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1. Introduction

I will ultimately describe a class of numerical methods for solving hyperbolic partial
differential equations, software that implements these methods, and some scientific
applications. However, for the broad audience that I am honored to address in these
proceedings, I would like to first make some more general comments on the topic of
software development and its relation to mathematics, and on computational science
and reproducible research.

I begin with a quote from a 1995 paper by J. B. Buckheit and D. L. Donoho [13]
about wavelet analysis and a software package they developed to aid in studying and
applying their methods:

An article about computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship. The actual schol-
arship is the complete software development environment and the complete
set of instructions which generated the figures.
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They present this as a slogan to distill the insights of Jon Claerbout, an exploration
geophysicist who has been a pioneer in this direction since the early 90s (e.g., [59]),
and they give many compelling examples to illustrate its truth. I first ran across this
quote on the webpage [11] of the book [12], which provides complete codes in several
languages for the solutions to each of the 100-digit challenge problems proposed by
Trefethen [63]. (This is set of ten computational problems, each easy to state and
with a single number as the answer. The challenge was to compute at least 10 digits
of each number.) In spite of some progress in the direction of reproducible research,
many of the complaints of Buckheit and Donoho still ring true today, as discussed
further in the recent paper by Donoho and Huo [24].

Much of my work over the past 10 years has been devoted to trying to make it easier
for myself, my students, and other researchers to perform computational scholarship
in the field of numerical methods for hyperbolic PDEs, and also I hope in a variety
of applications areas in science and engineering where these methods are used. This
work has resulted in the clawpack software [40]. This software is apparently being
fairly widely used, both in teaching and research. More than 5 000 people have
registered to download the code, mentioning all sorts of interesting problems they
plan to tackle with it. However, I am not convinced that it is being used to the extent
possible in advancing scholarship of the type described above. One goal of this paper
is to encourage researchers (myself included) to work harder towards this end, in my
field and more generally in computational science.

I will make a distinction between software and computer programs. In my notation,
software means a package of computer tools that are designed to be applied with
some generality to a class of problems that may arise in many different applications.
A computer program is a code that solves one particular problem. A program may be
written entirely from scratch or it may employ one or more software packages as tools.
This is an important distinction to make since one has different goals in developing
software than in writing a specific computer program. Software is intended to be used
by others and to be as general as practically possible. A program is written to solve a
problem and often the author does not intend for it to be seen or used by anyone else.

Pure mathematicians search for abstract structures that transcend particular ex-
amples and that often unify disparate fields. They produce theorems that apply as
generally as possible and that can be used as solid and dependable building blocks
for future work. In addition to developing new algorithms, some computational
mathematicians also produce theorems, rigorous results guaranteeing that a particular
algorithm converges or bounds on the magnitude of the error, for example. Such
theorems give us the confidence to apply the algorithm to real world problems.

Other computational mathematicians focus on the development of software that
implements an algorithm in a dependable manner. This is perhaps an under-appre-
ciated art in the mathematical world, compared to proving theorems, but I believe
it is an analogous mathematical activity in many ways. In both cases the goal is to
distill the essence of a set of particular examples into a general result, something that
applies as broadly as possible while giving an interesting and nontrivial result that
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can be built upon and used as a “subroutine” in future work. In both cases the result
is an encapsulation of a set of knowledge that has well defined inputs and outputs and
is believed to be proved correct, and that applies in many situations.

The process of developing a novel algorithm and writing software to implement it
is also in some ways similar to the process involved in proving a theorem. One needs
some mathematical insight to get started, but then working through many technical
details is typically required to make everything fit together in a manner that produces
the desired result. This part is not very glamorous but is a crucial part of the scholar-
ship. Often frustrations arise when one little detail does not work out quite the way
one hoped. Sometimes algorithms, like partially completed proofs, must be shelved
for years until someone else makes a breakthrough in a related area that suddenly
makes everything come together.

And everything does have to fit together just right; having a nice idea that seems
like it should work is not enough. Glossing over the details is not allowed, and is
particularly hard to pull off in a computer program. While it may be possible to slip
things by the referees in the description of an algorithm in a paper (as also sometimes
happens in a shoddy proof), computers will not parse the command “and then a miracle
occurs”. We are forced to be explicit in every step.

Of course even once a program does work, in the sense of compiling without
errors and producing results that seem reasonable, we are faced with the thorny issue
of “proving” that it is in fact correct. In computer science there is a whole field de-
voted to developing methodologies for formally proving the correctness of computer
programs. In computational science the programs are often so complex and the prob-
lem it is designed to solve so ill-defined that formal correctness proofs are generally
impossible. Instead the buzzwords are Verification and Validation (V&V for short).
These can be summarized by the following mnemonic:

Verification: Are we solving the problem right?
Validation: Are we solving the right problem?

For a physical experiment modeled by partial differential equations, for example, we
must verify that the computer program solves the PDEs accurately. A computational
scientist must also validate the code by comparing it against experiments to ensure
that the PDEs discretized are actually a sufficient model of reality for the situation
being modeled. The Euler equations of gas dynamics are sufficient in some situations,
but completely inadequate in other cases where viscosity plays a significant role.

Researchers in numerical analysis and scientific computing (as defined in the next
section) are generally most concerned with verification, while scientists, engineers,
and applied mathematicians focusing on mathematical modeling must also be con-
cerned with validation. Even the relatively simple task of verifying that a code solves
the given equations properly can be a real challenge, however, and is often as much
an art as a science. A good test problem that captures the essence of some potential
difficulty while having a solution that can be checked is often hard to come by, and
developing test suites for different classes of algorithms is valuable scholarship in
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itself. Numerous papers have been written on the subject of how best to test computer
programs or software for scientific computing; see [17], [29], [33], [38], [53], or [56]
for just a few approaches.

Elegance is valued in algorithm and software design as it is in other mathematical
endeavors. Often the first attempt at an algorithm is not very clean; it is a brute force
approach that gets the job done. Later work is often devoted to cleaning things up,
perhaps in fundamental ways that greatly reduce the computational complexity, but
also often in more subtle ways that simply make it more “elegant”, a hard to define
property that we recognize when we see.

Perhaps I am straying too far from the topic of reproducible scientific computing,
but to make progress in this direction I think it is important to recognize software
development as a valid and challenging mathematical activity. It takes a slightly
different type of mathematician to develop the necessary intuition and skills to excel
at this than is required to prove theorems, just as doing algebra vs. analysis takes
different mindsets and these are rarely done equally well by the same mathematician.
But no one doubts that algebraists and analysts are both mathematicians, even if
they cannot get beyond the first page of each others’ papers. Knuth [35] did an
interesting study on the connections between algorithmic and mathematical thinking,
a topic that he also touched on in an earlier paper [34] on “computer science and
its relation to mathematics”. This paper was written in 1974, at a time when many
computer science departments were just being established, often by mathematicians.
It makes interesting reading today, along with similar papers of the same vintage, such
as [9], [25]. Software development is a logical conclusion of algorithmic thinking,
and the development of software for mathematical algorithms naturally belongs in a
mathematics department.

