
Noise-sensitivity in stochastic 
nonlinear models with delays and 

discontinuities

David Simpson (UBC/Massey University), Yue Xian Li 
(UBC), John Hogan (U Bristol), 

Tony Shardlow (U. Bath) Evelyn Buckwar (U. Linz),
Salah Mohammed (S. Illinois U.)

In Collaboration with:

Rachel Kuske, UBC

Thursday, October 24, 2013



Noise reducing complexity:

δ = 1.5
−1

0
1

2
3

−2

−1

0

1

2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

δ = .5
−1

0
1

2
3

−2

−1

0

1

2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Noise reducing complexity dx = (µx− y2 + 2z2 − δz)dt

dy = y(x− 1)dt +
√

2�dW

dz = (µz + δx− 2xz)dt,

µ = .1, � = 10−7
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Also, important in computations: 
identify potential computational error

Noise (dW = white noise )
perturbs trajectories near slow 
manifold (          )

Nearly periodic trajectory, well 
approximated by 2D probability 
density

K., Papanicolaou, 1998

Hughes, Proctor 1990

µ � 1
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• Convergence of numerical methods: Strong 
(pathwise) convergence vs. Weak convergence

• Dynamics of numerical schemes 

• Stochastic bifurcations:  qualitative changes of 
dynamics at specific parameter values 

• Stability of schemes

• Questions can vary with types of noise

 Computational questions:

(Concentrating on SDE’s)
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• Convergence of numerical methods: Strong (pathwise) 
convergence vs. Weak (in distribution) convergence

 Examples:

Forward, Backward Kolmogorov equations: PDE’s
Karniadakis (2013), Schwab (2012) (DG, discontinuous dynamics)

|E[X]− E[Yh]|

Strong:

Weak:

E|X − Yh|

|fX(x)− fYn(y)|
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 Examples:  
Strong:

Weak: 

Yn+1 = Yn + a(Yn)h+ b(Yn)Zn

√
h

dY = a(Y )dt+ b(Y )dW

Yn+1 = Yn + a(Yn)h+ b(Yn)Zn

√
h+ b(Yn)b

�(Yn)/2(Z
2
n − 1)h

Euler-MaruyamaO(
√
h)

Milstein

O(h)

O(h2):  Multi-step uses: Yn + ah+ bZn

√
h Yn + ah± b

√
h

θ - Maruyama method

Higher order:  Additional r.v.’s,  derivatives needed

O(h)

Euler-Maruyama

Kloeden, Platen 1992
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• Nonlinearities:,  tamed explicit methods 
Hutzenhaler, 2012

 Recent examples:

• Stability of schemes: Questions can vary with types 
of noise, or quantities of interest

dx = a(X)dt+ b(X)dW

dx = a(X)dt+ bdW

Multiplicative noise: could have 
X=0 as an equilibrium

Additive noise: X=0 is not an 
equilibrium

Buckwar, Riedler,  Kloeden, 2011

Thursday, October 24, 2013



• Dynamics of schemes

• Dynamical behavior

Non-normal drift - interaction of drift and diffusion in 
discretized system (stability) Buckwar, et al 20 

Buckwar, Riedler,  Kloeden, 2011

Stability for nonlinear SDE’s:  contractive conditions

Ito vs. Stratonovich interpretation of dW:
endpt vs. midpt evaluation of integrand,  Ito friendlier 
for coding,  Stratonovich usually used for parametric 
noise in applications
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Noise driven order:  “Stabilized” transients

Can’t ignore:   Transients from the deterministic dynamics
                      “Small” random perturbations drive      
                       qualitative changes

Stochastic facilitation:  Constructive roles of biologically 
relevant noise in the nervous system 
McDonnell, Ward Nature Neuroscience Reviews 2011

Various types of dynamics:  bifurcations + delays

Discontinuous, Piecewise Smooth, dynamics:  Sliding,  
grazing,  impacts,  virtual dynamics, control

