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CHAPTER 1

HIGH-RESOLUTION FINITE VOLUME METHODS FOR

THE SHALLOW WATER EQUATIONS WITH

BATHYMETRY AND DRY STATES

Randall J. LeVeque and David L. George

Department of Applied Mathematics, University of Washington, Box 352420,

Seattle, WA 98195-2420

E-mail: rjl@amath.washington.edu, dgeorge@amath.washington.edu

We give a brief review of the wave-propagation algorithm, a high-
resolution finite volume method for solving hyperbolic systems of conser-
vation laws. These methods require a Riemann solver to resolve the jump
in variables at each cell interface into waves. We present a Riemann solver
for the shallow water equations that works robustly with bathymetry and
dry states. This method is implemented in clawpack and applied to
benchmark problems from the Third International Workshop on Long-
Wave Runup Models, including a two-dimensional simulation of runup
during the 1993 tsunami event on Okushiri Island. Comparison is made
with wave tank experimental data provided for the workshop. Some pre-
liminary results using adaptive mesh refinement on the 26 December
2004 Sumatra event are also presented.

1. Introduction

We will present a brief introduction to a class of high-resolution finite

volume methods for hyperbolic problems and discuss the application of

these methods to long-wave run-up problems using the shallow water equa-

tions. To solve the benchmark problems for this workshop we have used

such methods in one and two space dimensions that work robustly with

bathymetry (bottom topography) and dry states, and that automatically

handle the moving interface between water and land. Some results on the

benchmark problems are presented in Sections 6 and 8, and more results,

along with some animations, may be found at the website 16.

We use a mathematical framework known as the wave-propagation al-

gorithm that has been implemented in the software package clawpack

(Conservation Laws Package) in 1, 2, and 3 space dimensions, and which

1
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also includes adaptive mesh refinement capabilities. This algorithm gives

a general formulation of a class of finite volume methods known as “high-

resolution shock-capturing Godunov-type methods” that are second order

accurate in space and time on smooth solutions while automatically cap-

turing discontinuities in the solution (including shocks or hydraulic jumps)

with minimal numerical smearing and no spurious oscillations. More details

on these algorithms and their application to hyperbolic problems may be

found in LeVeque13,15 and the clawpack software documentation, avail-

able at http://www.amath.washington.edu/~claw/.

The fact that these are finite volume methods means that, rather than

pointwise approximations to the solution, the numerical solution consists

of approximations to the cell averages of the solution over grid cells. Here

the grid cells are assumed to be intervals [xi−1/2, xi+1/2] of uniform length

∆x in one dimension or rectangles [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] in two

dimensions, but more general nonuniform grids can also be used.

Finite volume methods are particularly appropriate when solving sys-

tems of conservation laws, in which case the integral of the solution over

each grid cell is modified only due to fluxes through the edges of the grid

cell. Dividing this statement by the cell area leads to an update formula for

the cell averages based on numerical approximations to the flux through

each edge, as written out below. Such a finite volume method is based di-

rectly on the integral form of the conservation law and can be applied to

problems with discontinuous solutions more reliably than finite difference

approximations to the differential equation form of the conservation law,

which does not hold at a discontinuity.

In one space dimension the integral form of a conservation law is

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t)) − f(q(x2, t)) ∀x1, x2, (1)

where q(x, t) ∈ lRm is the vector of conserved quantities and f(q) is the

flux function. This states that the total mass of q in any interval [x1, x2]

changes only due to fluxes through the edges.

The shallow water equations on a flat bottom have this form with m = 2

and

q =

[
h

hu

]
, f(q) =

[
hu

hu2 + 1

2
gh2

]
, (2)

where h is the fluid depth, u is the horizontal velocity, and g is the grav-

itational constant. These equations express the conservation of mass and

momentum.
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If the solution is sufficiently smooth, then the integral conservation law

(1) can be manipulated to yield
∫ x2

x1

qt(x, t) + f(q(x, t))x = 0 ∀x1, x2,

and hence

qt + f(q)x = 0, (3)

which is the PDE form of the conservation law (with subscripts denoting

partial derivatives). This equation is called hyperbolic if the Jacobian matrix

f ′(q0) ∈ lRm×m is diagonalizable and has real eigenvalues for any physically

relevant state q0. Hyperbolic problems typically model wave propagation

and the eigenvalues correspond to the propagation velocities if we linearize

about the state q0. For the shallow water equations given by (2),

f ′(q) =

[
0 1

−u2 + gh 2u

]
, (4)

with eigenvalues

λ1 = u−
√
gh, λ2 = u+

√
gh, (5)

and corresponding eigenvectors

r1 =

[
1

u−
√
gh

]
=

[
1

λ1

]
, r2 =

[
1

u+
√
gh

]
=

[
1

λ2

]
. (6)

A finite volume method in conservation form updates the cell average

Qn
i of the solution over the grid cell using an expression

Qn+1

i = Qn
i − ∆t

∆x
[Fn

i+1/2 − Fn
i−1/2] (7)

where

Qn
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

Fn
i−1/2 ≈ 1

∆t

∫ tn+1

tn

f(q(xi−1/2, t)) dt

(8)

are the numerical approximations to the cell average and interface flux,

respectively. The update (7) comes directly from integrating (1) in time

from tn to tn+1 and dividing by ∆x. Equation (7) can also be viewed as

a direct discretization of the PDE (3), but viewing the value F n
i−1/2

as

an approximation to the interface flux is key in developing high-resolution

methods for nonlinear problems.
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We will generally drop the superscript n on quantities at time tn to

simplify the notation below, particularly since other superscripts will be

needed.

1.1. Godunov’s method

The methods we use are extensions of Godunov’s method, a first-order

method for gas dynamics developed in the 1950s in which the interface flux

Fi−1/2 is computed by solving a Riemann problem between the states Qi−1

and Qi. This is simply the conservation law with piecewise constant data

(as in a shock tube or dam break problem). Such a problem naturally arises

at the cell interface if the solution at time tn is approximated by a piecewise

constant function with values Qj at all points in the jth grid cell.

Godunov’s method is applicable to any hyperbolic conservation law. For

a linear problem in which f(q) = Aq for some matrix A (so f ′(q) = A),

the solution to the Riemann problem for any states Qi−1 and Qi consists

of m discontinuities (waves), each proportional to an eigenvector rp of A,

and propagating at speed equal to the corresponding eigenvalue λp (for

p = 1, 2, . . . , m). Since A must be diagonalizable, we can write

A = RΛR−1

where Λ = diag(λ1, . . . , λm) and R = [r1 · · · rm] is the invertible matrix

of eigenvectors.

