cautiously and possibly only for depths below some cutoff value—although they are often
very small for regions with any appreciable depth.

The shallow water equations with friction become

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (8.27a)

∂

∂t
(hu) +

∂

∂x
(hu2 +

1
2
gh2) +

∂

∂y
(huv) = −gh ∂b

∂x
− τx, (8.27b)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(
1
2
gh2 + hv2) = −gh∂b

∂y
− τy, (8.27c)

where

τx =
gn2

h7/3
hu
√

(hu)2 + (hv)2, (8.28)

and

τy =
gn2

h7/3
hv
√

(hu)2 + (hv)2, (8.29)

where n is the Manning coefficient—an empirically determined constant. Typical values for
the Manning coefficient range from n = 0.013 to n = 0.025 depending on the application and
the substrate (e.g. [17]). Since no relevant steady state exists due to friction for tsunamis
(the case is very different for river flows), the source term due to friction can be included by
fractional stepping. This is the same as for Coriolis forces, discussed in Section 8.3. However,
note that an implicit numerical method should be used since the terms can become quite
large and time-steps are determined by the CFL condition from the underlying hyperbolic
part of the problem.
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Chapter 9

MISCELLANEOUS NUMERICAL RESULTS

In this chapter several test problems will be shown using the methods described through-
out this thesis. In some cases the results will be compared to other modern Godunov-type
methods for the shallow water equations. A description of the other methods is not provided
here, but can be found in the cited references. All of the numerical results using the meth-
ods described in this thesis are implemented in TsunamiClaw , described in Appendix A,
which is an extension of LeVeque’s clawpack software [61].

9.1 Some One-Dimensional Test Problems

9.1.1 Transcritical Flow with a Shock

This one dimensional test was borrowed from [10], and was originally computed in [37] and
later discussed in [26]. The domain is x ∈ [0, 25], t ∈ [0, 25], with initial data h(x, 0) ≡ 0.33
and hu(x, 0) ≡ 0.18. Dirichlet boundary conditions must be imposed with hu(0, t) = 0.18
and h(25, t) = 0.33. The bottom topography is given by

b(x) =

{
0.2− 0.05 (x− 10)2 if 8 < x < 12,
0 otherwise.

(9.1)

The goal of the problem is to investigate convergence to a non-stationary steady state.
The eventual solution contains a critical point and stationary shock. (Stationary and slow
moving shocks are notorious for generating spurious oscillations, even for shock-capturing
schemes [4, 51].) Bouchut computed this problem using several modern numerical schemes,
as described in [10]. These solutions are shown in Figure 9.1 (a), which is borrowed directly
from [10]. Note that all but one of the methods is free from spurious oscillations. Figure 9.1
(b) shows the numerical solution using the augmented Riemann solver and wave propagation
methods developed and described in this thesis. All of the numerical solutions shown were
computed with 200 points. Figure 9.2 shows a close up of the solution at t = 200 in the
critical region. First and second order versions of the methods described in [10] as well as
the first and second order methods described in this thesis are compared in Figure 9.2.

Figure 9.3 shows the momentum hu for the various schemes for this same test problem.
Note that the steady state should have hu constant throughout the domain. Since the shock
occurs in the middle of a grid cell, the numerical solution in the single grid cell overlapping
the shock has a different larger value for hu than what the true solution has. The data in
this grid cell should lie on (or close to) the Hugoniot locus connecting the data to the right
and left of the grid cell. Shock data moving into the grid cell from either side preserve the
steady state in this cell. Therefore, the spike seen at the location of this shock remains even
as the grid is refined and the solution converges.
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Figure 9.1: Transcritical flow with a shock. The water elevation is shown for the eventual
steady state that is reached. (a) Various numerical solutions using methods described in
[10] are shown. Figure is borrowed directly from Bouchut [10]. (b) The solution using the
augmented approximate solver described in Chapter 6 and the wave propagation methods
described in Chapter 3. Both figures show the solution at t = 200.

9.1.2 Vacuum Over Discontinuous Topography

This problem is again borrowed from Bouchut [10] and originated in [26]. The problem
consists of a strong double rarefaction which leads to incipient cavitation over variable
topography. The domain is again x ∈ [0, 25] and the final time is t = 0.25. The topography
is

b(x) =

{
1 if 25/3 < x < 12.5,
0 otherwise.

(9.2)

The initial conditions are h(x, 0) = 10 and

hu(x, 0) =

{
−350 if x < 50/3,
350 otherwise.

(9.3)

Solutions using various methods are again borrowed from [10]. These are shown in Fig-
ure 9.4, and compared to solutions using the augmented solver and wave propagation meth-
ods in Figure 9.5. First and second order solutions at t = 0.25 are shown for all cases. A
common property of many positive preserving methods near a dry front is illuminated in
Figure 9.4. As described by Bouchut in [10], the “density is systematically underestimated
on the front.” Note that in Figure 9.4, especially for the second order schemes, the low
depths preceding the actual dry front. This also occurs for the HLL method, and essentially
results from the large speeds used that preserve positivity. See [10] for further discussion.
Note that the augmented solver improves this weakness as can be seen in Figure 9.5.
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Figure 9.2: Close-up of the critical region for the transcritical flow problem. (a) The solu-
tions for the first order schemes described in [10]. (b) Solutions to the same problem using
the second order version of the same schemes. (c) The solution using the first order version
of the methods described in this thesis. (d) Solutions using the second order corrections
described in Chapter 3. (Panels (a) and (b) are borrowed from [10]).
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Figure 9.3: The momentum hu for the transcritical flow with a shock problem shown at
t = 200. The true steady state solution should be constant hu ≡ 0.18. (a) The first order
solution using the various schemes described in [10]. (b) The second order solutions to the
same problem. (c) The solution using the augmented solver and the first order methods
described in this thesis. (d) The same problem with second order corrections. The smooth
steady state is nicely maintained. (Panels (a) and (b) are borrowed directly from [10]).
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(a) (b)

Figure 9.4: Various numerical solutions to the double rarefaction problem over discontinuous
topography borrowed from [10]. (a) The first order methods. (b) The second order methods.
Note the low depths preceding the true dry fronts on either side of the expanding vacuum
region. Figures are borrowed directly from [10]
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Figure 9.5: First and Second order solutions to the double rarefaction problem over discon-
tinuous topography using the augmented Riemann solver and the wave propagation meth-
ods. (a) The first order method. (b) The same problem using the second order corrections.
The dry front is more closely approximated.
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9.2 Benchmark Problems from the 3rd International Longwave Workshop

This section describes problems from the 3rd International Longwave Workshop, Catalina,
June 2004. Some results from benchmark problems 1 and 2 are summarized. These results
are additionally presented in our conference proceedings report [68].

9.2.1 Benchmark 1: Motion of the Shoreline
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Figure 9.6: Benchmark 1 from the Long Wave Workshop [70]: The surface elevation and
beach at two times. (a) Water surface elevation at t = 160 seconds. (b) Water surface
elevation at t = 220 seconds.

