SIAM J. NUMER. ANAL. (© 1992 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 332-364, April 1992 003

ANALYSIS OF A ONE-DIMENSIONAL MODEL FOR THE
IMMERSED BOUNDARY METHOD*

R. P. BEYER! AND R. J. LEVEQUE!

Abstract. Numerical methods are studied for the one-dimensional heat equation with a singular
forcing term,
Ut = Ugg + c(t)6(x — a(t)).

The delta function §(z) is replaced by a discrete approximation dp(x) and the resulting equation is
solved by a Crank—Nicolson method on a uniform grid. The accuracy of this method is analyzed
for various choices of dj,. The case where c(t) is specified and also the case where c is determined
implicitly by a constraint on the solution at the point a are studied. These problems serve as a
model for the immersed boundary method of Peskin for incompressible flow problems in irregular
regions. Some insight is gained into the accuracy that can be achieved and the importance of choosing
appropriate discrete delta functions.

Key words. numerical analysis, immersed-boundary method, error analysis, discrete delta
function

AMS(MOS) subject classifications. 65M10, 65N10, 76-08, 76D05, 76Z05

1. Introduction. We study numerical methods for time-dependent partial dif-
ferential equations in one space variable of the form

(11) Ut = Ugy + f(xa t, ’LL)

where f is a singular forcing term, or source term, typically a linear combination of
delta functions. Here we only consider a single delta function with variable strength
¢ and position a,

(1.2) f(z,t,u) = c(t) 6(z — (1)),

although the results would extend to more general f.
One simple example is the heat equation with a variable strength delta function
source at the fixed point «,

(1.3) Up = Ugg + c(t)6(z —).

The strength c¢(t) might be given a priori, or it might be unknown, and determined
as part of the solution by imposing some additional constraint such as

(1.4) u(a, t) = a(t)

where 4(t) is given.

If the point a(t) is moving then this location may be specified or may also be an
unknown which is to be determined, perhaps through the specification of a coupled
ordinary differential equation of the form

(1.5) of (t) = 9(t, u).

* Received by the editors September 24, 1990; accepted for publication (in revised form) May 17,
1991.

T Department of Applied Mathematics and the Center for Bioengineering, University of Washing-
ton, Seattle, Washington 98195.

 Department of Mathematics, University of Washington, Seattle, Washington 98195.

332

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 333

Such problems arise, for example, in free-boundary solidification or melting problems
where «(t) is the boundary between phases and the latent heat release provides a
delta function heat source at this boundary. Although the techniques discussed here
can be extended to this problem, we will not study this case in the present paper but
will restrict our attention to the case where a(t) is specified.

Our interest in such equations was initially motivated by the desire to study Pe-
skin’s immersed boundary method for incompressible fluid dynamics. This numerical
method applies to two or three dimensional versions of (1.1) in which u represents the
fluid velocity. The point a(t) then becomes a curve in two dimensions or a surface in
three dimensions, which represents a boundary immersed in the fluid. The boundary
exerts forces on the fluid, which leads to a singular forcing term in the Navier—Stokes
equations, with support only on the immersed boundary. In addition, the boundary
moves at the local fluid velocity giving a coupled equation for motion of the bound-
ary analogous to the ODE (1.5). If the boundary is stationary then the force at the
boundary is determined by the constraint that the fluid velocity should be zero along
the boundary, analogous to (1.4). These equations, and Peskin’s immersed boundary
method for their solution, will be described in more detail in the next section.

The one-dimensional analogue of this numerical method, for (1.1), would take
the following form. We specify a uniform fixed grid with grid points z; = jh, j =
0,1,.--, N with h = 1/N. We also choose a timestep k = At and set ¢, = nk. The
solution u(z,t) is approximated by the discrete values UT* =~ u(;, t5).

The idea in an immersed boundary method is to solve difference equations only on
the uniform grid, obtaining the solution value at the point «(t) (if required) via some
form of interpolation. Typically the point a(t) will not lie exactly at a grid point x;,
and so the delta function forcing function must be replaced by inhomogeneous terms
in the difference equations on the uniform grid. One way to do this is to replace
the delta function 6(z) by a discrete approximation dp(z). Some examples: the “hat
function” with support (—h, h),

h— 2 <h
0 otherwise,

a wider hat function with support (—2h,2h),

2h — 4h? < 2h
(1‘7) df)(:c) — ('CL‘I)/ ’)x' =< 3
0 otherwise,
or perhaps a smoother version, such as
2h) +1)/4h < 2h
(1.8) d§l3)($) _ (COS("T‘E/)+)/ s I'Tl =<)
0 otherwise.

This last delta function was introduced by Peskin [6] because of certain translation
invariance properties.

Once any delta functions appearing in the function f in (1.1) are replaced by
suitable discrete delta functions, the resulting equation is discretized using standard
finite difference methods on the uniform grid. For example, the heat equation (1.3)
would be replaced by

U = Ugg + () dp(z — @)

334 R. P. BEYER AND R. J. LEVEQUE

and then discretized, using perhaps the standard Crank—Nicolson method,
1 mn n 1 n
(1.9) E(Uj HoUr) = E(DgU; + DU + c(tny1/2)dn(z; —).

Here D2 represents the centered approximation to the second derivative:

1
(1.10) DU = 75 (Uit — 2U7 + Ujy)-

If the location « is varying with time then we can replace « in (1.9) by a(tpy1/2)-
Alternatively, the source term in (1.9) can be replaced by

%(C(tn)dh(xj = a(tn)) + c(tnt1)dn(z; — altnt1)))-

This latter form turns out to be easier to analyze.

Note that each of the discrete delta functions above has the property that
(1.11) hY dn(z;—a) =1
J

for any choice of a. Hence the correct total source is transferred to the discrete grid,;
it is simply shifted from the point a to the neighboring grid points.

For the one-dimensional problem there are clearly more sophisticated ways to
handle this problem, e.g., using a moving mesh or front tracking algorithm to capture
the location of the boundary exactly at a grid point in each step. However, in two
or more dimensions there are real advantages to the present approach: very efficient
PDE solvers can be used on the uniform rectangular grid and complex immersed
boundaries can be handled by using discrete delta functions to spread the singular
source terms to the uniform grid.

A related method for elliptic equations in two space dimensions has been devel-
oped by Mayo [5], and also involves embedding the irregular region into a rectangle
and then solving discretized equations on a uniform grid. The extended solution over
the rectangle has jumps in certain derivatives along the embedded boundary that can
be determined by solving an integral equation. These jumps are then used to modify
the finite difference equations near the embedded boundary so that the resulting dis-
crete solution has the correct discontinuities. These modifications are analogous to
the discrete delta function term in (1.9), which modifies the standard Crank-Nicolson
method for the heat equation only near the point « where u is not smooth.

In fact, we will see that this viewpoint is very useful in analyzing (1.9) and related
methods. The discrete delta function is a correction to the centered difference operator
D2 that allows us to compute accurate approximations to u, from discrete grid values
even when the underlying function v has discontinuous derivatives between the grid
points (see Lemma 6.1 and Corollary 6.2 below).

Peskin’s immersed boundary method for fluid dynamics [6] is described in more
detail in the next section to motivate further some of the one-dimensional model prob-
lems studied here. The remainder of the paper is devoted to the study of numerical
methods on the model problems. In particular, we investigate the accuracy that can
be achieved and the effect that the choice of discrete delta function can have on these
results.

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 335

Fi1G. 1. Uniform fluid grid and immersed boundary points.

2. Peskin’s immersed boundary method. The immersed boundary method
is a numerical method for solving the incompressible Navier—Stokes equations in do-
mains with geometrically complicated boundaries. This method was originally in-
troduced for studying blood flow in the heart [6], but has since been used to study
other problems, e.g., [2]-[4]. Even in a two-dimensional model, the heart wall has
a complicated shape that varies with time as the heart goes through each pumping
cycle. Contractions of the heart muscle exert forces at the wall that interact with
the fluid dynamical forces, so that the resulting boundary configuration is a part of
the desired solution. Due to the complicated shape and the time-dependent nature,
it would be very difficult to impose boundary conditions on a numerical method in
standard ways.

Peskin’s approach is to immerse the entire structure in a rectangular box of fluid.
This box is discretized using a uniform rectangular grid. For simplicity, periodic
boundary conditions are imposed at the boundaries of the box. Solving the incom-
pressible Navier—Stokes equations on this regular domain is easily accomplished with
a variety of numerical methods. The use of periodic boundary conditions leads to
additional efficiencies since fast Fourier transform techniques can be used.

Of course, some mechanism must be introduced to simulate the original bound-
ary, which is now an immersed boundary with fluid on either side. This immersed
boundary is modeled by an additional set of points Xj(t) € R? (in two space dimen-
sions) that indicate the location of the boundary at each time ¢. (See Fig. 1.) Since
fluid should not flow across this boundary, these points are moved in each timestep
according to the local fluid velocity, i.e., by solving the ODEs

(2.1) X (t) = u(Xx(t),1)-

In the numerical method, the fluid velocity at the point X (¢) must be determined in
each timestep from velocity values on the uniform grid, using some form of interpo-
lation.

Conversely, the immersed boundary must have some effect on the fluid dynamics.
In the immersed boundary method, the boundary affects the fluid not by the intro-
duction of boundary conditions in the Navier—Stokes equations, but rather by the
introduction of a inhomogeneous forcing term in the equations. The incompressible

336 R. P. BEYER AND R. J. LEVEQUE

Navier—-Stokes equations then take the form

(2.2) ug+u-(Vu) = pugs + f,
(2.3) V-u = 0

where the forcing term f is a singular function with support only along the immersed
boundary. In the discrete method, the support of f is only at the discrete points
Xk (t), and f takes the form

fla,t) = Fi(t)6(z — Xi(t))
!

where F, € R? is the force vector at the point X and & is the two-dimensional delta
function. This is further discretized by replacing the true delta functions by discrete
versions, two-dimensional analogues of the functions dj, discussed above.