Solving the Riemann problem between states Qi−1 and Qi is then easily

accomplished by decomposing ∆Qi−1/2 = Qi − Qi−1 into eigenvectors of

A, i.e., writing ∆Qi−1/2 as a linear combination of the vectors rp,

Qi −Qi−1 =

m∑

p=1

αp
i−1/2

rp ≡
m∑

p=1

Wp
i−1/2

. (9)

We use Wp to denote the pth wave in this Riemann solution. The vector of

coefficients αp
i−1/2

is given by αi−1/2 = R−1∆Qi−1/2. Godunov’s method

in the linear case is then defined by setting

Fi−1/2 = f(Q∨
|

i−1/2) = AQ∨
|

i−1/2

where Q∨
|

i−1/2
denotes the value at the interface xi−1/2 in the Riemann

solution,

Q∨
|

i−1/2 = Qi−1 +
∑

p:λp<0

Wp
i−1/2

.
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Multiplying by A gives

Fi−1/2 = AQi−1 +

m∑

p=1

αp
i−1/2

(λp)−rp

= AQi−1 +A−∆Qi−1/2,

(10)

where

A− = R diag((λp)−)R−1, with λ− = min(λ, 0). (11)

Alternatively, we can write

Q∨
|

i−1/2 = Qi −
∑

p:λp>0

Wp
i−1/2

and obtain

Fi−1/2 = AQi +

m∑

p=1

αp
i−1/2

(λp)+rp

= AQi +A+∆Qi−1/2,

(12)

where

A+ = R diag((λp)+)R−1, with λ+ = max(λ, 0). (13)

For a linear problem the resulting method is simply the first-order upwind

method, extended from the scalar advection equation to a general system

by diagonalizing the system and applying the upwind method to each char-

acteristic component in the appropriate direction based on the propagation

velocity.

For nonlinear problems, such as the shallow water equations, the exact

solution to the Riemann problem is harder to calculate but can still be

worked out (see, e.g., LeVeque15, Toro20) and the resulting interface flux

used for Fi−1/2. In practice, however, it is usually more efficient to use some

approximate Riemann solver to obtain Fi−1/2. One popular choice is to use

a “Roe solver” following the work of Roe18 for gas dynamics, in which the

data Qi−1, Qi is used to define a “Roe-averaged” Jacobian matrix Ai−1/2

by a suitable combination of f ′(Qi−1) and f ′(Qi). The numerical flux is

then determined by solving the Riemann problem for the linear problem

qt +Ai−1/2qx = 0. The Roe average is chosen to have the property that

f(Qi) − f(Qi−1) = Ai−1/2(Qi −Qi−1). (14)
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This leads to nice properties in the approximate solution. The Roe matrix

for the shallow water equations is easily computed (see, e.g., LeVeque15),

and is simply the Jacobian matrix (4) evaluated at the Roe-averaged state

ĥi−1/2 =
hi + hi−1

2
, ûi−1/2 =

ui−1

√
ghi−1 + ui

√
ghi√

ghi−1 +
√
ghi

. (15)

The eigenvalues, or “Roe speeds”, are therefore

ŝ1i−1/2 = ûi−1/2 −
√
gĥi−1/2, ŝ2i−1/2 = ûi−1/2 +

√
gĥi−1/2, (16)

and the Roe eigenvectors are

r̂1i−1/2 =

[
1

ŝ1i−1/2

]
, r̂2i−1/2 =

[
1

ŝ2i−1/2

]
. (17)

In one dimension the clawpack software requires a Riemann

solver that, for any states Qi−1 and Qi, returns a set of Mw

waves W1
i−1/2

, . . . , WMw

i−1/2
, and propagation speeds for the waves,

s1i−1/2
, . . . , sMw

i−1/2
. The number of waves Mw may be equal to m, the

dimension of the system, but could be different. The Riemann solver must

also return the fluctuations A−∆Qi−1/2 and A+∆Qi−1/2, two vectors that

are used to update the solution according to

Qn+1

i = Qi −
∆t

∆x
(A+∆Qi−1/2 + A−∆Qi+1/2). (18)

These fluctuations should have the property that

A−∆Qi−1/2 + A+∆Qi−1/2 = f(Qi) − f(Qi−1), (19)

so that they represent a “flux difference splitting”. The fluctuations may

be defined in terms of the interface fluxes as

A+∆Qi−1/2 = f(Qi) − Fi−1/2

A−∆Qi+1/2 = Fi+1/2 − f(Qi)
(20)

Then (19) is satisfied (note the shift in index) and (18) reduces to the

flux-differencing update formula (7). The form (18) is used in clawpack

and the general formulation of the wave-propagation algorithms because it

is more flexible and allows the extension of these methods to hyperbolic

problems that are not in conservation form, in which case there is no “flux

function” (see LeVeque15).
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The notation A±∆Qi−1/2 used for the fluctuation vectors is suggested

by the fact that, for a linear problem, the natural choice is

A−∆Qi−1/2 = A−(Qi −Qi−1),

A+∆Qi−1/2 = A+(Qi −Qi−1),
(21)

where the matrices A± are defined by (13) and (11). In general they are

often defined by

A−∆Qi−1/2 =

Mw∑

p=1

(sp
i−1/2

)−Wp
i−1/2

,

A+∆Qi−1/2 =

Mw∑

p=1

(sp
i−1/2

)+Wp
i−1/2

.

(22)

For a linear problem or a nonlinear problem when the Roe solver is used,

this agrees with the definition (20).

The first-order method (18) only uses the fluctuations returned from

the Riemann solver, and does not make explicit use of the waves Wp or

speeds sp. These quantities are used in the high-resolution correction terms

discussed in the next section.

