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Rim, and G. Lin

the date of receipt and acceptance should be inserted later

Abstract In order to perform probabilistic tsunami hazard assessment (PTHA)
for subduction zone earthquakes, it is necessary to start with a catalog of possi-
ble future events along with the annual probability of occurrence, or a probability
distribution of such events that can be easily sampled. For nearfield events, the dis-
tribution of slip on the fault can have a significant effect on the resulting tsunami.
We present an approach to defining a probability distribution based on subdivid-
ing the fault geometry into many subfaults and prescribing a desired covariance
matrix relating slip on one subfault to slip on any other subfault. The eigenval-
ues and eigenvectors of this matrix are then used to define a Karhunen-Loève
expansion for random slip patterns. This is similar to a spectral representation of
random slip based on Fourier series but conforms to a general fault geometry. We
show that only a few terms in this series are needed to represent the features of
the slip distribution that are most important in tsunami generation, first with a
simple one-dimensional example where slip varies only in the down-dip direction
and then on a portion of the Cascadia Subduction Zone.

Keywords probabilistic tsunami hazard assessment – seismic sources – Karhunen-
Loève expansion – subduction zone earthquakes

1 Introduction

Computer simulation of tsunamis resulting from subduction zone earthquakes can
be performed using a variety of available software packages, most of which imple-
ment the two-dimensional shallow water equations and require the vertical seafloor
motion resulting from the earthquake as the input to initiate the waves. For recent
past events this can be approximated based on source inversions; one example is
shown in Figure 1. However, there are several situations in which it is desirable
to instead generate hypothetical future earthquakes. In particular, recent work on

Department of Applied Mathematics, University of Washington, Seattle, WA. · Forsvarets
Forskningsinstitutt, Oslo, Norway. · Department of Earth and Space Sciences, University of
Washington, Seattle, WA. · Department of Applied Mathematics, University of Washington,
Seattle, WA. · Department of Mathematics, Purdue University, West Lafayette, IN.



2 LEVEQUE, WAAGAN, GONZÁLEZ, RIM, and LIN

Fig. 1 An example of slip distributed on a fault plane, from the USGS inversion of the 27
February 2010 event off Maule, Chile USGS (2010). The plot on the right shows the resulting
sea floor deformation computed using the Okada solution to the elastic half-space problem,
with the coast line in green.

probabilistic tsunami hazard assessment (PTHA) has focused on producing maps
that indicate the annual probability of flooding exceeding various depths and can
provide much more information than a single “worst considered case” inundation
map (for example Adams et al (2015); Geist and Parsons (2006); Geist et al (2009);
Goda et al (2015); Gonzlez et al (2009); Jaimes et al (2016); Løvholt et al (2012);
Witter et al (2013)). This requires running tsunami simulations for many potential
earthquakes and combining the results based on the annual probability of each,
or using a Monte Carlo approach to sample a presumed probability density of
potential earthquakes. Generating a large number of hypothetical events can also
be useful for testing inversion methods that incorporate tsunami data, such as the
current DART buoy network (e.g., Dettmer et al (2016)), or that might give early
tsunami warnings for the nearshore (e.g., Melgar et al (2016a)). Both Probabilistic
Seismic Hazard Assessment (PSHA) and PTHA are also fundamental tools in the
development of building codes that are critical in the design of structures able to
withstand seismic and tsunami forces (e.g., Chock (2015)).

The primary goal of this paper is to introduce a general approach to generating
hypothetical rupture scenarios for possible future earthquakes, by producing ran-
dom slip patterns on a pre-specified fault geometry. Similar techniques have been
used in past studies, particularly for the generation of seismic waves in PSHA,
which has a longer history than PTHA. A variety of techniques have been pro-
posed for generating random seismic ruptures, see for example Anderson (2015);
Dreger et al (2015); Frankel (1991); Graves and Pitarka (2010); Goda et al (2014);
Guatteri et al (2003); Lavallée et al (2006); Mai and Beroza (2002). One approach
is to use a spectral representation of the slip pattern as a Fourier series with ran-
dom coefficients that decay at a specified rate based on the desired smoothness
and correlation length of the slip patterns, e.g as estimated from past events in
the work of Mai and Beroza (2002). Different correlation lengths can be specified
in the strike and slip directions, if these directions are used as the horizontal co-
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Fig. 2 Subdivision of the Cascadia Subduction Zone into 20 subfaults, following Pollitz et al
(2010). These are further divided into 865 subfaults to compute the modes shown, which are
the first four eigenvectors of the 865× 865 covariance matrix as might be used in a Karhunen-
Lòeve expansion. Magenta and green are used to indicate positive and negative entries in the
eigenmodes.

ordinates in the Fourier representation and the fault is roughly rectangular, as
done for example in Mai and Beroza (2002); Graves and Pitarka (2010).

Our approach is very similar on a rectangular fault but generalizes easily to
other fault geometries by using a Karhunen-Loève expansion. This work was mo-
tivated in particular by the need to model events on the curving Cascadia Sub-
duction Zone (CSZ), which lies offshore North America and runs nearly 1200 km
from Northern California up to British Columbia, see Figure 2.

The fault is subdivided into many rectangular subfaults and a value of the slip
si is assigned to the ith subfault. If here are N subfaults, then this defines a vector
s ∈ lRN . Initially we assume that the moment magnitude Mw of the earthquake
(which depends on the total slip summed over all subfaults) has been prescribed,
and also that the desired mean slip µ ∈ lRN and covariance matrix Ĉ ∈ lRN×N

are known. The mean slip is a vector with components µi = E[si], the expected
value of the slip on the ith subfault, and the N × N covariance matrix Ĉ has
components Ĉij = E[(si − µi)(sj − µj)], which can also be expressed as the outer

product Ĉ = E[(s− µ)(s− µ)T ], where T denotes transposing the vector.
The Karhunen-Loève (K-L) expansion (e.g. Ghanem and Spanos (1991); Huang

et al (2001); Karhunen (1947); Loève (1977); Schwab and Todor (2006)) is a stan-
dard approach to representing a Gaussian random field as a linear combination of
eigenvectors of the presumed covariance matrix Ĉ. If the matrix Ĉ has eigenvalues
λk (ordered with λ0 > λ1 > · · · > 0) and corresponding eigenvectors vk, then the
K-L expansion expresses the slip vector s as

s = µ+
N∑

k=1

zk
√
λkvk. (1)

where the zk are independent normally distributed random numbers zk ∼ N (0, 1)
with mean 0 and standard deviation 1. This is described in more detail in Section 2
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where we explain why this gives random slip patterns with the desired mean
and covariance. This expansion makes it easy to generate an arbitrary number of
realizations using standard software to generate N (0, 1) random numbers.