The first benchmark problem, described in more detail in the conference proceedings
[70], consists of an incoming wave from the right moving leftward toward a linear sloping
beach on the left of the domain. The shoreline first recedes as the trough of the wave
reaches the shore before advancing as the crest arrives. Figure 9.6 depicts the solution to
the problem at two distinct times. One of the goals of the problem is to track the position
and velocity of the single point where the water intersect the shore. This problem is solved
analytically by Carrier and Yeh in [14], and serves as a validation tool for runup algorithms.
The results of the shoreline movement, shown in Figure 9.7, are taken from our workshop
results presented in [68]. The numerical solutions were therefore computed with a different
Riemann solver, described in [68]. The solutions were computed with 1000 points on a
much larger domain, with a mapping that clustered points near the shoreline. The area
over which the shoreline moves, shown on the y–axis in Figure 9.7 (a), was covered with
several hundred points.
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Figure 9.7: Benchmark 1: comparison of runup with an analytical solution from [14]. (a)
Comparison of the numerical solution and the analytical solution for the position of the
shoreline. (b) Comparison for the velocity of the shoreline.

9.2.2 Benchmark 2: Comparison to a Wave Tank Experiment

For the second benchmark problem, a scale model of Okushiri Island Japan was constructed
in a wave tank basin. Okushiri Island was devastated by a tsunami in 1993, and suffered
some unusually large runup patterns (e.g. [45]). An incoming wave was initiated by paddles
at one end of the tank. One of the goals of the problem was to compare numerical solutions
to the experimentally observed water surface elevations measured by wave gages at three
distinct locations. Note that this is a test not only for the numerical method, but also for
the shallow water equations in this context. The results are shown in Figure 9.8. More
discussion and details can be found in our conference proceedings report [68], as well as
comparisons to videos of inundation patterns.
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Figure 9.8: Benchmark 2 from the Long Wave Workshop [70]. Comparison to a wave tank
experiment. (a) Snapshot from a simulation of the experiment showing Okushiri Island and
the incoming wave. (b)-(d) Numerical and experimental solution at the location of 3 wave
gages.
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9.3 Adaptive Mesh Refinement for the Conical Island Test Problem

The problem in this section is taken from a wave tank experiment presented in Liu et al
[72], where a solitary wave interacts with a circular or conical island model (see also ). The
problem was motivated largely by the unexpectedly large runup patterns observed on the
lee side of islands during multiple tsunamis in the 1990s. See Yeh et al [110, 109, 112] and
Titov et al [99, 96] for a discussion of tsunami runup patterns on islands. This section is
also intended to introduce some features of using adaptive mesh refinement, described in
Chapter 7.

(a) (b)

Figure 9.9: Diagram of the conical island wave tank experiment and the location of the
gages, from Liu et al [72]. (a) Top: top view of the wave tank basin and island. Bottom:
vertical view of the circular island on the cross section. (b) Location of the wave gages. The
incoming soliton comes from y = 0 from the bottom of the figure. Figures are borrowed
directly from [72].

Figure 9.9, borrowed directly from [72], shows the wave tank experiment set-up. The
incoming wave was generated at the bottom of the tank y = 0, as described in [91]. Tsunam-
iClaw was used for a numerical simulation of this experiment, using an undisturbed depth
of 0.32 meters, and a soliton amplitude of 0.032 meters. The simulation was performed on
a 50 meter long and 30 meter wide domain, in order to better propagate a soliton in the
y direction, from y < 0. (Therefore, because of a discrepancy in reproducing the incoming
wave that was actually generated in the wave tank experiment, the solution presented here
will not be compared directly to the solutions in [72], but interesting features emerge.)

In the simulation shown in Figure 9.10, three grid levels were employed, with refinement
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ratios of 8. The coarsest grid had 1 meter grid cells. The second level tracks the incoming
soliton, and third levels are reserved for capturing the runup at the island, as demonstrated
in Figure 9.10. As the soliton wave wraps around the island, maximum runups are observed
on the lee side of the island. In [72] this was experimentally reported, but the numerical
results failed to reproduce that observed feature. Figure 9.11 shows the experimentally
recorded water surface elevation at several gages in the experiment. The locations of the
gages are shown in Figure 9.9. These figures are shown to demonstrate some general features
in the recorded solution. They are not directly compared to the computational results of
the simulation, since the incoming wave did not replicate the experimental wave exactly.
Figure 9.12 shows the numerical solution of TsunamiClaw at locations corresponding to
gages adjacent to the four sides of the island. Note that the solution at gage 13, located
on the lee side of the island has the maximum runup. For the location of the gages, see
Figure 9.9.
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Figure 9.10: Simulation of the circular island experiment using adaptive mesh refinement.
The incoming soliton is resolved on level 2 grids. As the soliton interacts with the island,
level 3 grids resolve the runup.
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Figure 9.11: Surface elevation measured at some of the gages from the conical island ex-
periment. Note that the surface elevation at gage 13, behind the island reaches a higher
maximum that the elevation at gage 6, in front of the island. The figures are shown to in-
dicate general patterns only since the incoming wave used in the computation described in
this section does not replicate the experimental wave exactly. Figures are borrowed directly
from [72].
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Figure 9.12: Runup at the four gages adjacent to each side of the circular island. See
Figure 9.9 for the location of the gages. (a) Elevation at gage 6 on the near side of the
island with respect to the incoming wave. (b) Elevation at gage 13 on the lee side of the
island. Note that the runup at this gage is larger than at gage 6, as found in the wave tank
experiments [72]. (c) & (d) Elevation at gages 7 and 22 on the two sides of the island. As
expected from symmetry the solutions are identical.
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Chapter 10

SIMULATIONS OF THE 2004 INDIAN OCEAN TSUNAMI

In this chapter several TsunamiClaw simulations of the 2004 Indian Ocean Tsunami
will be shown. The goal of the chapter is to demonstrate the properties and features of
adaptive mesh refinement in the context of a global scale transoceanic tsunami. In all of
the simulations, dynamic motion of the seafloor bottom was used to generate the tsunami,
as described in Section 10.1. The bathymetry in all of the simulations is from the GEBCO
data set, a global one minute gridded data set. For higher grid refinements nautical chart
interpolation was performed where possible. All of the simulations shown were computed on
a latitude-longitude spherical grid as described in Chapter 8. Figure 10.1 shows a snapshot
from a simulation on the Indian Ocean as the tsunami approaches Africa. The figure shows
three levels of grid resolutions, with grid lines omitted from the finest level for clarity. The
code for all of the simulations shown in this chapter is available at [28].

10.1 The 2004 Sumatra-Andaman Earthquake and Generation of the Tsunami

The 2004 Sumatra-Andaman Earthquake, one of the largest earthquakes in recorded history,
initiated the Indian Ocean Tsunami—eventually killing hundreds of thousands of people
throughout the Bay of Bengal and Indian Ocean region. The tsunami was the largest in
modern history, and waves spanning the globe and were recorded on every continent (e.g.
[95]). The fault rupture initiated on December 26th off the coast of Sumatra and proceeded
north-northwest extending nearly 1300 kilometers along the Andaman islands trough at a
speed of about 2.5 kilometers per second according to Ammon et al [3]. The peak vertical
fault displacements are estimated to be approximately 15 meters by the same authors in
[3]. Although these fault rupture speeds are fast compared to tsunami propagation (which
can approach 0.2 kilometers per second), the long duration (about 500 seconds [43]) of
the fault motion might significantly affect the tsunami wave patterns, as the tsunami might
propagate upwards of 100 kilometers at the source before the rupture ends. This means that
the inundation in the islands of Indonesia had begun before the generation of the tsunami
1300 kilometers to the north had ended.