1.2. High-resolution corrections

The method (18) is only first order accurate. The second-order Lax-

Wendroff method for the linear problem can be written as a modification

to (18), as

Qn+1

i = Qi−
∆t

∆x
(A+∆Qi−1/2+A−∆Qi+1/2)−

∆t

∆x
(F̃i+1/2−F̃i−1/2), (23)

where the fluctuations are still given by (21) for the linear problem and the

correction fluxes are

F̃i−1/2 =
1

2

(
|A| − ∆t

∆x
A2

)
∆Qi−1/2 =

1

2

(
I − ∆t

∆x
|A|

)
|A|∆Qi−1/2 (24)

where |A| = A+−A−. Inserting this in (23) and manipulating yields a more

familiar form of the Lax-Wendroff method,

Qn+1

i = Qi −
∆t

2∆x
A(Qi+1 −Qi−1) +

∆t2

2∆x2
A2(Qi+1 − 2Qi +Qi−1). (25)

This method is second order accurate on smooth solutions but is highly

dispersive and nonphysical oscillations arise near steep gradients or discon-

tinuities in the solution, which can completely destroy the accuracy. These
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oscillations can be avoided by using the form (23) and applying appropriate

limiters to the correction terms. To this end we rewrite (24) as

F̃i−1/2 =
1

2

m∑

p=1

(
I − ∆t

∆x
|λp|

)
|λp|W̃p

i−1/2
, (26)

where Wp
i−1/2

= αp
i−1/2

rp are the waves obtained from the Riemann solu-

tion, as in (9), and W̃p
i−1/2

represents a “limited” version of the wave. Each

wave is limited by comparing it to the wave in the same family arising from

the Riemann problem at the neighboring interface in the upwind direction,

i.e., we set

W̃p
i−1/2

= limiter(Wp
i−1/2

,Wp
I−1/2

) (27)

where

I =

{
i− 1 if λp > 0,

i+ 1 if λp < 0.

If Wp
I−1/2

and Wp
i−1/2

are “comparable” in some sense then this compo-

nent of the solution is presumed to be smoothly varying. In this case the

corresponding term in (26) can be expected to give a useful correction that

will help improve accuracy and the limiter should return W̃p
i−1/2

≈ Wp
i−1/2

.

However, if Wp
I−1/2

and Wp
i−1/2

quite different then this component is not

smoothly varying and attempting to add an additional term from the Tay-

lor series may make things worse rather than better. In this case the limiter

should modify the wave, typically be reducing its magnitude. There is an

extensive theory of limiters that will not be further discussed here.

The method (23) with correction fluxes (26) is easily extended to non-

linear problems. Recall that the (approximate) Riemann solver returns fluc-

tuations A±∆Qi−1/2, waves Wp
i−1/2

, and speeds sp
i−1/2

. The only change in

the formulas required in order to apply (23) to a general nonlinear problem

is to replace λp in (26) by the local speed sp
i−1/2

, obtaining

F̃i−1/2 =
1

2

Mw∑

p=1

(
I − ∆t

∆x
|sp

i−1/2
|
)
|sp

i−1/2
|W̃p

i−1/2
. (28)

2. The f-wave approach

The method described above can be reformulated in a way that will prove

particularly useful when source terms are added to the equations, as needed
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to handle variable bathymetry. Recall that the waves Wp
i−1/2

correspond to

a splitting of the jump in Q at the interface xi−1/2,

Qi −Qi−1 =

Mw∑

p=1

Wp
i−1/2

.

In a linear problem, or a nonlinear problem that has been locally lin-

earized using a Roe matrix Ai−1/2, these waves are obtained by expressing

∆Qi−1/2 as a linear combination of the eigenvectors rp
i−1/2

of the matrix,

i.e., Wp
i−1/2

= αp
i−1/2

rp
i−1/2

for some scalars αp
i−1/2

, as is done in (9). Al-

ternatively, we could split the jump in f(Q) into eigencomponents as

f(Qi) − f(Qi−1) =

Mw∑

p=1

βp
i−1/2

rp
i−1/2

≡
Mw∑

p=1

Zp
i−1/2

.

If the matrix Ai−1/2 satisfies Roe’s condition (14), then we simply have

Zp
i−1/2

= sp
i−1/2

Wp
i−1/2

. For other approximate Riemann solvers it is nec-

essary to determine an appropriate splitting of f(Q) based on the splitting

of Q

The vectors Zp are called f-waves because they carry jumps in f rather

than jumps in q. Since Zp
i−1/2

= sgn(sp
i−1/2

)|sp
i−1/2

|Wp
i−1/2

for linearized

Riemann solvers, the natural generalization of the correction flux (28) for

the f-wave formulation is

F̃i−1/2 =
1

2

Mw∑

p=1

(
I − ∆t

∆x
sgn(sp

i−1/2
)

)
Z̃p

i−1/2
, (29)

where Z̃p
i−1/2

is a limited version of Zp
i−1/2

calculated using the same limiter

as previously applied to Wp.

One advantage of the f-wave approach is that any linearly independent

set of vectors rp
i−1

can be used to define the splitting of ∆f into waves

Zp
i−1/2

and the method remains conservative. Of course a reasonable choice

is required in order to maintain consistency with the differential equation,

but for example the eigenvectors of any reasonable approximate Jacobian

matrix based on Qi−1 and Qi could be used without needing to impose

the Roe condition (14). For the shallow water equations this suggests using

vectors

r1 =

[
1

s1

]
, r2 =

[
1

s2

]
(30)

where s1 and s2 are some approximations to the wave speeds of the two

waves in the Riemann solution. Taking s1 and s2 to be the Roe speeds
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(16) recovers the Roe solver, but in some cases this is not a good choice.

In particular the Roe solver can fail when dry states are expected in the

solution. In Section 4 we present a different choice of speeds that can be

used much more robustly.

3. Bathymetry and source terms

We now consider the shallow water equations over non-constant bathymetry

with elevation y = B(x). In this case h(x, t) represents the depth of the

water above the bathymetry. A sloping bottom can accelerate the fluid and

gives rise to a source term in the momentum equation proportional to the

slope Bx(x). The shallow water equations now take the form

qt + f(q)x = ψ(q, x), (31)

where q and f are as in (2) and the source term is

ψ(q, x) =

[
0

−ghBx

]
. (32)

One way to tackle (31) numerically is is to use a fractional step procedure.

In each time step one first solves the homogeneous conservation law (3) to

advance Qn by ∆t to obtain an intermediate state Q∗, and then solves

qt = ψ(q, x) (33)

over time ∆t to advance Q∗ to Qn+1. This often works well, but is subject

to numerical difficulties, particularly in situations where there is a steady

state with f(q) = ψ(q, x) and the desired dynamic solution is a relatively

small perturbation of this steady state. In this case solving (3) and (33)

may each lead to significant changes in the solution that should nearly

cancel out. Numerically, the use of distinct numerical methods in separate

steps can lead to errors that swamp the desired solution when the waves of

interest are small perturbations of the steady state.

Instead of using a fractional step method, we modify the f-wave formu-

lation of the hyperbolic solver and incorporate the source term into the flux

difference before decomposing this into waves, i.e., we decompose

f(Qi) − f(Qi−1) − ∆xΨi−1/2 =

Mw∑

p=1

Zp
i−1/2

, (34)

where Ψi−1/2 is a discretization of the source term. For the shallow

water equations with bathymetry the source term ∆xghBx at xi−1/2
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is approximated by 1

2
g(hi−1 + hi)(Bi − Bi−1), resulting in the vector

f(Qi) − f(Qi−1) − ∆xΨi−1/2 taking the form
[

hiui − hi−1ui−1(
hiu

2
i + 1

2
gh2

i

)
−

(
hi−1u

2
i−1 + 1

2
gh2

i−1

)
+ 1

2
g(hi−1 + hi)(Bi −Bi−1)

]
.