 Dynamical Questions: 
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• Interplay of computational results and analysis

• Interplay of dynamics (and time scales) with 
stochastic perturbations - not necessarily 
separable

• Relatively fast, easy-to-code simulations to test 
and motivate “interesting” cases/parameter ranges

• Whose time is more valuable:  researcher time or 
machine time?  Significance of higher order 
methods

 Dynamical Questions: 

                

Thursday, October 24, 2013



• Applications: Human Postural Sway, Stick 
Balancing, Robotics

• What are the contributing factors to stability, 
instability, balance, sway, other behaviors?

Delays: Models of Balance

Transfer ideas between models in mechanics/
optics and biological applications:
transients sustained by stochastic effects

Thursday, October 24, 2013



• Applications: Human Postural Sway, Stick 
Balancing, Robotics

signed an informed consent statement that had been approved by
the Brandeis University Committee for the Protection of Human
Subjects.

Apparatus and Measures

Figure 1 depicts the test situation with a subject standing in the
tandem Romberg position (heel-to-toe) on a force platform, touch-
ing a device used to measure the forces applied by the fingertip.
The force platform (Kistler Model 9261A) measured the ground
reaction forces at the feet.

Center of foot pressure

Medial-lateral (CFPx) and anterior-posterior (CFPy) coordinates of
foot pressure were computed from the force components regis-
tered by piezoelectric crystals in the corners of the force platform.

Head motion

The subject wore a head band that had a light-emitting diode
(LED) attached at the midline of the forehead. An ISCAN video
camera system detected medial-lateral (Headx) and anterior-poste-
rior (Heady) head displacements by tracking the position of the
LED. The ISCAN system measures two-dimensional movement in
a field of view of 512 pixels (Headx) ! 256 pixels (Heady). The
camera was mounted to the ceiling of the test chamber. We nor-
malized the field of view across subjects of different heights by
measuring the distance between the camera and the LED on the
head band when each subject was standing on the test platform;
this allowed us to compute a calibration factor for each subject.
The average resolution across subjects was 0.48 mm (Headx) and
0.96 mm (Heady).

Fingertip contact forces

The “touch device” that the subject contacted with his or her in-
dex finger consisted of a horizontal metal bar (46 cm!1 cm!2

cm) attached at either end to a metal stand (see Holden et al.
1994). The stand rested on a rigid wooden platform (155 cm!
70 cm) that overlay the force plate and extended beyond its later-
al edges. The touch device apparatus on one side of the platform
was balanced by a comparable mass on the other side (see Fig. 1).
This arrangement ensured that the Kistler force platform detected
all forces applied to the touch device as well as all forces generat-
ed by the subject’s feet and that it did not interpret forces at the
fingertip as changes in CFPx or CFPy. In this circumstance, the
force applied by the finger to the touchbar and transmitted to the
platform by the touchbar’s base will be exactly balanced by the
resulting reaction force generated at the subject’s feet; conse-
quently, there will be no spurious change in CFPx or CFPy as a re-
sult of the force at the fingertip. The horizontal bar was adjusted
in height to allow individual subjects to assume a comfortable lat-
eral arm position while touching the contact plate with their index
finger. Two, dual-element, temperature-compensated strain gaug-
es (Kulite Semiconductor, Type M(12) DGP-350-500) mounted
on the metal bar transduced the lateral (FingerL) and vertical (Fin-
gerV) forces applied by the finger. The strain gauge signals were
amplified and calibrated in units of force (newtons). A compara-
tor could trigger an auditory tone when a specified threshold
force was reached.

Procedure

The subject stood with right foot behind left along the center of the
anterior-posterior axis of the force platform. Adhesive tape was
used to mark the position of the subject’s feet on the platform so
that the same foot position could be repeated for the different con-
ditions of the experiment. The touch bar was adjusted to a comfort-
able height (approximately waist level) and lateral distance for the
subject to make contact with the right INDEX fingertip.