10.1.1 Generation with a Spatial-Temporal Model of the Fault Motion

For the above reasons, the simulations shown in this chapter were generated using a dynamic
fault model of the spatial-temporal movement of the seafloor. The model was provided by
the Caltech Seismolab, and was generated using the spectral element code specfem3D,
described in [54, 55]. The specific data used was Chen Ji’s (Model III), described in [3].
The model divides the region surrounding the fault into a 15 minute grid cells and provides
displacement of the seafloor at 0.1 second intervals for 790 seconds. The simulations shown
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Figure 10.1: Simulation of the Indian Ocean Tsunami showing the entire Indian Ocean on
three grid levels. Grid lines are omitted from the finest level.

in this chapter were all generated by numerically moving the bottom bathymetry according
to the model, using time-steps dictated by stability in the TsunamiClaw code. The fault
model was therefore interpolated spatially and temporally.

Figure 10.2 shows several snapshots around the fault region during the fault motion in a
TsunamiClaw simulation. Clearly the tsunami begins to propagate away from the source
as the fault continues to rupture northward.

10.1.2 Comparison to the Jason Satellite Data

The Jason-1 and Topex/Poseidon satellites, under a joint project between NASA and the
French Space Agency, orbit the earth collecting satellite altimetry data for oceanographic
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research. The satellites happened to be passing over the Indian Ocean on December 26
2004. Researchers at the space agencies determined that the satellites apparently detected
the tsunami. This was accomplished by comparing the satellite data on December 26th with
that from the same orbital pass (pass 129) at different times (cycles). Figure 10.3 (a) is
a plot of the Jason-1 sea surface height anomaly data (ssha) from cycle 108 in light blue,
which was the previous time the satellites were on the same pass (about 10 days before
the tsunami), and cycle 109 in violet which occurred during the tsunami. A crude estimate
of the tsunami therefore can be obtained by subtracting the two data sets. Figure 10.3
(b) shows the subtracted data sets (in blue) and the computed solution (in red), using
TsunamiClaw. The blue line is a polynomial fit to the subtracted data sets. Based on
wave speed estimates and the time of the initial earthquake, it seems clear that the leading
edge of the tsunami is at approximately −5◦ latitude when it is encountered by the Jason-1
satellite. The apparent disturbance between −15◦ and −10◦ is most likely due to (unknown)
factors other than the tsunami. This might give a rough indication of the inherent noise in
the data and the process of subtracting the data at different times.
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Figure 10.2: Dynamic generation of the Indian Ocean Tsunami using a spatial-temporal
pattern of the fault motion. The figures show the sea surface displacement at four times
during the movement of the seafloor. Sea surface elevations above and below 0 are shown
in red and blue respectively. The saturation is at ±1 meter. The simulation has 2 levels
of grid refinement, with a refinement factor of 8. Second-level grids appear and track the
rupturing fault. Grid lines are omitted from the 2nd level for clarity.
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Figure 10.3: Comparison to Jason-1 Satellite Altimetry Data (a) Jason-1 satellite laser
altimetry data, from pass 129—an orbit that passed over the Indian Ocean from south
to north periodically in 2004. SSHA (sea surface height anomaly) data from cycle 108—
which occurred about 10 days before the Tsunami is shown in light blue. Earlier and
later cycles after the tsunami (not shown) match cycle 108 fairly consistently. SSHA data
from cycle 109—which passed over the Indian Ocean during the tsunami is shown in violet.
An abnormal sea surface height is apparent. (b) SSHA data from cycle 108 and 109 is
differenced for a rough estimate of the detected sea surface height on December 26th. The
blue points are the subtracted raw data at a given latitude, and the solid blue curve is a
polynomial fit to the data. The computational solution using TsunamiClaw is shown in
red.
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10.2 A Three-Level Simulation For the Bay of Bengal

The simulation shown in this section employs three grid levels, with spatial refinement ratios
of 8 and 8 for the second and third levels respectively. Temporal refinement to the second
level was also 8, but the third level was temporally refined by a factor of 4 (4 time-steps for
every time-step on the second-level grids.) This is possible since the third-level grids are
reserved for shallow regions where the wave speeds are smaller, yielding smaller Courant
numbers as described in Section 7.4. The coarsest grid had 40 by 40 grid cells, 1◦ by 1◦

each. Third level grids were restricted to Sri Lanka and eastern India for demonstration
of computational times, given the more common scenario where only a given region is
inundated by typical transoceanic tsunamis. The simulation was run on a single processor
(3.2 GHz running Linux) and took 39 minutes to complete. The simulated time was 10,000
seconds.

Figure 10.4 shows four snapshots of the simulation at different times. As the tsunami
waves spread throughout the Bay of Bengal, the propagation is resolved on second-level
grids. The grid cell size, (1/8)◦ (roughly 8 miles), is sufficient to resolve the long wavelength
tsunami. Computational efficiency is maximized by the very coarse resolution of the domain
in regions where nothing is happening. This savings is realized even further for larger
domains, such as that shown in Figure 10.1. As the waves approach Sri Lanka, note the
appearance of third-level grids near the eastern coast. The individual third-level grids are
outlined in Figure 10.4 (b). All three grid levels can be seen in Figure 10.4 (b) and (c), where
the grid lines on the second level have been added for comparison to the coarsest grid at the
far western border. The third-level grid resolution, (1/64)◦ (roughly 1 mile), provide more
detailed resolution of impacted shorelines and allow a rough estimate of inundated regions.
Note that by only resolving shorelines as waves approach them, computational efficiency is
maximized. By maximizing computational efficiency, ultimately higher resolutions or finer
grids can be used with the same computational cost as fixed telescoping grids.
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(a) (b)

(c) (d)

Figure 10.4: Simulation of the Indian Ocean Tsunami using three grid levels. The coarsest
grid has 1◦ grid cells. Grid refinement ratios of 8 are used for the second and third levels. (a)
Second-level grids track the deep ocean propagation at a refinement factor of 8—resulting
in grid cells of approximately 8 nautical miles. Grid lines are omitted on the second level
for clarity. (b) Third-level grids, reserved for shallow coastal areas, appear near the east
coast of Sri Lanka as the waves approach. The third-level grids are outlined in black. (c)
The shoreline of Sri Lanka is resolved on third-level grids. The second-level grid lines are
shown. (d) The final time of the computation described in this section.
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10.3 A Fourth Level to Model Inundation at Madras, India

The simulation shown in this section was identical to the simulation shown in the previous
section, except that an additional fourth level was allowed near Madras, India. The fourth-
level grid was refined from the third level by a factor of 64. Note that this results in
grid cells with roughly 25 meter sides, making the grid suitable for inundation modeling.
Because of the restriction of the fourth-level grids to extremely shallow waters, a temporal
refinement of 16 was used from the third level. Note that this implies that from the first
to the fourth level, grids are refined spatially by a factor of 4096 and temporally by only
512. The simulation took approximately 10 hours to reach the simulated time of 10000
seconds on the same machine as the three level simulation described above, and took 13
hours to reach 11000 seconds of simulation time. The fourth grid level therefore represents a
considerable added expense. However, as pointed out by LeVeque for a similar computation
in [62], performing the same computation with the entire domain at the resolution of the
fourth level would take roughly 4000 years of computational time.