(35)

This vector is decomposed into f-waves, for example by writing it as a linear

combination of the eigenvectors rp
i−1/2

, (p = 1, 2) of the Roe matrix or of

(30).

Of particular importance is the special case of a motionless body of

water over variable bathymetry, in which case u ≡ 0 and h(x, t) + B(x) is

initially constant and should remain so. In this case the vector (35) becomes
[

0
1

2
g

(
h2

i − h2
i−1

)
+ 1

2
g(hi−1 + hi)(Bi −Bi−1)

]
. (36)

If hj + Bj is constant in j then Bi − Bi−1 = hi−1 − hi and (36) is the

zero vector, resulting in Z1
i−1/2

= Z2
i−1/2

= 0 and A±∆Qi−1/2 = 0 in (34).

Hence Qn+1

i = Qi and the steady state is exactly maintained numerically.

Moreover, if we are modeling waves in which perturbations in h+B are

small compared to variations in B, then this vector captures the pertur-

bations after canceling out the steady state portion of the variation. The

wave limiters and high resolution correction terms are applied to these per-

turbations rather than to waves that include the large variation in h due to

the bathymetry. As a result, this method is much more accurate in mod-

eling the propagation of small amplitude perturbations than a fractional

step method. This may be quite important in calculating the long-range

propagation of small-amplitude tsunamis through the ocean.

The f-wave approach and its use for source terms is discussed further in

Bale et. al.2 and LeVeque15. A variety of other approaches have also been

developed recently for this problem, for example Gosse8, Greenberg and

LeRoux9, Jenny and Müller11, Kurganov and Levy12, LeVeque14,

4. Dry states

It is well known that if the Roe solver is used to solve a Riemann problem

in which ui−1 < ui with sufficient difference in velocities, then the approxi-

mate Riemann solution will have a negative depth in the intermediate state

(see Figure 15.3 in LeVeque15 for an illustration of this). This nonphysical

behavior often causes the computation to crash. In reality a dry state should

form if the velocity difference is sufficiently large, although the Roe solver
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can fail even for smaller velocity differences (see Einfeldt, et. al.7 for some

discussion of related issues for the Euler equations). Similar problems arise

when solving a Riemann problem with one state initially dry, hi−1 = 0 or

hi = 0, as happens at some cell interfaces for any problem involving wave

motion at the shore.

This difficulty can be avoided by using the f-wave approach discussed

in Sections 2 and 3 using eigenvectors r1 and r2 from (30) with a better

choice of speeds than the Roe speeds. In most cases we use the “Einfeldt

speeds”

s1E = min(ui−1 −
√
ghi−1, ŝ

1), s2E = max(ui +
√
ghi, ŝ

2), (37)

obtained by comparing the Roe speeds with the characteristic speeds λ1
i−1

and λ1
i (the eigenvalues of the Jacobian matrices in states Qi−1 and Qi).

This choice is adapted from the suggestion of Einfeldt6 that speeds cor-

responding to these be used in the HLL method for gas dynamics. The

HLL approximate Riemann solver (after Harten, Lax, and van Leer10) sim-

ply uses two waves to approximate the Riemann solution (regardless of

the dimension m of the system) with speeds s1 and s2 approximating the

minimum and maximum wave speeds arising in the system. The HLLE

method, using the Einfeldt speeds, chooses these speeds by comparing the

Roe speed, a reasonable choice if the wave is a shock, and the extreme

characteristic speed, which may be faster if the wave is instead a spreading

rarefaction wave. Since m = 2 in the one-dimensional shallow water equa-

tions, the method we use is closely related to the HLLE method, though

not the same and will be modified further to handle source terms and dry

states below. (See LeVeque and Pelanti17 for some more discussion of the

relation between the HLL and Roe solvers and the f-wave approach.)

Using the f-wave approach with the choice of speeds (37) and corre-

sponding eigenvectors (30) nearly always maintains non-negative depth. In

fact, it can be shown that the total mass in the intermediate Riemann

solution is always positive given these speeds and eigenvectors. However,

as explained below, it is sometimes necessary to further modify the wave

speeds to maintain non-negativity, at least in the subcritical case when

s1E < 0 < s2E. In the supercritical case when both speeds have the same

sign, no modification is needed.

We first consider the case of preserving non-negativity in a cell that has

positive depth initially, hi−1 > 0 or hi > 0, and later consider the case of

preserving non-negativity in a cell that is already initially dry. Even in the

case where both cells have a positive depth initially, hi−1 > 0 and hi > 0,
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a negative depth can be generated if s1E < 0 < s2E when the choice (37)

is used. Although the total mass in the intermediate Riemann solution is

positive, it may happen that the approximate Riemann solution leads to

the mass going negative on one side of the interface. In this case it can

be shown that the mass must be increasing on the other side by at least

the same amount, and so negativity can be avoided by a transfer of mass

that can be accomplished by increasing the speed on the side losing mass.

Working out the formula to increase this speed just to the point where the

negative state reaches h = 0, we find that in general the following speeds

can always be used:

s1 = min
(
s1E, s

2
E/2 −

√
(s2E/2)

2 + max(0, s2E∆1 − ∆2)/hi−1

)
, (38)

s2 = max
(
s2E, s

1
E/2 +

√
(|s1E|/2)2 + max(0,∆2 − s1E∆1)/hi

)
. (39)

That is, given hi−1 > 0 initially, (38) will maintain that hi−1 ≥ 0, and

given hi > 0 initially (39) will maintain that hi ≥ 0. Here ∆1 and ∆2 are

the components of the modified flux difference

f(Qi) − f(Qi−1) − ∆xΨi− 1
2
, (40)

which takes into account the bathymetry. Each speed (38) and (39) always

corresponds to the Einfeldt speed unless a negative state would arise on

that side, so for a given Riemann problem, at most one of s1 and s2 is

different from the Einfeldt speed, and only when necessary to maintain

non-negativity.