Figure 2 shows an example of the first four eigenmodes for the CSZ using this
approach, where the N components of each eigenvector are represented on the fault
geometry using a color map in which magenta is positive and green is negative.
Note that Mode 0 is roughly constant over the fault, so adding a multiple of this
mode modifies the total slip and hence the magnitude Mw. On the other hand the
other modes have both positive and negative regions and so adding a multiple of
any of these tends to redistribute the slip (e.g., up-dip / down-dip with Mode 1
or between north and south with Mode 2). As with Fourier series, higher order
eigenmodes are more oscillatory.

If the presumed correlation lengths are long and the covariance is a sufficiently
smooth function of the distance between subfaults, then the eigenvalues λk decay
rapidly (there is little high-frequency content) and so the K-L series can often be
truncated to only a few terms, greatly reducing the dimension of the stochastic
space that must be explored.

The K-L series approach could also be used to generate random slip patterns
for generating seismic waves, e.g. for performing PSHA or testing seismic inversion
algorithms. In this case high-frequency components of the slip are very important
and the K-L expansion may not decay so quickly. However, for tsunami modeling
applications the slip pattern on the fault is only used to generate the resulting
seafloor deformation. This is a smoothing operation that suppresses high frequen-
cies. In this paper we also explore this effect and show that truncating the expan-
sion to only a few terms may be sufficient for many tsunami applications. Reducing
the dimension of the stochastic space is important for efficient application of many
sampling techniques that could be used for PTHA analysis.

In this paper we focus on explaining the key ideas in the context of a one-
dimensional fault model (with variation in slip only in the down-dip direction)
and a two-dimensional example using the southern portion of the CSZ. However,
we do not claim to have used the optimal parameters for modeling this particular
fault. We also do not fully explore PTHA applications here, and for illustration
we use some quantities of interest related to a tsunami that are easy to compute
from a given slip realization, rather than performing a full tsunami simulation
for each. This allows us to explore the statistics obtained from a large number
of realizations (20,000) in order to illustrate some possible applications of this
approach and explore the effects of truncating the K-L series. Work is underway
to model the CSZ in a realistic manner and to couple this approach with a full
tsunami model.

The K-L expansion as described above generates a Gaussian random field, in
which each subfault slip si has a normal distribution with mean µi and variance
Ĉii and together they have a joint normal distribution with mean µ and covariance
matrix Ĉ. A potential problem with this representation is that when the variance
is large it is possible for the slip si to be negative on some subfaults. Since we
assume the rake is constant (e.g. 90 degrees for a subduction thrust event), this
would correspond to subfaults that are slipping in the wrong direction. The same
issue arises with Fourier series representations and can be dealt with by various
means, for example by simply setting the slip to zero anyplace it is negative (and
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then rescaling to maintain the desired magnitude). This naturally changes the
statistics of the resulting distributions.

Another approach is to instead posit that the random slip can be modeled
by a joint lognormal distribution, for which the probability of negative values is
zero. Random slip patterns with a joint lognormal distribution can be generated by
using the K-L expansion to first compute a Gaussian field and then exponentiating
each component of the resulting vector to obtain the slip on each subfault. By
choosing the mean µg and covariance matrix Ĉg for the Gaussian field properly,
the resulting lognormal will have the desired mean µ and Ĉ for the slip. This is
discussed in Section 4 and used in the two-dimensional example in Section 5.

2 Expressing slip using a Karhunen-Loève expansion

If the earthquake fault is subdivided into N small rectangular subfaults, then a
particular earthquake realization can be described by specifying the slip on each
subfault, i.e. by a vector s ∈ lRN where si is the slip on the ith subfault. Note
that we are assuming that only the slip varies from one realization to another; the
geometry and rake (direction of slip on each subfault) are fixed, and the slip is
instantaneous and not time-dependent. These restrictions could be relaxed at the
expense of additional dimensions in our space of realizations.

Initially assume we wish to specify that the slip is a Gaussian random field
with desired mean slip µ ∈ lRN and covariance matrix Ĉ ∈ lRN×N , which we
write as s ∼ N (µ, Ĉ). Then we compute the eigenvalues λk of Ĉ and correspond-
ing normalized eigenvectors vk so that the matrix of eigenvectors V (with kth
column vk) and the diagonal matrix of eigenvalues Λ satisfy Ĉ = V ΛV T . Note
that the covariance matrix is symmetric postive definite, so the eigenvalues are al-
ways positive real numbers and the eigenvectors can be chosen to be orthonormal,
V −1 = V T .

Then the K-L expansion (1) can be written in matrix-vector form as

s = µ+ V Λ1/2z, (2)

where z ∈ lRN is a vector of independent identically distributed N (0, 1) random
numbers. Realizations generated via the K-L expansion have the right statistics
since we can easily compute that E[s] = µ (since E[z] = 0) and

E[(s− µ)(s− µ)T ] = E[V Λ1/2zzTΛ1/2V T ]

= V Λ1/2E[zzT ]Λ1/2V T

= V ΛV T = Ĉ

(3)

using the fact that V and Λ are fixed and E[zzT ] = I. Note that the z could be
chosen from a different probability density with mean 0 and covariance matrix I
and achieve the same covariance matrix Ĉ with the K-L expansion, although the
s would not have a joint normal distribution in this case.



6 LEVEQUE, WAAGAN, GONZÁLEZ, RIM, and LIN

3 One-dimensional case: down-dip variation

We first illustrate this technique on a simplified case, a rectangular fault plane
that is essentially infinitely long in the strike direction and with uniform slip in
that direction, similar to the test case used by Løvholt et al (2012). The slip
will only vary in the down-dip direction, reducing the problem to a single space
dimension. The fault width is 100 km, a typical width for subduction zone faults,
and is assumed to dip at 13◦ from horizontal, with the upper edge at a depth of
5 km below the sea floor.