When the Navier—Stokes equations are discretized on the Cartesian grid, the
equation for the velocity u;; at grid point (¢,) involves the forcing term

(2.4) fii =Y Fi(t) dn(zi; — Xe(t))-
k

By introducing this discrete delta function, each point source Fy(t)6(z — Xi(t)) is
spread to several neighboring grid points on the rectangular fluid grid. As in one
dimension, an appropriate choice of d; will give the correct total force, i.e., a two-
dimensional version of (1.11) should hold.

Peskin also uses the discrete delta function to perform the interpolation operation
described earlier, which is needed to find Uy (t) = u(X(t),t) from the grid values of
velocity u;;. The interpolation formula is

(2.5) Uk = Z Usj dh(zij - Xk).
i

The forces F) are determined in some manner based on the correct physical
boundary conditions. This might involve the configuration of the boundary (e.g.,
how much it is stretched, or how far it is from some equilibrium position), the fluid
velocity at the boundary, external forces (e.g., contractile forces of the heart muscle),
or other effects. In each timestep these forces are calculated based on the current
configuration, velocities, external forces, etc.

Note that we use upper-case letters (e.g., Xx and Fy) to represent values on the
immersed boundary and lower-case letters (e.g., u;j, fi;) to represent values on the
regular grid.

To summarize, the immersed boundary method involves the following steps:

1. Given velocities u; and boundary locations X}’ at time ¢,, compute the forces
F} at the immersed points.

2. Spread the forces Fy* to values ff: on the uniform grid using (2.4).

3. Solve the inhomogeneous Navier-Stokes equatlons (2.2) on the regular grid

with periodic boundary conditions to obtain u"J"'

4. Interpolate the resulting velocities u"Jrl to the immersed boundary using (2.5)
to obtain Uptt.

5. Move the boundary points X} to X n+1 using the velocities UP, Up™! a
some discrete approximation to the ODE (2.1).

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 337

6. Return to Step 1 for the next timestep.

In practice, the algorithm is complicated by the fact that the forces Fj must
be calculated in some implicit or at least semi-implicit manner in order to maintain
stability with reasonable timesteps. See [6] for a more complete description of the
method.

This method is perhaps most natural in situations where specification of the force
exerted by the immersed boundary is the natural boundary condition for the problem,
as in the heart model where forces exerted by the heart wall can be directly calculated
from the boundary configuration and the stage of the heart cycle. In other problems
the natural boundary conditions might take a different form. For example, if we
consider flow around a solid stationary body then the boundary condition is simply
u(z,t) = 0 at the solid wall. However, this can also be reformulated in terms of an
inhomogeneous forcing term so that the immersed boundary method can be used. In
this case the force f(z,t) is again a singular force at the boundary, and is determined
by the requirement that the resulting fluid velocity u(z, t) should satisfy the boundary
condition at the solid wall. The solid wall exerts just enough force on the fluid to
maintain the no-flow boundary condition. (This is analogous to using the constraint
(1.4) in the one-dimensional problem to determine the source strength c(t).) In the
discrete method we can choose F}! in Step 1 by an implicit scheme, requiring that
the resulting velocity Up*! obtained in Step 4 satisfy Upt' = 0. This gives a large
system of equations to be solved for the forces Fj*. Another approach (which requires
less computational work) would be to view each point X}, as being attached to some
equilibrium position X9 (the correct location of the fixed boundary) by a very stiff
spring with spring constant s >> 1. Then the force F]} might be given by

Fp = —s(Xg - XJ)

in the simplest explicit case. This would of course cause severe stability problems
(exponentially growing oscillations of the boundary) unless very small timesteps were
used, but a semi-implicit version of this can be successfully used in some cases.

Work on both this semi-implicit stiff spring approach and the fully implicit ap-
proach is reported in Beyer [2]. An efficient and high-order accurate version of this
method for solid wall boundaries, or more general boundary conditions, would be
very useful for solving a variety of fluid dynamics problems in complicated geome-
tries. Work is continuing in this direction.

Accuracy issues. Any high-quality method for the incompressible Navier—Stokes
equations can be used to solve the discrete equations on the rectangular grid. For
example, the method of Bell, Colella, and Glaz [1] has been used in [2]. This method
is second-order accurate on smooth flows and also deals well with steep gradients in
the flow. However, it is not at all clear how the error behaves when such a method is
applied in the context of the immersed boundary method. Standard error estimates
assume the inhomogeneous term is smooth and fixed as h — 0. Here the inhomoge-
neous term is obtained by discretizing delta functions and becomes singular as h — 0.

Doing a full error analysis in two or three space dimensions would be valuable. In
this paper we take an initial step in this direction by introducing a one-dimensional
model problem and doing some careful error analysis. Already from this model prob-
lem it is possible to gain some insight into a variety of issues that arise. In particular,
we compare several choices of discrete delta functions for use in spreading forces to
the uniform grid. We will also see that it may be advantageous to use quite different
interpolation procedures to compute the boundary velocity in situations where the
velocity is not smooth near the boundary.

338 R. P. BEYER AND R. J. LEVEQUE

3. One-dimensional models. In one space dimension the equations of incom-
pressible flow are not very interesting, and so it is not simple to write a direct one-
dimensional analogue of the immersed boundary method that captures all of the fea-
tures. However, the method described above for (1.1), with f given by (1.2), coupled
with the evolution equation (1.5) for the immersed boundary point «(t), has much
the same flavor as the immersed boundary method.

We will start with a simple version of this, the one-dimensional heat equation
with a singular source,

(3.1) Ut = Ugg + ¢(t)6(z — @), 0<z<1,

with Dirichlet boundary conditions »(0) = u(1) = 0. Here « is fixed and the strength
c(t) is a given function of ¢.

At first glance the heat equation may seem far removed from the Navier—Stokes
equations of primary interest, but in fact (3.1) can be viewed as a special case of the
immersed boundary method described in the previous section. Consider a viscous
incompressible fluid in the channel 0 < £ < 1, —o00 < y < oo (or, alternatively, in
0 < y < 1 with periodic boundary conditions in y). Suppose there is a vertical plate
running through the length of this channel at the position £ = «, and that this plate
moves vertically, exerting some specified force f(¢) on the fluid. This will accelerate
the fluid in the vertical direction due to viscous stress at the plate. We expect no
motion in the z-direction and so all terms in the Navier—Stokes equations involving
the horizontal velocity drop out. There should also be no variation in the y-direction,
and so all terms involving y-derivatives drop out. In particular, all the nonlinear
convective terms drop out and the Navier-Stokes equations (2.2) reduce to a single
equation for the vertical velocity v, which takes the form

(3'2) Uy = YUz + f(t)6(x - Ol), 0<z<1l

At the edges of the channel the fluid velocity should be zero, so we have the boundary
conditions v(0,t) = v(1,t) = 0. This is of the form (3.1). Hence an analysis of
the one-dimensional immersed boundary method on (3.1) gives us direct information
about the behavior of the two-dimensional immersed boundary method in one special
case.

A more realistic situation would be to specify the velocity 7(t) of the plate rather
than the force f(t). We could solve this by decoupling the problem into two separate
channels, giving the heat equation v; = pv,,; on 0 < z < o with v(0,t) =0, v(a,t) =
9(t) and the heat equation on a < z < 1 with v(a,t) = 9(t), v(1,t) = 0. This would
avoid the need for a singular forcing term. However, in the spirit of the immersed
boundary method we would instead again solve (3.2) with f(¢) now determined im-
plicitly by the requirement that the resulting velocity v(z,t) satisfy

(3.3) v(a,t) = o(t).

This leads to the constraint (1.4) in the one-dimensional problem. This serves as a
model for the immersed boundary method in contexts where we wish to impose a solid
wall boundary condition, either stationary or moving at some prescribed velocity, and
will be studied later in this paper.

We return to the simplest case (3.1) with ¢(¢) specified, and consider the Crank-
Nicolson method (1.9). The error in the numerical solution depends on our choice of
discrete delta function dp(z). Before analyzing the error we first make some comments
about these functions.

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 339

4. Interpolation properties of discrete delta functions. The discrete delta
function dj(z) is used to spread the delta function source terms to the uniform grid.
At a later stage we will also use discrete delta functions to interpolate grid values
u(z;,t) to the point a in order to approximate u(c,t). In this section we recall a few
fundamental facts about interpolation rules in one space dimension. If f(z) is any
function of one variable, we can approximate

(4.1) fla) =~ hZ f(zj)dn(z; —).

This is a discrete form of the statement f(a) = [*° f(z)6(z — o) dz. Any discrete
delta function defines an interpolation formula via (4.1), and conversely, any transla-
tion invariant interpolation rule can be used to define a discrete delta function.

If f(z) is a smooth function of x, then we can expand f(z;) in a Taylor series
about the point o to obtain

F@) = f@)+ 3 —f a)(es — o)

where f(™) represents the mth derivative of f. Inserting this expansion in (4.1) gives
an expression for the error,

(4.2)
f(e) =h}_ f(@;)dn(w; — @) = f(a) = hf(a) }_ dn(z; - @)

=3 M @)h Y (e~ o) d(z; - a).
m=1 Jj

The first two terms cancel due to the consistency condition (1.11). We will assume in
general that dj, has support only over a few mesh widths, say

(4.3) dn(z) =0 for |z| > Mh.