Maintaining the non-negativity in a cell with a depth that is initially 0

is handled somewhat differently. If Bi−1 = Bi, and only one of hi−1 or hi

is positive, then the true solution to this Riemann problem consists only of

a rarefaction wave with the leading edge propagating at speed ui − 2
√
ghi

if hi−1 = 0 or speed ui−1 + 2
√
ghi−1 if hi = 0. We use these speeds as s1

or s2 if hi−1 = 0 or hi = 0 respectively. As stated above, using the speed

(38) will preserve hi−1 ≥ 0 if it is initially positive, and (39) will preserve

hi ≥ 0 if it is initially positive. Using the speed of the leading edge of a

rarefaction wave for the complimentary speed however, will not necessarily

prevent the dry state from becoming negative. It can be shown however

that negativity is only possible if the true rarefaction wave is transonic

(s1 < 0 < ui−1 + 2
√
ghi−1 if hi = 0 or ui − 2

√
ghi < 0 < s2 if hi−1 = 0).

Transonic rarefactions are a more general problem, and are discussed in the

following section.
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5. Entropy conditions

Integral conservation laws can be satisfied by discontinuous weak solutions

subject to the Rankine-Hugoniot jump conditions. This results in possible

non-uniqueness of weak solutions—an initial value problem might be satis-

fied by both a smooth solution and a discontinuous one. Determining the

physically relevant solution requires additional admissibility conditions, of-

ten taking the form of an “entropy” function that is conserved except across

a discontinuity. The name arises from the Euler equations of gas dynam-

ics, where the entropy must increase when gas passes through a shock. For

the shallow water equations, the “entropy” function is actually mechanical

energy, which must decrease when passing through a discontinuity.

Since the integral conservation laws alone do not guarantee a unique

solution to an initial value problem, a numerical method based on the

conservation laws alone might converge to an entropy violating weak so-

lution. An “entropy fix” is therefore often needed. Determining such a fix

for Godunov-type methods requires a careful look at the particular Rie-

mann solver being used. If an approximate solver is used, true solutions to

Riemann problems which consist of m waves—any combination of rarefac-

tions and shock waves, are replaced by m jump discontinuities locally at

each grid cell. These discontinuities might approximate a physically rele-

vant shock wave, or perhaps a smooth rarefaction. In the latter case, the

jump discontinuity still approximates the conservation law, however it more

closely resembles the entropy violating shock than the physically relevant

rarefaction.

With the wave propagation methods, the waves arising from a particu-

lar Riemann problem at a grid cell interface are averaged onto the adjacent

cells. Therefore, the local discrepancy between an entropy violating dis-

continuity and a smooth rarefaction may have no effect on the numerical

solution, if both produce the same average within a grid cell. This will be the

case if the wave structure of the rarefaction remains entirely within a grid

cell. The exceptional case is a transonic rarefaction—a rarefaction where

one of the eigenvalues passes through zero. This type of rarefaction has a

wave structure that should overlap a cell interface, yet it is approximated

by a jump discontinuity moving either to the left or the right. This does

affect the numerical solution, and can cause a method to converge globally

to an entropy violating weak solution. The fix is to determine when the

correct entropy solution to a Riemann problem corresponds to a transonic

rarefaction, and then split the entropy violating single wave, apportioning



February 9, 2006 15:9 WSPC/Trim Size: 9in x 6in for Review Volume leveque

High-resolution finite volume methods for the shallow water equations 15

it to the adjacent grid cells appropriately.

An alternative and numerically more useful formulation of the entropy

condition for the shallow water equations is that a physically correct shock

in the pth (p = 1, 2) characteristic family must have the p-characteristics

impinging on it. That is,

λp(ql) > s > λp(qr), (41)

where s is the shock speed and λp is the pth eigenvalue evaluated at ql

and qr—the states directly to the left and right of the shock respectively.

Therefore, if the entropy solution to a Riemann problem contains a shock

connecting the left state Qi−1 to the middle state, denoted Qm, then

λ1(Qi−1) > λ1(Qm). (42)

Similarly if a shock connects the right state Qi to the middle state Qm,

then

λ2(Qm) > λ2(Qi). (43)

If (42) or (43) is violated, then in fact a rarefaction connects the corre-

sponding states in the entropy solution. As explained above, an entropy

violating Riemann solution will not affect the numerical solution, except in

the case of a transonic rarefaction. Therefore the only cases in which an

entropy fix is required are when

λ1(Qi−1) < 0 < λ1(Qm) (44)

or

λ2(Qm) < 0 < λ2(Qi), (45)

which indicate a transonic rarefaction in the first or second families respec-

tively.

It is easy to check λ1(Qi−1) and λ2(Qi). However, with the f-wave ap-

proach, Qm is never explicitly computed so we cannot simply evaluate

λ1(Qm) and λ2(Qm) directly. In fact the f-wave approach is not equiv-

alent to using a single value for Qm, but two middle values, one to the

left and one to the right of the cell interface. The approach we’ve taken

is to instead compare the Roe speeds, ŝ1
i− 1

2

and ŝ2
i− 1

2

, with the right and

left speeds, λ1(Qi−1) and λ2(Qi). The motivation for this approach is that

the Roe speeds can serve as an estimate for the shock speeds, allowing

us to estimate whether (41) is satisfied. For instance, to detect the pres-

ence of a transonic rarefaction in the second family, ui +
√
ghi is compared
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to ŝ2
i− 1

2

. If ui +
√
ghi > ŝ2

i− 1
2

then most likely the true Riemann solu-

tion has a rarefaction in the second family. Furthermore ŝ2
i− 1

2

serves as

an estimate for the characteristic speed at the center of the rarefaction

fan, ŝ2i−1/2
≈ 1

2
(λ2(Qm) + λ2(Qi)) and hence λ2(Qm) ≈ 2s2i−1/2

− λ2(Qi).

Therefore if

2(ŝ2i− 1
2

) − (ui +
√
ghi) < 0 < ui +

√
ghi, (46)

then the true Riemann solution is likely to have a transonic rarefaction in

the second characteristic family. The second f-wave Z2 should then be split

into two waves, one moving to the right the other to the left. A similar test

is done for the first characteristic family.

The entropy fix when one state in the Riemann problem is initially dry

is somewhat different, and also acts to ensure that the depth in the corre-

sponding cell remains non-negative. As mentioned in the previous section,

the true Riemann solution in such a case consists of a single rarefaction.

The speeds of the edges of the rarefaction wave are given by quantities in

the wet cell (s1 = ui−1 −
√
ghi−1 and s2 = ui−1 + 2

√
ghi−1 if hi−1 > 0 or

s1 = ui − 2
√
ghi and s2 = ui +

√
ghi if hi > 0). In the event of a single

transonic rarefaction, s1 < 0 < s2, an entropy fix such that the f-waves

simply carry an appropriate proportion of the true single wave is necessary.

We simply apportion to each f-wave an amount based on the proportion of

the rarefaction in each cell.

