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Noise reducing complexity:

(px —y° + 22° — 82)dt
y(x — 1)dt + v/ 2edW

(nz 4+ dx — 2x2)dt,

Hughes, Proctor 1990
Noise (dW = white noise )
perturbs trajectories near slow
manifold ( ;< 1)

Nearly periodic trajectory, well
approximated by 2D probability
density

Also, important in computations:
identify potential computational error K., Papanicolaou, 1998
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Computational questions:

® Convergence of numerical methods: Strong
(pathwise) convergence vs.Weak convergence

® Dynamics of numerical schemes

® Stochastic bifurcations: qualitative changes of
dynamics at specific parameter values

® Stability of schemes

® Questions can vary with types of noise

(Concentrating on SDFE’s)
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Examples:

® Convergence of numerical methods: Strong (pathwise)
convergence vs.Weak (in distribution) convergence

Strong:  E|X — Y}
Weak: |E[X]— E[Y3] fx(z) = fv, (y)]

Forward, Backward Kolmogorov equations: PDE’s
Karniadakis (2013), Schwab (2012) (DG, discontinuous dynamics)
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Examples:  dY = a(Y)dt + b(Y)dW
Strong:
O(V'h) Euler-Maruyama Y, ; =Y, + a(Y,)h + b(Y,)) ZoVE

O(h)
9 - Maruyama method

M=)
Yii1 =Y, +a(Y)h+ b(Y,)ZoVh + b(Y)V (Y,)/2(Z22 — 1)k

Weak:

O(h) Euler-Maruyama
O(h?) Multi-step uses: Y, +ah + bZ,Vh Y, +ah+bVh
Higher order: Additional r.v.s, derivatives needed
Kloeden, Platen 1992
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Recent examples:

® Nonlinearities:, tamed explicit methods
Hutzenhaler, 2012

® Stability of schemes: Questions can vary with types
of noise, or quantities of interest

Multiplicative noise: could have

dr = a(X)dt + b(X)dW
r = a(X)dt + b(X) X=0 as an equilibrium

dx = a(X)dt + bdW Additive noise: X=0 is not an
equilibrium

Buckwar, Riedler, Kloeden, 201 |
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® Dynamics of schemes

® Dynamical behavior

Stability for nonlinear SDFE’s: contractive conditions

Buckwar, Riedler, Kloeden, 201 |

Non-normal drift - interaction of drift and diffusion in
discretized system (stability) Buckwar, et al 20

Ito vs. Stratonovich interpretation of dWV:
endpt vs. midpt evaluation of integrand, lto friendlier
for coding, Stratonovich usually used for parametric

noise in applications
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Dynamical Questions:

Noise driven order: “Stabilized” transients

Can’t ignore: Transients from the deterministic dynamics
“Small” random perturbations drive
qualitative changes

Stochastic facilitation: Constructive roles of biologically
relevant noise in the nervous system

McDonnell,Ward Nature Neuroscience Reviews 201 |

Various types of dynamics: bifurcations + delays

Discontinuous, Piecewise Smooth, dynamics: Sliding,
grazing, impacts, virtual dynamics, control
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Dynamical Questions:

® |nterplay of computational results and analysis

® |nterplay of dynamics (and time scales) with
stochastic perturbations - not necessarily
separable

® Relatively fast, easy-to-code simulations to test
and motivate “interesting’ cases/parameter ranges

® VWhose time is more valuable: researcher time or
machine time! Significance of higher order
methods
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Delays: Models of Balance

® Applications: Human Postural Sway, Stick
Balancing, Robotics

® What are the contributing factors to stability,
instability, balance, sway, other behaviors!?

