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ABSTRACT

The shallow water equations are a commonly accepted approximation governing tsunami
propagation. Numerically capturing certain features of local tsunami inundation requires
solving these equations in their physically relevant conservative form, as integral con-
servation laws for depth and momentum. This form of the equations presents challenges
when trying to numerically model global tsunami propagation, so often the best numerical
methods for the local inundation regime are not suitable for the global propagation regime.
The different regimes of tsunami flow belong to different spatial scales as well, and re-
quire correspondingly different grid resolutions. The long wavelength of deep ocean
tsunamis requires a large global scale computing domain, yet near the shore the propa-
gating energy is compressed and focused by bathymetry in unpredictable ways. This can
lead to large variations in energy and run-up even over small localized regions.

We have developed a finite volume method to deal with the diverse flow regimes of
tsunamis. These methods are well suited for the inundation regime—they are robust in the
presence of bores and steep gradients, or drying regions, and can capture the inundating
shoreline and run-up features. Additionally, these methods are well-balanced, meaning
that they can appropriately model global propagation.

To deal with the disparate spatial scales, we have used adaptive refinement algorithms
originally developed for gas dynamics, where often steep variation is highly localized at a
given time, but moves throughout the domain. These algorithms allow evolving Cartesian
sub-grids that can move with the propagating waves and highly resolve local inundation
of impacted areas in a single global scale computation. Because the dry regions are part of
the computing domain, simple rectangular cartesian grids eliminate the need for complex
shoreline-fitted mesh generation.
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INTRODUCTION

We will describe a type of finite volume numerical method that is useful for solving a class
of hyperbolic equations, specifically the nonlinear shallow water equations. These equa-
tions are one of the commonly accepted approximations governing tsunami propagation
and inundation. They can present various difficulties for numerical methods depending on
the flow regimes of the solution—which can vary greatly. For instance, the shallow wa-
ter equations can often accurately describe global propagation of tsunami waves as well
as general features of inundating waves at the shoreline or flooding onto dry land. These
equations even admit solutions with propagating bores or discontinuities that approximate
breaking waves, which may exist in the runup regions depending on local bathymetry.
Although the validity of the shallow water approximation becomes more tenuous in the
inundation and flooding regimes, these equations still perform surprisingly well at de-
scribing basic features of these flows, and are often the most efficient and least expensive
practical model [11, 12].

Many methods have been developed for the shallow water equations; however, nu-
merical methods differ in their utility for different flow regimes—often a method that
works well for one regime may fail to be useful for other regimes. Our goal has been
to develop a method that is robust and accurate for solving these equations in any of the
diverse regimes.

THE SHALLOW WATER EQUATIONS

The shallow water equations can be derived in a number of ways and in a variety of
forms, all of which rely on the basic assumption that the flow is vertically hydrostatic,
or equivalently, that the vertical acceleration of water particles is negligible. The validity
of this assumption can be demonstrated for flows with long wavelengths compared to
depth. It may be a reasonable approximation for other flows as well, at least for the depth
averaged horizontal velocities. Once this approximation is accepted, the most physically
relevant and generally valid form of the equations is as an integral conservation law for
mass and momentum, which in one dimension is

d
dt

∫ x2
x1

hdx+(hu)xr
xl = 0

d
dt

∫ x2
x1

hudx+
(1

2gh2 +hu2)xr
xl =−

∫ x2
x1

ghbx dx,
(1)

where h is the water depth, u is the horizontal velocity, g is the gravitational constant
and b is the bottom surface elevation. The integral conservation law (1) is often used to
deduce a set of PDEs for mass and momentum[

h
hu

]
t
+
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hu

1
2gh2 +hu2

]
x
=

[
0

−ghbx

]
, (2)
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where the subscripts imply differentiation. This set of PDEs can be manipulated further
to yield the most common form of the shallow water equations

ηt +u(η−b)x = 0

ut +u(u)x +gηx = 0,

(3)

where η is the elevation of the water surface, η = h + b. The system (3) is the most
commonly used form for modeling tsunamis since it is the least problematic for global
propagation, however, it is not always valid in the near shore region as will be described
below.