For the tests we perform here, we will focus on events of a single specified
magnitude. The moment magnitude Mw is a function of the total slip integrated
over the entire fault plane, and also depends on the rigidity of the rock. For typical
rigidity parameters, an average of 10 m of slip distributed over a fault that is 100
km wide and 1000 km long would result in a magnitude Mw ≈ 9.0 and so we fix
the total slip to have this average. If the fault were only half as long, 500 km, then
this would be a Mw ≈ 8.8 event and 20 m average slip would be required for a
magnitude 9 event. With the exception of the potential energy, the quantities of
interest considered in this paper are all linear in the total slip, however, so it does
not really matter what value we choose.1

An important aspect of PTHA analysis is to consider possible events of differing
magnitudes as well, and take into account their relative probabilities. For smaller
earthquakes, the Gutenberg-Ricter relation approximately describes their relative
frequency, but for large subduction zone events that may have a recurrence time
of hundreds of years, there is generally no simple model for the variation of annual
probability with magnitude. There may be a continuous distribution of magnitudes
or there may be certain “characteristic earthquakes” that happen repeatedly after
sufficient stress has built up. The lack of detailed data for past events over a long
time period makes this difficult to assess.

For the purposes of this paper, we assume that an earthquake of a particular
magnitude occurs and we wish to model the range of possible tsunamis that can
arise from such an event. We thus discuss the relative probability of different
slip patterns and tsunamis given that an event of this magnitude occurs, and
so the probability density should integrate to 1. This could then be used as one
component in a full PTHA analysis by weighting these results by the probability
that an event of this magnitude occurs and combining with similar results for other
magnitudes. Alternatively, one could introduce the magnitude as an additional
stochastic dimension and assume some probability density function for this.

We use x to denote the distance down-dip and split the fault into N segments of
equal width ∆x, where N∆x is the total width of the fault in the dip direction. We
then specify N slips si for i = 1, 2, . . . , N . In our one-dimensional experiments
we take N = 200. This is finer than one would use in two dimensions and much
finer than is needed to represent slip at an adequate level for either seismic or
tsunami modeling. (For example, note from Figure 1 that the seismic inversion for
this event represents the slip as piecewise constant on a 18 × 10 grid with only
10 segments in the down-dip direction.) One could certainly reduce the dimension

1 We follow http://earthquake.usgs.gov/aboutus/docs/020204mag_policy.php and use
Mw = 2

3
(log10(Mo) − 9.05) where the seismic moment Mo =length × width×(average

slip)×(rigidity) and set the rigidity to 3.55 × 1010 N-m for this calculation.

http://earthquake.usgs.gov/aboutus/docs/020204mag_policy.php
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Fig. 3 Eigenvalues decay like 1/k2 when the exponential autocorrelation function is used.
The corresponding eigenvectors are similar to Fourier modes, shaped by the taper. The taper
is shown as a dashed line and the eigenmodes are normalized to have max-norm equal to 1.

of the stochastic space below N = 200 by using fewer subfaults. However, we
will show that the dimension can be drastically reduced by instead using the K-
L expansion reduced to only a few terms (e.g. 3, for this one-dimensional model
the parameter choices below). By starting with a fine discretization of the fault,
the eigenmodes used are smooth and perhaps better represent actual slip patterns
than piecewise constant functions over large subfaults.

We assume that the N slips are to be chosen randomly from a joint normal
distribution with mean µ = [µ1, µ2, . . . , µN ]T . The mean is chosen to be the
desired taper, scaled to have the desired total slip. As an illustration of taper we
use the function

τ(d) = 1− exp(−20|d− dmax|/dmax) (4)

where d is the depth of a subfault and dmax = 22500m is the maximum depth
of the fault. This function is close to 1 over most of the fault but tapers toward
the down-dip edge. This taper, after scaling to give the mean slip, is shown as
the dashed line in Figure 3(b). Other tapers can be used instead, e.g. the taper
propsed by Wang and He (2008).

We set the desired covariance matrix to be Ĉij = σiσjCij where σi = αµi for
some scalar α ∈ lR and C is the desired correlation matrix. Since α scales the
standard deviation relative to the mean, the larger this is the more likely the slip
is to be negative in some regions. We take α = 0.75, which tends to keep the
slip positive everywhere, as desired, while still giving reasonable variation in slip
patterns. This is similar to the value 0.85 used by Graves and Pitarka (2010) with
the Fourier approach. The correlation matrix is given by Cij = corr(|xi − xj |) in
terms of some autocorrelation function (ACF) corr(r), and we choose

corr(r) = exp(−r/r0), (5)

where the correlation length is set to r0 = 0.4W = 40 km, i.e., 40% of the fault
width as suggested by the work of Mai and Beroza (2002). Figure 3(a) shows
the first 20 eigenvalues on a logarithmic scale, showing that they decay like λk ∼
1/k2. This is the same spectral decay rate as would be observed from taking the
Fourier transform of the exponential ACF in a Fourier-series based approach. If
the discretization is refined (i.e. the number of subfaults N grows), the spectral
properties of the correlation matrix Cij converge to those of the continuous ACF
(5). For the untapered case on an finite interval, the analytic expressions for the
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eigenvalues of the ACF are known in terms of transcendental equations (Van Trees
et al (2013)) and the decay can be shown to asymptotically approach 1/k2. More
generally a different autocorrelation function could be chosen with a minor change
to the code, for example a von Karman ACF as considered in Mai and Beroza
(2002); Graves and Pitarka (2010).

For our choice of ACF, Figure 3(b) shows the taper along with the first several
eigenvectors of the covariance matrix C, ordered based on the magnitude of the
eigenvalues. For comparison purposes they are scaled to have maximum amplitude
1 and to be positive at the updip edge. Note that the lowest mode 0 looks very
similar to the taper. Adding in a multiple of this mode will modify the total slip
and hence the magnitude, so we drop this mode from the sum. The higher modes
are orthogonal to mode 0 and hence do not tend to change the total slip. They
look like Fourier modes that have been damped near the down-dip boundary by
the taper.