Transfer ideas between models in mechanics/
optics and biological applications:
transients sustained by stochastic effects
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® Applications: Human Postural Sway, Stick
Balancing, Robotics

Asai, etal,
2009,

Derivative of
the Angle
from vertical

0 (rad/s)

0 0,02 )
o rad) Angle from vertical
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Simple model: inverted pendulum

Stabilized on a cart

> N  3m., 3g . 3F
0160+ —6° sin(20) — —— sinf + ——— — cosH = 0.
8 2 L 2L(M, + M)

Even more simple model:
inverted pendulum w/
pivot control (torque at
the pivot)
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Reduced to essentials
0 &
¢ sin — F(6,0) cos 6

P) (D)
F = af + bl

Proportional Derivative

F=ab(t—r)+b0(t —7)

PD control
Biological considerations:

® Delay in the application of the control: neural
transmission

® On-off control: not active control all the time

® Noise: Small random fluctuations can result in
large changes in certain circumstances
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Balance model: ) 5

¢ sin — F(6,0) cos
Stability diagram for PD

control (w/delay), control F=ab(t—7)+00(t—7)
alwa)'s on G. STEPAN AND L. KOLLAR
Hopf
bifurcation:

oscillations for
larger values
of the control

parameters a,b

Pitchfork
bifurcation

0 = 0 is stable in shaded area, D-shaped region
Pitchfork bifurcation: stability of non-zero fixed point
Hopf bifurcation, stability of oscillatory behavior
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Fully nonlinear model: w/ Hopf bifurcation

maximum Hopf bifurcation: oscillatory
solutions for certain delay

large amplitude
/”mwm Smaller nonlinear oscillatory
: Hopf bifurcation solutions unstable

. small amplitude

nonlinear /mode : :
(stable) Larger nonlinear oscillatory

zero solution . . .
solutions bi-stable with x=0
solution

control parameter (c1
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Mathematical Challenges:

® Nonlinearity: non-uniqueness, complex dynamics
® Delays: Delay Differential Equations (DDEs)

® Noise: Stochastic DDEs (SDDEs), minimal theory,
limited computational methods

Dynamical References: Campbell, Milton, Ohira, Sieber, Krauskopf,
Stepan, K. others
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SDDFE’s;: dx = f(x(t),z(t — 7)dt + g(x(t), x(t — 7)dW (1)

® Dynamics: e.g. Mean Square Stability: Linear
system w/ delays, Buckwar et al 2013

® Numerical methods

Milstein method ( O(h) strong convergence) for SDDE’s:
Kloeden, Shardlow, 2012 (Taylor-like expansions)

Euler-Maruyama, (O(h)weak convergence) for SDDFE's:

Distributed delays:
Buckwar; et al, 2005 (linear), Clement, et al 2006

Anticipating (Malliavin) calculus: tame lto formula on

2 segments of solution
FOY (w—7),Y (W) ...dW(u—r)
t

1

Buckwar, K., Mohammed, Shardlow, 2008
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State-dependent control
in balance models:

PD control with delay

Phase plane for system
with control off
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b = ¢
¢ = sinf — F(6,0)cos@
F=ab(t—7)+b0(t—r7)

State-dependent on/off control:
control is on in state drifting
away from origin

Asai, etal, 2009, PLOS|




Zig-zags and spirals: PD control with delay

0 —sinf + F(0, é) cost) = 0 On/Off Control :

F =af(t—7)+b0(t —7) Note delay in
switching from on/off,
system enters off

region before control

Weaker control: zig-zag is switched off
behavior

Larger delay/
Stronger control:
yields spiral

Asai, etal,
0 0.005 | 001 2009’

0 (rad) PLOSI
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Periodic behavior:

) —sin® + F(6,0) cosd =0

F=af(t—7)+bb(t — 1) PD control with delay

Zig-zag orbits - periodic solutions away from origin,
moving back and forth from on/off

Note: w/o delay: PWVS system is Filipov, solution slides along
the switching manifold, can calculate analytically
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Balance model w/ noise: small random fluctuation

For larger control:
oscillations near the origin:

weak attraction to the
origin

t=T +7
int

For smaller
control, noise
can cause
transition to
zig-zag orbit

Bifurcation diagram: control a vs. 6
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Bursting-like oscillations

Also prominent in cart model with significant mass
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Transitions from zig-zag to spirals?