The reason I care about this topic is not for my own mathematical ego. I have been
lucky to be at an institution where my work in this direction has been encouraged,
or at least tolerated. It may have helped that I did not put much effort into software
development until well after I was tenured.1 The main value of the tenure system is that
established people do not need to worry what our colleagues think of our activities or
how they choose to label them. But the future depends on bright young people. I think
computational science affords a wonderful opportunity to get students involved in a
host of mathematical challenges, and making significant progress on these requires
computational mathematicians with solid training in a broad range of mathematical

1However, many of my attitudes towards software development were shaped by my experiences as a graduate
student in the Computer Science Department at Stanford, where students in the numerical analysis group were
responsible for maintaining the library of numerical routines [10] available to physicists at the Stanford Linear
Accelerator Center (SLAC) and acting as consultants, activities that were encouraged by Gene Golub and Joe
Oliger. There I had the pleasure of working directly with an outstanding set of fellow students, most of whom
have gone on to make software contributions of their own, including Marsha Berger, Petter Bjorstad, Dan Boley,
Tony Chan, Bill Coughran, Bill Gropp, Eric Grosse, Mike Heath, Frank Luk, Stephen Nash, Michael Overton,
and Lloyd Trefethen. Many of us were also shaped by Cleve Moler’s course on numerical linear algebra, where
he tried out his new matlab program on us as a front end to the linpack and eispack routines that were already
setting the standard for mathematical software [23], [27], [61]. I think the Computer Science students were more
impressed with matlab and much more influenced by this experience than Cleve takes credit for in [48].
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tools and the ability to apply mathematical abstraction to common problems arising
in multiple fields. While there are many talented computational scientists working on
specific challenging problems in virtually every science and engineering department,
a computational mathematician, centered in a mathematics (or applied mathematics)
department, has the best chance of appreciating the common mathematical structure
of the problems and producing algorithms and software that are broadly applicable.
Doing so not only avoids a lot of wasted effort by scientists whose time is better spent
on the peculiarities of their specialty, it also leads to the introduction of techniques
into fields where they might not otherwise be invented and the discovery of new
connections between existing algorithms and applications.

I once heard Jim Glimm remark that “applied mathematicians are the honey bees
of the mathematical world, whose job is to cross-pollinate applications.” In addition
to providing a service to those in other disciplines, the process of collecting nectar can
result in some sweet rewards back in our own hive. This is equally true in algorithm
and software development as it is in more classical and theoretical aspects of applied
mathematics.

But young mathematicians will feel free to pursue such activities, and to also do the
less rewarding but crucial aspects of the scholarship such as documenting their codes
and making them presentable to the rest of the world, only if it is accepted as valid
mathematical scholarship. If it is seen as non-mathematics, it will only be a waste of
time that is best avoided by anyone seeking tenure in a mathematics department.

Applied mathematics in general is becoming much more acceptable in mathemat-
ics departments than it once was, at least in the United States. However, I doubt that
the careful development of software or computer programs, or the work required to
turn research codes into publishable scholarship, has the same level of acceptance.

2. Numerical analysis, scientific computing, and computational
science & engineering

One can argue at length about the meaning of the terms in this section title. To me,
“numerical analysis” has a double meaning: the analysis and solution of real-world
problems using numerical methods, and the invention and analysis of the methods
themselves using the techniques of mathematics.

When used in the latter sense, numerical analysis belongs firmly in a mathematics
(or applied mathematics) department. As just one example, analyzing the stability and
convergence properties of finite difference or finite element methods is no less difficult
(often more difficult) than analyzing the underlying differential equations, and relies
on similar tools of analysis. Specialists in this type of numerical analysis may or may
not do much computing themselves, and may be far removed from computational
science.

Numerical analysis in the sense of using numerical methods to solve problems, or
developing software for general use, is often called “scientific computing” or “com-



6 Randall J. LeVeque

putational science & engineering” these days. One can make a further distinction
between these two terms: Scientific computing is often used to refer to the devel-
opment of computational tools useful in science and engineering. This is the main
thrust of the SIAM Journal on Scientific Computing, for example, which contains
few theorems relative to the more theoretical SIAM Journal on Numerical Analysis,
but still focuses on mathematical and algorithmic developments. Computational sci-
ence & engineering refers more specifically to the use of computational tools to do
real science or engineering in some other field, as a complement to experimental or
theoretical science and engineering.

Not everyone would agree with my definitions of these terms. In particular, it can
be argued that “computational science” refers to the science of doing computation
and “computational engineering” to the implementation of this science in the form
of software development, but for my purposes I will lump these two activities under
“scientific computing”. It is important to be aware of this lack of consistency in
nomenclature since, for example, many recently developed academic programs in
Computational Science & Engineering stress aspects of scientific computing as well.

I have been arguing that “scientific computing”, in the sense just described, is a
branch of mathematics (as well as being a branch of other disciplines, such as com-
puter science), and that other mathematicians should be more aware of the intellectual
challenges and demands of this field, including the need to document and distribute
code. Not only are the activities of many practitioners of scientific computing essen-
tially mathematical, but they (and their students) benefit greatly from frequent contact
with more theoretical numerical analysts and mathematicians working in related ar-
eas. Other mathematicians may also benefit from having computational experts in the
department, particularly as more fields of pure mathematics develop computational
sides and realize the benefits of experimental mathematics – there is even a journal
(see expmath.org) now devoted to this approach.

3. Reproducible research

Within the world of science, computation is now rightly seen as a third vertex of a
triangle complementing experiment and theory. However, as it is now often practiced,
one can make a good case that computing is the last refuge of the scientific scoundrel.
Of course not all computational scientists are scoundrels, any more than all patriots
are, but those inclined to be sloppy in their work currently find themselves too much at
home in the computational sciences. Buckheit and Donoho [13] refer to the situation
in the field of wavelets as “a scandal”. The same can be said of many other fields, and
I include some of my own work in the category of scandalous.

Where else in science can one get away with publishing observations that are
claimed to prove a theory or illustrate the success of a technique without having to
give a careful description of the methods used, in sufficient detail that others can
attempt to repeat the experiment? In other branches of science it is not only expected
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that publications contain such details, it is also standard practice for other labs to
attempt to repeat important experiments soon after they are published. Even though
this may not lead to significant new publications, it is viewed as a valuable piece of
scholarship and a necessary aspect of the scientific method.