To create a random realization, we choose a vector z of N i.i.d. Gaussian
N (0, 1) values zk for k = 0, 1, . . . , N − 1. If we neglect the 0-mode and truncate
the expansion after m terms, then this amounts to setting z0 = 0 and zk = 0
for k > m. We will denote such a z vector by z[m]. The slip pattern can then be
written as

s = µ+ V Λ1/2z[m]. (6)

The left column of Figure 4 shows the mean slip in the top plot, followed by
several random realizations generated by the K-L expansion using 20 terms, with
the z[20] coefficients chosen as i.i.d. N (0, 1) values. These are the blue curves in
each plot. In each case, the slip is also shown when only 3 terms in the series are
used (i.e. z[3] is computed by leaving z1, z2, z3 unchanged from z[20] but with
the higher terms dropped, equivalent to truncating the expansion at an earlier
point). These slip patterns, shown in red, are smoothed versions of the 20-term
slip patterns since the higher wave number components have been surpressed. In
many cases there appears to be quite a large difference between the 3-term and
20-term slips. This is a reflection of the fact that the eigenvalues do not decay all
that quickly in this case. There would be faster decay if a longer correlation length
were chosen, and much more rapidly if the Gaussian autocorrelation function were
chosen instead of the exponential.

In spite of the differences in the slip patterns, for tsunami modeling the 3-
term series may still be adequate. The right column of Figure 4 shows the sea
floor deformations ∆B that result from the slips shown on the left. These are
computed using the Okada solution (Okada (1985)) to the homogeneous elastic
half plane problem consisting of uniform dislocation on a rectangular subfault.
Okada’s result is the surface deformation, which can be evaluated on a fine grid at
the surface. Applying this to each subfault, weighting by the corresponding slip,
and summing the results produces (by linearity) the resulting sea floor deformation
∆B in Figure 4. The blue curves show the deformation due to the 20-term sum
while the red curves show the deformation resulting from the truncated 3-term
sum. Note that high wavenumber oscillations in the slip pattern are highly damped
in the resulting seafloor deformations. (The degree of damping increases with depth
of the fault below the surface.) If the ∆B are sufficiently similar between the 3-
term and the full K-L expansion, then there is no reason to use more terms. In
this case we have reduced the stochastic space that needs to be explored down
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to 3 dimensions. There is much greater similarity for some realizations than for
others, and so below we examine the statistical properties of this approximation
by using a sample of 20,000 realizations.

Note that using only 3 modes may be too few for this particular set of fault
parameters — the comparisons shown in Figure 4 would look more similar if a few
more terms were retained — but we will see that good statistical properties are
obtained even with this severe truncation. How many terms are required depends
on various factors: not only the correlation structure of the slip as discussed above,
but also the depth of the fault plane. The deeper it is, the more damping takes
place when the elastic wave model is used to obtain the Okada solution for seafloor
deformation. Here we placed the top of the fault plane at 5 km depth.

To examine statistical properties of the 20-term sum and the 3-term approxi-
mation, we generate 20,000 samples of each and compare some quantities that are
cheap to compute but that are important indicators of the severity of the resulting
tsunami. Running a full tsunami model based on the shallow water equations is
not feasible for this large number of realizations, but the quantities we consider will
stand in as proxies for the quantities one might actually want to compute, such as
the maximum depth of flooding at particular points onshore. Moreover the distri-
bution of these proxy values can be used in a later stage to help choose particular
earthquake realizations for which the full tsunami model will be run. It is desirable
to run the model with judiciously chosen realizations for which the proxy values
are well distributed over the range of possible values. The computed densities of
the proxy values can also be used to weight the results from the full model runs
to accurately reflect the probabities of such events. This will be explored in detail
in a future paper.

Computations for a large number of realizations can be sped up substantially
by realizing that the Okada solution is linear in slip, i.e. if the slip vector is given by
s then the resulting sea floor deformation can be written as ∆B = Θs for a matrix
Θ ∈ lRNB×N , where NB is the number of grid points at which the deformation ∆B
is evaluated (in our experiments we use NB = 1001 over an interval that extends
100 km on either side of the fault region). The Okada solution implemented in the
GeoClaw dtopotools Python module is used, which directly computes ∆B from s

and so we do not actually compute the matrix Θ, but it is useful conceptually. In
particular, if the K-L expansion (6) is to be used to compute s then we find that

∆B = Θµ+ΘV Λ1/2z[m]. (7)

The vector Θµ is obtained by applying Okada to the mean slip vector. The matrix
ΘV can be computed by applying Okada to each column of V to compute the
columns of the product matrix. Since the sum only involves m nonzero terms, we
need only apply Okada to columns 1 through m of V (i.e. the first m K-L modes
v1, v2, . . . , vm used to express s). Hence if we plan to use at most 20 modes of
the K-L expansion then we need only apply the Okada solution to 21 slip vectors
and we can then take linear combinations of the resulting sea floor deformations,
rather than applying Okada to 20,000 slip realizations separately.

In practice this can be simplified further. Applying Okada to a mode vk actually
requires applying Okada to each of the N subfaults, weighting by the corresponding
element of vk, and summing over all the subfaults. So applying Okada to m modes
in this way actually requires applying Okada mN times. Instead, we can first apply
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Fig. 4 The left column shows slip on the fault plane of width W = 100 km. The right column
shows the resulting seafloor deformation if the up-dip edge of the fault plane is 5 km below
the surface and it dips at 13◦. The top row shows the mean slip and resulting deformation.
The remaining rows show random realizations using 20 terms of a K-L expansion (blue) and
the same sum truncated to 3 terms (red).
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Okada to N unit source scenarios in which the slip is set to 1 on the jth subfault
and to 0 on all other subfaults. Call this slip vector s[j]. Applying Okada to this
gives a resulting ∆B[j] = Θs[j]. Now for any slip vector s we can compute Θs as

Θs =
N∑
j=1

sj∆B
[j]. (8)

In particular taking s = vk would give Θvk, but (8) can be used directly to
compute the seafloor deformation ∆B = Θs for any slip realization. This approach
can also be used in the lognormal case described in Section 4 and employed in
Section 5.

Subsidence or uplift. One quantity that has a significant impact on the sever-
ity of tsunami flooding is the vertical displacement of the seafloor at the coast.
If this displacement is negative and the land subsides at the shore, then flooding
may be much worse than if uplift occurs. The behavior seen for a particular event
depends on how far offshore the subduction zone is, which is generally directly re-
lated to the width of the continental shelf offshore from the community of interest
(since the top edge of the fault is usually located near the trench at the edge of
the shelf, which is part of the continental plate beneath which the oceanic plate
is subducting). This distance can vary from only a few km (e.g. along the Mexico
coast) to 200 km (e.g. along the coast of Japan where the Tohoku event occurred).
In our model the top of the plate is at x = 0 and we choose the coast line location
to be at x = 75 km, which gives a wide range of subsidence and uplift values, as
can be observed for the realizations shown in Figure 4.

