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Wave Propagation Methods for Conservation
Laws with Source Terms

Randall J. LeVeque and Derek S. Bale

Abstract. An inhomogeneous system of conservation laws will exhibit steady
solutions when flux gradients are balanced by source terms. These steady solu-
tions are difficult for many numerical methods (e.g., fractional step methods)
to capture and maintain. Recently, a quasi-steady wave-propagation algorithm
was developed and used to compute near-steady shallow water flow over vari-
able topography. In this paper we extend this algorithm to near-steady flow of
an ideal gas subject to a static gravitational field. The method is implemented
in the software package CLAWPACK. The ability of this method to capture per-
turbed quasi-steady solutions is demonstrated with numerical examples.

1. Introduction

We consider the Euler equations in conservation form

oq+V-f(q) =¢(a) (1)

where q € R™ is a vector of conserved quantities, f : R™ — R™ is the flux, and
1 is a source term due to a static gravitational field. It is well known that if f is
a nonlinear function of q as for the Euler equations considered here, then smooth
initial data may develop discontinuities in a finite time. Robust high-resolution
Godunov-type methods have been developed that accurately capture discontinuous
solutions of the one dimensional homogeneous (v = 0) version of equation (1). If
1 # 0, however, one typically uses a fractional step method in which the one
dimensional analog of equation (1) is split into the artificial subproblems

0q+ 0:f(q) =0 2)
O = (), 3)

where we have assumed quantities vary only in z. This splitting of equation (1)
allows the use of high-resolution Godunov-type methods on equation (2) and pow-
erful ODE methods on equation (3) thereby avoiding the need to incorporate the
source in Riemann problems. These techniques work quite well for flows away from
quasi-steady states.

Near steady state, however, the flux is nearly balanced by the source term
so that |8,q| < |8.f| ~ [¢(q)|- In order to capture this near-equilibrium flow the
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FIGURE 1. (a) standard cell averaging (b) wave propagation [rom
cell interfaces resulting from solving the Riemann problems.

splitting method must rely on the cancellation of artificially induced dynamics. The
example relevant here is a fluid in hydrostatic balance in which the flux produced
by the pressure is nearly balanced by the gravitational source term. The first step
of this splitting method neglects the flux term which results in a large flow due to
the gravitational field. The second step neglects gravity producing a large counter
flow due to the pressure forces. Small perturbations on top of this near-steady
state may be lost due to the subtraction of these large and opposite flows. It is
for these flows that the quasi-steady wave-propagation algorithm is used in what
follows.

Recently, a quasi-steady wave-propagation algorithm has been developed [5]
in which the source is easily incorporated into the Riemann solution used in high-
resolution wave-propagation algorithms. The benefit of incorporating the source
into the Riemann problems is to generate waves relevant to the quasi-steady pertur-
bation. This algorithm was applied to shallow water flow over variable topography
in [5]. A similar method has recently been proposed by Jenny and Miiller [1] and
discussed at this conference [2]. See [5] for references to other methods for source
terms.

2. First order quasi-steady wave-propagation

Data on each time slice is represented by piecewise constant functions having the
cell centered value Q7 at the n'® time level (At = k) and in the i'" cell defined
by Ci = [#i_1/2.@i—12 + h] with Az = h. This representation of a function is
depicted in Figure 1(a). The first order wave-propagation algorithm is implemented
on equation (2) using a flux-difference splitting. The flux difference at the z =
x;_1/2 interface is £(Q;) — f(Q;—1) and is split into a right-going flux difference
A*tAq;_y /. and a left-going flux difference A~Aq;_, ;. Using the notion of a
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FIGURE 2. (a) modified cell values (b) wave propagation with cell
centered Riemann problems included

numerical flux function we can write these left and right going flux differences as
ATAqQ_y o =F - QL))
AT -3(]:—1;'2 =f(Q}) - :’—1,-'2- (4)

respectively. See [4], [5] for more discussion of this notation. Using these expressions
in the standard conservative update gives the first order method

n+ n k - =
Qt e Q; — E (A ;3(1;_1,;3 + A A‘L’-#-I.f‘-.‘) g (5)

It is clear that ATA .» models the flux entering the i*" cell due to the Riemann
q; 1/2

problem at the left edge. Similarly. A~Aq, ./, models the flux entering the cell

due to the Riemann problem at the right edge. Figure 1(b) depicts the i*" cell
being modified in this way.