Scientific and mathematical journals are filled with pretty pictures these days of
computational experiments that the reader has no hope of repeating. Even brilliant
and well intentioned computational scientists often do a poor job of presenting their
work in a reproducible manner. The methods are often very vaguely defined, and even
if they are carefully defined they would normally have to be implemented from scratch
by the reader in order to test them. Most modern algorithms are so complicated that
there is little hope of doing this properly. Many computer codes have evolved over
time to the point where even the person running them and publishing the results knows
little about some of the choices made in the implementation. And such poor records
are typically kept of exactly what version of the code was used and the parameter
values chosen that even the author of a paper often finds it impossible to reproduce
the published results at a later time.

The idea of “reproducible research” in scientific computing is to archive and make
publicly available all of the codes used to create the figures or tables in a paper in such
a way that the reader can download the codes and run them to reproduce the results.
The program can then be examined to see exactly what has been done.

The development of very high level programming languages has made it easier to
share codes and generate reproducible research. Historically, many papers and text
books contained pseudo-code, a high level description of an algorithm that is intended
to clearly explain how it works, but that would not run directly on a computer. These
days many algorithms can be written in languages such as matlab in a way that is
both easy for the reader to comprehend and also executable, with all details intact. For
example, we make heavy use of this in the recent paper [15]. We present various grid
mappings that define logically rectangular grids in smooth domains without corners,
such as those shown later in Figure 1, and all of the matlab codes needed to describe
the various mappings are short enough to fit naturally in the paper. The associated
webpage contains the longer clawpack codes used to solve various hyperbolic test
problems on these grids.

Trefethen’s book on spectral methods [62] is a good example of a textbook along
these lines, in which each figure is generated by a 1-page matlab program. These
are all included in the book and nicely complement the mathematical description the
methods discussed. Trefethen makes a plea for more attention to short and elegant
computer programs in his recent essay [64].

However, for larger scale computer programs used in scientific publications, there
are many possible objections to making them available in the form required to re-
produce the research. I will discuss two of these, perhaps the primary stumbling
blocks.

One natural objection is that it is a lot of work to clean up a code to the point
where someone else can even use it, let alone read it. It certainly is, but it is often well
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worth doing, not only in the interest of good science but also for the personal reason
of being able to figure out later what you did and perhaps build on it.

Those of us in academia should get in the habit of teaching good programming,
documentation, and record keeping practices to our students, and then demand it of
them. We owe it to them to teach this set of computational science skills, ones that I
hope will be increasingly necessary in academic research environments and that are
also highly valued in industrial and government labs. It will also improve the chances
that we will be able to build on the work they have done once they graduate, and that
future students will be able to make use of it rather than starting from scratch as is too
often the case today.

While ideally all published programs would be nicely structured and easily read-
able with ample comments, as a first step it would be valuable simply to provide and
archive the working code that produced the results in a paper. Even this takes more
effort than one might think. It is important to begin expecting this as a natural part
of the process so that people will feel less like they have to make a choice between
finishing off one project properly or going on to another where they can more rapidly
produce additional publications. The current system strongly encourages the latter.

As Buckheit and Donoho [13] point out, the scientific method and style of present-
ing experiments in publications that is currently taken for granted in the experimental
sciences was unheard of before the mid-1800s. Now it is a required aspect of re-
spectable research and experimentalists are expected to spend a fair amount of time
keeping careful lab books, fully documenting each experiment, and writing their pa-
pers to include the details needed to repeat the experiments. A paradigm shift of the
same nature may be needed in the computational sciences.

Requiring it of our students may be a good place to start, provided we recognize
how much time and effort it takes. Perhaps we should be more willing to accept an
elegant and well documented computer program as a substantial part of a thesis, for
example.

A second objection to publishing computer code is that a working program for
solving a scientific or engineering problem is a valuable piece of intellectual property
and there is no way to control its use by others once it is made publicly available. Of
course if the research goal is to develop general software then it is desirable to have
as many people using it as possible. However, for a scientist or mathematician who
is primarily interested in studying some specific class of problems and has developed
a computer program as a tool for that purpose, there is little incentive to give this
tool away free to other researchers. This is particularly true if the program has
taken years to develop and provides a competitive edge that could potentially lead
to several additional publications in the future. By making the program globally
available once the first publication appears, other researchers can potentially skip
years of work and start applying the program to other problems immediately. In this
sense providing a program is fundamentally different than carefully describing the
materials and techniques of an experiment; it is more like inviting every scientist in
the world to come use your carefully constructed lab apparatus free of charge.
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This argument undoubtedly has considerable merit in some situations, but on the
whole I think it is overblown. It is notoriously difficult to take someone else’s code
and apply it to a slightly different problem. This is true even when people are trying
to collaborate and willing to provide hands-on assistance with the code (though of
course this type of collaboration does frequently occur). It is often true even when the
author of the code claims it is general software that is easy to adapt to new problems.
It is particularly true if the code is obscurely written with few comments and the
author is not willing to help out, as would probably be true of many of the research
codes people feel the strongest attachment to.

Moreover, my own experience in computational science is that virtually every
computational experiment leads to more questions than answers. There is such a
wealth of interesting phenomena that can be explored computationally these days
that any worthwhile code can probably lead to more publications than its author
can possibly produce. If other researchers are able to take the code and apply it
in some direction that would not otherwise be pursued, that should be seen as a
positive development, both for science and for its original author, provided of course
that s/he gets some credit in the process. This is particularly true for computational
mathematicians, whose goals are often the development of a new algorithm rather
than the solution of specific scientific problems. Even for those not interested in
software development per se, anything we can do to make it easier for others to use
the methods we invent should be viewed as beneficial to our own careers.

Perhaps what is needed is some sort of recognized patent process for scientific
codes, so that programs could be made available for inspection and independent
execution to verify results, but with the understanding that they cannot be modified
and used in new publications without the express permission of the author for some
period of years. Permission could be granted in return for co-authorship, for example.
In fact such a system already works quite well informally, and greater emphasis on
reproducible research would make it function even better. It would be quite easy to
determine when people are violating this code of ethics if everyone were expected to
“publish” their code along with any paper. If the code is an unauthorized modification
of someone else’s, this would be hard to hide.

4. Wave propagation algorithms and clawpack

As a case study in software development, and its relation to mathematics, scientific
computing, and reproducible research, I will briefly review some of the history behind
my own work on clawpack (Conservation LAWs PACKage), software for solving
hyperbolic systems of partial differential equations.

This software development project began in 1994. I had just taught a graduate
course on numerical methods for conservation laws and had distributed some sample
computer programs to the students as a starting point for a class project. In the fall
I went on sabbatical and decided to spend a few weeks cleaning up the program and
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redesigning it as a software package, in large part because I was also planning to spend
much of the year revising my lecture notes [42] from a course I taught at ETH-Zürich
in 1989 into a longer book, and I wanted to complement the text with programs the
students could easily use.

I seriously misjudged the effort involved – I spent most of that year and consid-
erable time since developing software, which grew into something much more that I
originally intended. The book [44] took several more years of work and iterations of
teaching the course and did not appear until 2002.