This, combined with (1.11), shows that

by (zj — @)™dn(z; — a) = O(h™) as h— 0.
j
Condition (1.11) then guarantees that the interpolation error (4) will be at most O(h)
as h — 0. The error will be smaller if additional terms in the error expansion (4) are
identically zero. We see that the error is O(h?) if (1.11) is satisfied and the next p—1
discrete moments of dp, are zero. By using a Taylor series with remainder in the above
expansion we see that we only require continuity of p derivatives of f for this result
to hold. We summarize this in the next lemma, where 6,,9 is the Kronecker delta.
LEMMA 4.1. Suppose dj, satisfies (4.3) and also the discrete moment condition

(4.4) h Z(mj —a)™dp(z; — @) = bmo

form=0,1, -, p—1. If f € C®? V(@ — Mh, a+ Mh]) and f®~V is Lipschitz
continuous on this interval, then

fla) - hZ f(x;)dn(z; — @) = O(hP) as h — 0.

340 R. P. BEYER AND R. J. LEVEQUE

We can easily verify that the hat functions ds) and dg) from (1.6) and (1.7)
satisfy (4.4) for m = 0,1 while df) from (1.8) only satisfies (4.4) for m = 0. The
hat functions give second-order accurate interpolation while the cosine function only
gives first-order interpolation.

The above result assumes f is smooth. In our applications u(z,t) will typically
have a kink at the point a where one or more derivatives are discontinuous. This arises
from the delta function singularity in the differential equation for u. If we wish to
interpolate to the point a we may obtain less accuracy than the above result indicates.
For example, the hat function dgl) corresponds to linear interpolation between the two
neighboring grid points. If f is smooth then this gives O(h?) accuracy, but if f has a
kink at o then we only obtain O(h) accuracy.

Let [f(™)]y = £ (a+)— f™ (a—) be the jump in the mth derivative of f at the
point a. We can expand f(z;) about f(a) as before if we are careful to use derivatives
on the correct side:

fa) fle) + Xy i f™(a)(zj —a)™ forz; <a,
Zj) =

fl@)+ X0 L™ (a+)(z; —)™ for z; > a.
These can be combined to give

f) = f@)+ Y o f M e)™+ Y - H(z; — @)l ™a(e; - o)
m=1 " m=1"

where H is the Heaviside function. Using this expansion in the expression for the
interpolation error now gives

(45) fl@)=hD_ f(z;)dn(z; —a) ==} % (1™ (@) + H(w; — 0)[f™]a)
X hZ(xj —a)"dp(z; — @).

This gives a modified version of Lemma 4.1 for functions f that are smooth except at
the point a.

LEMMA 4.2. Suppose (4.4) is satisfied form =0, 1, ---, p—1 and in addition
the one-sided discrete moment condition
(4.6) hz H(z; — a)(z; —a)"dp(z; —a) =0
J

is satisfied form =1, 2,---, p—1. Let f be a continuous function with f € CP~!([a—
Mh,a) N (o, a + Mh]), with f®=1 Lipschitz continuous on each half interval. Then

fl@) =k f(z;)dn(z; — o) = O(h?) as h — 0.
J

The hat functions dﬁll) and df) fail to satisfy (4.6) for m = 1 and hence are only
first-order accurate if [f]o # 0.

We can obtain a second-order accurate interpolation formula based on the grid
values by using linear extrapolation from each side of a. Figure 2(a) illustrates the

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 341

LV

3h -2h ch 0 h 2h 3h

(a) (b)

FiG. 2. (a) Linear extrapolation to approzimate f(c) based on grid values in ihe case where f
has a kink at a. A convexr combination of the two one-sided extrapolation values is used. (b) The

discrete delta function dff) () obtained by this procedure.

idea. If ;7 < a < x 41 then we extrapolate linearly from z ;_; and z; to « obtaining a
value F and also from 2 ;41 and 42 to o obtaining a value F. We then approximate
f(a) by a weighted average of F; and Fj,

fl@) = ((zj41 — @)Fy + (o — z) F2) /h.

Since F; and F; are themselves linear combinations of the grid values f(z;), this
gives a rule of the form (4.1). Working out the details shows that this discrete delta

function, which we will call d;f), is given by

1 1- ((E/h)2, |.’L‘| S h”
4.7) di)(@) = 71 2-[3z/h|+ (o/h)?, h<l|a| <2,
0 otherwise,

as illustrated in Fig. 2(b). This delta function satisfies (4.4) for m = 0, 1 and also
(4.6) for m = 1, so that it gives a second-order accurate approximation for any f that
is smooth on each side of a.

5. Overview of results. Before presenting all of our analysis and numerical re-
sults, we will give a brief overview of our findings. Some of these results are rigorously
proved in later sections. In other cases we do not have a complete proof but do have a
good understanding of the behavior that is seen numerically. We have presented this
incomplete analysis in later sections as well since we feel that it is essentially correct
and provides valuable insight into the behavior and some of the subtle cancellation
properties that come into play. These results indicate that good accuracy can be
obtained with immersed boundary methods but that a certain amount of care must
be exercised in designing these methods in order to achieve this accuracy.

342 R. P. BEYER AND R. J. LEVEQUE

5.1. The steady state case. The simplest case is the steady state equation
@' (z) = —cb(z —), 4(0) =4(1) =0

with the piecewise linear solution

(5.1) i(z) = { cx(l—a), z<a

Applying the Crank—Nicolson method (1.9) and setting (7;’ =U ;“H, we find that the
numerical steady state U; will satisfy

(5.2) D2U; = —cdp(z; — a), Up=Un =0.

The numerical solution depends on the choice of the discrete delta function dp(x).
For any reasonable choice we will have first-order accuracy at all grid points. If the
moment condition (4.4) is satisfied with m = 1 then we obtain considerably more for
this simple steady state problem: the numerical solution will give the exact solution,
except perhaps at a few points near a. We have the following result.

LEMMA 5.1. Suppose U; satisfies the difference equations (5.2). Let i(z) be the
true solution to (5.1). If the discrete delta function dp(x) satisfies (1.11) (i.e., (4.4)
with m = 0) then

U; = a(z;) + O(h) for all z;.

If, in addition, (4.4) is satisfied with m = 1 and the support of dy, has radius M, as
in (4.3), then

Uj = a(z;) for |z; —a 2 (M —1)h,

i.e., the numerical steady state solution agrees with the true solution away from the
point c.

A proof of this based on discrete Green’s functions is given in §6.1.

In particular, note that in the case M = 1 we obtain U'j = 4(z;) for all j, for
example, when dgl) from (1.6) is used. When df) from (1.7) is used, M = 2 and the
numerical solution differs from the true solution at only two points. At the points
where the solution is in error, the error is O(h) as h — 0, and hence the method is
first-order accurate in the max-norm,

105 — @(25)l|oo = m?XIﬁj —i(x;)| = O(h) ash— 0.

On the other hand, since the solution is exact except at two points, we would have
second-order accuracy in the 1-norm,

10 — a(z;)lla = B |U; — ;)| = O(R?) as h — 0.
i

The cosine delta function (1.8) does not satisfy condition (4.4) with m = 1, and
the numerical solution is in error at all points. However, the lemma shows that the
solution is still O(h) accurate at each point, and so the error is now O(h) in either
the max-norm or the 1-norm.

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 343

5.2. ¢(t) specified and o fixed. For the time-dependent problem
(5.3) Ut = Ugy + c(t)0(z — @)

we study the Crank-Nicolson method (1.9) and show that the accuracy again depends
on the choice of discrete delta function dj,. We cannot expect to obtain the exact
solution as in the steady state case, but we can achieve second-order accuracy by
requiring the moment condition for dj. We assume that c(t) is smooth and that the
initial data is consistent with the equation, as discussed further in §6.2. We then have
the following result.

THEOREM 5.2. Suppose U satisfies the difference equations (1.9). Let u(z,t) be
the true solution to (3.1). If the discrete delta function dp(z) satisfies (1.11) then

Ul = u(zj, tn) + O(h) for all z;.

If, in addition, (4.4) is satisfied with m = 1 and the support of dy, has radius M, as
in (4.3), then

Ul = u(xj,tn) + O(h?) for |z; — o > (M —1)h.

This is proved in §6.2. Note in particular that for the hat function d;ll) the moment
condition is satisfied and M = 1, so that we obtain second-order accuracy at all grid
points. When df) is used we expect second-order accuracy except at the grid points
adjacent to the point a.

As an illustration, we present some numerical results on one sample problem with
a variety of choices for dp,. This is a case where the exact solution is known, although
similar results have been observed on other problems where we specify c(t) at will and
compare the computed solution to a fine grid solution.

The exact solution we use is

o
IN
8

IN

sin (3wz) exp (—97%t), 5
5.4 u(zx,t) =
G4 0 sin(3n(1 — z)) exp(—2n2t), 1

W=
IA
8
IA

with a = 1. Note that u(a,t) = 0 for all ¢ and that

c(t) = —[ug]a = —gw exp (—%wzt) — 3mexp(—97t).

We tested grids with n = 10, 20, 40,---, 320 grid points and looked at the error
in the infinity norm || E||«, and also at the error if we ignore the two grid points
closest to the point o, which we denote by ||E]|oo-

We choose a = % so that this point always lies one third of the way between grid
points on each grid. This leads to numerical results that clearly show the expected
asymptotic behavior. Other choices of a give results that are harder to interpret since
the truncation error depends on the location of « relative to the grid.