The displacement at one particular point is easy to determine from each real-
ization, it is just one entry in the vector of sea floor deformation obtained from
the Okada solution, say ∆Bj = eTj ∆B for some j, where ej is the unit vector with
a 1 in position j. (We have evaluated ∆B on a fine grid so we assume we don’t
need to interpolate). As such, this particular quantity is in fact easy to compute
directly from z for any given realization, as

∆Bshore = ∆Bshore(µ) + bT z, (9)

where ∆Bshore(µ) = eTj Θµ is the shoreline displacement resulting from the mean

slip and the row vector bT is

bT = eTj ΘV Λ
1/2, (10)

i.e. the vector consisting of the jth component of the sea floor displacement result-
ing from applying Okada to each K-L mode, scaled by the square root of the cor-
responding eigenvalue. From (9) it follows immediately that ∆Bshore is normally
distributed with mean ∆Bshore(µ) and variance σ2 =

∑m
k=1 b

2
k (in the Gaussian

case considered here, not in the lognormal case considered below). Hence for this
particular quantity of interest in the Gaussian case, we do not need to estimate
the statistics based on a large number of samples. We can immediately plot the
Gaussian density function for the “full” expansion with 20 terms and compare it to
the density for the truncated series with only 3 terms. These are seen to lie nearly
on top of one another in Figure 5. This plot also shows the density that would
be obtained with only 1 or 2 terms in the K-L expansion, which are substantially
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Fig. 5 The figure on the left shows the true Gaussian density for the shoreline displacement
for K-L expansions with 1, 2, 3, or 20 terms. The figure on the right shows the kernel density
estimate from 20,000 samples using 3 terms or 20 terms, together with the true density for 20
terms.

different. This confirms that, in terms of this particular quantity of interest, it is
sufficient to use a 3-term K-L expansion (but not fewer terms).

Figure 5 also shows the density as estimated using 20,000 samples, using a
kernel density estimate computed using the Python function gaussian kde from
the package scipy.stats, version 0.16.1. With either 3 terms or 20 terms, the
estimated density lies nearly on top of the true density, giving confidence that
the sampling has been programmed properly and that 20,000 samples is sufficient
since the true density is known in this case.

Potential energy. From the samples it is possible to also estimate the densities
for other quantities of interest for which it is not possible to compute the true den-
sity. We consider two additional quantities that have relevance to the magnitude
of the tsunami generated. One is the potential energy of the initial perturbation of
the ocean surface, which is one measure of its potential for destruction. For exam-
ple, a recent study of 44 ocean-bottom earthquakes by Nosov et al (2014) showed
that tsunami intensity is highly correlated with potential energy. The potential
energy is given by

E =
1

2

∫ ∫
ρgη2(x, y) dx dy (11)

where ρ = 1000 kg/m3 is the density of water, g = 9.81 m/s2, and η(x, y) is the
initial perturbation of the surface. With our assumption that the sea surface moves
instantaneously with sea floor deformation generated from the slip, η is equal to the
sea floor displacement in the ocean, while onshore we set η = 0 since displacement
at these points does not contribute to the potential energy of the tsunami. For the
one-dimensional problem considered here, we sum the square of the displacement
over x < 75 km and scale by ρgL∆x to define E, taking L = 100 km. Finally we
multiply by 10−15 so that the results are order 1, with units of PetaJoules. We plot
the density (again estimated using gaussian kde) obtained with 20,000 samples,
using 20 terms, or truncating further to 1, 2, or 3 terms. The results in Figure 6
again show that 3 terms is sufficient to obtain very similar results to 20 terms.

Maximum wave height. The maximum positive seafloor displacement gives
the maximum amplitude of the tsunami at the initial time. We expect this to
be positively correlated with the amplitude of the wave that approaches shore
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Fig. 6 Kernel density estimates based on 20,000 samples, using 1, 2, 3, or 20 terms in the
K-L expansion. The left figure shows the potential energy (11) and the right figure shows the
maximum amplitude of deformation (sea surface elevation).

(although the wave propagation can be complicated by multiple peaks, the location
of the ηmax relative to the shore, or various other factors that can only be studied
with a full tsunami model). The right plot of Figure 6 shows the kernel density
estimates of this quantity ηmax.

Joint probability densities. It is also interesting to plot the joint probability
density of pairs of quantities to better explore the ability of 3 terms to capture the
variation. This is illustrated in Figure 7, where the top row shows kernel density
estimates for E vs. ηmax and the bottom rows shows ∆Bshore vs. ηmax. In each
case the left figure shows the density computed from 20,000 realizations of the
20-term K-L expansion while the right figure shows the density estimated from
an equal number of 3-term expansions. In each case it appears that the 3-term
expansion captures the bulk of the variation.

The joint distribution of ηmax and ∆Bshore is of particular interest since the
most dangerous events might be those for which ηmax is large while∆Bshore is most
negative (greatest subsidence of the coast). The fact that the joint distributions
look quite similar gives hope that the 3-term model will adequately capture this
possibility.

Depth proxy hazard curves. The goal of a full-scale PTHA exercise is often
to generate hazard curves at many points onshore or in a harbor. A hazard curve
shows the probability that the maximum flow depth (or some other quantity of
interest) will exceed some value as a function of that “exceedance value”. Con-
struction of these curves is discussed, for example, in the appendices of González
et al (2014). The curves may vary greatly with spatial location due to the elevation
of the point relative to sea level, and also due to the manner in which a tsunami
interacts with nearby topography. Hazard curves must thus be computed using
fine-grid simulations of the tsunami dynamics and cannot be computed directly
from the sea floor deformation alone.