Virtually all of the figures in this book are reproducible, in the sense that the
programs that generated them can each be downloaded from a website and easily
run by the student. Most figure captions contain a link to the corresponding web-
site, in the form [claw/book/chap23/advection/polar], for example, from the caption
of Figure 23.3, which is easily translated into the appropriate web address. (Start at
http://www.amath.washington.edu/~claw/book.html to browse through all these web-
pages). Each webpage contains the computer code and many also contain additional
material not in the book, for example movies of the solution evolving in time.

All of these examples are based on the clawpack software. This software is
described briefly in the book and more completely in the User Guide [41] available
on the web. Once the basic software is installed, the problem-specific code for each
example in the book is quite small and easy to comprehend and modify. The reader is
encouraged to experiment with the programs and observe how changes in parameters
or methods affect the results. These programs, along with others on the clawpack
website [40], can also form the basis for developing programs to solve similar prob-
lems.

This software implements a class of methods I call “wave propagation algorithms”
for solving linear or nonlinear hyperbolic problems. Hyperbolic partial differential
equations are a broad class of equations that typically model wave propagation or ad-
vective transport phenomena. The classic example is the second-order wave equation
ptt = c2pxx for linear acoustics, modeling the propagation of pressure disturbances
in a medium with sound speed c. The clawpack software, however, is set up to
solve a different form of hyperbolic equations: systems that involve only first order
derivatives in space and time.

In the linear case, a first-order system of PDEs (in one space dimension and
time) has the form qt + Aqx = 0, where q(x, t) is a vector of some m conserved
quantities, A is an m × m matrix, and subscripts denote partial derivatives. In the
nonlinear case, a system of m conservation laws takes the form qt + f (q)x = 0,
where f (q) is the flux function (in the linear case, f (q) = Aq). This system is called
hyperbolic if the flux Jacobian matrix f ′(q) is diagonalizable with real eigenvalues.
The system of Euler equations for inviscid compressible gas dynamics has this form,
for example, where mass, momentum, and energy are the conserved quantities. The
full nonlinear equations can develop shock wave solutions in which these quantities
are discontinuous, one of the primary challenges in numerical modeling. Linearizing
this system gives the linear acoustics equations in the form of a first-order system of
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equations for pressure and velocity. Cross differentiating this system allows one to
eliminate velocity and obtain the single second-order wave equation for p mentioned
above, but the first-order formulation allows the modeling of a much broader range
of phenomena.

First-order hyperbolic systems arise naturally in a multitude of applications, in-
cluding for example elastodynamics (linear and nonlinear), electromagnetic wave
propagation (including nonlinear optics), shallow water equations (important in ocean-
ography and atmospheric modeling), and magnetohydrodynamic and relativistic flow
problems in astrophysics.

The wave-propagation algorithms are based on two key ideas: Riemann solvers
and limiters. The Riemann problem consists of the hyperbolic equation under study
with special initial conditions at some time t̄ : piecewise constant data with left state
q� and right state qr and a jump discontinuity in each conserved quantity at a single
point in space, say x̄. The solution to this Riemann problem for t > t̄ is a similarity
solution, a function of (x− x̄)/(t − t̄ ) alone that consists of a set of waves propagating
at constant speeds away from the initial discontinuity. The definition of hyperbolicity
guarantees this, and the eigenvalues of the flux Jacobian are related to the wave speeds.
In the linear case the eigenvalues of the matrix A are exactly the wave speeds. In the
nonlinear case the eigenvalues vary with q. The Riemann solution may then contain
shock waves and rarefaction waves, but even in the nonlinear case this special problem
has a similarity solution with constant wave speeds.

In 1959, Sergei Godunov [30] proposed a numerical method for solving general
shock wave problems in gas dynamics by using the Riemann problem as a building
block. If the physical domain is decomposed into a finite number of grid cells and
the solution approximated by a piecewise constant function that is constant in each
grid cell, then at the start of a time step the initial data consists of a set of Riemann
problems, one at each cell interface. By solving each of these Riemann problems the
solution can be evolved forward in time by a small increment. The resulting solution
is averaged over each grid cell to obtain a new piecewise constant approximation to the
solution at the end of the time step. This procedure is repeated in the next time step.
This idea of basing the numerical method on Riemann solutions turned out to be a
key idea in extending the “method of characteristics” from linear hyperbolic systems
to important nonlinear shock propagation problems. This also leads naturally to a
software framework: the particular hyperbolic equation being solved is determined
by providing a Riemann Solver. This is a subroutine that, given any two states q�

and qr , returns the wave speeds of the resulting waves in the similarity solution, along
with the corresponding waves themselves (i.e., the jump in q across each wave). The
updating formulas for the cell averages based on these waves are very simple and
independent of the particular system being solved.

Godunov’s method turned out to be very robust and capable of solving problems
involving strong shocks where other methods failed. However, it is only first-order
accurate on smooth solutions to the PDEs. This means that the error goes to zero
only as the first power of the discretization steps �x and �t . Moreover, although
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complicated solutions involving strong shocks and their interactions could be robustly
approximated without the code crashing, the resulting approximations of shock waves
are typically smeared out. The process of averaging the solution over grid cells
each time step introduces a large amount of “numerical dissipation” or “numerical
viscosity”.

During the 1970s and 1980s, a tremendous amount of effort was devoted to devel-
oping more accurate versions of Godunov’s method that better approximated smooth
solutions and also captured shock waves more sharply. These methods often go by the
general name of “high-resolution shock capturing methods”. A wide variety of meth-
ods of this type have been proposed and effectively used. Many of these, including the
wave-propagation algorithms of clawpack, have the relatively modest goal of achiev-
ing something close to second-order accuracy on smooth solutions coupled with sharp
resolution of discontinuities. Other approaches have been used that can achieve much
better accuracy in certain situations, though for general nonlinear problems involving
complicated shock structures, particularly in more than one dimension, it seems hard
to improve very much beyond what is obtained using second-order methods.

One standard second-order method for a linear hyperbolic system is the Lax–
Wendroff method, first proposed in 1960, which is based on approximating the first
few terms of a Taylor series expansion of the solution at time t +�t about the solution
at time t . This method does not work at all well for problems with discontinuities,
however, as it is highly dispersive and nonphysical oscillations arise that destroy all
accuracy. In the nonlinear case these oscillations around shock waves can also lead
to nonlinear instabilities.

The key feature in many high-resolution methods is to apply a limiter function in
some manner to suppress these oscillations. In the wave-propagation algorithms this is
done in the following way. The Lax–Wendroff method can be rewritten as Godunov’s
method plus a correction term that again can be expressed solely in terms of the waves
and wave speeds in the Riemann solutions arising at each cell interface. Where the
solution is smooth, adding in these correction terms improves the accuracy. Where
the solution is not smooth, for example near a shock, the Taylor series expansion is not
valid and these “correction terms”, which approximate higher derivatives in the Taylor
expansions, do more harm than good. We can determine how smooth the solution
is by comparing the magnitude of a wave with the magnitude of the corresponding
wave at the neighboring cell interfaces. If these differ greatly then the solution is not
behaving smoothly and the correction terms should be “limited” in some manner.