Table 1 shows the results obtained with three choices of dj,. We display the error
norm and also the ratio between the errors for successive values of n. With a first-
order method this ratio should be 2 asymptotically, while for a second-order method
the ratio should be 4. We observe exactly the behavior we expect. The delta function

dgl) gives second-order accuracy while df) gives second-order accuracy away from

but only first-order accuracy near .. The use of df) gives first-order accuracy at all
points.

344 R. P. BEYER AND R. J. LEVEQUE

TABLE 1

dp, n 1Bl oo ratio 1E]| oo ratio
10 || 0.219x10-1 0.219x10~?
20 || 0.637x10~2 | 3.4 || 0.637x10"2 | 3.4
d | 40 || 0.155x1072 | 4.1 || 0.155x1072 | 4.1
80 || 0.393x10=3 | 3.9 || 0.393x10-3 | 3.9
160 || 0.978x10=4 | 4.0 | 0.978x10~* | 4.0
320 || 0.245x10~4 | 4.0 | 0.245x10* | 4.0
10 || 0.928x10-1 0.163x10!
20 || 0.553x10-1 | 1.7 | 0.111x10-! | 1.5
d® | 40 | 0.302x10-1 | 18 | 0.285x10-2 | 3.9
80 | 0.155x10-1 | 1.9 || 0.725x10-3 | 3.9
160 || 0.787x1072 | 2.0 | 0.180x1073 | 4.0
320 || 0.396x1072 | 2.0 || 0.452x10™* | 4.0
10 || 0.697x10-1 0.795x10~2
20 || 0.393x10-! | 1.8 || 0.887x10~2 | 0.9
d® | 40 || 0.213x10-1 | 1.8 | 0.254x10-2 | 3.5
80 | 0.109x10-! [2.0 || 0.111x10-2 | 23
160 || 0.552x1072 | 2.0 | 0.452x1073 | 2.4
320 || 0.278x10-2 | 2.0 || 0.211x1073 | 2.1

5.3. u(a,t) specified and o fixed. If we specify the value u(a,t) rather than
c(t) then we must supplement (1.9) by an equation for cpi1/2 = c(tpy1/2). The
equation we use is a discrete form of (1.4) using some discrete delta function dj, to
interpolate the grid values U ;“"1 to the point a,

(5.5) R UM dy(z; — @) = G(tnta)-

This can be combined with (1.9) to uniquely determine c,1/2 and the new solution
vector U™, as described further in §6.5. The discrete delta function dj need not
be the same as dp, in (1.9). The best choice for dj, is to use dg), since Theorem 5.2
shows that this is the only choice that gives second-order accuracy at all grid points
in the case where ¢(t) is known. On the other hand, we use dp to interpolate the
function u(t,+1) to the point a, where u has a kink, and so Lemma 4.2 indicates that
we should use a discrete delta function satisfying the one-sided moment condition in
order to obtain second-order accuracy in this step. For example, d;f) might be used
for dp,. _

Numerical results indicate that with this choice (dp = dg) and dp, = d;f)) we
obtain overall second-order accuracy in both the solution U™ and in the values ¢y 41/2-
However, with any other choice of dj, this second-order accuracy appears to be lost.
Even a choice such as df), which in the case where c¢(t) is specified would cause a loss
of accuracy only at two grid points neighboring «, will cause a global degradation to
first-order accuracy in the present case. The reason is that a first-order error near «

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 345

causes an error in the value interpolated to o and hence an error in the value ¢, /2.
This in turn causes a change in the overall solution.

The fact that the combination d;ll), d;:i) gives second-order accuracy has not been
fully proved. However, in §6.5 we provide some analysis of this situation that gives
strong support for this belief. Choices of dj other than d}f) should also be allowed
provided the one-sided moment condition is satisfied.

As a numerical example, we use the same test case as before, (5.4), but now specify
u(1/3,t) = 0 for all ¢ instead of specifying c(t). Table 2 shows the results obtained
with various choices of d;, and dj,. Here we also show the error in the computed

Cn+1/2- The combination dle), dﬁ:‘) gives second-order accuracy for each of the errors
while with any other combination the error deteriorates to first order. Note also that

if we do not use dj, = d;:l) then the approximation c, /2 does not converge to the
true value c(t,+1/2). We have an O(1) error in c,41/2 even though U™ still converges
with first order accuracy. This nonconvergence of ¢, /2 is also discussed in §6.5.

5.4. c(t) and a(t) specified. When the point «(t) is not constant, a natural
generalization of the Crank—Nicolson method takes the form

(5.6)
1———1sz yrtl = 1+—1I<:D2 Ur
9 T J 9 T J

2 et (a5 — (i) + eltns)dD (@ — altnsr)]

In many computations this method appears to give second-order accurate results.
However, this is the result of fortuitous cancellation. A careful analysis shows that
some additional terms are needed to insure second-order accuracy in general. With
these correction terms, the method takes the form

(1 ~ %kDﬁ) urtt = (1 + %wg) uy
(5.7) + ’g[c(tnm;:’ (2 — atn)) + c(tns1)ds” (z; — a(tnsn))]

k +1 n

The correction terms are given by

2
(5. v = Sl (tn)eltn)sgm(z; — altn) (40 (2 — afta))’
and
(5.9) Wi = —(tny1/2 —)l (T])]e(T]).

Here 7' represents the time at which the immersed point c(t) crosses the grid line

x;, if this happens during the nth timestep. Otherwise we set 7} = tpy1/2 SO that
W =0. So
J

time 7 at which a(7) =x; if t, <7 <tpyq,

tny1/2 otherwise.

346 R. P. BEYER AND R. J. LEVEQUE

TABLE 2
dp | dn | n 1 Elloo ratio 1Bl oo ratio || lle(tns1/2) — €, 4/l | ratio
10 || 0.504x10-1 0.109x10~1 0.244x10°
20 || 0.125x10~! | 4.0 | 0.649x102 | 1.7 0.736x10~1 3.3
d” | d® | 40 | 0.206x10-2 | 6.0 || 0.144x10-2 | 45 0.207x10~! 3.6
80 || 0.504x1073 | 4.1 |l 0.439x10=3 | 3.3 0.490x10~2 4.2
160 || 0.108x10~3 | 4.7 || 0.996x10~* | 4.4 0.124x10~2 4.0
320 || 0.268x10~4 | 4.0 | 0.258x10~% | 3.9 0.304x10~3 4.1
10 || 0.921x10~! 0.150x10~? 0.307x10+1
20 || 0.354x10-! | 2.6 | 0.240x10-! | 0.6 0.274x10+? 11
d? | & | 40 || 0.157x102 | 23 || 0.125x1071 | 1.9 0.262x10+1 1.0
80 || 0.742x10~2 | 2.1 || 0.710x10~2 | 1.8 0.258x10+1 1.0
160 || 0.362x10-2 | 2.0 | 0.350x10-2 | 2.0 0.256x10+1 1.0
320 || 0.179x10-2 | 2.0 || 0.178x10~2 | 2.0 0.256x10+1 1.0
10 | 0.165x10° 0.784x101 0.199x10°
20 || 0.842x10-1 | 2.0 || 0.598x10-1 | 1.3 0.151x10° 1.3
d" | d" | 40 || 0.422x10-! | 2.0 || 0.391x107! | 15 0.125x10° 1.2
80 || 0.212x10-1 | 2.0 || 0.202x10"! | 1.9 0.741x10-1 1.7
160 || 0.106x10-1 | 2.0 || 0.105x10-1 | 1.9 0.399x10~1 | 19
320 || 0.531x10-2 | 2.0 | 0.526x10-2 | 2.0 0.206x10~1 1.9
10 || 0.251x10° 0.987x10~1 0.406x10°
20 || 0.138x10° | 1.8 0.111x10° | 0.9 0.157x10+1 0.3
d® | d® | 40 || 0.706x10-1 | 2.0 | 0.593x10-! | 1.9 0.160x10+1 1.0
80 || 0.363x10 | 1.9 | 0.351x10! | 1.7 0.157x 10+ 1.0
160 || 0.180x10-1 | 2.0 || 0.174x10-! | 2.0 0.151x10+1 1.0
320 || 0.914x10-2 | 2.0 | 0.908x10-2 | 1.9 0.148x10+1 1.0

A natural timestep restriction requires that o cross no more than one grid line per
timestep (i.e., |ka’(t)/h| < 1) and so W}* is nonzero for at most one value of j. Also
note that Y} is nonzero for at most two values of j.

These correction terms are derived in §6.6. Here we show two numerical examples.
In the first case we let c(t) = 1 and a(t) = a(0) + ¢, with a(0) = 3. This particular
choice of ¢(t) and «(t) maximizes the magnitude of the correction terms and allows
us to examine the effect of including either Y or W. Figure 3 shows the resulting
errors for various values of h on a log-log plot. With no correction terms we appear to
already have second-order accuracy, although including the correction terms gives an
order of magnitude decrease in the error constant. It is very interesting to observe,
however, what happens if we introduce only one of the corrections Y or W but not
the other. In either case the error becomes O(h) rather than O(h?). This shows that
the two sources of error corrected for by Y and W are in fact O(h) errors, but that
these errors happen to cancel out so that the Crank—Nicolson method (5.4) without

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 347

max norm of error
(]
e

T ~T T T T

0.001 0.005 0.010 0.050 0.100
h

F1G. 3. ||E||co for various values of h. Solid triangles: no correction terms. Open bozes: Y
correction terms. Open triangles: W correction terms. Solid bozes: both correction terms.

correction terms is also second order. For this particular problem this cancellation
can be analyzed since o/(t) = 1 and the discontinuity hits each grid cell in precisely
the same way. More generally there is not such complete cancellation, although some
cancellation still occurs. The method (5.4) appears to be better than first order but
not fully second-order accurate.