The general idea is to choose a quantity of interest, such as the maximum
depth D observed over all time at some particular spatial point, and then for a set
of exceedence values De we need to calculate

P [D > De] =

∫
ρ(z)I(z;De) dz (12)
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Fig. 7 Joint and marginal probability densities for different quantities, comparing the den-
sities estimated using the 20-term expansion (left column) and the 3-term expansion (right
column). The top row shows the joint density of ηmax with potential energy E of the tsunami
generated. The bottom row shows the joint density of ηmax with ∆Bshore, the vertical dis-
placement at the shore.

where the integral is over the m-dimensional stochastic space of coefficients z of the
K-L sum (assuming m terms are used) and I(z;De) is an indicator function that
is 1 at points z ∈ lRm where the corresponding realization gives a tsunami that
exceeds De and 0 elsewhere (or it could take values between 0 and 1 to incorporate
other uncertainties, e.g. if the approach of Adams et al (2015) is used to incorporate
tidal uncertainty). The function ρ(z) in (12) is the probability density for z. In the
K-L approach, z is a vector of i.i.d. normally distributed values so ρ(z) is known;
for the m-term expansion it takes the form

ρ(z) =
1√

(2π)m
exp

(
−1

2

m∑
i=1

z2i

)
. (13)
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Fig. 8 Hazard curves based on the proxy for flooding depth given by ηmax−∆Bshore. Based
on 20,000 samples using the full 20-term K-L expansion, compared with the hazard curves
obtained using only 1, 2, or 3 terms in the expansion. Note that 3 terms is sufficient to obtain
the hazard curve to high precision.

A brute force approach to estimate this is to use a simple Monte-Carlo method
in which the integral in (12) is replaced by

P [D > De] ≈ 1

ns

ns∑
j=1

Ie(z[j]), (14)

with a large number of samples ns, where z[j] now represents the jth sample,
drawn from the joint normal distribution with density ρ(z). More sophisticated
techniques would be needed in general to reduce the number of samples required,
since running the full tsunami model may take hours of computing time for each
sample. This is discussed briefly in Section 6.

For the purposes of exploring the effects of truncating the K-L expansion, here
we use a simple proxy for maximum flooding depth that is cheap to compute for
each realization: D = ηmax−∆Bshore, the maximum offshore sea surface elevation
augmented by any subsidence that occurs at the shore. We do not claim that this
is a good estimate of the actual maximum water depth that will be observed at
the shore, but computing hazard curves for this quantity provides another test
of how well the 3-term K-L expansion captures the full probability distribution
described by the 20-term expansion. This curve is obtained by computing D for
each sample and determining the fraction of samples for which this is above ζi, for
each exceedance level ζi on a fine grid covering the range of D observed. Figure 8
shows the resulting hazard curve obtained with the 20-term expansion using nx =
20, 000 samples. The curve obtained with the 3-term expansion and an independent
set of nx = 20, 000 samples is also shown, and lies nearly on top of it.

Exploring parameter space. One advantage of describing the probability
space of possible events in terms of a small number of stochastic parameters is
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Fig. 9 Scatter plots in the z1-z2 plane of the subset of 3-term events for which the proxy
depth is greater than 8 m (left) or for which the potential energy is greater than 9.5 PetaJoules
(right).

that it may be possible to identify structure in this stochastic space, which can be
important in developing a cheap surrogate model to use in estimating probabilities
and computing hazard curves for practical quantities of interest. For example, we
can ask what parts of parameter space lead to the worst events. The left figure
in Figure 9 shows the events (projected to the z1-z2 plane) from the above tests
with the 3-term K-L expansion for which the proxy depth is greater than 8 m.
The contours of the bivariate normal distribution are also plotted. A scatter plot
of all 20,000 events would cluster in the middle, but we observe that the events
giving this extreme depth tend to have z1 > 1. From Figure 3 we see that positive
z1 redistributes slip from the down-dip to the up-dip portion of the fault. This
agrees with common wisdom from past events that concentration near the up-
dip edge gives particularly severe tsunamis (as in the case of the 2011 Tohoku
event). The right figure in Figure 9 shows a similar scatter plot of z1-z2 values
for which the potential energy was above 9.5 PetaJoules. In this case most of the
extreme events have z1 either very positive or very negative. In the latter case slip
is concentrated toward the down-dip portion of the fault, which leads to a smaller
maximum surface displacement but the displacement spreads out further spatially
for a deep rupture, which can lead to large potential energy since this is integrated
over space.

4 Lognormally distributed slip

If we wish to instead generate slip realizations that have a joint lognormal distribu-
tion with a desired mean and covariance matrix, we can first generate realizations
of a joint Gaussian random field and then exponentiate each component. This
approach will be used in the two-dimensional example below in Section 5.

In this case we first choose the desired mean µ and covariance matrix Ĉ for
the slip, and then compute the necessary mean µg and covariance matrix Ĉg

for the Gaussian to be generated by the K-L expansion, using the fact that if g
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is a random variable from N (µg, Ĉg), then exp(g) is lognormal with mean and
covariance matrix given by:

µi = exp(µgi + Ĉg
ii/2), Ĉij = µiµj(exp(Ĉg

ij)− 1). (15)

Hence we can solve for

Ĉg
ij = log(Ĉij/µiµj + 1),

µgi = log(µi)−
1

2
Ĉg
ii.

(16)

We now find the eigenvalues λk and eigenvectors vk of Ĉg. To generate a realization
we choose N values zk ∼ N (0, 1) and then form the K-L sum

sg = µg +
N∑

k=0

zk
√
λkvk. (17)

We then exponentiate each component of sg to obtain the slip values, which then
have the desired joint lognormal distribution (see e.g., Ghanem (1999)).

As described, this will generate realizations with total slip (and hence mag-
nitude Mw) that vary around the mean. As in the Gaussian case, we can drop
the nearly-constant v0 term from the sum to reduce this variation. We can also
generally truncate the series to a much smaller number of terms and still capture
most of the variation if the eigenvalues are rapidly decaying.

Now consider the special case where we make the same assumptions as in
Section 2 that Ĉij = σiσjCij where C is the desired correlation matrix and σi =
αµi, while the mean µi was given by some taper τi scaled by a scalar value µ̄. Then
computing µg and Ĉg according to (16), we find that:

Ĉg
ij = log(α2Cij + 1),

µgi = log(µ̄τi)−
1

2
log(α2 + 1)

(18)

We see that the covariance matrix in this case depends only on the correlation ma-
trix and the scalar α, not on the mean slip itself (and in particular is independent
of the taper). We also find that exp(µgi ) = µ̄τi/

√
α2 + 1 is simply a scalar multiple

of the taper.
Using these assumptions and the fact that

exp

(
µg +

N∑
k=1

zk
√
λkvk

)
= exp(µg) exp

(
N∑

k=1

zk
√
λkvk

)
,

it is easy to generate realizations that have exactly the desired magnitude: simply
compute

exp

(
N∑

k=1

zk
√
λkvk

)
, (19)

multiply the result by the desired taper, and then rescale by a multiplicative
factor so that the area-weighted sum of the slips gives the total slip required for
the desired seismic moment.
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5 Two-dimensional case

We now present an example in which the slip is allowed to vary in both directions
along a fault surface. For illustration we use a subset of the Cascadia Subduction
Zone from Figure 2, taking only the southern-most 8 fault segments, as illustrated
in Figure 10. These are subdivided into 540 smaller fault planes for the purposes
of defining the slip.