Many variants of this idea have been used. In some cases it is the Lax–Wendroff
expression for the flux at the interface between cells that is limited (in so-called
“flux limiter” methods). Another approach is to view the Lax–Wendroff method as a
generalization of Godunov’s method in which a piecewise linear function in each grid
cell is defined and the values at the edges of each cell then used to define Riemann
problems. In this case the slope chosen in each cell is based on the averages in nearby
cells, with some “slope limiter” applied in regions where it appears the solution is
not behaving smoothly. For the special case of a scalar conservation law, a very
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nice mathematical theory was developed to guide the choice of limiter functions.
The true solution to a scalar problem has its total variation non-increasing over time.
By requiring that a numerical method be “total variation diminishing” (TVD) it was
possible to derive methods that were essentially second order accurate, or higher, but
that could be proved to not introduce spurious oscillations.

The 1980s were an exciting time in this field, as robust high-resolution methods
were developed for a variety of challenging applications and as computers became
powerful enough that extensions of these methods and the related mathematical theory
to more than one space dimension became possible and necessary.

I played a modest role in some of these developments, but I think my main con-
tribution has been in providing a formulation of these methods that lends itself well
to software that is very broadly applicable, and in leading the effort to write this soft-
ware. The wave-propagation formulation that I favor has the advantage that once the
Riemann problem has been solved, the limiters and high-resolution correction terms
are applied in a general manner that is independent of the equation being solved.
Moreover a framework for doing this in two dimensions was proposed in [43] that
retains this modularity, separating the process of solving a one-dimensional Riemann
problem at each cell interface, along with a related “transverse Riemann problem” in
the orthogonal direction, from the process of propagating these waves and correction
terms with appropriate limiters. While it had long been recognized that the methods
being developed were in principle broadly applicable to all hyperbolic problems, for
systems of equations most methods were developed or at least presented in a form that
was specific to one particular problem (often the Euler equations of gas dynamics) and
a certain amount of work was required to translate them to other problems. Computer
programs that I was aware of were all problem-specific, and generally not publicly
available.

My original motivation for developing this framework was not software develop-
ment, but rather the need to teach graduate students, and the desire to write a book
that explained how to apply these powerful high-resolution methods to a variety of
problems. I had students coming from the Mathematics and Applied Mathematics
departments, many of whom knew little about fluid dynamics, and students from sev-
eral science and engineering departments who had specific interests in very diverse
directions.

My subsequent motivation for software development was partly educational, but
also partly because I wanted to better publicize the wave-propagation framework I
had developed and make it easier for others to use methods in this form. I recognized
that these methods, while quite general, were also sufficiently complicated that few
would bother to implement them from my descriptions in journal articles. For this
research to have any impact beyond a few publications it seemed necessary to provide
more than pseudo-code descriptions of the algorithms.
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5. clawpack as an environment for developing and testing methods

I have provided a few basic sample programs within the clawpack package itself,
and some additional test problems in a directory tree labeled applications available
at the website. Complete programs also exist for each of the figures in my book.
These each consist of a tarred Unix directory containing a small set of subroutines
to be used together with the main software. These subroutines specify the specific
problem, including the Riemann solver and the initial and boundary conditions. Many
standard boundary conditions are already available in the default boundary condition
routine, and a variety of Riemann solvers are also provided for many different systems
of equations. As a result it is often very easy to adapt one of these examples to a new
problem, particularly for some of the standard test problems that often appear in
publications.

Although the development of the clawpack software was originally motivated by
the desire to make a set of existing methods more broadly accessible, the availability
of this software has also encouraged me to pursue new algorithmic advances that I
otherwise might not have. I hope that the software will also prove useful to others
as a programming environment for developing and testing new algorithms, and for
comparing different methods on the same problems. Since the source code is available
and the basic clawpack routines are reasonably simple and well documented, it
should be easy for users to modify them and try out new ideas. I encourage such use,
and I certainly use it this way myself.

As one example, there are many approaches to developing the “approximate Rie-
mann solvers” that are typically used for nonlinear problems. It often is not cost
effective, and may not even be possible, to solve the Riemann problem exactly at ev-
ery cell interface each time step. Different versions of the Riemann solver can easily
be swapped in and tested on a set of problems. See Figures 15.5 and 15.6 in [44] and
the associated programs for an example of this sort of comparison. The clawpack
software also comes with a set of standard limiter functions, and an input parameter
specifies which one will be used. The subroutine where these are implemented can
be easily modified to test out new approaches.

More extensive modifications could be made to the software as well, for example
by replacing the wave-propagation algorithms currently implemented by a different
approach. If a new method is formulated so that it depends on a Riemann solver and
boundary conditions that are specified in the form already used in clawpack, then it
should be easy to test out the new method on all the test problems and applications
already developed for clawpack. This would facilitate comparison of a new method
with existing methods.

Careful direct comparisons of different methods on the same test problems are
too seldom performed in this field, as in many computational fields. One reason for
this is the difficulty of implementing other peoples’ methods, so the typical paper
contains only results obtained with the authors’ method. Sometimes (not always) the
method has been tested on standard test problems and the results can be compared with
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others in the literature, with some work on the reader’s part, and assuming the reader
is content with comparisons in the “eyeball norm” since many papers only contain
contour plots of the computed solution and no quantitative results. Of course there
are many exceptions to this, including some papers devoted to careful comparisons
of different methods (e.g., [31], [46]), but these papers are still a minority. I hope that
clawpack might facilitate this process more in the future, and that new algorithms of
this same general type might be provided in a clawpack implementation that allows
direct use and comparison by others.

6. clawpack extensions and infrastructure

This software effort began about 10 years ago, as recounted above, and has continued
in unexpected ways as the software grew beyond my initial intentions in several
directions. While originally I viewed it primarily as an educational tool, it was based
on my own research codes and I realized that it could perhaps be valuable for other
researchers as well, perhaps even as a tool for solving real problems and not just
academic test problems. To make it more useful as a general tool required several
enhancements.

I originally wrote subroutines for solving systems in one and two space dimensions,
but started collaborating with Jan Olav Langseth that same year on the development
of three-dimensional generalizations [37]. He took my course as a visiting graduate
student from the University of Oslo and went on to write a thesis partly on this
topic [36], and wrote the three-dimensional subroutines in clawpack.