As another example, we compute an approximation to the true solution

(5.10) w(e,t) = | SB@E) exp(=wit) z < aft),

sin(we(1 — z)) exp(—w2t), > a(t)
for some choice of wy and wy. The point a(t) is found by solving the scalar equation
sin(w; a) exp(—w?t) = sin(wa(1 — &) exp(—w?3t)

for a. This equation has a unique solution if we take, for example, 7 < w; < 27 and
also 7 < wg < 2m. We compute a(t) to high precision using a zero-finding routine and
also specify ¢(t) = —[uz]q, which is easily computed from the exact solution. Figure 4
shows the true solution and the approximate solution with w; = 57/4 and we = 7n/4
for n = 25 at t = 0.1. From this figure we can see that even with a grid as coarse as
n = 25, we get excellent resolution of the solution even near the point a. Figure 5
shows the error as a function of h together with least squares line fits to estimate the
order of accuracy. On this example, the method (5.4) appears to have order 1.7 while
the full method (5.7) has order 2.0.

348 R. P. BEYER AND R. J. LEVEQUE

0.20

0.05

0.0 4

T T T T T T
0.0 0.2 04 06 08 1.0

x

FIG. 4. True solution and approzimate solution for n = 25 at t = 0.1. Since the timestep
equalled the space step, the approzimate solution is for step 25.

T T
0.001 0.005 0.010 0.050 0.100
h

F1G. 5. ||E||co for the case c(t) given and a(t) given for various values of h. Triangles: without
correction terms. Bozes: with correction terms.

5.5. u(a(t),t) and a(t) specified. When u(a(?),t) is specified rather than c(t),
then c¢(t) has to be calculated implicitly. In this case we replace c(t,) and ¢(tp+1) in
(5.7) by approximations ¢, and cp+1, respectively. Using (5.5), we can solve for cp41
to get

k) _ k _
(5.11) cnyr = (57’£+1A ldh+l) (u(tn+l) — a1 ATIBU™ — 57”;":+1A 1Cnd7:>,

where rZ, ,U"*! = @(t,41) and dj, is the vector whose components are dgl) (zj—a(tn)).
Once we know c,,41, we can calculate U™t! with (5.7).

We compute an approximation to the same true solution as was done in §5.4. As
before we only look at two cases, that with no correction terms and that including

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 349

T T T T T
0.001 0.005 0.010 0.050 0.100
h

FIG. 6. ||E||cc for the case u(a(t),t) given and a(t) given for various values of h. Triangles:
without correction terms. Bozes: with correction terms.

both correction terms. Shown in Fig. 6 are the results for these two cases. As we can
see from the figure, including the correction terms does not change the results to any
significant degree. In both cases the order is 2.0.

6. Analysis. We begin with an analysis of the steady state case and the case
where c and « are both constant. These cases can be analyzed by considering a discrete
Green’s function corresponding to a delta function source concentrated at a single grid
point, for which the accuracy is easily computed. The case where « lies between grid
points can then be analyzed by viewing the numerical solution as an interpolation
between the grid point Green’s functions, using the discrete delta function dj as the
interpolation rule. The accuracy results then follow from the results on interpolation
properties of Green’s functions from §4.

6.1. The steady state case. We prove Lemma 5.1. Let G(z; 3) be the Green’s
function for this problem with a unit strength source at g,

m(l_IB)7 xSﬁy

G(z;) =
(= B(1 —x), x> .

The function G satisfies Gz, = —8(x — 3). It is easy to check that G also satisfies

1
where §;; is the Kronecker delta. This shows that if the source location is at a grid
point (8 = z;) then we obtain the true solution by solving the difference equation (6.1)
with the entire source concentrated at that grid point. Note that this corresponds to

the use of d,gl) in this case, since d;ll)(mj — ;) = b;/h.

350 R. P. BEYER AND R. J. LEVEQUE

Now consider the original problem which has the source at a. The right-hand
side of (5.2) can be rewritten as

—cdp(zj — @) = —ch Y dp(z; — a)bi;j/h.
3 3

By linearity, the solution U, ; of (5.2) can be expressed as a linear combination of the
Green’s function at each z;,

(6.2) Uj = ch_ du(zi — 0)Glzj;).

This can be viewed as an interpolatory approximation to ¢G(z;; a) = @(z;) based on
grid values c¢G(z;; z;). For z fixed, the function G(z;3) is continuous and piecewise

linear in 8 and hence Lemma 4.1 applies to show that
U; = a(z;) + O(h) for all 5.

If, in addition, (4.4) is satisfied with m = 1 then dp,(z) interpolates linear functions
exactly. If |z; — o] > (M — 1)h then (6.2) is sampling G(z;;x;) over a set of grid
points z; where G is linear, and hence (6.2) recovers the exact value. So U; = i(z;)
for these values of j. This completes the proof.

6.2. c and a constant. Now consider the time-dependent problem
(6.3) Ut = Ugg + 06($ - a)

with ¢ and « constant, with data u(z,0) = ug(x). Suppose we use the Crank-
Nicolson method (1.9). In order to analyze this method with different choices of dp,
we introduce the function

v(z,t) = u(z,t) — 4(z)

where 4 is the steady state solution (5.1). Then it is easy to verify that v satisfies the
homogeneous heat equation

(6.4) UVt = Ugy
with data
v(z,0) = uo(z) — a(x).

If we also introduce the grid function V* = U} — U;, where the discrete steady

state approximation U; satisfies (5.2), then combining (5.2) and (1.9) shows that v
satisfies

1 n 1 n
7=V = DA+ V).

This is simply the Crank-Nicolson method for (6.4). To analyze the error in U7, we
express

Ur—u(z; —ta) = (UF—U;)+ U —ilz;)) + (iz;) — u(zj, tn))
= (VP —v(zj,ta)) + (U; — a(z;)).

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 351

The error is composed of two parts. The first part is the error in the Crank—Nicolson
method on the homogeneous heat equation (6.4). The second part is the error in the
steady state solution.

Crank—Nicolson on the heat equation is second-order accurate provided the so-
lution is smooth, which it will be if the initial data vg(z) is smooth. Since vo(z) =
up(x) — G(z), this will be the case provided ug is of the form @ + vo for some smooth
function vg. Note that this requires that ug have an appropriate kink at the point «,

(6.5) [upla = —c.

If up is not of this form then vy will have a kink at a and we will lose accuracy.

The second part of the error, the error in the steady state solution, was analyzed
above. In particular, we saw that if we use the hat function dfll) then there is no
error at the grid points, [7]- = 4(z;) for all j. In this case the approximation up
will agree with the true solution of the time-dependent equation (6.3) to O(h2) at
the grid points. If the wider hat function d;lz) is used then there will be an O(h)
error introduced at two grid points but otherwise the time-dependent solution will

be unchanged. If the cosine delta function df) is used then an O(h) error will be
introduced at all points.

6.3. Truncation error analysis. In the analysis of the time-dependent error
when the strength or location of the delta function varies, it will not be possible to
decompose this error into homogeneous and steady state parts as we have just done.
Before presenting additional analysis we introduce some new notation and discuss the
local truncation error and the evolution of the global error.

To simplify some of our discussions below, we introduce matrix-vector notation
for the difference schemes. Let U™ be the vector with components U and u(ty,)
the vector with values u(zj,t,) from the true solution. Let d be the vector with
components dj(z; — o). The Crank-Nicolson method (1.9) may then be written as

(6.6) AU™! = BU™ + ke(tp11/2)d

where A and B are the tridiagonal matrices representing the operators I — %kch and
I+ %kch, respectively. We define the local truncation error by

(6.7) T" = Au(tn41) — Bu(tn) — kc(tpy1/2)d.
The global error E™ is defined by

E" =U" — u(ty),
and combining (6.6) and (6.7) shows that E™ evolves according to
(6.8) AE™ = BE" — T™,

The Crank—Nicolson method is unconditionally stable, and hence the global error will
be O(hP) accurate provided that E® = O(hP) and T™ = O(hP*1). This loss of one
order of accuracy between 7™ and E™ is a reflection of the fact that we have not
divided by k in our definition (6.7) of T™, contrary to some definitions of the local
truncation error. In the case ¢ = 0 a standard expansion in Taylor series shows that
T™ = O(h®), and hence the method is second-order accurate. (Note that we always
assume that k/h is constant as h — 0 so that O(kh?) = O(h3), for example.)

352 R. P. BEYER AND R. J. LEVEQUE

It will be important to observe that in some cases it is possible to achieve second-
order accuracy even if T™ is not O(h3). Most notably, this occurs if all components
of T™ are O(h®) except for a few components for which the error is O(h?) (with the
number of such components being bounded as h — 0). To see this, consider the case
where such an error is confined to a single point z;. (The more general case is easily
handled by linear superposition.) Then

T =T™ + ™e;

where 7™ = O(h®), 7 is an O(h?) scalar, and e; is the ith unit vector. We can rewrite

T"e; as
h 1
n . o= n_ —es
™e; =k (7‘ k) (he,).