The experimental conditions varied in terms of allowing vision
(Vision) or having eyes closed (Dark) and type of fingertip con-
tact: no contact (NoTouch) in which the subject’s arms hung pas-
sively, touch contact (Touch) in which the subject was limited to 
1 N of applied force on the touch apparatus, and force contact
(Force) during which the alarm was turned off and subjects could
apply as much force as desired. One newton of applied force at the
fingertip is mechanically inadequate to attenuate sway amplitude
by more than 2.3% (Holden et al. 1994). The six experimental
conditions included: Vision-NoTouch, Vision-Touch, Vision-
Force, Dark-NoTouch, Dark-Touch, and Dark-Force.

One practice trial was given for each condition before the ex-
periment began. Subjects started a trial by getting on the platform
and looking straight ahead at a fixation target on a wall 2 m away
that was covered with a black cloth. The subject’s peripheral visu-
al field beyond 30° provided a rich, complex visual environment
with many horizontal and vertical features. Subjects were told to
let go of the safety railing surrounding them and take as much
time as desired to assume a comfortable stance with their fingertip
on or off the touch bar and with eyes open or closed, depending
upon the condition. Once they felt ready, subjects said “go” and
the experimenter initiated data acquisition. When a vestibular loss
subject was tested, one experimenter stood near the subject to as-
sist in case they began to fall.

The experimental trials were run in four blocks of six trials
(one trial of each condition per block) for a total of 24 trials. Con-
ditions were randomized within a block. Trial duration was 25 s.
All signals were collected in real time at 60 Hz. After each trial,
the subject stepped off the platform and sat comfortably for at
least 1 min. The experiment lasted approximately 1 h.

Analysis

The first and last 4 s of data were excluded from analysis to min-
imize anticipation effects associated with the beginning and end
of a trial, leaving 17 s of data for each trial. The experimental
posture, tandem Romberg (heel-to-toe), had been chosen to en-
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Fig. 1 Schematic illustration of the experimental apparatus with a
subject in the tandem Romberg stance

Noise-free DDE simulations of Model 4 for various sets of P-D-a
parameters show that the stable regions in the P-D-a parameter
space of Model 4 are the same as those of Model 3, with the
difference that the attractor of Model 3 is an asymptotically stable
equilibrium point and that of Model 4 is a limit cycle. This fact
provides a common basis for understanding the noisy dynamics of
both Models 3 and 4. As shown in Fig. 7, the power spectra of
Models 3 and 4, if affected by noise, exhibit the two power law
scaling regimes that are typical of physiological sway movements.
In particular, the first power law scaling factor at the low
frequency regime of Model 4 changes depending on the values of
P, a, and the noise intensity s as these parameters determine
stochastic occurrences of the slow motions along the saddle
manifold. In the noise-free case, two limit cycle attractors coexist
in Model 4 and the state point oscillates around one limit cycle or
the other.
These oscillatory patterns are characterized by the fact that PD

control is switched on for one part of the limit cycle and switched
off for the remaining part. The distance between the stable
manifold of the saddle dynamics that describes the system’s
behavior when PD-control is off and the leading edge of the state
segment in the phase plane when the PD control is turned off
depends on the values of P and a as we have demonstrated for
Model 3. If the distance is small, a small noise added to Model 4
can push the state point moving closely along the stable manifold
of the PD-off flow, which is a part of ‘‘the noisy limit cycle,’’ to the
opposite side of the phase plane, leading to the stochastic switching
from one limit cycle attractor to the other. If the distance is large, a
noise of larger intensity is required to induce the alternation
between the attractors: the alternation frequency between the
attractors tends to increase with noise intensity. However, the
alternation occurs most frequently if the distance and the noise
intensity match. This could be considered as a type of a stochastic
resonance.
Figure 9 shows two examples of the PSD for Model 4 with two