This approximate Riemann solver works quite robustly in the context

of the first-order accurate Godunov’s method, in the f-wave formulation

with bathymetry source terms and dry states. Addition of the second-order

correction terms (28) adds new potential problems when dry states are

present, as these waves can lead to a negative depth even when the first or-

der method would not. Standard wave limiters devised to avoid nonphysical

oscillations may not completely avoid this problem, and so we have added

an additional limiting procedure to maintain nonnegative depth.

The procedure is best illustrated by writing the second-order method

as the sum of the first-order Godunov update

QG
i = Qn

i − ∆t

∆x
(A+∆Qi−1/2 + A−∆Qi+1/2), (47)

and the second-order correction fluxes (29),

Qn+1

i = QG
i − ∆t

∆x

[
F̃i+ 1

2
− F̃i− 1

2

]
. (48)

Note that the correction flux at a cell interface takes mass away from one

cell and adds mass to the adjacent cell, with the direction depending on
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the sign of its first component. The gross mass-flux out of the ith grid cell,

due to these correction fluxes, is therefore

Mi =
[
max(0, F̃ 1

i+ 1
2

) − min(0, F̃ 1

i− 1
2

)
]
. (49)

If ∆tMi is larger than the mass present after the Godunov update,

∆x(QG
i )1, the correction fluxes could potentially create a negative depth

in this cell. This is prevented by re-limiting the correction fluxes based on

which cell they take mass away from

F̃i− 1
2
→ ϕi− 1

2
F̃i− 1

2
(50)

where

ϕi− 1
2

=

{
min(1,∆x(QG

i )1/∆tMi) if F̃ 1

i− 1
2

< 0

min(1,∆x(QG
i−1)

1/∆tMi−1) if F̃ 1

i− 1
2

> 0
. (51)

This procedure is consistent with the standard limiting strategy, in that

second-order accuracy is achieved throughout most of the domain, and lim-

iting only occurs where there are problematic features, such as shock waves

or near dry-states.

6. Results for Benchmark Problem 1

The first benchmark problem consists of a linear sloping beach, b(x, t) =

−x, and initially motionless water with a shoreline at x = 0. An incoming

wave is induced by a non-zero initial surface elevation, η(x, 0), specified

by data provided from x = 0 to 50000 meters in increments of 50 meters.

We compare the resulting motion of the shoreline, the surface elevation,

and the velocity field of our numerical solution with a provided analytical

solution. The surface elevation and velocity data for the analytical solution

were provided at three separate times, t = 160, 175, and 220 seconds. The

position and velocity of the shoreline were provided for t ∈ [0, 300] seconds.

We computed this problem using clawpack, on a series of grids of

varying resolution (from 500 to 5000 grid cells), each over a domain x ∈
[−500, 50000] meters. The computational grid cells were clustered densely

near the shoreline, using a piecewise linear mapping. This was required to

efficiently capture the fine-scale motion of the shoreline, which occurred

over a small fraction of the entire domain. Convergence to the analytical

solutions was observed as the grids were refined.

Some of our computational results are shown with the analytical solu-

tions in figures 1 and 2. We have chosen to show the results on a grid of
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Fig. 1. Top: Water surface elevation at t = 160s, shown near the beach. Bottom: Veloc-

ity field at t = 160s in the same region. Both computations were done on a 1000-point
grid.

1000 points so that the numerical results are still distinguishable from the

analytical solution. The surface elevation and the velocity field are shown

at t = 160s in figure 1. Note that the figures show only a small portion

of the domain near the beach. Figure 2 shows the motion of the shoreline

for the same computation. For additional results at other times and grid

resolutions, see the website 16
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Fig. 2. Left: Position of the shoreline as a function of time, computed on a 1000-point

grid. Right: Velocity of the shoreline for the same computation.

7. Extension to two space dimensions

In two space dimensions the shallow water equations with bathymetry take

the form

qt + f(q)x + g(q)y = ψ(q, x, y), (52)

where

q =



h

hu

hv


 , f(q) =




hu

hu2 + 1

2
gh2

huv


 , g(q) =




hv

huv

hv2 + 1

2
gh2


 , (53)

and the source term is ψ = ψ1 + ψ2 with

ψ1(q, x, y) =




0

−ghBx(x, y)

0


 , ψ2(q, x, y) =




0

0

−ghBy(x, y)


 , (54)

The general form of the wave-propagation algorithm is now

Qn+1

ij = Qij −
∆t

∆x
(A+∆Qi−1/2,j + A−∆Qi+1/2,j)

− ∆t

∆y
(B+∆Qi,j−1/2 + B−∆Qi,j+1/2)

− ∆t

∆x
(F̃i+1/2,j − F̃i−1/2,j) −

∆t

∆y
(G̃i,j+1/2 − G̃i,j−1/2).

(55)
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The fluctuations A±∆Q and B±∆Q are determined by solving one-

dimensional Riemann problems normal to each cell interface, using the

f-wave formulation described above to incorporate the appropriate portion

of the source term. In the x-direction, for example, we solve the Riemann

problem qt + f(q)x = ψ1. The solution to this Riemann problem is exactly

the same as the one-dimensional case with the addition of a contact discon-

tinuity wave that passively advects the jump in the orthogonal velocity v.

Using only these terms in (55) without the correction fluxes F̃ or G̃ gives

a two-dimensional generalization of Godunov’s method sometimes called

donor-cell upwind. A better first-order method (corner transport upwind)

is obtained by splitting the waves in each one-dimensional Riemann solu-

tion into waves moving in the transverse direction, so that wave motion

oblique to the grid is more properly modeled. In clawpack this requires

the specification of a “transverse Riemann solver” that takes as input a

fluctuation, say A+∆Q, and returns a splitting of this vector into up-going

and down-going portions that affect the fluxes G̃i,j+1/2 and G̃i,j−1/2 re-

spectively. This is typically based on the eigenvalues and eigenvectors of

some approximate Jacobian matrix g′(q) in the transverse direction, and

is described in more detail for the shallow water equations in LeVeque15.

Second-order correction terms can also be incorporated as in one space di-

mension, based on the waves obtained from the one-dimensional Riemann

solution normal to each cell edge.

The presence of dry states leads to new complications when the algo-

rithm is extended to two space dimensions. A wave moving transversely

into a dry or nearly dry cell can produce a negative depth unless spe-

cial care is taken by incorporating a more fully multidimensional limiter.

Currently we do not use transverse propagation or second-order correction

terms in two dimensions and are further developing this approach. Our goal

is to ultimately be able to use transverse propagation and high-resolution

correction terms for dry state problems in two dimensions. However, even

without these terms reasonable results are obtained, as demonstrated in

the next section.