Now suppose that we would like to solve the inhomogeneous conservation law

(1). The quasi-steady wave-propagation algorithm is implemented by introducing

a jump in the center of each cell as depicted in Figure 2(a). The jump in the i*"

cell has magnitude |Q,” — Q, | where the quantities Q; and Q;" are defined in the

left and right half of that cell respectively. Here and in what follows we drop the

superseript n that denotes the time level and define Q:"] = Q;. The jump at the

center of the i*" cell is chosen such that the following conditions are satisfied :
1 N
5(Q +Qf) =Qi (6)
f(Q) — f(Q7) = hy(Qu). (7)

The first criterion assures that the method will remain conservative by leaving
cell averages unchanged. The second. as will be demonstrated below, assures that
the cell is updated in such a way that the waves emanating from the cell-centered
Riemann problems exactly cancel the influence of the source.

If the Courant number is chosen to be less than 1/2 on each time slice, then
waves generated by the jump located at the center of the i*" cell will remain
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entirely within the i*" cell. The domain of influence for the Riemann problem at
the center of the i*! cell (for small enough Courant number) is depicted by the
shaded region of Figure 2(b). Since these cell centered Riemann problems do not
influence neighboring cells, it is unnecessary to resolve the resulting flux difference
f(Q;) —£(Q; ) into right and left going pieces. Rather, this entire flux difference is
added into the update for Q;. We must also add kv(Q;), the influence of the source
over a timestep k. If we continue to denote the influence of incoming waves at the
right and left edge of the i*h cell by A~AQ;11/2 and ATAQ;_1/, respectively,
then the first order modified update becomes

Q=i % (ATAQi—1/2 + A" AQit1y2) + K |9(Q:) — % (f(QF) - £(Q;)) |-
(8)

If equation (7) is satisfied then the terms in square brackets drop out and the first
order update reduces to

Q=Q:- % (ATAQi—1/2 + A" AQit1)2) 9)

which is no different in form than equation (5). The piecewise constant states
defining the Riemann problems, however, have changed. To see this, define Qf =
Q, + 6; so that criterion (6) is identically satisfied and find the solution é; of
the algebraic system (7). Now the i*" Riemann problem is solved between left
states Q;_1 + 6;—1 and right states Q; — &; as depicted in Figure 2(a). These are
in fact the Riemann problems arising from dynamical perturbations in the quasi-
steady state. For this reason the quasi-steady wave-propagation method accurately
captures quasi-steady solutions.

Although we derived this method assuming the Courant number is less than
1/2, in fact the resulting method is stable for Courant numbers up to 1 since the
waves from the cell-centered Riemann problem are eliminated.

3. High resolution corrections and CLAWPACK implementation

The modified Riemann problem between states Qj’_l and Q; gives rise to a set of
waves W /2 (forp=1, 2, ..., M,) with associated speeds A?_, /o Such that

My,
AQ;=Q; —Qf,=> W
p=1

The first order method described above is extended to a high resolution method
by adding corrections to the update (9). If we define a correction flux in terms of
these waves as

¥ g k
F, == Pl 1l =B VAR
; 2p§:1:|)\1|(1 h|,\1|)wz,
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then the modified method takes the form
ke T .
n+l _ n _ © + 4 A= _ . no_
Q! =Qf - 5 (A*Aq; + A" Aqyy) — 3 (Fia - F7).

In the above expression WP is a limited form of WP. For details on limiting the
waves see [4], and references therein.

We implement the algorithm described here in the software package cLAw-
PACK. Only the Riemann solvers need to be modified. First, solve equation (7)
for components of the vector §; in each cell. Then modify the states according to
Q" = Q; % 4;. Finally. set up data for the i'" Riemann problem by setting the
left state to Q;_; + é;_; and the right state to Q; — é;. Note that the limiters are
applied only to the waves representing disturbances from the steady state, not to
the variations in the steady state itself. This leads to excellent resolution of small
dynamic perturbations.