I had also been collaborating with Marsha Berger on research related to using cut-
cell Cartesian grids to solve the Euler equations in non-rectangular geometries (e.g.,
[5], [6]) and was familiar with her implementation of adaptive mesh refinement on
rectangular grids, using an approach pioneered in her work with Joe Oliger and Phil
Colella [4], [8], [7]. While still on sabbatical, in 1995 we started working together to
modify her adaptive mesh refinement (AMR) code and make it more generally appli-
cable to any hyperbolic system that can be solved in clawpack. In this approach the
rectangular grid is refined by introducing finer grids on rectangular patches. Several
levels of refinement are allowed, by an arbitrary refinement factor at each level. The
program automatically refines and de-refines as the computation proceeds, based on a
standard default or user-specified error criterion, and so fine grids are used only where
they are needed. This approach is particularly valuable for problems involving shock
waves propagating in three space dimensions. To capture the shock waves as sharp
discontinuities, even with high-resolution methods, requires a fairly fine grid around
the shock, much finer than is needed in regions where the solution is smooth. Without
AMR many three-dimensional problems would be impractical to solve except on the
largest supercomputers.

This amrclaw software is now a standard part of clawpack, and was extended
from two to three space dimensions with programming help from Dave McQueen and
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Donna Calhoun. The goal of the amrclaw code is primarily to facilitate research and
practical problem solving, rather than to teach adaptive refinement techniques. The
core library consists of about 9 000 lines of Fortran 77 code that is quite convoluted
and not structured or fully documented in a way that others can easily understand.
This stems in large part from its history as a merging together of two different codes,
with different notation and conventions that have largely been preserved and worked
around, and with many new features added over the years as afterthoughts that were
not originally designed for. It may not be particularly elegant, but it has proved
valuable in solving practical problems and by now has been tested to the point where
it is fairly robust and reliable. All of the source code is available for others to inspect
and modify, at their own peril perhaps.

The clawpack framework can also be used with other AMR packages. Sorin
Mitran is developing bearclaw [47], a Fortran 90 version with similar capabilities
to amrclaw but designed with these capabilities in mind from the beginning. This
code is still being developed and has not been tested as extensively as amrclaw, but
it has been successfully used in astrophysical applications [51], [52]. Ralf Deiterding
has developed a general purpose adaptive refinement code amroc [18], [19] in C++
that also allows the use of the clawpack solvers with adaptive refinement. This is a
primary computational tool in the Virtual Shock Physics Test Facility at the Caltech
ASC Center for Simulation of Dynamic Response of Materials [1]. Recently Donna
Calhoun has written a chombo-claw interface [14] between the clawpack solvers
and the C++ chombo software package developed by Colella’s group at Lawrence
Berkeley Lab [16]. These newer packages have various advantages over the amrclaw
software in clawpack. They are written in more advanced languages that are more
suitable for the data structures and dynamic memory allocation needed inAMR codes.
They also have more capabilities such as parallel implementations, the ability to
handle implicit methods, and/or coupling with elliptic solvers as required in some
applications.

Other extensions of clawpack have also been developed, such as the clawman
software [2] that solves hyperbolic systems on curved two-dimensional manifolds.
This has been used to solve geophysical flow problems on the sphere and relativistic
flow problems in curved space-time near a black hole [3], [54], [55].

The original software was designed for purely Cartesian grids in rectangular re-
gions of space. Some practical problems have this form, but most are posed in more
complicated physical domains, e.g., for flows around or through a physical object.
There are many approaches to handling complex geometries. The cut-cell Cartesian
grid approach has already been mentioned above. At the other extreme lie unstruc-
tured grids, typically composed of triangular cells in two dimensions or tetrahedra in
three dimensions. These can conform to very general boundaries, but grid generation
then becomes a challenging problem in itself, and implementations must deal with
special data structures to keep track of what cells are adjacent to one another.

For fairly simple domains, a good compromise is often possible in which the
grid is logically rectangular in computational space, but is mapped to a nonrectagular
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physical domain. In two dimensions, this means that each grid cell is a quadrilateral
and simple (i, j) indexing can be used to denote the cells, with neighboring cells
having indices (i ± 1, j ± 1). In three dimensions the grid cells are hexahedral but
still logically rectangular. It is quite easy to apply clawpack in such situations (as
described in Chapter 23 of [44]), with a standard set of additional subroutines used
to specify the mapping function. One nice feature of this approach is that the AMR
routines work perfectly well on mapped grids – the patches of refinement are still
rectangular in computational space. The wave-propagation algorithms turn out to
work quite robustly on quadrilateral grids, even if the grid is nonorthogonal and far
from smooth. Rather than incorporating the grid mapping directly into the differential
equations as “metric terms” that involve derivatives of the mapping function, in the
wave-propagation approach one solves one-dimensional Riemann problems orthog-
onal to each grid interface and transverse Riemann problems based on the adjacent
cell interfaces.

Figure 1 shows two grids from some recent work with Calhoun [15] on the use of
logically rectangular grids for solving problems in domains with smooth boundaries.
The figure on the left shows a quadrilateral grid for a circle, while that on the right
is a logically rectangular grid on the sphere. Each grid is simply a rectangle in
computational space. Of course polar coordinates also give a logically rectangular
grid in a circle, but grid lines coalesce at the center where cells have much smaller
area than those near the perimeter. This presents a problem when using explicit

Figure 1. Quadrilateral grids on the circle and the sphere. In each case the computational
domain is a rectangular grid. The matlab code that generates these grids is available on the
webpage [39].

methods for hyperbolic problems: the disparity in cell sizes leads to an undesirable
restriction on the time step. The grids in Figure 1 are far from smooth or orthogonal;
in fact the images of the two orthogonal cell edges at each corner of the rectangular
computational domain are nearly collinear in the physical domain. But the cell areas
are nearly uniform, differing by at most a factor of 2. Standard finite difference
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methods would presumably not work well on these grids, but applying clawpack
yields very nice results, as demonstrated in [15].

Writing new methods in “clawpack form” makes it possible to take advantage of
the infrastructure developed for this software, for example to apply the method on a
general quadrilateral grid. It may also be possible to apply adaptive mesh refinement
quite easily with the new method by taking advantage of one of the AMR wrappers
described above. Since implementing AMR effectively is far from trivial, and often
has little to do with the particular numerical method used on each grid patch, making
use of existing implementations could be worthwhile even if it takes a bit of work to
formulate the method in an appropriate form. Extensive graphics routines in matlab
have been written to plot the results computed by clawpack. These routines (written
mostly by Calhoun and myself) deal with adaptive mesh refinement data in two or three
space dimensions. This is a not easily done directly with most graphics packages, and
again this infrastructure may be useful to developers of new methods. (In fact these
graphics routines can take AMR data produced by any program, not just clawpack,
provided it is stored in the appropriate form.)

One current research project, with graduate student David Ketcheson, is to imple-
ment higher order numerical methods in clawpack, specifically the weighted essen-
tially non-oscillatory (WENO) methods that are based on higher order interpolation
in space coupled with Runge–Kutta time stepping (e.g., [31], [60]). Doing so requires
reformulating these methods slightly, and in particular we are developing a version
that works for linear hyperbolic systems that are not in conservation form. Systems
of this form arise in many applications, such as the propagation in heterogeneous
media of acoustic, elastic, or electromagnetic waves. In many linear applications the
solution is smooth but highly oscillatory, and in this case higher-order methods may
be beneficial.