different values of P (P/mgh<0.29 for the left panel and P/

mgh<0.79 for the right panel) and common values of D, a, and s
(D=10 Nms/rad, a=20.4 s21, s =0.2 Nm). For this value of
the switching parameter a, the optimal value of P for the stability
of Model 3 was about 60% of mgh regardless the value of D, i.e.,
the dark band was located at P=mgh&0:6 in Fig. 6C. Thus the
values of P used for Fig. 9 left and right are, respectively, smaller
and larger than the optimal value of P. As in these two examples,
the PSD showed the two power law scaling for smaller values of P,
and it was more like a second order system and similar to the PSD
of Model 2 with or without a resonance for large values of P.
Figure 10 shows, for Model 4, the dependence of the scaling

factor a of the power spectrum of the noisy sway at the low
frequency regime, as a function of s and P for several a values with
a fixed low derivative gain D at 10 Nms/rad. For a given value of
P, a tends to be a unimodal function of s when P is close to the
optimal value taken from the dark band of Fig. 6 for which the
corresponding Model 3 exhibits the most stable dynamics (see the
unimodal curve of Fig. 10C at P=mgh&0:6 as the function of s as
a typical example). The peak value of the unimodal curve is
attained when the noise intensity matches the distance between the
stable manifold and the leading edge just after the PD control is
switched off as described above. If P is smaller than the optimal
value chosen from the left-hand side of the dark band of Fig. 6, the
unimodal curve gradually becomes monotonic increasing function
with a saturated value. The peak and the saturated values of a are
close to or larger than 1.5 depending on the value of the switching
parameter a: this is close to the physiological scaling factor [8,9,10]
and the PSD is more or less similar to Fig. 9-left, exhibiting the two
power law scaling. On the other hand, the unimodal curve
disappears and the curves of the scaling factor a as the function of
s become almost flat close to zero or even negative if P is larger
than the optimal value, i.e., if it is taken from the right-hand side of
the dark band for which Model 3 shows damped oscillations (refs.
Fig. 5C). That is, the PSD is similar to a second order system with
or without a resonance (e.g., Fig. 9-right). In particular, the PSD
does not exhibit a resonance peak for the value of P larger than but

Figure 8. Sample of human postural sway, collected from a subject in quiet standing for 120 s. Left upper panel: Angular sway sequence;
Left lower panel: trajectory in the phase plane; Right panel: power spectral density of the angular sway.
doi:10.1371/journal.pone.0006169.g008

Intermittent Postural Control

PLoS ONE | www.plosone.org 10 July 2009 | Volume 4 | Issue 7 | e6169

Angle from vertical

Derivative of 
the Angle 

from vertical

Asai, etal, 
2009, 

PLOS1
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Simple model:  inverted pendulum
334 M. LANDRY, S. CAMPBELL, K. MORRIS, AND C. AGUILAR
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MF(t) i

O x(t)
x

y

P

l

l
m

θ
g = -g j

Figure 1. Inverted pendulum system.

Table 1
Notation.

x(t) Displacement of the center of mass of the cart from point O
θ(t) Angle the pendulum makes with the top vertical
M Mass of the cart
m Mass of the pendulum
L Length of the pendulum
l Distance from the pivot to the center of mass of the pendulum (l = L/2)
P Pivot point of the pendulum
F (t) Force applied to the cart

In our experimental setup, the force F (t) on the cart is

F (t) = αV (t) − βẋ(t),(1.3)

where V (t) is the voltage in the motor driving the cart, and the second term represents
electrical resistance in the motor. The voltage V (t) can be varied and is used to control the
system. The values of the parameters for our experimental setup [21] are given in Table 2.
The precise value of the viscous friction ε is difficult to measure; however, we expect that it
will be of a similar order of magnitude as β. Our work will thus consider ε in the range [0, 15].