Note that since the third-level grid cells are roughly the same resolution as the GEBCO
gridded bathymetry, accurate inundation modeling in this region requires more refined
bathymetry than is currently available in gridded digital form. For the simulation shown
here, it was necessary to scan and interpolate, by hand, nautical navigational charts. This
was done for the Madras India region because of some current studies in progress there.

(a) (b)

Figure 10.5: Satellite photographs of the coastal region around Madras, India. (a) The coast
around Madras, India. (b). A closer view of the Madras harbors. The commercial shipping
harbor is south of the smaller fishing harbor. Photographs courtesy of NASA World Wind
and Digital Globe Data Set.
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Figure 10.5 shows satellite photographs of the Madras region from the NASA World
Wind program and the Digital Globe data set. In the photograph on the right, the Madras
harbors and seawall are visible. The larger harbor to the south is a commercial port for
large freight ships, and the smaller harbor to the north is a less substantial fishing harbor
for small boats.

Figure 10.6 shows several snapshots from the simulation. In the first snapshot, the first
three levels of grids can be seen. The grid lines are omitted from the third levels, which
appear around Sri Lanka and the Madras region on the eastern coast of India. The fourth
level appears in Figure 10.6 (b), which shows a close up of the region around Madras. The
grid lines are shown for the second and third levels. The fourth-level grids appear near
the middle of the third-level grid as the waves approach the coast. Figure 10.6 (c) shows a
closer view of Madras and the fourth-level grids, of which there happen to be four of. Only
the fourth level is shown in the last snapshot.

Inundation of the Madras coast is shown in four snapshots shown in Figure 10.7. Note
that the commercial harbor is inundated as the tsunami approaches from the north, but
the fishing harbor is spared by its seawall. The water in the commercial harbor continues
to slosh for some time as the wave train inundates the region, while the fishing harbor is
protected. Apparently, based on personal communication with several researchers who are
working in this area [107, 76], this probably reflects what happened in the two harbors.
However, this is still being investigated at this time.
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(a) (b)

(c) (d)

Figure 10.6: Simulation using a fourth-level grid for inundation modeling of the Madras
Harbor. The coarsest grid, seen only on the far left of the top left figure, has 1◦ grid cells.
The second and third grid levels are refined by a factor of 8, and the fourth level is refined
by a factor of 64. (a) Third level grids around Sri Lanka, and Madras, India, are shown
without grid lines. (b) A closer view of the Madras area. Grid lines are shown on the
third-level grid, and fourth-level grids appear around the Madras area. (c) A closer view
of the fourth-level grids around the Madras harbors as the tsunami approaches. (d) The
fourth-level grids around Madras. The grid resolution is 1/4096 of 1◦, or approximately 25
meters per grid cell.
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(a) (b)

(c) (d)

Figure 10.7: Inundation of the Madras Harbor. (a) The initial tsunami waves approach the
harbor. (b) The commercial harbor to the south is inundated as the initial tsunami crest
reaches the shore. (c) At the height of inundation the fishing harbor to the north is largely
shielded. (d) The commercial harbor experiences sloshing as the trough of the first tsunami
waves reach the coast.
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Chapter 11

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter a brief summary will be given of the results of this work, and possible
future directions will be mentioned.

11.1 Conclusions

In this thesis, various modern Godunov-type numerical methods for hyperbolic PDEs were
developed and extended to the application of tsunami modeling. A novel approximate
Riemann solver, described in Chapter 6, was developed in order to deal with the diverse
flow regimes exhibited by tsunamis. The Riemann solver is based on an overdetermined
or augmented homogeneous system equivalent to the shallow water equations for smooth
solutions. Moreover, the Riemann solver maintained properties of methods that converge
to discontinuous solutions of the shallow water equations for which the overdetermined
homogeneous system fails to be valid. For instance, the solver was shown to be equivalent
to the Roe solver in the event of a single shock-wave solution to a Riemann problem.
The solver is well-balanced in terms of integrating the source term, and is particularly
adept at preserving non-stationary steady states, which was shown to be a necessity for
modeling transoceanic tsunamis when using Godunov methods for the conservative form of
the shallow water equations. The solver is depth-positive-definite in the sense of maintaining
positivity of the solution to Riemann problems and is robust and accurate in the presence of
moving shorelines and evolving dry regions. Although this solver is novel, the goals sought
very much parallel other recent developments for hyperbolic systems and the shallow water
equations from the hyperbolic numerical community, such as well-balanced solvers that
preserve positivity.

The wave propagation methods of LeVeque [65, 64], applicable to hyperbolic conserva-
tion laws and related nonconservative hyperbolic systems, has been used to implement the
methods described in this thesis. The wave propagation methods are particularly suitable
for use with the approximate Riemann solver developed, since the solver is related to a
nonconservative system. These methods are second-order accurate for smooth solutions
to hyperbolic systems, and maintain the properties necessary to converge to discontinuous
weak solutions.

Adaptive refinement algorithms, developed by Berger, Collela, Oliger and LeVeque [7, 9,
8] for general hyperbolic systems, were extended and modified to the application of tsunami
modeling with the shallow water equations. This development is believed to be unique in the
field of tsunami modeling, and is thought to be particularly useful due to the diverse scales
of tsunamis. It is believed that adaptive refinement will be an integral piece of tsunami
modeling in the future, particularly if real time tsunami forecasting becomes a tool of the
hazard mitigation communities.
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The goal of this thesis was to lay the groundwork for applying modern Godunov-type
finite volume methods and adaptive refinement to tsunami modeling in a unified and practi-
cally useful manner. By dealing with realistic data and scales of tsunamis, many unforseen
complications have been overcome.

11.2 Future Work

11.2.1 Progress in Riemann Solvers for Godunov Methods

Recently there has been rapid progress in the field of Riemann solvers for the shallow water
equations. It is believed that the Riemann solver presented here provides a new simplified
framework for well-balanced approximate solvers that preserve positivity. It is hoped that
the resonant problem, where transonic Riemann data occurs in conjunction with variable
bathymetry, may be dealt with in a more simplified and coherent manner in the future.
It may also be that some of the Riemann solver ideas presented in this thesis may be
extendable to other applications, such as gas dynamics, particularly for problems with near
vacuum states.

11.2.2 Adaptive Refinement

Because of the unusual relationship between wave speeds and flow regimes for tsunamis
(largest wave speeds occur in the deep ocean near a steady state), the standard time-
stepping guidelines for hyperbolic equations, built in to adaptive routines, may be less than
ideal for tsunami modeling. It would be useful to have a completely decoupled method,
where time-stepping on every grid is determined entirely by stability on that grid, given a
proper buffer zone for that grid.

11.2.3 Parallelization

Ideally, the algorithms presented here could be implemented on parallel platforms, allowing
more rapid calculations. For instance, in Section 10.3, it was observed how a fourth-level
grid slows the computation considerably. Given numerous Cartesian grids with the adaptive
refinement algorithms presented, parallel processing, where different grids are allocated to
different processors, would be ideal.