7. Applications in computational science

In addition to continuing to work on algorithm development, in the past few years
I have become more directly involved in applications of computational science, driven
in part by the existence of this software as a starting point. Problems that can be
solved easily with the existing software have little interest to me; as a mathematician
I consider them solved, though there may be plenty of interesting science to be done
by judicious use of the software as a tool. This is best done, however, by scientists
who are experts in a particular domain.

A practical problem where clawpack fails to perform well, or where some sub-
stantial work is required to apply it, is much more interesting to me. Although the
methods implemented in clawpack work well on many classical hyperbolic prob-
lems, there are a wealth of more challenging problems that are yet to be solved, and
I hope that clawpack might form the basis for approaching some of these problems
without the need to rewrite much of the basic infrastructure.
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In the remainder of this section I will briefly describe a few topics that are currently
occupying me and my students. More details on these and other problems, along with
movies, papers, and sometimes computer code, can be found by clicking on the
“Research interests” link from my webpage.

Shock wave therapy and lithotripsy. Focused shock waves are used in several
medical procedures. Extracorporeal shock wave lithotripsy (ESWL) is a standard
clinical procedure for pulverizing kidney stones noninvasively. There are several
different lithotripter designs. In one model, a spark plug immersed in water generates
a cavitating bubble that launches a spherical shock wave. This wave reflects from an
ellipsoidal shaped reflector and refocuses at the distal focus of the ellipsoid, where the
kidney stone is centered. The shock wave pulse has a jump in pressure of roughly 50
MPa (500 atmospheres) over a few nanoseconds, followed by a more slowly decaying
decrease in pressure passing below atmospheric pressure before relaxing to ambient.
This tensile portion of the wave is particularly important in kidney stone comminution
since stones are composed of brittle material that does not withstand tensile stress well.
Typically thousands of pulses are applied clinically (at a rate of 1 to 4 per second).
The breakup process is not well understood and better understanding might allow
clinical treatment with fewer pulses and less damage to the surrounding kidney.

Together with Kirsten Fagnan and Brian MacConaghy, two graduate students in
Applied Mathematics, I have recently been collaborating with researchers at the Ap-
plied Physics Laboratory and the medical school at the University ofWashington to de-
velop a computational model of nonlinear elastic wave propagation in heterogeneous
media that can be used to aid in the study of this process. Preliminary computations
have been performed using linear elasticity in two-dimensional axisymmetric config-
urations in which a cylindrical test stone is aligned with the axis of the lithotripter
ellipsoid. We are currently extending these computations to an appropriate nonlin-
ear elasticity model, and also to three dimensional calculations for non-axisymmetric
configurations.

We also hope to perform simulations useful in the study of extracorporeal shock
wave therapy (ESWT), a relatively new application of lithotripter shock waves to
treat medical conditions other than kidney stones, in which the goal is to stimulate
tissue or bone without destroying it. For example, several recent clinical studies have
shown that treating nonunions (broken bones that fail to heal) with ESWT can lead to
rapid healing of the bone [26], [57], perhaps because it stimulates the growth of new
vascular structure in regions where there is insufficient blood flow. Conditions such
as tennis elbow, plantar fasciitis, and tendinitis have also been successfully treated
with ESWL; see for example [32], [58].

In ESWL applications the shock wave is often focusing in a region where there is
a complicated mix of bones and tissue. The interfaces between these materials cause
significant reflection of wave energy. It is often crucial to insure that the shocks do not
accidentally refocus in undesirable locations, such as nearby organs or nerves, which
could potentially cause extensive collateral damage. Ideally one would like to be able
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to use MRI data from a patient to set material parameters and run 3d simulations of the
shock wave propagation in order to adjust the angle of the beam to achieve maximal
impact in the desired region with minimal focusing elsewhere. Our current work is a
first step in this direction.

Volcanic flows. My recent student Marica Pelanti developed a dusty gas model in
which the Euler equations for atmospheric gas are coupled to another set of conser-
vation laws for the mass, momentum, and energy of a dispersed dust phase [49], [50].
The two sets of equations are coupled together by source terms modeling viscous drag
and heat transfer between the phases. The dust is assumed pressureless and requires
special Riemann solvers, based on [45]. This model has been used to study the jets
arising from high-velocity volcanic eruptions.

The speed of sound in a dusty gas is considerably less than the sound speed in the
atmosphere. As a result, volcanic jets can easily be supersonic relative to the dusty
gas sound speed, leading to interesting shock wave structures within an eruption
column. Pelanti explored this for 2D axi-symmetric jets for both flat topography and
for topography where the jet expands through an idealized conical crater. Similar
work has been performed by Augusto Neri and Tomaso Esposti Ongaro in the Earth
Sciences Department at the University of Pisa and we are now collaborating with
them on some comparisons of our results.

We have also interacted extensively with researchers at the USGS Cascade Vol-
cano Observatory (CVO) near Mount St. Helens (MSH), who study many aspects of
volcanic flows and are charged with hazard assessment for MSH. After a long quies-
cent period, MSH became quite active again in October, 2004, and we worked with
these researchers to try to produce a full three-dimensional model of pyroclastic flows
over the topography of MSH in order to predict the possible impact of an eruption of
various magnitudes. Extension of the dusty gas model to the full three-dimensional
topography of MSH is underway, although it turns out there are many numerical and
modeling issues still to be tackled.

Considerable data is available from the 1980 eruption that can be used to validate
a code. In particular, there is a set of photographs and maps that show the direction
in which trees were blown down when the initial pyroclastic blast from the eruption
passed over the surrounding ridges. The blown-down trees created a snapshot of the
velocity vectors in the leading edge of the flow. These exhibit complex flow patterns,
such as recirculation zones on the lee side of ridges where the trees were blown
down in the direction pointing towards MSH instead of away. We hope to eventually
compare computed velocities from our simulations with these observations.

Richard Iverson and Roger Denlinger at CVO have also done extensive work on
modeling debris flows, such as those that arise when water from melting glaciers on
a volcano mixes with trees, boulders, and other debris, creating highly damaging and
life-threatening flows [20], [21]. Their numerical work is based on equations similar to
the shallow water equations but enhanced with more physics within the flow. They use
Riemann solver techniques based in part on the wave-propagation framework, with the



Wave propagation software, computational science, and reproducible research 21

additional solution of an elasticity problem within each Riemann solver to compute
the local stress tensor within the debris. They encounter difficulties at the edge of the
flow similar to the dry-cell problems that arise in tsunami modeling (discussed below)
and we have collaborated with them on solving these problems. Denlinger has also
recently modeled the great Missoula floods using similar techniques [22].