4. The Euler equations

We consider the equations governing the conservation of mass, momentum, and
energy of an inviscid, non-heat conducting, isotropic fluid. Coupled with a static
gravitational potential. ¢, the Euler equations take the form
dp+0; (pu') =0
O (pu') + 95 (pu' +8Vp) = pf' (10)
e + 0; [(f +p) u-‘] = pu; [,

where d; = 9/dx?, [' = —0¢/dx', and we have made use of the Einstein summa-
tion convention in which i, j € {1,2,3}. We take p to be the fluid density. p the
pressure, i the velocity, and e the non-gravitational energy made up of the kinetic
and internal energy of the fluid. This system is closed with the equation of state
for a perfect fluid p = (v — 1)pe. where € is the specific internal energy.

4.1. One Space Dimension

If the flow under consideration varies only in one direction, one can align the z-axis
such that equations (10) take the one dimensional Cartesian form

Op+0: (pu) =0 (11)
O (pu) + dy (_.0:{.2 +p) =ple (12)
e+, [(e+p)u] = puf,. (13)

where @ = (u,0,0)", and f, = f*- €, is the component of f in the x direction.
Note that we hesitate to write the standard [, = —g because we would like to
emphasize that we allow non-uniform gravitational fields.

We would like to find é; such that equation (7) is satisfied. In what follows
we drop the subscript 7 for conserved quantities in the i'" cell and it is understood
that, for example, p represents the density in the cell under consideration. Define
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m = pu and notice that the right-hand side of equation (11) is zero. Equation (7)
then implies that the jump in momentum across the center of each cell 111115} be
zero. With m* = m—, the three algebraic equations (7) reduce to a system of two
algebraic equations of the form

et e (4 —1) m? 1 # 1 4 o
= ==—=ll=—5 =] == = fzh
pt p 2 p p
9 _ a2
(d — ,!) m L B 1 ) _ ;;L_he
2 pT o p
where we have used p* = (y—1)(e* —m?/2p*) to eliminate the pressure. We now
introduce the cell centered jump by defining
p'i' =px ("Tﬂ =p (1£6p)
etée=e (1+6.),

f’.‘i'

Il

and it is clear that for physical states we must have 8,.6, € (=1.1). In terms of
8, and 6, these equations become

2n 9~ — 1\e i
L (_‘)‘ ';)é,, " [2(‘7 1)e 5. + fJ.h] (1-62)=0
£ p
y ;: 2ve " 9
21:21- (y=1)6, + [-“f" (6 —6,) + (1 — afj)f,h] (1-62) =0. (14)
P p

The first of equations (14) is linear in é, so that

_mE(S—-'y) 6p pfzh
~ 2(v-1) 1-8 2(v-1)

Using this in the second of equations (14) we get

2eb,y [l .
2n ' 2 _ £2 . AT Ll =0, 15

m*T0, + (1 — ép) (1 hp] foh —_ﬂ "—_} — ( (15)

where I' = (v2 —v+2)/(y —1). Notice that this is a fourth order polynomial for &,
that has the small parameter h in front of the r'?: term. This singularly perturbed

algebraic equation has one root that behaves as O(1/h) and will be outside the
interval (—1,1) for reasonable state variables. The other three roots can be sought

by letting
by = 69+ byh + 02h* + O(h®).

It turns out that two of the roots correspond to an unstable steady state and the
root of interest will be

- fo " .
r‘!.o - (v — i)(7112F - 2(_")_/'0} h + O( ) ( )
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This 6, corresponds to the energy shift

5e AL, & pfz <1 0 m2(3 _7) ) Bt O(h3) (17)

2(y-1) p2(y — 1)(T'm?p — 2e7)
These solutions can be used directly to yield a second order accurate scheme for
small perturbations, or they can be used as initial guesses for a Newton solver on
equation (15). Notice that an initial guess of zero momentum is unnecessary.
As an example of the method presented above, we consider a one dimensional
isothermal equilibrium

Po(y) = po(y) =™
uo(y) =0, (18)

on the interval 0 < y < 1. We compare the performance of a fractional step
method using Strang splitting and the quasi-steady wave-propagation method by
perturbing the pressure field as

p(t = 0,y) = po(y) +me~*W¥)",

with 0 < n < 1 The resulting flow is essentially two acoustic pulses propagating
away from this localized small disturbance.