11.2.4 Scientific Modeling and Hazard Mitigation

In this thesis, emphasis was placed on the theoretical development of algorithms that are
robust and accurate for solving the shallow water equations when those solutions exhibit
diverse flow features indicative of tsunamis. It has been stated that this thesis is not a
scientific investigation of tsunamis. However, the end goal of developing algorithms for
tsunami modeling is not to use those algorithms for scientific studies. It is hoped that the
algorithms presented here may form the basis of robust, accurate and user-friendly codes
used by tsunami researchers in different arenas.
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Appendix A

TSUNAMICLAW USER’S GUIDE

A.1 Introduction

TsunamiClaw is an extension of the Clawpack software, a set of fortran routines for solv-
ing hyperbolic systems of PDEs. TsunamiClaw is available for download at the Clawpack
website [61]. TsunamiClaw contains many of the standard routines from Clawpack, and
the adaptive mesh routines Amrclaw, as well as many specialized routines for solving
the nonlinear shallow water equations, particularly for tsunami modeling. The standard
TsunamiClaw library contains all of the necessary library routines, and is available at the
Clawpack website. This document contains information specific to TsunamiClaw. More
general documentation for Clawpack and Amrclaw is available at [61] and should be
consulted before reading this document.

A.2 General Features of TsunamiClaw

TsunamiClaw allows one to model global-scale tsunamis and inundation on a latitude-
longitude grid (or smaller local tsunamis on a Cartesian grid) with a diverse range of spatial
and temporal scales. This is accomplished by using a single coarse level 1 grid for the
entire domain, and evolving rectangular Cartesian sub-grids of higher refinement, level 2
, · · · , level n, that track moving waves and inundation at the shoreline. Up to six levels
may be used (though typically four or less is recommended). At any given time in the
calculation, a particular level of refinement may have numerous disjoint grids associated
with it. User specified integers determine the refinement ratios between particular levels,
which can lead to a large degree of refinement even for a small number of levels.

The following example illustrates a typical usage of grid-level refinement for calculating
the Indian Ocean Tsunami. Consider four levels with refinement ratios of 10. The entire
Bay of Bengal can be covered with a level 1 grid with 50×50 grid cells, each 100km×100km
(1◦ ≈ 100km). A second level might be dedicated to tracking the deep ocean tsunami with
grid cells that are (10km)2 (this resolution is sufficient given the long wavelength of deep
ocean tsunamis). Third-level grids near the shore could resolve the compressing tsunami
onto (1km)2 grid cells, resolution sufficient to identify vulnerable coastlines. Fourth-level
grids would then allow resolution onto (100m)2 grid cells. Alternatively, if a specific region
was of interest, one could easily resolve a specific community or shoreline onto (10m)2 grid
cells using four levels and the right refinement ratios, allowing detailed inundation studies.
Calculations of this sort can easily be done on personal desktop or laptop computers using
TsunamiClaw. Computing the same domain at this single highest resolution would require
1010 grid cells and prohibitively small time-steps, and would not be feasible given current
computing technology.
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TsunamiClaw is based on a finite volume numerical method, which means that the
solution is represented as a piecewise constant, with numerical values approximating the
average solution value in each discrete computational grid cell. There is no specific reference
to the shoreline—grid cells may simply be wet or dry depending on their location, and may
fill-up or drain-out of water as waves inundate or draw-down at the shoreline. This means
that dry land is part of the computational domain, and a single grid is a simple rectangle
that may overlap the shoreline. TsunamiClaw solves the shallow water equations in their
physically relevant conservative form, therefore, the solution is represented as water depth
and momentum. This is one feature that allows convergence to discontinuous bores. See
[67] and [8] for a mathematical descriptions of these methods.

A.3 Running TsunamiClaw

This document assumes a basic working knowledge of Unix or Linux. TsunamiClaw is
written in fortran 77, and can be run on any system with a proper fortran compiler. However,
using the provided Makefiles requires that you are using a Unix or Linux operating system.
TsunamiClaw consists of a directory of library routines, as well as an application directory
that will be used to specify problem specific parameters. Routines in the library should
typically not require any modification, and should only be modified at your own risk. (One
possible exception is the call.i file. See the standard Clawpack documentation).

A.4 The TsunamiClaw library

The standard TsunamiClaw library,
tsunamiclaw/lib,

is available at the Clawpack website as a tar-zipped directory,
tsunamiclaw.tar.gz.

On your system, the unzipped directory should be in a path specified by an environment
variable that you should name TSUNAMICLAW. The path to the TsunamiClaw library will
therefore be referred to as,

$TSUNAMICLAW/lib.
It is recommended to set this environment variable in one of your login scripts (such as
.cshrc or .bashrc depending on your shell). Before using TsunamiClaw, the .f fortran
files in the library must be made into .o object files. This can be done by typing “make”
from the library directory

$TSUNAMICLAW/lib.
(Note: the variable TSUNAMICLAW must be set before using make.) If the library is modified
(not recommended), or moved from one system to another, make should be run again.

The TsunamiClaw library contains a mix of routines, some that are unique and some
that are standard routines of Clawpack and Amrclaw. Routines that are unique to the
TsunamiClaw library are named by the convention filename_tc.f. Other versions from
the standard Clawpack library may or may not be compatible with the filename_tc.f
routines. Use caution if updating to newer versions of the Clawpack or Amrclaw libraries.
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A.5 Application Directory

TsunamiClaw will be run from an application directory that may reside anywhere in
your directory structure. An application directory will contain input data files where pa-
rameters will be set for each specific problem. TsunamiClaw uses two input data files,
amr2ez.data and setprob.data. Standard Clawpack computational parameters are set
in amr2ez.data, such as the physical domain and refinement parameters, and the other file,
setprob.data, is used to set computational parameters specific to TsunamiClaw. The
application directory will also contain several required fortran routines (.f files), explained
in section section A.8, that can optionally be modified to your needs. However, for standard
applications it should only be necessary to set parameters in the input data file. To make
the executable that runs TsunamiClaw, type “make xtsunami” from the application di-
rectory. The executable file xtsunami can then be run from this directory. An example
application directory comes with TsunamiClaw,

$TSUNAMICLAW/tc example,
that contains the required fortran routines (.f files) and the input files (.data files), as well
as some matlab plotting scripts (.m files). It is recommended that you copy this directory
to another location outside of $TSUNAMICLAW before making modifications, so that if you
update TsunamiClaw to newer versions, your personal application directories will not be
overwritten.