N\
\

: spiral out ‘. D-Shaped reglOn:
spiral out or zigzag in
or zigzag out —» \

| sgaag o stable vertical position

spiral out

spiral in N‘\ With CtS ContrOI

or zigzag in

spiral in
or zigzag out -y

sy Regions: analysis of
firalto ; linearized model

zigzag in

spiral to
zigzag out

(unstable)

zigzag and

spirals w/
discts control

0 0.005

6 (rad)
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Transitions: sensitivity to noise

Noise driven/amplified spirals, stabilized transients:
complex dynamics expected for larger systems
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Results for stochastic + discontinuous dynamics

Discontinous noise sources : Jump-diffusion: R-K
methods: Mean square (strong) convergence and

Lipschitz-type conditions for increment functions
Buckwar, et al 201 |

Stochastic Flows for SDE’s with singular coefficients: Many
results carry-over for non-smooth, measurable drifts, as
long as noise is “nice” (e.g. Brownian) Mohammed et al 2013

This result is counter-intuitive since the dominant culture’ in
stochastic (and deterministic) dynamical systems is that the
flow “inherits’ its spatial regularity from the driving vector fields
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Results for stochastic + discontinuous dynamics

Smoothed systems (approximating discts system):
Elemgard et al 2013, Simonsen et al 2013

Deterministic:

Acary, Brogliato, Numerical Methods for Nonsmooth, DS, 2008
Dieci, Lopez, Survey for [VPs, 2012

Weak existence and uniqueness vs. strong uniqueness,
discontinuous drift bounded away from zero Pascu, 2013
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Smooth vs. Piecewise Linear (PWL) models:

Complex dynamics in higher dimensions or noise driven?

Neuro-dynamics: Typical structure

dv = (f(v) —w) dt,
dw = e(av —ow — \) dt + D dW [ L, v <0
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MMOQO’s in PWL models w/ canard structure

primarily
large limit
cycles

primarily
small
oscillations

0.0012

/ smooth

0.1 prob. of
large 0sc. PWI

MMO’s robust over a larger

range of control parameter
for PWL

0.1 prob. of
small osc.

0.04
control parameter

Simpson, K. Physica D, 201 |
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Analysis of PWL FHN type models, w/ noise

W
. (1,1)
*Linear analysis on subregions \:" R slope e
*Time dependent probabilities A\
slope E
, . Y : \
(0,0) \ ~ :
cp 7)o : Vnullf‘gu)n\
In each for four regions, SDE: e E

dv:(f(v)—w) dtv
dw =¢e(av —ow — \) dt + D dW

Time dependent probability density with f(v) linear
Solve PDE (Fokker Planck equation) with linear
coefficients: Gaussian probabilities

Time dependent Ornstein-Uhlenbeck processes
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Time dependent densities: transition distributions

*Time dependent probabilities
*Semi-analytical approach: iterate
on transitions between regions

* Additional local analysis at

crossings: first vs. last crossing
time
* Parametric dependence

Variability with A and critical

<

v—nullcline

Udh A B b 1o B Sid )

w—nullcline

N

exit

e v—nullcline,
w = f(v)

distribution  _ 56 1

LB 3 B g 1 Be i<

\%Y% A%
v B p(w) p(v)
20 | — TTTr— |
« 2 —0.006 wy, —0.002 0 0.01 0.02 0.03
. 2 w \
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Sliding dynamics: Relay control

x = Ax + Bu
p=0C"x,
u = —sgn(p) Control (u) depends on state x

no noise phase plane
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Potential contributions to O(|) change to average

beriod
x = Ax + Bu
p=C'x,
u = —sgn(¢p)