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

The system (2) belongs to a broader class of conservation laws of the form

d
dt

∫ x2
x1

q(x, t)dx+ f (q(x2, t))− f (q(x1, t)) =
∫ x2

x1
ψ(q,x)dx, ∀(x1,x2), (4)

where q∈ lRm is a vector of conserved quantities, f (q)∈ lRm is the flux of these quantities,
and ψ is a source term. If the solution q(x, t) is differentiable, then (4) can be manipulated
into the form ∫ x2

x1
[qt(x, t)+ f (q(x, t))x−ψ(q, t)] dx = 0, ∀(x1,x2), (5)

which implies the PDEs
qt(x, t)+ f (q(x, t))x = ψ(q, t). (6)

If ψ is nonzero, (4) is sometimes referred to as a balance law due to the contribution from
the source term. However, we will refer to (4) as a conservation law, and in the special
case that ψ ≡ 0

qt(x, t)+ f (q(x, t))x = 0, (7)

a homogeneous conservation law. The systems (6) and (7) are hyperbolic if the Jacobian
f ′(q) has real eigenvalues and a full set of eigenvectors. Physical systems exhibiting
wave propagation are often described by hyperbolic systems, and the wave speeds are
generally the eigenvalues of the Jacobian. The shallow water equations are hyperbolic
with eigenvalues u±

√
gh.

The PDE form (6) is valid only if the solution is differentiable, however, (4) admits
nondifferentiable—even discontinuous—solutions. Standard finite difference methods
based on (6) will, in general, not only fail to converge to the correct solutions to (4),
they will often develop instabilities or nonphysical oscillations near steep gradients in
the solution. Additionally, due to discontinuities, solutions to (4) can be non-unique.
The physically relevant solution must be isolated by additional admissibility conditions,
sometimes called entropy conditions. For a numerical method to converge to the correct,
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possibly discontinuous, solution to the conservation law, it must be consistent with (4)
and additional entropy conditions (see for example [9, 6]).

For modeling global tsunami propagation, (3) is the most convenient and least prob-
lematic form of the shallow water equations. The steady state—a pool of motionless
water—will be preserved by any standard finite difference method since u and η are
identically zero. However, in the near shore and inundation regions, steep gradients or
turbulent bores may develop rendering (3) problematic. A numerical method for the inte-
gral conservation law (1) is therefore preferable for modeling flows in the near shore and
inundation region. However, this presents a new set of numerical challenges for accurate
global propagation.

FINITE VOLUME METHODS

Various classes of numerical methods have been developed to deal with the difficulties of
solving hyperbolic systems of the form (4), most of which are finite volume methods. A
finite volume numerical solution consists of a piecewise constant function Qn

i that approx-
imates the average value of the solution q(x, tn) in each grid cell Ci = [xi−1/2,xi+1/2]. A
conservative finite volume method updates the solution by differencing numerical fluxes
at the grid cell boundaries

Qn+1
i = Qn

i −
∆t
∆x

[
Fn

i+1/2−Fn
i−1/2

]
, (8)

where
Fn

i−1/2 ≈
1
∆t

∫ tn+1

tn
f (q(xi−1/2, t))dt, (9)

and
Qn

i ≈
1

∆x

∫ xi+1/2

xi−1/2

q(x, tn)dx, (10)

where we have assumed the grid cells are of fixed length ∆x. Note that (8) is a direct
discrete representation of the integral conservation law (4) over each grid cell (neglecting
source terms), using approximations to the time averaged fluxes at the boundaries. The
essential properties of the finite volume method then, come from the approximation for
the numerical fluxes (9).

Much research has been devoted to establishing stable and accurate numerical fluxes,
and fluxes that allow convergence to smooth solutions as well as physically admissible
discontinuities such as shocks or bores (see [9]). One of the most successful strategies is
to solve Riemann problems, which consist of the original conservation law and constant
initial data with a single jump discontinuity. These problems are solved at each grid cell
interface with the numerical solution data to determine the numerical flux at each time tn.
The flux Fn

i−1/2 is then the solution to the Riemann problem at xi−1/2, with initial data Qn
i

and Qn
i−1.
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Riemann solutions to homogeneous conservation laws often have a simple structure
that can be solved exactly or approximated. For solutions to conservation laws with a
source term (4), the standard approach is to use fractional stepping, which splits the prob-
lem at each timestep into an update for the homogeneous part, followed by an integration
of the source term

Qn∗
i = Qn

i −
∆t
∆x

[
Fn

i+1/2−Fn
i−1/2

]
(11)

Qn+1
i = ∆tΨ(Qn∗

i ,xi), (12)

where Ψ is some numerical approximation to the source term ψ(q, t). Fractional stepping
works well for many applications, however, it is well known [2, 8] that it fails to numeri-
cally preserve nontrivial steady states or small perturbations to those steady states, which
exist when a large nonzero flux gradient nearly balances the source term

f (q(x, t))x ≈ ψ(q,x), (13)

implying qt(x, t) ≈ 0 in (4). The failure of fractional stepping for this situation is not
surprising, considering that (11) and (12) must precisely cancel in order to preserve Qn

i ,
and these two terms come from unrelated types of numerical approximations.