A.6 Data Input (setprob.data)

The computational parameters set in setprob.data are described below. Note that integer
variables start with the letters m or l, so values specified in setprob.data for these variables
should not contain any decimal points.

gravity: The gravitational constant should typically be set to 9.8, unless units other than
meters and seconds are desired. When using the default latitude-longitude units,
internal calculations rely on meters as the physical units, so the default value of 9.8
should be used.

depthtolerance: Water depths below this value (in meters) will be effectively treated
as zero. This makes the computation more efficient, since it prevents computing the
solution in areas with vanishingly small depths. It is recommended to use a reasonable
value such as 10−3 (1 millimeter) or larger. Since the shallow water equations have
no viscosity, water velocities can be unrealistically large in regions with very shallow
depths, and this can lead to inefficient time-stepping or even instabilities. (Note that
friction can help alleviate this problem.) Using a value in the range of 10−3 to 10−2

is recommended.

shallowdepth: This parameter is used for refinement purposes. Typically more refinement
is desired, and needed due to decreasing wavelengths, in shallow coastal waters. This
parameter indicates areas that are considered “shallow” in meters. Larger values will
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lead to larger areas of refinement, while smaller values will lead to limited refinement
areas closer to shore. A typical value might be 100 (meters). See maxdeepoceanlevel
below.

wavetolerance: This parameter is used for refinement purposes near waves, and controls
how sensitive refinement is to deviations from level sea-surface. Smaller values will
therefore lead to larger areas of refinement and larger values will lead to smaller areas
of refinement surrounding only the biggest waves. Since deep ocean tsunamis do not
necessarily have large amplitudes, a value such as 10−1 (10 cm) might be a typical
value for a global scale tsunami.

frictioncoeff: This parameter sets the Manning coefficient used for optional bottom
friction. Bottom friction may be important for realistic run-up heights and can speed
calculation times as well. The friction formula is a standard empirically derived for-
mula. Higher values of the Manning coefficient correspond to greater friction. A
typical value used in a tsunami calculation might be 0.025. For friction, the source-
term splitting option must be set in amr2ez.data. If you do not want to use friction,
you can set frictioncoeff to 0.0, or turn-off source term integration in amr2ez.data.

maxdeepoceanlevel: This parameter determines what level of refinement is allowed in the
deep ocean. Typically deep ocean tsunamis have very long wavelengths, and so high
levels of refinement are not needed and would be computationally wasteful in the
deep ocean. A typical computation might only allow the second level of refinement
in the deep ocean, reserving higher level grids for shallow regions near the shore. For
classification of deep and shallow TsunamiClaw uses the shallowdepth parameter.

levelallowdomain: This parameter determines what level of refinement is allowed on the
entire domain. For instance, it might be desired to restrict high levels of refinement to
certain regions of the domain. In this case levelallowdomain should be set to some
lower value that is allowed on the entire domain. See below for parameters that allow
higher refinement in certain regions.

methodquake: This parameter determines the type of method that is to be used to gener-
ate the tsunami. It can have integer values of 0,1, or 2. If methodquake= 2, then a
dynamic fault model is used, as specified in a user provided data file. If methodquake
= 1, then a static initial condition is used, as specified in a user provided data file. The
formats for these files are described in the section “Fault Models”. If methodquake= 0
then the user must provide some other means of generating the tsunami, such as spec-
ifying an initial condition directly in qinit.f, or perhaps a user specified boundary
condition. To use these latter options, see the standard Clawpack documentation.
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minfaultrefinelevel: This parameter is used for determining refinement in the region
described by the fault model. It can have any integer value up to the number of refine-
ment levels specified in amr2ez.data. Setting mfaultrefinelevel= n will enforce
that level n grids or finer will cover the fault region during the fault motion. If you do
not want to enforce a particular level, but wish for TsunamiClaw to treat the fault
region like any other region, refining based on wave heights and water depths, then
set mfaultrefinelevel to a low value such as 0 or 1.

faultfname: On the line following mfaultrefinelevel, you should place the relative or
full path to the file of the fault model in single quotes. If methodquake= 0, then the
line should be blank.

mbathfiles: Set mbathfiles to the integer number of bathymetry files that you would
like to read in. If you are specifying bathymetry directly by some other means, set
mathfiles = 0. See the description of setaux.f.

levelallowbathfile(mbathfiles): This line should contain a list of mbathfiles integers,
specifying the level of refinement allowed over each bathymetry file to be used. This
variable is useful if you would like to use a certain level of refinement over most of
the domain, yet reserve high levels of refinement for regions where you have more
detailed bathymetry. For more about how bathymetry files can be used, see the
section Bathymetry.

bathfname(mbathfiles): The next mbathfiles lines should contain the paths to the
bathymetry files in single quotes. There should be at least one, unless mbathfiles
= 0, in which case the line should be empty. The order that they are listed in should
correspond to values specified in the list of integers.

mregions: For additional control and restriction of refinement to particular regions, set
mregions to an integer number of regions that you would like to specify.

levelallowregion(mregions): This line should contain a list of mregions integers, spec-
ifying the level of refinement allowed over each region to be specified. This option is
useful if you would like use high levels of refinement for regions of interest, even if
these regions do not correspond specifically to bathymetry files.

regioncoords(4,mregions): The next mregions lines should each contain a list of four
coordinates specifying the particular region: xlower xupper ylower yupper.



159

A.7 Data Input (amr2ez.data)

The file amr2ez.data is used to set standard computational parameters for Clawpack
and Amrclaw. Consult the standard Clawpack documentation, particularly the section
on Amrclaw, for complete information about this file. In this section, a few of these
parameters will be described that should have specific values for TsunamiClaw.

method(5): This variable specifies whether to integrate a source-term. For TsunamiClaw,
setting this to 1, will incorporate friction. Otherwise set this variable to 0. Using fric-
tion will improve stability, and is recommended when trying to speed the calculation
or use anisotropic time refinement explained in section A.12.

meqn: This indicates the number of equations to be solved. For TsunamiClaw this should
be 3, since the shallow water equations are solved.

mwaves: This indicates the number of waves in the solution. For TsunamiClaw this should
be 3 also.

mcapa: This should be set to 2, when using a latitude-longitude grid, or 0 otherwise. See
section A.9 for more information.

maux: This should be set to 3 (or greater if you add extra auxiliary variables), when us-
ing a latitude-longitude grid, or 0 otherwise. See section A.9 for more information.
When solving on a latitude-longitude grid, maux should be followed by three lines with
words in quotes: “center,” “capacity,” and “yleft” respectively. Consult the standard
Clawpack documentation for more information about auxiliary variables.

t0: This specifies the initial starting time. It is recommended to use 0, or perhaps a
positive number. If you are performing a restart from an old run, then reset this value
to the new starting time when using a dynamic fault model. See section A.11 for an
explanation, and see the standard Clawpack for information about how to perform
a restart.