NO hoise
{3 Ir A» . s

w/ noise sliding w/n0|se

Control (u) depends on state x

phase plane

X
2

T . . X . > > ¥ ¥ ¥ - - - -

)
i

T < < [< <= <= < E AT T A S 4 ";"i, <~ < - < <
021 -2 ~ - . < < > ¥ o o F ¢ -~ < € < <
X] XZ’X: < -~ - - < B AT A G ;;' <~ <. <. <_ <
0.1 o 1 = —
0.1 \’ f -1 - € € € < < 5 > > o > <\<\<\‘&
-~ < — < < =< E AR AT R S o ,‘:
0.2 2 €T € X - < r r ry ¥z
!

E A I S JE < . €. < € < < > r r = < < € < <
> > >y € < € € < < > F o FTFy F € < < € < <

Thursday, October 24, 2013



3D model

inding1

Results: influence of noise in
deviation from sliding

Other regions: connection of

sliding with other dynamics (exit/

entrance), use of stochastic

averaging, asymptotic analysis of N

b A 4
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Distributions, moments

Constant drift case:

br, — br)*
Var(y(t)) = ekt H ( R)Qet + O(&?)
(ar + ar)
150
pg(CL’,t;CL’O)
Time dependent density: o
Needed to compute correlations ; e,
(Karatzas, Shreve) '
p(x,t[x_0) =
i ge%sﬂc fO t b CLR x h (t b— 1z — ZIZ‘(),CZ[) db + Gabsorb,e(xata CLL|IO> ) Tg < 07 r <0
< %e e fo (t,b+x,ag) * ho(t,b— x9,ar)db, rog <0, >0
%eangIO tb+$07aR) h(tb_xaal})dba CUQZO,QZ’SO
\ z 24 R fo (t,b+x + x0,aR) * he(t,b,ar) db+ Gapsorb (T, t, —ag|zo) , 29 >0, 2 > O
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Implications for (near) sliding dynamics

aidr — andp)(ap + ag a2cg — a%er)(br — br
<Z/(t)> B ysnde(t) I ( )( Q;GR()CZL—(FCLR) )(b b )

—et + O(e?)

et + o(¢)

(b — br)”
(az + ar)?

Var(y(t)) = ekt 4

Standard deviation larger than mean shift from sliding
Large coefficients can shift average oscillation time

. B @ oscillation time |1 f]ljence on time in
ol ! sliding state, probability
91: % % % to stay in sliding state
ol % | (Simpson, K, 2012)

85 B M

8_

715

| | | | |
0.04 0.05

’ oot ho2 Ve noOise level
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Noise sensitivity: grazing

Grazing: vibro-impacts, friction, AFM, stick-slip

> ] > ] >

Poincare map: a discontinuity map captures impact

Grazing normal form:
Nordmark map
Square root behavior
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Noise sensitivity: grazing

Stochastic Poincare map
derived from cts model
(vs. Poincare map + noise)

Gaussian densities:
well separated branches

Non- Gaussian:

branches overlap, square root
“stretching” follows iterates
near switching

Simpson, Hogan, K. SIADS, to appear
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Different types of stochastic discontinuous
dynamics: need a variety of ideas

® Mixed mode oscillations: Semi-analytical iterations
of time dependent probability density functions

® Discontinuity induced bifurcations - underlying
sources of noise-sensitivity

® Positive occupation times: sliding

® Boundary layers and non-standard scaling limits:
sliding transitions

® Grazing: Stochastic Poincare maps
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Lots of mathematical and modeling challenges:

® Nonlinear models with delay: complex behaviors

® Piecewise continuous nonlinear systems: recently
receiving more attention

® Stochastic modeling for systems with delay and
discontinuities: open problems analytically and
computationally, new approaches needed

® Robustness of different on/off control strategies

® Recent work: extension of results for continuous

cases to discontinuous drift cases with “nice’” noise
(Mohammed, et al, 2013 in progress)
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