To define the 540 × 540 correlation matrix, we need to compute the pairwise
“distance” between subfault i and subfault j. We can compute the Euclidean
distance dij , but for a long fault geometry it may be desirable to specify a longer
correlation length in the strike direction than down-dip, so we use a more general
definition

Cij = exp(−(dstrike(i, j)/rstrike)− (ddip(i, j)/rdip)) (20)

where dstrike(i, j) and ddip(i, j) are estimates of the distance between subfaults i
and j in the strike and dip direction, respectively, and rstrike, rdip are the corre-
lation lengths in each direction. We define ddip(i, j) using the difference in depth
between the two subfaults and the dip angle δ as ddip(i, j) = ddepth/ sin(δ), setting

dstrike(i, j) =
√
d2ij − ddip(i, j)2. We take the correlation lengths to be 40% of the

fault length and width respectively, rstrike = 130km and rdip = 40km. We again
use an exponential autocorrelation function as defined in (20), but this could eas-
ily be replaced by a different ACF. We use the lognormal approach described in
Section 4, with parameter α = 0.5. Figure 10 shows the first 8 eigenmodes of Ĉg.
Again we drop Mode 0 from the sum, since this mode is roughly constant over the
fault.

To create slip realizations, we use (19) and then apply a tapering only at the
down-dip edge, given by (4) with dmax = 20000m. (It would also be easy to taper at
the other edges of the fault, if desired.) We then scale the slip so that the resulting
seismic moment gives Mw = 8.8. Figure 11 shows 5 typical realizations, comparing
the slip generated by a 60-term K-L expansion with the slip generated when the
series is truncated after 7 terms. The resulting seafloor deformation in each case
is also shown, along with the potential energy and the subsidence/uplift ∆Bshore

at one point on the coast, the location of Crescent City, CA. Note that in each
case the 7-term series gives a smoother version of the slip obtained with 60 terms,
and the seafloor deformations are more similar than the slip patterns, as expected
from the one-dimensional analogous case shown in Figure 4. The potential energy
and ∆Bshore are also seen to be similar when the truncated series is used to the
values obtained with the longer 60-term series.

We can explore the statistical properties by repeating any of the experiments
performed above in the one-dimensional case. In the interest of space, we only
show one set of results, the same joint and marginal densities examined in the
one-dimensional case in Figure 7. The comparisons for the two-dimensional fault
are shown in Figure 12. To generate each column of figures we computed 20,000
slip realizations and the resulting seafloor deformations (via (8)). The first column
shows statistics when a 60-term KL-expansions is used, producing realizations
similar to those shown in the top row of Figure 11. The second column of figures
was produced using an independent set of 7-term realizations (i.e. these were
not obtained by truncating the 60-term series from the first set, but rather by
generating 20,000 independent samples). Even in this two-dimensional case, less
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Fig. 10 Southern portion of the CSZ fault showing location of Crescent City, CA and the 8
subfaults that are further subdivided into 540 subfaults. The first 7 eigenmodes of the resulting
covariance matrix Ĉg are also shown.

than 10 minutes of CPU time on a MacBook Pro laptop was required to generate
each set of 20,000 realizations, the resulting seafloor deformations, and the kernel
density plots.

Finally, as a more quantitative measure of the difference between the density
functions shown in Figure 12, we compute the total variation distance between
the probability density obtained with the 60-terms series and the density obtained
with the same series truncated to N terms. This is computed by evaluating the
kernel density estimates of the joint density of ηmax and ∆Bshore on a 200× 200
grid of points to obtain P 60

ij and PN
ij and then computing

δ(P 60, PN ) =
200∑
i=1

200∑
j=1

|P 60
ij − P

N
ij |. (21)

Figure 13 shows a plot of how this distance decreases as the number of term N

is increased. We see that it drops rapidly up to N = 7 and then continues to
decay exponentially (linearly on this semilog scale plot) as the number of terms is
increased.

Recall that we assumed correlations lengths of roughly 40% of the fault dimen-
sions. It is interesting to investigate how things change if we specify a different
correlation length in defining the target covariance matrix. Figure 13 also shows
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Fig. 11 The top row shows 5 sample realizations of slip on the southern CSZ fault, as com-
puted with a 60-term K-L expansion. The second row shows the resulting seafloor deformation,
with an indication of the potential energy and the vertical displacement at Crescent City, CA,
which is indicated by the X in the figures. The third row shows the same 5 realizations but
with the K-L series truncated to 7 terms, and the bottom row shows the resulting seafloor
deformations.

the results obtained from this same experiment, but when we specify shorter corre-
lation lengths of 20% of the fault dimensions. The eigenmodes shown in Figure 10
change only slightly, but the decay rate of the eigenvalues will be slower. As a
result more terms in the series will be needed to capture the same degree of agree-
ment with the 60-term series. The plot shown in Figure 13 for the 20% correlation
lengths shows that the total variation distance still decays exponentially, and that
for any given level of agreement (as measured by the total variation distance), at
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Fig. 12 Joint and marginal probability densities for different quantities, comparing the den-
sities estimated using the 60-term expansion (left column) and the 7-term expansion (right
column) for the two-dimensional fault case. The top row shows the joint density of ηmax with
potential energy E of the tsunami generated. The bottom row shows the joint density of ηmax

with ∆Bshore, the vertical displacement at Crescent City, CA. In each case 20,000 realizations
similar to those shown in Figure 11 were used to create these kernel density estimates.

most 8 additional terms must be kept. We have computed similar curves for the
Kullback-Leibler divergence of the difference in the densities (another common
statistical measure) and see similar results.