A.8 User Accessible Fortran Routines

This section gives a brief description of the fortran routines (.f files) in the application
directory. These files can optionally be modified for your particular application if the
default behavior of TsunamiClaw is not sufficient.

setprob.f This routine performs all of the data input at the beginning of the computation
from setprob.data. It should typically not need to be modified, but could be used
to input additional data.
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qinit.f This routine initializes the solution at the start of the computation (except in the
case of a restart). If you use methodquake = 1, 2 then you will not need to modify this
routine. If you wish to initialize the solution in some other manner, then this is the
relevant routine to use. More information can be found in the standard Clawpack
documentation.

setaux.f This routine initializes auxiliary arrays that can be used to define some other
quantity in computational grid cells. TsunamiClaw uses aux(i,j,1), aux(i,j,2)
and aux(i,j,3) for internal purposes, such as bathymetry and capacity functions
associated with a latitude-longitude grid. If you would like to use additional auxiliary
arrays for some other quantity see the standard Clawpack documentation.

b4step2.f This routine is called before each new time step on each grid. If you need to
perform a check on the solution or output information, this is a good place to do it.
For instance, this is a convenient place to make calls to user-written routines, or to
output the solution if the standard output is not sufficient.

allowflag.f This routine is used for adaptive refinement purposes. Refinement param-
eters, such as the number of refinement levels and refinement ratios are specified in
amr2ez.data. Amrclaw refines by flagging cells on a particular grid at a particular
level that meet certain criteria (such as wave-height in TsunamiClaw). A clustering
algorithm then groups flagged cells into rectangular regions which will then be refined
to the next higher level. allowflag.f controls whether a cell at location (x, y) and
time t is allowed to be flagged. In the default version of TsunamiClaw, allowflag.f
is given information (described in section A.6) from setprob.data to determine which
areas are allowed to be refined. If the standard options are not sufficient, allowflag.f
can be modified to meet special needs.

flag2refine.f This is the routine that actually flags the cells if they are allowed to be
flagged by allowflag.f. The standard flag2refine.f in TsunamiClaw uses pa-
rameters form setprob.data. Modify this routine if you would like to refine based
on some other criteria.

A.9 The Computational Domain

TsunamiClaw can compute on either a latitude-longitude grid or a Cartesian grid. In the
former case, the latitude-longitude computational units are mapped internally to spherical
physical space using a capacity function that takes into account the true physical geometry
of each computational grid cell. Use of this capacity function requires that mcapa = 2 in
amr2ez.data, and maux ≥ 3. When computing on a latitude-longitude domain the bounds
of the domain are specified by longitude (x), and latitude (y) in amr2ez.data. Latitude
should be specified in the standard −90◦ to 90◦ convention, where the southern latitudes
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are negative. Although it is theoretically possible to compute all the way to the poles, this
code has not been tested at extreme latitudes (because of vanishing grid cells at the poles,
some numerical issues may arise if computing at extreme latitudes). Typically it is possible
to use either the −180◦ to 180◦ convention for longitude, or the 0◦ to 360◦ convention,
where in both cases, the prime meridian corresponds to 0◦ and longitude increases toward
the east. If the computational domain crosses the dateline however, and does not wrap
around the entire globe, then the 0◦ to 360◦ convention must be used, so that the longitude
of the computational domain increases logically. If the computational domain wraps around
the entire globe in longitude, then periodic boundary conditions in x should be specified
in amr2ez.data. In this case, −180◦to 180◦, degree units could be used for longitude as
well, with the computational domain being −180◦to 180◦, however, it is preferable to place
the computational boundary at 0◦ at the prime meridian rather than at 180◦ in the middle
of the Pacific Ocean which is much more likely to be of interest. When computing on a
latitude-longitude grid, output units are in meters and seconds. This cannot be adjusted
because of internal calculations.

If you wish to compute on a Cartesian domain, then the physical space and compu-
tational space are the same, and domain bounds are set in meters or some other desired
unit. It is important that mcapa = 0 in this case. When computing on a Cartesian domain,
units are selected by adjusting the gravitational constant in setprob.data appropriately.
(See the standard Clawpack documentation for more details about the mcapa and naux
variables).

A.10 Bathymetry

The user must provide a file or files that contain the bathymetric and topographic data.
The names of these numeric ascii text files are specified in setprob.data. When computing
on a latitude-longitude domain, the files should contain three columns: longitude, latitude
and elevation (in meters above sea level so that seafloor values are negative). The files must
conform to the standard GIS format, where data begins in the northwest corner and advances
in longitude first toward the northeast corner before moving to the next latitude south. This
code assumes that there are no missing values, either above or below sea level, and that
data points are uniformly spaced on a rectangular domain (in latitude-longitude space). If
your bathymetry data does not conform to this standard, you must preprocess your data
appropriately by interpolation of some sort, before using the files in TsunamiClaw.

When computing on a Cartesian domain, bathymetry should be supplied in the same
logical format; 3 columns: x, y and elevation, advancing in the x direction first, from the
largest y value to the smallest. Units should be compatible with the gravitational constant.

At the start of the computation, TsunamiClaw will read in all of the bathymetry files
indicated in setprob.data and put the data into arrays. Separate bathymetry files can be
nested or overlap in any manner desired, as long as the union of all of the files is at least
as large as the computational domain specified in amr2ez.data. Typically there will be at
least one file that has bathymetry covering the entire computational region, this isn’t strictly
necessary however. TsunamiClaw will determine the bathymetry in computational cells
by interpolating or averaging the bathymetry arrays, depending on the relative resolution of



162

the bathymetry and the computational cell. When two or more bathymetry arrays overlap
the same area, TsunamiClaw will use the array with the highest resolution.

It is possible to specify idealized bathymetry (such as a simple function) rather than
using a data file. (See mbathfiles in setprob.data)

A.11 Fault Models

TsunamiClaw is capable of using dynamic fault models to initialize the tsunami. The
dynamic model should describe the time-dependent seafloor displacement in some region.
If a dynamic model of this form is used, set methodquake = 2 in setprob.data. This
model should be specified in a numeric ascii text file with four columns: time, longitude,
latitude, and displacement (from undisturbed bathymetry in meters). The time column
should advance the most slowly, and longitude and latitude should advance in the standard
GIS way as described in the Bathymetry section. The spatial domain of the fault model (the
last 3 columns at each given time) should conform to the same standards as bathymetry
described in the previous section. That is, all values on a rectangular domain should be
specified, and should be uniformly spaced in latitude and longitude. The time values in the
first column, should be uniformly spaced as well. If your fault model does not conform to
these standards, then you should preprocess you data before using TsunamiClaw.

It is also possible to use a static initialization. In this case the bathymetry will not be
altered dynamically, and the tsunami will be initiated by an initial condition that describes
the sea surface at the start of the computation. This model should be specified in a numeric
ascii text file with three columns corresponding to longitude, latitude and displacement of
the sea surface (in meters). The longitude and latitude columns should advance in the
standard GIS way, and should conform to the same standards described above. If this
option is used set methodquake = 1 in setprob.data.

It is possible to instantaneously displace the sea-floor at some time after the start of the
computation, in order to generate the tsunami. If this option is desired, use the dynamic
fault model option. The dynamic fault file would then just have a single time in the first
column corresponding to the time of displacement.

If you would like to generate the tsunami in some other way, modify qinit.f as needed,
or enforce an appropriate boundary condition. Boundary conditions can be easily and stably
enforced in the Clawpack software packages by simply specifying ghost cell values that
correspond to the edge of the domain. See the standard Clawpack documentation for
more details.