Note that e;/h has components §;;/h and is a discrete delta function corresponding
to a point source concentrated at x;. The error evolution equation (6.8) then takes
the form

(6.9) AE™!' = BE" —T™ — k (r"ﬁ) (1e,~))
k) \h

The last term can be interpreted as a delta function source term with magnitude
7"h/k = O(h?) being introduced into the Crank—Nicolson method (compare (6.9)
with (6.6)). Just as the introduction of a delta function with unit strength in our
original problem gives an O(1) solution, the introduction of a delta function truncation
error with O(h?) strength gives only an O(h?) contribution to the global error, and
hence we maintain second-order accuracy.

This observation is important since some of our methods will introduce O(h?)
truncation errors at a few grid points near the point a.

We now return to the analysis of the method (1.9) in the case where ¢ and « are
constant. We have already analyzed the accuracy of this method by decomposing the
error into the steady state error and the error in the Crank—Nicolson method on the
homogeneous heat equation. We now present an alternative analysis based directly
on the truncation error that extends more easily to the case where c(t) varies.

Consider the truncation error (6.7) in the case where c is constant. The jth
component of this vector is

k
(610) TP = u(eytar) ~ u(ay,tn) — S[D2u(z;) + D2z, tuss)]
— kedp(z; —).

If we assume that o lies between grid points, then u is smooth in ¢ at each grid
point ;. Hence a Taylor series expansion shows that

k
(g, tna1) = W&, tn) = 5 (ue(@j, tn) +e(2), tnsa)) + O(k?).
Using this in (6.10) and rearranging gives
k
(6.11) T = glu(@),ta) = Dzu(;,tn) — cdn(; — a)]

k
+ E[ut(xj?tn+1) — Du(@j, tnt1) — cdn(z; — @))-

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 353

Since a lies between grid points we have u;(x;,t) = uze(x;,t) and so the truncation
error is clearly O(h®) provided that

(6.12) Upz (T, tn) = D2u(zj,tn) + cdp(zj — a) + O(h?).

Away from the point «, u is smooth and so D2u(z;,t,) is a second-order accurate
approximation to u,. We can view the term cdp(z; — &) in (6.12) as the modification
to D2u(z;, t,) required to approximate u, to second order near the point .. We claim
that the correct modification is obtained by using the hat function d;bl)(x). With this

choice of dp,, the condition (6.12) will be satisfied and the method will be second-order
accurate.

LEMMA 6.1. Suppose u(z,t) satisfies (6.3). Then at any time t > 0 we can
approzimate Uz, (z;,t) to second-order accuracy based only on grid values of u using

(6.13) Uea(T5,t) = D2u(z),t) + cd (z; — @) + O(h?).

Proof. To see that (6.13) is valid, consider the typical situation as illustrated in
Fig. 2(a). The function u(z,t) is smooth except at the point o where one or more
derivatives of u have jump discontinuities due to the delta function source. Suppose
that we want to approximate u,,(x7,t) based on the three grid values u(z;,t), j =
J -1, J, J +1. Clearly the standard centered difference approximation DZu(zs,t)
will not work, e.g., in Fig. 2(a) this would predict a negative second derivative while
the true second derivative is positive. To find the correct approximation we expand
each of the values u(z;,t) (j =J —1, J, J+1) about the point z = , being careful
to use limiting values of the derivatives as £ — « from the appropriate side. For
shorthand we write

Taylor series expansion gives

w(o,t) + Yoy Az —a)™0Pu” ifz <,
6.14) ulzt) = !

wont) + Yoy i (z— a)™orut ifz > o

These can be combined into

(6.15)

u(z,t) = u(a, t) + Z T—’ll—'(x —a)"uT + H(z — a) Z —;nl—‘(a: —)" 07 u] o,

m=1

which is valid for any x. Now consider the centered second difference at z;,
1
D2u(zy,t) = ﬁ(u(x“_l,t) —2u(zy,t) + u(xs-1,1)).

Using (6.3) in each member on the right gives

[o <]

1 m m,,— 1 - 1 m m
(6.16) D2u(zs,t) = Y ﬁ(Dg(m -)™)OFu” + g Z_l — (@541 — o) "0 ula,

m=1

354 R. P. BEYER AND R. J. LEVEQUE

in the case 5 < a < £y41. Since (z — @)™ is a smooth function, we have
D2(z; —)™ =m(m — 1)(z; — a)™ 2 + O(h?)

and so the first sum on the right-hand side of (6.16) gives, to O(h?), the Taylor series
expansion for 82u(zz,t):

- 1 2 myqm,, — — 1 m—2a9m,, —
(6.17) m; —(Di(zs —)™ = mzzz m(xJ —a)™29™u” + O(h?)
= O%u(zy,t) + O(h?).

To evaluate the second sum in (6.16), we need to know the jumps [07'u], in
derivatives of u at the point a. A key observation is that these jumps can be deter-
mined directly from the original equation (6.3) a priori, and need not be estimated
from the approximate solution.

If the initial data ug satisfies (6.5), then the solution u(z,t) will be continuous in
both space and time and the singularity c6(z — @) in (6.3) must be balanced at each
time by a jump in u, of strength —cé(x — &) (since u; is not singular),

[uz]a = —c.

The time derivative u; will be continuous, and hence [ut]o = 0. We also find from
(3.1) that

[utla = [uez]a +[cb(z — a)]a
= [uaxz]aa
and hence
[Uzz]a = 0.

To compute [Uzyz]o We differentiate (6.3) with respect to z, giving
Utz = Uggz + 8 (z —),
which yields
[Uswz]a = [utz]a-
To compute the latter quantity we differentiate the relation
(6.18) ug(a+,t) — ug(a—,t) = —c Vt
with respect to ¢, which yields
[ustla =0,

and hence [Uzzz]o = 0. We can show by further differentiation that all higher deriva-
tives are also continuous at a.
To summarize, we have

[uzla = —c and [0J'ule, =0 for m > 1.

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 355
Using this, together with (6.17), in (6.16) gives
c
D?:“(-’”JJ) = Ogu(xj, t) - ﬁ($J+l - a) + O(h2)

This is simply (6.13) at the point j = J, since ds)(w 7—a) = (541 — a)/h2.
By exactly the same procedure we can verify that (6.13) holds at j = J + 1. For
Jj# J,J + 1, uis smooth for |z — ;| < h and (6.13) reduces to

U (T5,1) = Diu(wj,t) + O(h?),

which is true for smooth u. The proof is complete.
In deriving (6.13) we used (6.3) to compute the jumps [07*u]n. The proof, how-
ever, clearly extends to give the following result which will be useful below.
COROLLARY 6.2. Suppose f € C3((—o00,a) U (a,0)) and f"' is Lipschitz con-
tinuous on each half line. Here a is an arbitrary point, say o € [xj,z541]. Then we
can approzimate f"(x;) to second-order accuracy based only on values of f at the grid
points and the jumps in derivatives at the point a,

f"(z;) = D3f(z;) + O(h?),

where D2 is a modification to the centered difference operator D2 defined by

& L@ -, =,
(6.19) DZf(z;) =Dif(z)+{ #r Toncs i@y —)™ [f™]a, j=J+1,
0 otherwise.

These formulas can be combined to give

(6.20)

3
~ sgn(a — x; 1 m
DXf(z;) = D2f(x;) - ;5’1_(’32__3_) Yo (hzsgn(a — z;)d) (j — a)) [F™]a.
m=1
Note that we need only keep three terms in the sum since higher-order terms are

o(h?).

6.4. c(t) given and o fixed. For (3.1), in which the strength c(t) is time-
dependent, exactly the same approach can be used to obtain a second-order accurate
method. The analysis proceeds just as before, except that formulas for the jumps
[07u], must be rederived. We now have

[ug]a = —c(t)
and [u¢]o = 0 so that
[uzz]a =0
still holds. However, in computing [tzzz]o We must replace (6.18) by

Um(a+’t) - uz(a_’t) = —C(t) vt,

356 R. P. BEYER AND R. J. LEVEQUE

and hence differentiating with respect to ¢ gives [ugt]o = ¢/(t). This gives
[Uzzz]a = —C ().

To obtain a second-order accurate approximation to uzq(z;,t) we must now use,
according to Corollary 6.2,

(6.21) D2u(z;,t) = D2u(z;,t) + c(t)d) (z; — a) + %c’(t)h“ (dgl) (z; — a))3 .

The final term here is an O(h) correction term since ds) = O(#) at the points where it
is nonzero. However, it turns out that we can ignore this correction term in estimating
uze for the Crank—Nicolson method and still maintain second-order accuracy in the

global error, i.e., we claim that the method (1.9) with dﬁll) used for dj, gives a second-
order accurate approximation to the true solution.
Using the fact that

Cltnery2) = 3 (cltn) + cltns)) + O(K)
we can write the local truncation error for this method as in (6.11), obtaining
622) T} = Spuea(a;,ta) — Dou(ay,tn) — eltn)di? (@ — o)
+ S ltaeg,tn1) = D2z, trn) = eltnsn)d) (@ —)]
We now have
Uz (35,8) — D2u(;,t) — c(t)df) (z; — @) = éd(t)h‘* (w5 - a>)3 +0(h?),

and hence
k 3
T} = () + 15(¢/(tn) + ¢ (tnr))* (4 (25— @) "

The latter term is O(h?) but is nonzero at only a few points near a. By our comments
in §6.3, it follows that the method is second-order accurate (assuming that ¢/(t) is
uniformly bounded).

This shows that the use of dg) gives a second-order accurate method. What
happens if we use a different function d,? We can investigate this by again viewing
dp, as an interpolation rule applied to discrete Green’s functions. Let G(z,t; 3, c(t))
be the true solution to the problem with source strength c(t) at = = 3,

Gt = Gz + c(t)b(z — B).