This eliminates fractional stepping as a viable technique for solving (1), when mod-
eling tsunami propagation. Deep ocean tsunamis have small amplitudes, often less than a
meter, while the depth of the ocean can approach 4000 meters. This means that tsunamis
in the deep ocean are tiny perturbations to the steady state, which arises from the balance
of the hydrostatic pressure gradient and the source term

(
1
2

gh2)x = −ghbx. (14)

Tsunami propagation results from tiny deviations to (14), and would be completely lost
in the numerical noise of fractional stepping.

WAVE PROPAGATION METHODS

An alternative implementation of (8) comes from considering the structure of the Rie-
mann solution, rather than simply using the Riemann solution to determine a numerical
flux. Riemann solutions for hyperbolic systems typically consist of a set of m waves
propagating away from the initial discontinuity. These waves carry jumps in the solution
vector, and therefore the solution can be numerically updated directly by averaging the
effect of the waves onto the grid cells. This wave propagation update on Qi can be written

Qn+1
i = Qn

i −
∆t
∆x

[
A +

∆Qi−1/2 +A −
∆Qi+1/2

]
, (15)

where A −∆Qi+1/2 is the net effect of the waves moving to the left from xi+1/2, and
A +∆Qi−1/2 is the net effect of the waves moving to the right from xi−1/2. The method
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(15) is more general than (8), since it also applies to hyperbolic systems other than con-
servation laws (see [9] for a description of wave propagation methods). For conservation
laws the fluctuations must satisfy

f (Qi)− f (Qi−1) = A −
∆Qi−1/2 +A +

∆Qi−1/2. (16)

The wave propagation algorithm (15) uses Riemann solutions to directly update the
solution rather than determine interface fluxes. This methodology suggests an alternative
treatment of source terms as well; rather than treating source and flux terms separately, the
effect of the source term can be added directly to the updating waves in the fluctuations
A ±∆Q. In this case (15) is still the form of the numerical method for a system with a
source term, and

f (Qi)− f (Qi−1)−∆xΨ̃(Qi−1,Qi,xi−1/2) = A −
∆Qi−1/2 +A +

∆Qi−1/2, (17)

where Ψ̃(Qi−1,Qi,xi−1/2) is some consistent approximation to the source term. Consis-
tency requires that (17) be satisfied, however it does not guarantee that steady states will
be preserved. A method is sometimes termed well balanced, if it maintains exactly cer-
tain discrete data that result from the discretization of a true steady state solution. This
requires the updating fluctuations in (15) be deviations from the steady state. When near
a steady state this implies

f (Qi)− f (Qi−1)−∆xΨ̃(Qi−1,Qi,xi−1/2)≈A −
∆Qi−1/2 ≈A +

∆Qi−1/2 ≈ 0. (18)

A RIEMANN SOLVER FOR TSUNAMI MODELING

Ensuring (18) requires appropriate Riemann solvers that incorporate the source term cor-
rectly. We accomplish this for the shallow water equations by using approximate Riemann
solutions based on an augmented homogeneous hyperbolic system

q̃t +A(q̃)q̃x = 0, (19)

where q̃ = ( h, hu, 1
2gh2 +hu2, b )T and A ∈ lR4×4. The system (19) is derived such

that its solutions are also solutions to the shallow water equations with a source term,
yet (19) is homogeneous. By using certain approximate Riemann solutions to (19) to de-
termine updating fluctuations (A ±∆Q) the method (15) is well balanced, and is able to
accurately resolve small perturbations to steady states and model global tsunami propa-
gation on the deep ocean.