Tsunami modeling. David George and I have been developing a version of amrclaw
capable of modeling tsunamis, including both their global propagation over large ex-
panses of ocean and the inundation and run-up around small scale features at the level
of individual beaches or harbors. We solve the shallow water equations on rectangu-
lar grids, in which each grid cell has an elevation value for the earth surface (which
is called topography if it is above sea level, or bathymetry when underwater). The
components of q are the fluid depth h and momenta hu and hv. Grid cells above sea
level are dry (h = 0) and cells can become wet or dry dynamically as waves move
along the shore. This approach avoids the need to model the shoreline as a separate
interface, but developing a robust code based on this approach requires a Riemann
solver that can deal well with both wet and dry states. The bathymetry comes in as a
source term in the conservation laws. Away from shore the bathymetry is varying on
a scale of several kilometers (the Indian Ocean is about 4 km deep, for example)
whereas a tsunami propagating over the ocean is a few meters high at most. This
difference in scales leads to difficulties that I will not describe here, and requires the
use of some sort of “well-balanced” scheme in which the source term is incorporated
into the Riemann solver. Though of small magnitude in the ocean, a tsunami may
have a wavelength of more than 100 km and so the shallow water equations are an
appropriate model. The propagation velocity is

√
gh, where g is the gravitational con-

stant, and as they approach shore h decreases and the wave magnitude increases as the
wavelength shortens, the same phenomenon observed in breaking waves on a beach.
But in a tsunami the entire water column is set in motion by an uplifting of the ocean
floor, whereas in wind-driven surface waves only the water very near the surface is
moving. The enormous energy tsunamis carry gives them great destructive potential.

Adaptive mesh refinement is essential for this problem. We wish to propagate
waves over the ocean, where grid cells several kilometers on a side can be used, and
simultaneously predict the run-up around local features, where cell sizes of a few me-
ters are desirable. Developing a well-balanced dry-state Riemann solver that works
well in the context of AMR proved to be quite challenging and many difficulties ap-
peared at the boundaries between grids at different levels. These could only be solved
by some substantial reworking of the amrclaw code. The result is a special-purpose
program that incorporates these algorithmic modifications and can now be applied to
many tsunami scenarios. It is currently being tested by comparing predictions with
measurements made at various places around the Indian Ocean in the wake of the 26
December 2004 Sumatra earthquake.

For this application we are working very closely with tsunami scientists. Our
involvement in tsunami modeling arose out of a joint NSF grant with Harry Yeh in
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civil engineering at Oregon State University and Joe Hamack at Penn State, who were
doing wave tank experiments and related mathematical modeling that they wished
to complement with numerical simulations. Since the Sumatra event, our focus has
shifted to the larger scale, and the contacts we had already established in the tsunami
modeling community proved invaluable. Many Tsunami Survey Teams traveled to
the Indian Ocean and surveyed different parts of the coastline, measuring the run-up
and inundation observed. Yeh was on a team that mapped the region near Chennai
(Madras), India, and our initial validation work is focused on comparing predictions
with his observations in this area. Unfortunately fine-scale bathymetry data is hard
to come by and we have resorted to digitizing navigational charts to obtain some of
the necessary data.

Figure 2 shows part of a simulation of the Indian Ocean tsunami, as described
further in the caption. See the webpage [39] for color versions and movies, along
with the computer program.

The program we have developed is a research code for this particular problem, but
we intend to further improve it and ultimately make it available to the community.
There is far more data available than we can compare against ourselves and we hope
that other researchers will be able to use it for some of this work and publish the
results. If our code does not work well or does not agree well with observations
in some cases then we may need to revisit it, or perhaps others will make further
improvements to it.

We hope that this code may ultimately be useful as a real-time tsunami prediction
tool, and we are working with Vasily Titov and other scientists of the NOAA National
Tsunami Hazard Mitigation Program in Seattle to compare our code with theirs and
see how we can best complement their efforts (some of which are described in a recent
Scientific American article [28]).

8. Conclusions

I have made a case that many aspects of scientific computing and software development
should be viewed as inherently mathematical, and that mathematicians can play a very
important role in computational science. I have also encouraged researchers in this
area to produce reproducible research, in particular by making computer programs,
not just software, available to others. I have presented some of my own research
activities as a case study, though I do not claim it is the best example to follow.

I do hope, however, that the software we have produced will find wider use as one
tool in this direction, both as a development environment for testing new methods
and as a building block for solving problems in science and engineering. My hope is
that others who develop methods or applications using this package will make their
full code available on the web, particularly if it has been used to compute results that
appear in publications.
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(a) Time 01:06:45 (525 seconds) (b) Time 02:10:55 (4375 seconds)

(c) Time 02:43:00 (6300 seconds) (d) Time 3:15:05 (8225 seconds)

Figure 2. Propagation of the 26 December 2004 tsunami across the Indian Ocean. Units on the
axes are longitude and latitude. The top two frames show the Bay of Bengal at two early times.
A coarse grid is used where nothing is yet happening and the grid cells are shown on this “Level 1
grid”, which has a mesh width of one degree (approximately 111 km). The rectangular region
where no grid lines are shown is a Level 2 grid with mesh width 8 times smaller, about 14 km.
Red represents water elevation above sea level, dark blue is below the undisturbed surface (see
the webpage [39] for color versions of these images). Figure (c) shows a zoomed view of the
southern tip of India and Sri Lanka at a later time. The original Level 1 grid is still visible along
the left-most edge, but the rest of the region shown has been refined by a Level 2 grid. Part of
Sri Lanka has been refined by Level 3 grids. The grid lines on Level 3 are not shown; the mesh
width on this level is about 1.7 km, a factor of 8 finer than Level 2. Figure (d) shows a later time,
as the wave diffracts around Sri Lanka, moving slowly through the shallow water in this coastal
region. The calculation shown here was run on a single-processor 3.2 GHz PC under Linux and
took about 40 minutes of wall time for the computation shown here. Movies of this simulation
can be viewed on the webpage [39], which also contains pointers to finer grid calculations and
more recent work on this problem.
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Even for results that are not published, it would be valuable to have more examples
and test problems available on-line than what is provided on the clawpack web pages.
Please let me know with a brief email if you have created such a page, or published a
paper where clawpack was successfully used.

I am also always interested to hear about problems that arise with the software or
suggestions for improvements, though as an academic researcher with a small group
of graduate students I cannot promise to provide as much technical support as I would
like to.

The website [39] contains the codes used to generate the two figures in this paper,
two very different examples of what can be provided in conjunction with a publication.
The programs for Figure 1 are each less than a page of matlab, while the program for
Figure 2 is about 13,000 lines of Fortran and also requires a large set of bathymetry
and earthquake source data. The webpages also contain movies that illustrate the
figures much better than the static versions shown in this paper, and links to other
related work.
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