Although we assumed above that a lies between grid points, it can be verified that
the results are uniformly valid as « approaches a grid point, and hence we obtain a
second-order accurate approximation to G(z, t; z;, ¢(t)) by using the numerical method

AGTH-]- — BG” + kC(tn+1/2) (%6,;)

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 357

where e; is again the ith unit vector with components 6;; = hd;ll)(wi — z;). Denote
this grid function by G7(x;, c(t)).

Now suppose we solve the original problem using (1.9) with any discrete delta
function dp. Just as in our analysis of the steady state equation, we can view the
nonhomogeneous term as a linear combination of sources located at the grid points,

c(tng1/2)dn(z; — a) = hZc(tn+1/2)dh(wi — a)b;/h.

By linearity, the solution U}' can be written as a linear combination of the functions

G:;l (1131;) C(t)),

Ur = hZ G™ (x5, c(t))dn(zi —).

Since G7 (zi, c(t)) = G(x;,tn; i, c(t)) + O(h?), we obtain

Up =B Gl ta; iy c(6))dn(z: —) + O(H2)

But this is just an approximation to G(z;,t,; a,c(t)) using the interpolation rule
defined by dp,. Using the results of Lemma 4.1, we thus obtain Theorem 5.2.

Note that this result assumes that (6.13) holds at each time ¢,. Lemma 6.1
guarantees that this holds for n > 0 but we must also require consistency of the
initial data ug(z), i.e., we require that [up], = ¢(0).

6.5. u(a,t) given and o fixed. So far we have assumed that c(¢) is specified
a priori. Now suppose that we wish to determine c(t) as part of the solution so that
the constraint (1.4) is satisfied. We will use the Crank-Nicolson method

(6.23) AU™! = BU™ + kcpq1/2d
augmented by the constraint (5.5), which we rewrite in vector notation as
(6.24) rTU = G(tpy1).

Here the row vector 77 has components h(ih(wj — a). We choose the symbol r to
indicate “restriction,” since rTU™*! computes the restriction of the vector U™*! to
the point a.

Solving (6.23) for U™+! gives

(6.25) U™ = A™'BU" + cpp1)22
where
(6.26) z=kA d.

Applying the constraint (6.24) to U™*! in (6.25) allows us to solve for ¢,41/2:
1 -
(627) Cnt1/2 = m(u(tn.H) - T’TA lBUn)

If we use this to eliminate c,41/2 in (6.25) then we obtain

T —
9 n+l _ _ _T -1 n u(tn+1)
(6.28) U (1 2) arpyr 4 (Wani))

358 R. P. BEYER AND R. J. LEVEQUE

To simplify notation below we define

(6.29) Q= (I - ﬁ) .

rTz

The restriction operator 77 is determined by our choice of discrete delta function
dp, in (5.5). As demonstrated by numerical results in §5.2, we obtain the best results
by using dj, = dﬁf) in conjunction with dp = dg) in (6.25). We now wish to give an
indication of why this method should produce second-order accurate results.

We define the local truncation error as usual by

(6.30) T™ = Au(tnt1) — Bu(tn) — kc(tnia/2)d.

Note that we use both the exact solution v and the exact function ¢(t) in defining T™.
Consequently, T™ = O(h3), just as in the case where c is given. What changes now is
the evolution equation for the global error E™. If we solve (6.30) for A~!Bu(t,) and
use this in (6.28) then (6.28) becomes

U™t = QA7'B(u(t,) + E™) + <%> ‘

= Q(ultny1) — A7'T™ — c(tpy1/2)2 + A"'BE™) + U(tn+1) 2
o rTz

so that
(6.31) E"l = Q(AT'BE™ — ATT™) + %(a(tnﬂ) — T u(tny1))z.

Note that the matrix @ anihilates the vector z so that the term involving c(t,1/2)
drops out.

As usual, we must consider two effects in order to analyze this error: the local
error introduced in each timestep, which comes partly from the truncation error T™
and partly from the interpolation error @(tn41) — r7u(tn41), and the stability prop-
erties needed to ensure that the accumulated errors remain small, which depends on
properties of the iteration matrix QA~1B.

The new error introduced in each step according to (6.31) is

(6.32) - QAT + r—;g(u(tnﬂ) —rTu(tny1))2.

The vector z defined by (6.26) can be viewed as the result of applying a single step
(with At = %) of the backward Euler method for the heat equation to the initial data
kdp (x;—a). We therefore expect z to approximate a smooth but sharply peaked Gaus-
sian centered about o with magnitude O(k'/2), as is easily confirmed by numerical
experiments. The magnitude of this Gaussian can be approximated by interpolating
the vector z to the point «, for example by the value rT 2. It follows that z/rTz is a
scaled version of z with O(1) norm. The vector 7 also has an O(1) norm since it is
an interpolation operator. So the matrix @ has an O(1) norm. Moreover, since A~}
is backward Euler, we have ||A71T™|| < ||T™|| = O(h®) and so

|[QA'T™|| = O(r®).

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 359

The other component of the local error (6.32) has magnitude roughly given by the
interpolation error

|a(tns1) = rTu(tn)l.

Recall that @(t,1) is the exact value u(a, t,+1) whereas rTu(t,+1) is the value inter-
polated to a from the exact solution at the mesh points, u(z;,tnt1). If df:l) is used
to define T’ then this error is O(h?) even though u has a kink at the point .. This is
better than the O(h) error which would result from using other choices of dj, but at
first glance does not appear to be enough to guarantee second-order global accuracy.
However, notice that this O(h?) error is essentially confined to a few mesh points near
the point «, since z is sharply peaked and decays exponentially. Hence our previous
comments from §6.3 apply, and an O(h?) error is allowed at these points.

Moreover, notice that this error is always in the direction z. This may be sig-
nificant in further reducing the effect of this error. The accumulated error E™ is
multiplied by QA~!B in forming E™*!, and the matrix @ anihilates z. This does
not completely eliminate the O(h2) error introduced in the previous step because the
error is first multiplied by A= B, but A~ B corresponds to a step of Crank—Nicolson
on the homogeneous heat equation and its effect on the Gaussian vector z is to cause
some decay but relatively little change in shape.

In analyzing the global error we must also consider the stability of the iteration
matrix QA~!B. We know that the Crank-Nicolson operator A~!B is unconditionally
stable, and a standard von Neumann analysis shows that ||[A~!B|s = 1. To show
stability of the present method it would suffice to show that |QA™!BJz < 1, for
which it would suffice to show that ||@||2 < 1. Unfortunately, this is not strictly true:
we will display later a vector y for which ||Qyl|2 > ||y||2. However, this seems to be a
very unusual situation because of the fact that @ is nearly a projection matrix. Recall
that if v is any vector with ||v||2 = 1 then I —vv” is a projection matrix with norm 1.
Here v is replaced by z/rTz in one instance and by r in the second, but each of these
vectors has norm roughly equal to 1 and can be viewed as an interpolation operator.
For example, 1Ty ~ y(a) for smooth vectors y. The vector z/rT 2 has a similar effect,
since it is sharply peaked near . Hence we might expect @ to behave much like a
projection matrix.

More specifically, applying @) to any vector y gives

iy — T L)

The last term here is sharply peaked with amplitude roughly rTy ~ y(a). Most
components of this vector are nearly zero and so the corresponding components of y
are unchanged. If the components of y near « are smoothly varying, then modifying
these components by subtracting out a Gaussian with peak value y(a) will almost
certainly decrease the norm of the vector. See Fig. 7 for a typical example. However,
because z # r, it is possible to construct examples where ||g||2 > ||y||2. For example,
if all components of y are nonnegative and near o we have

yi-1=1, y;=0, yj41=0, yj2=1

where ;7 < o < xj41, then rTy will be negative, since r is based on the extrapolatory

delta function dgf). The vector 77y(z/rTz) will then have strictly negative entries and
subtracting this from y gives a vector § with ||g|l2 > ||y||2-

360 R. P. BEYER AND R. J. LEVEQUE
o
kS S ~,
SN T Y
’ L] ! .
4 3 i *
] L} + .
4 L} : 4
@ $ % @ %
° ¢ L ° L
$ L A
4 L ”
© ! Y @ 1
S $ L] ° T LY
¢ L ¢)
‘ ' ¢ }
< § * < H 4
o : H =] H
14 i L) h
i t : 4
’ ! P ;
o i i o~ H H i
sl * s 14 ; L
i ¢ i '
¢ ' ¢
g {é : S qé :
0.8 1.0 00 02 04 06 08 1.0
(b)

0.0

02 04 06

()
F1G. 7. The effect of multiplying a vector y with smooth components by the matriz Q.

(a) Components of y. (b) Components of Qy.
This situation is very unusual. For almost all vectors the matrix @) is norm
decreasing. Moreover this matrix is multiplied by A~ B to form the actual iteration
matrix, and A~!B is itself a stable matrix. We do not expect stability to be any

problem and have not observed any in practical applications.
Now consider the error in cy,1/ as given by (6.27). From the definition (6.30) of

the local truncation error we find that
c(tni1/2)z = u(tny1) — A7 Bu(ty) — A7'T™.

Applying 7T to this, we can solve for
c(tnyis2) = T, [rTu(tns1) — rT A7 Bu(ty) —rTATIT™].

Subtracting this from (6.27) gives
Lo T
Cnt1/2 — Ctng1y2) = T [(@(tns1) — 77 u(tny1))
—rTATIB(U™ — u(t,)) —rTA™IT™] .