8. Results for Benchmark Problem 2

In the second benchmark problem, we compare our computational solutions

to laboratory data collected from a wave tank experiment. The wave tank

was built as a 1:400 scale model, approximating coastline bathymetry near

Monai, Japan, a region that suffered inundation from the 1993 Okushiri
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Fig. 3. Three-dimensional view of the numerical solution at one time.

tsunami. In the experiment, an incoming wave was induced by mechanical

wave paddles along one side of the tank, and the resulting motion of the

surface elevation was measured by gages at three separate locations. Ad-

ditionally, a movie was made showing the tank from overhead during the

experiment. This data and movie are available at the workshop website.

We computed this problem with clawpack, originally using a uniform

single grid of 275×175 cells. The computational domain modeled a subre-

gion of the tank, (x, y) ∈ [0, 5m] × [0, 3.5m], which includes an inlet region

that experienced large wave runup in the tsunami. We used the provided

data that specifies the measured surface elevation of an incoming wave along

one side of a subregion of the tank, x = 0, for the period t = [0, 22.5s]. (Note:

the computational domain is rotated in the figures to match the orientation

of the movie, so x runs upward and y from left to right.)

The computed surface elevation is shown at various times in Figures

3 through 6. Figure 3 shows a three-dimensional view of the computed

solution at one time, Figure 4 shows the solution during the primary runup

period, and Figure 5 compares the solution with several close-up snapshots

from the wave tank movie, demonstrating similarities in the zone where the

maximum runup occurred.
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Fig. 4. The computed solution during the primary runup of the wave. The primary

runup occurred in the first 30 seconds. Contour lines show the topography that was

initially above the water surface, including an island. Gray scale indicates elevation
above the original water surface.
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Fig. 5. Comparison of the numerical solution (right) with snapshots from the overhead

movie of the laboratory experiment (left). Frames 11, 26, 41, 56 from the movie are shown

and computed results are shown at corresponding 30 second intervals. (The movie shows

30 frames per second.)
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Fig. 6. Comparison of the surface elevation, with the laboratory measurements at the
three wave gages (Channels 5, 7, 9). The numerical solution is comparable during the

primary runup in the first 50 seconds. The bottom right figure shows the comparison for
the duration of the laboratory measurements, at one of the gages (Channel 5). Sustained

oscillations in the laboratory measurements are not seen in the numerical solution, as
discussed in the text. The other gages showed similar patterns at later times.

Laboratory measurements at three gage locations were provided for the

workshop, denoted Channel 5, 7, and 9. This data and the numerical so-

lution (surface elevation as a function of time) at these three locations are

shown in Figure 6. The numerical solution was comparable to the labora-

tory measurements for the first 50 seconds of the experiment, during which

the primary runup of the wave and several reflected waves are seen. For the

last 150 seconds of the experiment, the wave tank measurements exhibited

large oscillations that were not evident in the numerical solution. This dis-

crepancy is shown in the last graph of Figure 6. Based on discussions at

the workshop, it is believed that this is due to the fact that the wave maker

in the experiment did not generate a perfectly clean wave. The incoming

wave data provided for the benchmark problem was only over 22.5 seconds,
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and was followed by other waves in the wave tank for which no data was

provided.

9. Adaptive mesh refinement and large-scale tsunami

propagation

In two-dimensional calculations over large spatial domains it may be crucial

to use nonuniform grids to achieve the desired resolution in some regions

without an excessive number of grid cells overall. For tsunami modeling

there are two types of nonuniformity that may be desirable. First, we may

want to have a finer grid near the shore where the details of the runup must

be computed, or in other regions where the bathymetry has a large impact

on the wave propagation behavior and eventual run up. In principle this

can be achieved with “static refinement” of some spatial regions relative to

others, though ideally computations on the finer grid would only be done at

times when the wave is present. Second, we may want to use an adaptively

refined grid in which the region of refinement moves along with the tsunami

to provide good resolution of the wave at all times, with a minimal number

of grid points in regions where nothing is happening.

Since the Catalina workshop took place, the tragic Sumatra tsunami

of December 26, 2004 has prompted increased study of the all aspects of

tsunamis. Our own efforts in recent months have focused on developing an

adaptive mesh refinement code that works well on the scale of the Indian

Ocean (or other oceans), with the ability to capture tsunami propagation

across the ocean and couple it to the study of run up on much smaller scales

along particular stretches of coastline. In the course of this work we have

also improved the Riemann solver beyond what is described in this paper to

make it even more robust. The new version no longer requires increasing the

wave speeds above the Einfeldt speeds, and instead is based on introducing

additional waves in the Riemann solution using ideas from LeVeque and

Pelanti 17. This work will be reported in more detail elsewhere. See the

webpage 16 for pointers.

The clawpack software includes amrclaw, an adaptive mesh refine-

ment version of the code developed with Marsha Berger and described in

more detail in Berger and LeVeque3. More recently the clawpack formula-

tion has also been incorporated into ChomboClaw by Donna Calhoun at the

University of Washington, allowing the Chombo package 5 of C++ routines

for adaptive refinement to be applied. This package uses similar algorithms

to amrclaw but has additional features such as an MPI implementation
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with load balancing for adaptive refinement on parallel computers, and sup-

port for implicit algorithms that may be needed if dissipative or dispersive

terms are added to the equations.

A rectangular grid is refined by covering a portion of the domain by one

or more rectangular patches of grids that are finer by a factor of k, some

integer. This process can be repeated recursively, with each grid level fur-

ther refined by grid patches at a higher level or refinement. The maximum

number of levels is specified along with the refinement factor at each level.

The grid patches are chosen by flagging grid cells at each level that “need

refining” (see below) and then clustering these cells into a set of rectangular

patches that cover these cells and a limited number of other cells. This is

done by solving an optimization problem (using the algorithm of Berger

and Rigoutsos4) that takes into account the trade-off between refining too

many cells unnecessarily and creating too many grid patches, since there is

some overhead associated with applying the algorithm on each patch. The

boundary data (ghost cell values) on a patch must be generated by space-

time interpolation from data on the coarser grid. A time step of length ∆t

is first taken on the coarse grid, boundary data is then generated from the

fine grid patches, and k′ time steps of length ∆t/k′ are then taken on the

fine grids to reach the same time. For most AMR applications on hyperbolic

problems we take k′ = k, refining in time by the same factor as in space in

order to maintain a comparable Courant number at all levels. However, for

tsunami propagation and runup applications where we only have the finest

grids near the shore, it may be desirable to refine in time by a smaller fac-

tor k′ < k. Recall that the wave speeds are roughly
√
gh, which differs by

more than an order of magnitude between the deep ocean and the coastal

regions. The smaller wave speed near shore allows a larger time step.