A more convenient form of the equations is found by solving for ẍ and θ̈ from equations
(1.1) and (1.2) and introducing the variables

y = (y1, y2, y3, y4)
T

= (x, θ, ẋ, θ̇)T .
(1.4)

Even more simple model:  
inverted pendulum w/ 
pivot control  (torque at 
the pivot)

334 J. Sieber, B. Krauskopf / Physica D 197 (2004) 332–345

eigenvalue bifurcation. Reference [13] considers only the bifurcation diagram related to the loss of stability of the

origin, the perfectly balanced upside-down position of the pendulum, and the onset of small stable oscillations.

In this paper, we consider the parameter region where the primary oscillations are of saddle type. After the re-

duction to a (symmetric) local Poincaré map, this oscillation corresponds to a symmetric saddle fixed point with

one-dimensional stable and unstable manifolds. Well established numerical algorithms [14] allow us to locate a first

quadratic tangency of these manifolds. Then, the existence of infinitely many stable symmetric periodic orbits of

arbitrarily large period follows from general statements on homoclinic tangencies [15] in two-dimensional maps.

Furthermore, the pair of nonsymmetric attractors merge and form a single symmetric chaotic attractor in a crisis

bifurcation [16]. These theoretical results are indeed of relevance for the original control system, which is demon-

strated by showing examples of merging chaotic attractors and symmetric periodic orbits of long period in the full

DDE.

The mechanism we describe in this paper is not specific to our particular model system, but is directly associated

with the symmetric triple-zero singularity. Onemust expect crisis bifurcations and complicated symmetric attractors

in any system that features this singularity. Interestingly, the triple-zero singularity appears to be prevalent when a

control loop controlling a saddle equilibrium is subject to delay. For example, Ref. [17] investigated the inverted

pendulum subject to a proportional minus delay (PMD) controller and found the same singularity when increasing

the control loop latency; see [18] for other examples.

The paper is organized as follows. We first introduce the details of the mathematical model in Section 2, where

we also explain the center manifold reduction and present the bifurcation diagram of the reduced three-dimensional

vector fieldmodel near the triple-zero eigenvalue bifurcation. In Section 3,we show that there are complex symmetric

dynamics in the reduced model, and in Section 4 we give examples of complex balancing motion in the full control

system. Finally, in Section 5 we conclude and point to some open problems.

2. Model equations

The dynamics of the setup in Fig. 1 are governed by the second-order differential equation for the angular

displacement θ of the pendulum, which can be written as (see also Refs. [2,9,17]):

(

1− 3m

4
cos2 θ

)

θ̈ + 3m

8
θ̇2 sin(2θ)− 3

2

g

L
sin θ + 3F

2L(Mp + Mc)
cos θ = 0. (1)

where F is the horizontal driving force applied to the cart, and m = Mp/(Mp + Mc) is the ratio of the mass of the

uniform pendulumMp with respect to the sum of the mass of the cartMc and the mass of the pendulum. The length

of the pendulum is L and g is the gravitational acceleration. We adjust the time scale to the intrinsic time scale

of the pendulum by rescaling time, introducing a new dimensionless time tnew = told ·
√
3g/

√
2L. This converts

Fig. 1. Sketch of the inverted pendulum of length L and massMp on a cart of massMc at horizontal position δ. The inclination angle θ is defined

such that it is positive in the position shown in the sketch.

experimental setups.13,16 In the following we will take Ffric
=!ẋ, i.e., simple viscous friction, for concreteness.