(6.33)

We have rTA~1T™ = O(h®) while the other two terms in the brackets are each
O(h?). Unfortunately, rTz = O(h'/?), so that this suggests an O(h%/2) error in

a(tn) — rTu(ty)

Cn+1/2- However, notice that
_ T 3
U(tnt1) — 7 u(tnir) + O(R%),

rT(U™ — u(t,)) =

using the fact that %(t) —rTu(t) = O(h?) and assuming % is smooth in time. This sug-
gests that some cancellation occurs between the two O(h?) terms in (6.33), although

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 361

a complete analysis is complicated by the presence of the A~!B in the second term.
Apparently this results in cancellation only to O(h2-%) rather than to O(h3), so that
dividing by 77z then gives an O(h?) error in cpi1/2.

We can also see from (6.33) what happens if we use a different choice for dj, or
dp. If we keep dj, = dgl) but change dj,, then T™ remains the same but r is changed.

For example, if we take dj, = dfll), the interpolation error @(tn+1) — rTu(tn1) will be
O(h) rather than O(h?). We expect the error in c,41/2 to be one order lower as a
result, as is confirmed by Table 2.

If we change dp, then T™ changes. For example, suppose we take dj, = df). Then
from (6.22) we see that T™ is modified by the addition of a term

2 (eltn) + eltns)) (@D (25 — @) — df2 (@~ 1)

Note that dgl) (z) _dgz) (z) is O(h™1) in regions where it is nonzero, so that 7™ acquires
a term of the form

kBd + [O(1) terms localized at nearby meshpoints].
Here 3 is an O(1) constant. This causes (6.33) to be modified by adding the term
1
m[rTA‘l(kﬂd+ --+)] = B+ other O(1) terms

since kA~ld = 2. This introduces an error in c,; /2 that is O(1), as confirmed by
the results in Table 2.

6.6. c(t) and «(t) given. We next consider the case where the source location
a(t) is varying in a known manner and study the method (5.7),

1 1
(1 - §k1)§> urtt = (1 + §kD§) Uy
k
(6.34) +3 [c(t,,)dg“ (z; — otn)) + cltns1)ds" (z; — a(tn+1))]

k +1
+—2-(Yj" + YT + W
We will compute the local truncation error of this method for general Y* and W
By setting Y = W] = 0 we can obtain the truncation error for the method (5.4)
and we can also derive the correct expressions for Y* and W7 to give second-order

accuracy.
Computing the local truncation error of this method gives

Tg" = [u(xj,tn—l-l) - u(wj1tn)]
(6.35) _g[Dgu(xj, tn) + c(tn)dn(z; — a(tn)) + Y]

+D3u(ej, tnr1) + c(tnt1)dn(@; — a(tnt1)) + Y] - WE.

362 R. P. BEYER AND R. J. LEVEQUE
Since [uz]o = —c(t), we can use Corollary 6.2 to obtain

Dlu(aj,t) + c()df (w5 — a(t))
(6.36) = (s, 1) — - lurelasgn(z; — a(0) (6(z; - a(®))’

2 e (4 (2 - a(0)) + O(R2)
If we assume that o(t) # x; at t,, or t,41, then
(6.37) Ugz (T5,1) = wg(z;,1)
at each time level. If, moreover, a(t) # z; for t, <t < tpi1, then uy(x;,t) will be a

smooth function of ¢ in the timestep and we have

k
(6.38) w(Zjytns1) — u(Tj,tn) = §[ut(w,~, tn) + ut(zj, tns1)] + O(K3).
Using (6.36), (6.37), and (6.38) in (6.35) gives

(6.39)

17 = E{ S et tlasgn(e; — alta)) (e, - ate))” - 37

2
+ %[Um(',tnﬂ)]asgn(wj = a(tnt1)) (ds)(%’ - a(tn+1)))2 -y
— B ltaaa)l (40 @5 — a(ta)))

= B uamale tusall (42 — altnra)) | - W7+ 0.

The terms involving [uzzz]o have magnitude O(h?). However, these are localized

near the point «, since (dle))3 is nonzero at only two points. Hence these terms do
not lead to a degradation in accuracy.

However, the terms involving [u;;]e are O(h) and so even though these are also
spatially localized, we will see some degradation in accuracy if [ugz]o # 0 and Y =0.
The correction terms Y;* are thus chosen to cancel out these error terms. (Recall that
in the previous cases analyzed a is fixed and consequently [uzz]o = 0.)

To compute the jump in Uy, first note that [uzz]a = [u]a as before, from the
original partial differential equation. The solution w is still continuous and so we have

u(a(t)+,t) — u(a(t)—,t) =0 Vit.
Differentiating this with respect to t gives
o' ()[us)a + [uta =0,
and hence

—0/ (t)[uz]a
o (t)c(t).

['U'a:a:]a = [ut]a
(6.40)

ONE-DIMENSIONAL IMMERSED BOUNDARY METHOD 363

We see that when a is moving this jump is nonzero.
To eliminate this error term we take

Y = % ltaa - to)lasga(e; — altn)) (4025 — a(tn)))

Using (6.40) in this gives (5.8).
With this choice of Y, (6.6) becomes

(6.41) 17 = [O(h?) terms localized near o] — Wi+ O(h3).

Taking W]* = 0 should then give second-order global accuracy. But recall that we
derived (6.6) under the assumption that a(t) # z; during the timestep. We now
consider the case where a does cross a grid line, and see that a new error is introduced
that can be eliminated by the proper choice of WJ.

We have assumed that the timestep is small enough that a does not cross more
than one grid line in any given timestep, so a(t) # x; for all j, except perhaps at one
value z;. If a(1) = z; for some 7 with ¢, < 7 < tp41, then (6.35), (6.36), and (6.37)
are still valid for j = ¢, but (6.38) is not since u(z;,t) is not smooth in time. We will
derive the correct expression by expanding in Taylor series about the time 7 since u
is smooth on either side of 7. We have

(T, tn) = w(zj, 7) + (tn — T)uy + O(K?),
where u; = u(z;,7—). We can also expand
w(Tirtnr1) = (@i, T) + (tnr1 — T)uf + O(k?)
= w(@;,T) + (tns1 — T)up + (tns1 — 7)[we]r + O(K?),
where
[ut)r = we(zi, 74) — we(@i, 7—).
Combining these expressions gives
(6.42) W(Tiy tnt1) — (i, tn) = kuy + (tnp1 — 7)[ue)r-
On the other hand, we also have

ug(zs,tn) = u; +O0(k),
u(Tiytny1) = up + [ug]r + O(k)

so that
k _ k
(6.43) E[ut(a:,;,tn).+ ut(Tiytnt1)] = kug + E[ut]f.

Combining (6.42) and (6.43) shows that (6.38) must now be replaced by

w(Ziy tnt1) — w(@iytn) = g[ut(wi, tn) + ue (i tnta)]
(6.44) + (tnt1/2 — 7)uel- + O(K?).

364 R. P. BEYER AND R. J. LEVEQUE

Since the O(k?) term is localized at the single grid point z;, we do not need to be
concerned about its effect on the global error.

Using the expression (6.44) in (6.35) and following through the rest of the analysis
as before, we find that (6.41) becomes, for this value of j = i,

Tp = [O(h?) terms localized near o] + (tny1/2 — 7)[uel- — Wi* + O(R®).

The new term introduced appears only at the one point near o, but has magnitude
O(h) and hence may cause a degradation in accuracy unless we choose the correction
term W to eliminate this error. We want

(6.45) Wit = (tnt172 — 7)uel -
Note that

[wilr = we(xi, 7+) — ue(xi, 7—)
= —sgn(e/ (7)) (us(zi+, 7) — us(zi—, 7))
—sgn(e/(1))[us (", T)lar)
= —sgn(d/(7))a(T)e(7)
= —|d/(r)le(r)

where we have used (6.40). Using this in (6.45) gives (5.9).

7. Conclusions. We have examined the capabilities of an immersed boundary
method for some one-dimensional model problems. We find that it is possible to
achieve good accuracy with this approach if we are careful to choose appropriate
discrete representations of the delta function. Our analysis guides this choice and ex-
plains the success of the method. It is illuminating to view the discrete delta function
as a correction term that is needed to adjust the standard centered approximation to
Uz, in the case where u has discontinuous derivatives.

When a(t) is not constant, we see that it is sometimes necessary to add correction
terms to the naive approximation to the delta function in order to maintain second-
order accuracy. Our analysis shows how such correction terms can be derived.

We believe that similar techniques can be used to investigate the immersed bound-
ary method of Peskin for fluid dynamical problems in two (or even three) space di-
mensions. Our results suggest that a careful choice of delta functions will be required
for optimal accuracy and that it may even be necessary to incorporate additional
correction terms, particularly in the case of a moving boundary.

REFERENCES

[1] J. B. BELL, P. CoLELLA, AND H. M. GLAZ, A second-order projection method for the incom-
pressible Navier—Stokes equations, J. Comput. Phys., 85 (1989), pp. 257-283.

[2] R. P. BEYER, A computational model of the cochlea using the immersed boundary method,
Ph.D. thesis, University of Washington, Seattle, WA, 1989.

[3] L. Fauct AND C. S. PESKIN, A computational model of aquatic animal locomotion, J. Comput.
Phys., to appear.

[4] A. L. FOGELSON, A mathematical model and numerical method for studying platelet adhesion
and aggregation during blood clotting, J. Comput. Phys., 56 (1984), pp. 111-134.

[5] A. MAYO, The fast solution of Poisson’s and the biharmonic equations on irregular regions,
SIAM J. Numer. Anal., 21 (1984), pp. 285-299.

[6] C. S. PESKIN, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), pp.
220-252.