After updating to the same time on the fine grids, the coarse grid so-

lution on any grid cell covered by the finer grid is then replaced by the

average of the fine grid values in this cell in order to transfer the more ac-

curate solution to the coarse grid. Additional modifications to the values are

needed near the patch edge to maintain global conservation as described in

Berger and LeVeque3. This is done recursively at each level. While the inner

workings are somewhat complicated, the general formulation in amrclaw

allows extension of most clawpack computations directly to adaptively

refined grids. The computational time required for the overhead associated

with multiple grids is often negligible compared to the savings achieved by

concentrating fine grids only where needed.

We can flag the cells that “need refinement” however we wish. For the
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calculation presented below, we have allowed some refinement everywhere

based on a measure of the variation in the solution, so that the propagating

wave is well resolved. In addition, we allow additional levels of refinement

near the shore in particular regions of interest, though only once the wave

is approaching. Regridding is performed every few time steps to modify the

region of refinement as the wave propagates.

In the course of this work, we ran into several difficulties at the interfaces

between grids that have not been observed in other applications of the

AMR codes. These arise from the representation of the bathymetry and

shore on a Cartesian grid. One problem, for example, is that a coarse grid

cell that is dry (if the bathymetry value in this cell is above sea level) may

be refined into some cells that are above sea level and others below. Even

though h = 0 on the coarse cell we cannot initialize h to zero on all the

fine cells without generating nonphysical wave motion. The fine cells below

sea level must be initialized with a positive h to maintain the constant

sea level. This problem and related difficulties could only be solved by

some substantial reworking of the amrclaw code. The result is a special-

purpose program that incorporates these algorithmic modifications and can

now be applied to many tsunami scenarios. It is currently being tested by

comparing predictions with measurements made at various places around

the Indian Ocean in the wake of the 26 December 2004 Sumatra earthquake.

Some preliminary results are shown in Figure 7, and additional results and

movies are linked from the webpage 16 and will be reported more fully in

future publications.

The top two frames of Figure 7 show the Bay of Bengal at two early

times. A coarse grid is used where nothing is yet happening and the grid

cells are shown on this “Level 1 grid”, which has a mesh width of one

degree (approximately 111 km). The rectangular region where no grid lines

are shown is a Level 2 grid with mesh width 8 times smaller, about 14

km. Red represents water elevation above sea level, dark blue is below the

undisturbed surface. Figure (c) shows a zoomed view of the southern tip of

India and Sri Lanka at a later time. The original Level 1 grid is still visible

along the left-most edge, but the rest of the region shown has been refined

by a Level 2 grid. Due north from Sri Lanka, along the coast of India, there

is a region near Chennai where two additional levels of refinement have

been allowed at this stage in the computation. The grid lines on Level 3

are not shown; the mesh width on this level is about 1.7 km, a factor of 8

finer than Level 2. A Level 4 grid is also visible in the center of this region

and appears as a small black rectangle.
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(a) Time 01:07:10 (550 seconds) (b) Time 01:34:40 (2200 seconds)

(c) Time 03:13:12.5 (8112.5 seconds) (d) Time 03:15:30 (8250 seconds)

(e) Time 03:24:40 (8800 seconds) (f) Time 03:35:30 (9450 seconds)

Fig. 7. Propagation of the 26 December 2004 tsunami across the Indian Ocean, using
adaptive mesh refinement with refinement by a factor of 4096 from the coarsest grid

shown in Figures (a)–(b) to the finest grid shown in Figures (d)–(f). The latter figures

show zoomed views of the region near the harbors of Chennai, India. Times are GMT

(and seconds since initial rupture at 0:58 GMT). The earthquake source used in this

computation was obtained from the Caltech Seismological Laboratory 1. See the text for

more details.
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Figure (d) shows a further zoomed view of the coast near Chennai. In

this figure the grid lines show the Level 3 grid. The Level 4 grid is refined

by a factor of 64 relative to the Level 3 grid, so the mesh width is about

27 meters. Grid lines on this finest level are not shown. The rectangle in

this figure shows a region that is expanded in Figures (e) and (f) to show

the two harbors of Chennai. The fine-scale bathymetry used in this com-

putation was obtained by digitizing navigational charts. In this simulation

the commercial harbor to the south is inundated, with the tsunami over-

topping the surrounding sea wall, while the fishing harbor to the north is

largely untouched. This appears to agree with what was actually observed,

although we are still investigating this. Moreover, we do not yet have suffi-

ciently accurate data on the height of the sea walls enclosing each harbor.

One data point known accurately from tide gage data is the arrival time

for the initial wave in Chennai, which was at 9:05 local time (3:35 GMT).

This is well matched by our simulation: this is essentially the time shown

in Figure 7(f).

A more careful study of this region will be performed in the future and

presented elsewhere, including comparisons with runup data collected by

Harry Yeh as part of the Tsunami Survey Team that visited this area in

February, 2005. See the webpage 16 for more recent results and movies of

the simulations. In the future we plan to also compare with data collected

by other teams at various other points around the Indian Ocean. We will

also make our computer code available to the community for others to use,

in a form that should allow the local bathymetry from other regions to be

easily incorporated. See the webpage for more details.

Adaptive mesh refinement is crucial for this simulation. The calculation

shown here was run on a single-processor 3.2 GHz PC under linux. Figure

(c) was obtained after about 15 minutes of running time, Figure (d) about

2.5 hours later, indicating that most of the grid cells are concentrated on

the Level 4 grid, which is introduced only when the wave approaches the

shore in this one region. Were it possible to use the finest grid over the

entire domain, the result of Figure (c) would require more than 4000 years

of computing on the same machine.

10. Conclusions and future work

Finite volume methods using an approximate Riemann solver devised to

deal with bathymetry and dry states have been successfully used for Bench-

mark Problems 1 and 2. Benchmark problems 3 and 4 at the workshop
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model landslide-induced tsunamis, and involve bathymetry that changes

with time. In principle our code can handle this situation but we have not

yet done extensive tests of this.

Adaptive mesh refinement is crucial for large scale problems and we are

further developing and testing the AMR version of our method. We are

also working on formulating this method on the full earth, by switching to

latitude-longitude coordinates on the sphere and calculating on a compu-

tational rectangle in these coordinates using periodic boundary conditions

in longitude. The AMR code is already capable of handling this situation

and expect to soon be able to study the global propagation and compare

with tide gage data (see, for example, Titov et. al. 19) that is available from

many points around the world following the 26 December 2004 event.
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