By proper construction of the approximate Riemann solutions to (19), the method also
converges correctly to discontinuous solutions to the shallow water equations, such as
propagating bores, without converging to entropy violating solutions to (4). Additionally,
the Riemann solver is robust near vanishing depths or dry regions and is able to robustly
capture inundation and runup (see [5] for details).
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TWO DIMENSIONAL GRIDS AND SHORELINES

In two dimensions finite volume grid cells are typically rectangles, Ci j = [xi−1/2,xi+1/2]×
[y j−1/2,y j+1/2], though more complex shapes are possible. For tsunami modeling we use
uniform Cartesian grids in computational space, using latitude and longitude coordinates,
that map to the sphere. The algorithms described for one dimension can be be logically
extended to two dimensions by solving Riemann problems normal to cell interfaces (for
details see [9, 5]). Since the algorithms are robust to the existence of dry states, there is
no special reference to the shoreline, grid cells in dry regions simply have h = 0. Addi-
tionally, the Riemann problem between a cell with water and a dry cell, or the dambreak
problem, is automatically solved by (19), so grid cells simply fill-up or drain out of water
as waves move onto shore. This simplifies calculations near the shore for a couple of
reasons: first, no special grid fitting to the shoreline is needed—simple rectangular grids
are used; and second, no special shoreline tracking is needed—inundation is calculated
as cheaply and automatically as any part of the grid.

ADAPTIVE MESH REFINEMENT

The numerical difficulties associated with simultaneously modeling global propagation
and inundation described so far are due to diverse flow regimes. An additional diffi-
culty arises due to the diverse spatial scales of these flows. On the deep ocean, tsunami
wavelengths are often on the order of several hundred kilometers requiring a large com-
putational domain. In the near shore region tsunami energy is compressed and focused by
bathymetry in often unpredictable ways, requiring grid spacing that is orders of magni-
tude smaller. A standard approach to such a difficulty is to use fixed telescoping grids at
the shoreline. This may be satisfactory for certain case studies of particular regions of in-
terest, however, for global or large scale modeling it is less than ideal for several reasons.
First, it requires some a priori knowledge or assumptions about the level of refinement
that will be needed in certain areas. Second, refined grids must be integrated through-
out the computation, even when there are no waves present in the region—these trivial
steady state calculations on fine grids increase the computational cost and can decrease
the length of timesteps. Finally, a fixed resolution for the offshore or deep ocean reduces
the efficiency, and hence the resolution, with which propagating waves can be resolved.

For these reasons we have used adaptive refinement methods previously developed for
compressible inviscid gas dynamics, where often sharp gradients and moving shock waves
needing high degrees of refinement are present in small isolated parts of the domain at a
given time (see [3]). Obviously fixed telescoping grids would not work for this applica-
tion since the shock waves move throughout the entire domain. Global scale tsunamis are
similar in the sense that waves move throughout the entire domain needing various levels
of refinement at different times and locations, yet no single area needs a fixed level of
refinement for the entire computation. These algorithms use evolving Cartesian subgrids
that are simple rectangles with various levels of spatial and temporal refinement. These
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moving subgrids may appear at any time, or disappear, depending on the level of refine-
ment needed in a specific area. Adaptive mesh refinement allows a very coarse grid to
cover parts of the domain where no waves are present, allowing higher refinement levels
to track moving waves in the deep ocean. As waves approach the shoreline and compress,
still higher refinement level grids can appear capturing the inundation and run-up. The
adaptive refinement methods described in [3] have been modified for this application, for
proper treatment of shorelines and steady states associated with tsunami modeling.

MODELING THE INDIAN OCEAN TSUNAMI

Our numerical methods are implemented in TSUNAMICLAW part of the freely available
CLAWPACK [7] software package. We used our single grid algorithms to model bench-
mark problems in the 2004 International Long Wave Workshop [10]. These benchmark
problems involved near-shore features, such as comparisons to analytical run-up solutions
(see [4]), and wave tank scale models of the 1993 Okushiri Island tsunami in Japan.

We are currently using our adaptive code to model the Indian Ocean tsunami of 2004.
The tsunami is numerically generated by dynamically moving the seafloor according to a
temporal-spatial model of the Sumatra-Andaman fault rupture, provided by the Seismolab
at Caltech [1]. An example simulation is shown in Figure 1. This simulation used 40×40,
1◦×1◦ grid cells on the coarsest grid (top left). A second level refined by a factor of 8, was
used to track the deep ocean tsunami propagation (top right). Third level grids, allowed
near Sri Lanka and the eastern coast of India, were again refined by a factor of 8, resulting
in approximately 1 minute grid cells. Grid lines are omitted from these levels for clarity.
This calculation ran in 28 minutes of computing time on a personal single processor Dell
desktop.

We have used higher level grids in some regions allowing resolution onto 25 me-
ter grid cells for inundation modeling. Because of the limited availability of digital
bathymetry in the Indian Ocean region, we have had to manually digitize nautical charts
in these regions—a process that is time consuming and labor intensive.
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Figure 1: Simulation of the Indian Ocean Tsunami with three grid levels.
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