6 Discussion

We have presented an approach to defining a probability distribution for earth-
quake slip patterns on a specified fault geometry that has been subdivided into an
arbitrary number of rectangular subfaults, with a specified mean and covariance
matrix. Slip realizations can be generated that either have a joint normal distri-
bution or a joint lognormal distribution. Once the parameters have been chosen
that define the distribution (this is the hard part, see the discussion of epistemic
uncertainty below), it is very easy to generate an arbitrary number of sample re-
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Fig. 13 Total variation distance between the joint probability of ηmax and ∆Bshore from
Figure 12 computed using 60 terms with that of the truncated series using N terms, as N
varies.

alizations from the distribution, simply by drawing the coefficients zk of the K-L
series from independent normal distributions.

We have also illustrated that with a realistic choice of correlation length, the
K-L series can be truncated to a relatively small number of terms. For tsunami
modeling applications, the Okada equations are applied to each slip pattern to gen-
erate the seafloor deformation and it was shown that this is a smoothing operation
that can further reduce the number of terms needed, and hence the dimension of
the stochastic space that must be explored in doing PTHA analysis.

We have studied the degree to which the series can be successfully truncated by
computing the statistical similarity of ensembles of realizations generated using a
series with a large number of terms to ensembles generated from truncated series.
In order to compute statistics based on thousands of realizations we have restricted
our attention to proxy quantities of interest that are easy to compute from slip
patterns without running a full tsunami model. Other approaches to comparing
the realizations more directly could also be considered. For seismic applications it
might be valuable to compare individual realizations of slip, using for example the
recent comparison techniques of Razafindrakoto et al (2015); Zhang et al (2015),
but for tsunami applications we believe that comparison of sea floor deformation
and derived tsunami quantities is more relevant.

To use the K-L expansion approach for practical PTHA analysis, two major
challenges must be addressed. The first is to tackle the epistemic uncertainty as-
sociated with the lack of knowledge about possible future earthquakes. For the
purpose of explaining the general methodology in this paper, we have chosen var-
ious parameters and the autocorrelation function to give credible examples based
on the available literature, but without any claim that these are correct for the
Cascadia Subduction Zone or any particular fault. To be optimally useful in prac-
tice, we would need to choose the parameters defining the probability distribution
in a suitable way for real fault geometries so that it accurately represents the
space of possible future earthquakes. Realistic specification of these critical seis-
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mic parameters and quantification of the associated uncertainties and geophysical
contraints is a major challenge that Stein et al (2012) have reviewed and summa-
rized; they characterize the problem as a failure of earthquake hazard mapping,
in general, and make recommendations regarding improvements. The problem is
particularly severe in the case of near-field PTHA studies, because tsunami impact
on a coastal community is highly sensitive to details of the seismic deformation
(e.g., Geist (2002)). Existing expertise and geophysical constraints should at least
be incorporated in the choice of these parameters. The ability to generate many
realizations and examine statistics of quantities such as those used in this paper
may help in this. As one example, the parameters chosen in this paper for the
CSZ example tend to give uplift rather than subsidence at Crescent City (as can
be seen in the marginal distribution of subsidence/uplift in Figure 12). If this is
viewed as inconsistent with the geological evidence from past events, this could
be adjusted, for example by tapering the slip more on the down-dip side. Moving
more of the slip up-dip will cause more subsidence at the shore. It would also be
possible to explore ways in which the epistemic uncertainty associated with the
lack of knowledge about the true probability distribution affect the resulting haz-
ard maps generated by a PTHA analysis, for example by doing the analysis with
different parameter choices, and hence different probability distributions, to see
how robust the PTHA analysis is to changes in assumptions.

The second major challenge is to deal with the aleatoric uncertainty that is still
present even if the parameters defining the probability distribution were known to
be correct. We are still faced with a high-dimensional space to sample in order to
perform PTHA analysis. For example, if we wish to compute a hazard curve similar
to Figure 8 for the probability that the maximum depth D at some particular
point will exceed various depths, then in practice we wish to perform full tsunami
simulations that can take hours to run for a single realization. The brute force
approach used in the approximation (14) with with ns = 20,000 samples was
feasible with the depth proxy used to produce Figure 8, but would not be possible
if a full tsunami model is used to compute D. The number of simulations required
can be reduced by source-filtering techniques that identify a “most-important”
subset of realizations that contribute most to the tsunami impact on a particular
site, e.g. Lorito et al (2015). An alternative would be to compute the integral
with a quadrature algorithm based on sampling on a grid in z-space, but this is
infeasible for high dimensions m. For example, if m = 10 then a tensor-product
grid with only 4 points in each direction has 410 ≈ 106 points.

Many other techniques have been developed in recent years to estimate such
integrals in high dimensional spaces, including for example Latin hypercube sam-
pling (e.g., Olsson and Sandberg (2002)), sparse grids (e.g., Nobile et al (2008)),
and quasi-random grids (e.g., Dick et al (2013)) that have fewer points than uni-
form tensor-product grids. There are also several Monte-Carlo sampling methods
that can obtain accurate results with fewer samples than the naive sum of (14), in-
cluding multi-level or multi-fidelity methods (e.g., Cliffe et al (2011); Giles (2008);
Peherstorfer et al (2016)) that combine results from many simulations that are
cheap to compute with a relatively few simulations with the full model on a fine
grid. Cheaper approximations might be obtained by using some of the proxy quan-
tities from this paper, by computing with a full tsunami model but on coarse grids,
or by developing surrogate models or statistical emulators based on relatively few
samples (e.g. Bastos and O’Hagan (2009); Benner et al (2015); Li et al (2011); Sarri
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et al (2012)). We are currently exploring several of these approaches for PTHA
and will report on them in future publications.

The computer code used to generate all of the figures in this paper can be found
in the repository https://github.com/rjleveque/KLslip-paper and is archived pe-
manently on Zenodo (LeVeque et al (2016)). This code repository also includes
Jupyter notebooks that present additional documentation of the code and illus-
tration of results. The interested reader can also experiment with changing the
parameters to see how this affects the results, and is welcome to build on this code
for other projects.

Some of this code has already been adapted to the generation of seismic wave-
forms in the FakeQuakes module of MudPy (Melgar (2016)). A paper describing
this work and its application to the generation of synthetic Cascadia events is in
preparation (Melgar et al (2016b)). This work includes several extensions of the
approach presented here, including the use of a triangulation of the Slab 1.0 fault
geometry as the fault geometry (using the K-L expansion to define slip patterns
that are piecewise constant on triangles), the generation of events of smaller mag-
nitude over subsections of the fault, and the incorporation of randomly varying
epicenters with time-dependent rupture.
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