A NOTE ABOUT RESTARTS: Clawpack has a restart feature that allows a compu-
tation to be resumed from a previous computation. This is very useful in TsunamiClaw
since, often, a single real tsunami may be computed many times for studying different re-
gions. When a restart is used in conjunction with a dynamic fault model, it is important to
change the initial time in amr2ez.data to the computational time at the beginning of the
restart. This is so that the state of the bathymetry at the end of the previous computation
can be resumed correctly.
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A.12 Time-Stepping and Anisotropic Refinement

The number of grid levels and refinement ratios between grid levels are set in amr2ez.data.
The variable mxnest sets the maximum number of grid levels, and the variable inrat is
a list of (mxnest −1) integers specifying the refinement ratios between these levels. The
default behavior of amrclaw is to refine isotropically in space and time. For general
hyperbolic conservation laws, maintaining stability (and accuracy) typically requires this
equal refinement in time. That is, a grid at level n must typically take inrat(n-1) time-
steps for each time-step of level n − 1 grids. This restriction is due to the CFL condition
which, in the case of hyperbolic problems, depends on the speed at which characteristic
information propagates. For the shallow water equations, characteristic wave speeds are
related to the depth of the water. In shallow water, wave speeds are slower, which means
that grids in water that is much more shallow than the rest of the domain could take
much larger time-steps while still maintaining stability and accuracy. Therefore, if grids
at a particular level are restricted to shoreline regions, or regions with relatively shallow
water compared to grids at the next lower level, those grids would not typically require
refinement in time as large as refinement in space. For this reason, it is desirable to select
anisotropic refinement in TsunamiClaw. To select this option, mxnest should be preceded
by a negative sign in amr2ez.data. In this case, three lists of integers, inratx, inraty and
inratt are required in amr2ez.data. The ratios for inratx and inraty would typically be
identical, but inratt may have some integers that are smaller for levels that are restricted
to shallow regions. Note that the variables maxleveldeepocean and shallowdepth in
setprob.data allow control of grid level restrictions to shallow regions. By carefully tuning
shallowdepth, maxleveldeepocean, inratx, inraty and inratt, one can greatly speed
calculations and still maintain stability. An example is shown below.

Suppose that the following values are set in setprob.data:

...
...

1.0d2 shallowdepth
...

...
2 maxleveldeepocean
...

...

Then it might be feasible to reduce time-steps taken on level 3 grids since they are restricted
to shallow regions, by setting the following variables in amr2ez.data:
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...
...

-3 mxnest
6 6 inratx
6 6 inraty
6 2 inratt
...

...

In this case, level 3 grids will be refined spatially in x and y by a factor of 6, but will only
take 2 time-steps for every time-step taken on level 2 grids. Since the ocean may have
depths of up to 4000 meters, it might be possible to get away with even fewer time-steps,
possibly 1. Since wave speeds are related to

√
depth, a rough calculation suggests that

wave speeds will be faster by a factor of
√

4000/100 ≈ 6 in the deep ocean, implying that
time-steps on level 3 might approach that of time-steps on level 2. However, wave speeds
are also related to water velocity, which can be quite large near the shoreline, so generally
one should be more conservative. When reducing time-step refinement, careful attention
should be paid to the Courant numbers reported for each level (which can be output by
selecting the verbose options in amr2ez.data ) .

A.13 Memory Allocation (bathcommon.i)

Memory allocation for bathymetry and other arrays in TsunamiClaw is specified in an in-
clude file that resides in the application directory, named bathcommon.i. If the bathymetry
is larger than the space allocated in bathcommon.i, then the calculation will abort and you
will be instructed to increase memory. You must recompile the executable afterward, even
if make doesn’t recognize that the code has been modified. At the beginning of each com-
putation, TsunamiClaw will output some information to the standard output about how
much memory is allocated for bathymetry, and how much memory is actually used. If more
memory is allocated than needed, you can abort the calculation and modify bathcommon.i
if you wish to allocate less memory.

A.14 Data Output

TsunamiClaw uses the same output format as the standard Clawpack software. At user
specified times (set in amr2ez.data) the entire solution on every grid is output into an ascii
text file fort.qnnnn, where the nnnn ranges from 0000 for the initial time to the number
of output times. Information about this file, such as the time and the number of grids, is
output into fort.tnnnn with a corresponding number. These files conform to a standard
format that can be read by Matlab graphics routines for visualization (see section A.15).
The solution in fort.qnnnn is grouped by grids—the solution on a particular grid is written
in several columns following some header information about that grid’s size and location.
Each column of the solution data represents a variable, and each row represents a particular
grid cell. The solution data for a grid starts at the lower left corner and advances in the
x-direction first (indexed by i). In TsunamiClaw, the solution is output as four variables



165

in four columns: q(i,j,1) is the water depth, q(i,j,2) and q(i,j,3) are the momenta
(depth times water velocity) in the x and y directions respectively, and q(i,j,4) is the
surface elevation, where 0 is mean sea level. Note that having the surface elevation and the
water depth allows determination of the bathymetry in a grid cell, since depth subtracted
from surface elevation gives the elevation of the bathymetry or topography. Also, since
TsunamiClaw solves the shallow water equations in their physically relevant conservative
form in order to allow convergence to bores, momenta are output rather than the more
common variable of water velocity. Velocity can be recovered by dividing the momentum
by depth. Some care should be exercised when doing this, since velocities at vanishing
depths may not be accurate, and division by zero for dry cells should obviously be avoided.

When using the latitude-longitude option to specify the computational domain, all out-
put quantities are in units of meters and seconds. Therefore, in a particular grid cell,
the momenta output in the solution are in the locally orthogonal longitude and latitude
directions, and given in meters squared per second.

A.15 Matlab Graphics and Output Visualization

TsunamiClaw comes with a set of Matlab plotting routines,.m files, in the directory
$TSUNAMICLAW/matlab,

as well as a few routines in the example application directory. These routines are a mix
of the standard Clawpack matlab plotting routines as well as several specialized routines
for plotting with TsunamiClaw. If you use Clawpack software for other applications,
then the $TSUNAMICLAW/matlab directory must be higher on your Matlab path than the
standard Clawpack Matlab routines, since some modified routines share the same name.
(Much like Unix itself, which uses the PATH variable to specify its directory search path,
Matlab uses the variable, MATLABPATH when run under Unix, which can also be set in your
login scripts.)

TsunamiClaw uses the Clawpack Matlab script plotclaw2.m as the main plotting
routine. Run plotclaw2 from the application directory (the file for the routine resides in the
TsunamiClaw Matlab library). A number of plotting options are specified in setplot2.m,
which resides in the application directory (see Clawpack documentation for descriptions
and examples). plotclaw2 calls setplot2 if you select yes when queried from the Mat-
lab prompt. For some specialized TsunamiClaw plotting features, set PlotType=5 in
setplot2.m. This creates a colored surface plot of the water surface and land, using some
colormaps provided in $TSUNAMICLAW/matlab. Waves are shaded from red at the peaks to
dark blue at the troughs. The default view is directly overhead, but note that these surface
plots can be rotated and zoomed, either manually or by adjusting Matlab’s view properties.
Specific user issued plotting features, such as axis labeling, axis limits, color axis properties
for the wave shading, or other options, can be specified in afterframe.m. The standard
Clawpack documentation provides a full explanation of how to use the Matlab plotting
features.
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A.17 Usage Restrictions

This software is made available for research and instructional use only. You may copy
and use this software for these non-commercial purposes at no charge. For all other uses
(including distribution of modified versions), please contact the authors. Since Tsunami-
Claw is an extension of Clawpack, all of the usage restrictions and copyright notices for
Clawpack apply to TsunamiClaw.

This software is made available “as is,” without any assurance that it will work for your
purposes. The software may have defects and is to be used at your own risk.
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