In Figure 3 we have plotted the pressure perturbation p(t,y) — po(y) at t =
0.25 for the Strang splitting method (left column) and the quasi-steady method
(right column) at two values of n. The perturbation is 7 = 0.001 in the top row
of Figure 3 and n = 0.01 in the bottom two frames. All computations in this
figure were done on a grid of 100 cells using MC wave limiters. The dashed line in
each frame represents the initial pressure perturbation. The solid line represents
a reference solution computed with the quasi-steady method at a much higher
resolution.

In the top row of Figure 3, the perturbation is so small that it falls below
the truncation error of the splitting method, and this method fails to capture the
correct value of the perturbed pressure. Notice that the split method has trouble
maintaining the boundary values too. This is expected due to the fact that we
are imposing boundary conditions on artificial problems (2) and (3). The quasi-
steady method, however, accurately captures the dynamics of the perturbation
while also maintaining the correct boundary values. The bottom row of Figure
3 has an order of magnitude larger perturbation and both methods capture the
correct solution. However, the split method still has trouble at the boundary, where
a better handling of intermediate boundary conditions could improve the solution.
The fact that the quasi-steady method is able to handle the boundaries more easily
is another advantage.

4.2. Two Space Dimensions

In the absence of a source term, the multidimensional wave-propagation algorithm
solves one dimensional Riemann problems arising from the jump in conserved
quantities in a direction normal to cell interfaces. A “Transverse Riemann problem”
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FIGURE 3. Comparison of the Strang splitting method (left col-
umn) with the quasi-steady method (right column) for two differ-
ent size pressure perturbations. Top: 10~3. Bottom: 2.

is then solved to propagate these normal waves in a multidimensional manner.
This gives the “corner coupling” that improves stability and accuracy (improving
accuracy on smooth solutions). For details of this algorithm readers are directed
to [4] and for implementation in CLAWPACK see the documentation in [3].

For the remainder of this paper we will be concerned with the two dimen-
sional version of equations (10) so that @ = (u',u?,0)T. If we consider sweeping
through the grid in the N direction, then the equations solved to obtain the one

dimensional Riemann solution are
Bup + O (pu™) =0
8, (pu™) + 0w (p(u™)? +p) = I
O (puT) 4+ On (puNuT) =)
die +On [(e +D) uN] = NN, (22)

— b o~
D RO | et
— o ©
e B =

where there is no sum on N or T' and 27 is the transverse direction. Notice
that equations (19), (20), and (22) decouple from equation (21) and yield the
same one dimensional problem as dealt with in section 3. Equation (21) is an
advection equation for the transverse momentum propagating at speed u™ . Here
again equation (7) is solved, states are modified, and Riemann problems are solved
having incorporated the source.

As an example of our multidimensional algorithm, consider a radially sym-
metric isothermal equilibrium for which the pressure is continuous across 7 = 70,
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FIGURE 4. Rayleigh-Taylor instability with gravity directed ra-
dially inward. For the initial density profile see Figure 5. Four
different times are shown in the four quadrants, starting with the
initial data in the upper right corner and progressing clockwise.

but the density jumps by A, > 0 across 7 = ro(1 + ncos(kf)) for 0 < n < 1.
This flow is in a stable equilibrium for all » away from 7, but we should expect a
Rayleigh-Taylor instability at the r = rq interface. Figure 4 shows a computation
on the domain [0,1] x [0,1] with ro = 0.6, A, = 0.1, & = 20, and n = 0.02. We
computed a single quadrant on a 120 x 120 grid. The image in the upper right
corner is the initial density field and time progresses clockwise. Figure 5 shows
a scatter plot of the density as a function of radius. Note that away from the
localized (7 = 1) the method retains equilibrium and radial symmetry very well.

Acknowledgement. This work was supported in part by NSF Grants DMS-9505021,
DMS-96226645, and DOE Grant DE-FGO03-96ER25292.
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FIGURE 5. Scatter plot of density p;; in the (i, j) cell vs. distance
of the cell center from the origin. The density is shown at the
same four times as in Figure 4, with the same orientation of plots.
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