When Fcontrol is chosen based on the current values of the
system variables, it can be shown that one can always find a
linear feedback law which depends on all four degrees of
freedom that will stabilize the pendulum in the inverted
position.2 This can be seen as follows. Let

Fcontrol = k1x + k2" + k3ẋ + k4"̇ , !4"

where the kj are to be determined. Then the characteristic
equation of the linearization of the equations of motion !3"
about the equilibrium point corresponding to the upright po-
sition of the pendulum is

#!$" = !!m + 4M"$4 + !3k4 − 4!k3 + 4!!"$3

+ !3k2 − 4!k1 − 3!m + M"g"$2 + 3!k3 − !"g$

+ 3k1g . !5"

The Routh–Hurwitz criterion states that a necessary con-
dition for all the roots of the above polynomial to be in the
left half-plane is that all the coefficients of $ be nonzero and
have the same sign.2 The coefficient of the fourth-order term
of characteristic equation !5" is positive. Therefore stability
of the upright position requires that the coefficients of all the
lower terms also be positive. This observation leads to
the following constraints on the state-feedback gain
parameters:7,10

k1 % 0, k3 % ! , !6"

and k2 and k4 are bounded by k1 and k3:

k2 %
4!

3
k1 + !m + M"g, k4 %

4!

3
!k3 − !" . !7"

A variety of methods have been developed to determine the
“optimal” choices of the kj which satisfy these criteria !see,
e.g., Ref. 2". Note that for this model, when the feedback
control stabilizes the pendulum in the upright position !"
=0" the position of the cart is fixed at x=0. It is not possible
to stabilize the pendulum at "=0 with the cart in an arbitrary
position. In the terminology of control theory, the system !3"
with feedback control equation !4" is stabilizable but not
controllable.

Two approaches can be taken to simplify the analysis for
stabilization of the upright position of the inverted pendu-
lum. First, we can neglect the dynamics of the cart. This
corresponds to taking k1=0 and k3=! in the feedback law
and assuming that the mass of the cart is much less than that
of the pendulum, M +m#m, and produces the model7

!4 – 3 cos2 """̈ +
3
2

sin 2""̇2 −
3g

!
sin " = −

3
m!

cos "Fcontrol,

!8"

with feedback force

Fcontrol = k2" + k4"̇ .

The constraints !7" for stabilizing the pendulum in the in-
verted position become

k2 % mg, k4 % 0. !9"

which agree with those derived in Ref. 11. For the discussion
that follows !see Sec. V" we note that the equation for the
cart becomes

ẍ = g tan " − 4
3! sec ""̈ .

Thus when the pendulum is at the inverted position, "=0 and
"̇= "̈=0, the cart is not at a fixed position but moves with
some constant speed.

An alternate approach is to assume that the inverted pen-
dulum is stabilized not by the application of forces at the
base but by the direct application of torque at the pivot. In
this case the model is very simple,

4
3m!2"̈ − mg! sin!"" = Tcontrol, !10"

where the linear feedback control torque is

Tcontrol = q2" + q4"̇ .

The linearization of Eq. !10" about "=0 is very similar to
that of Eq. !8". Thus the analysis of Refs. 6 and 11 may be
easily restated for this equation. In particular, the pendulum
will be stabilized in the upright position for any choice of
feedback, satisfying

q2 & − mg!, q4 & 0.

It is important to note that in all of these approaches the
criteria are derived using linearization, and hence the control
is applied locally. Thus for stabilization of the inverted posi-
tion to be possible it is necessary to first bring the pendulum
close to the upright position !" is small". If a perturbation
pushes the pendulum sufficiently far from the upright posi-
tion the feedback control will fail. This is also true when the
feedback is time delayed.

III. STABILIZATION WITH DELAYED FEEDBACK

From the point of view of the human body, the only way
to implement the feedback control Fcontrol instantaneously is
to assume that it is due to the biomechanical properties of the
joints, connective tissues, etc. Indeed, historically it was
thought that balance control could be entirely due to these
biomechanical properties.30,31,55 However, subsequent mea-
surements demonstrated that these forces alone were not suf-
ficient to effectively maintain balance.56,57 Neural feedback
control mechanisms for balance are time delayed. In other
words there is a significant time interval between when the
variables are measured and when the forces are applied.
Consequently the force applied to the cart becomes

Fcontrol = k1x!t − '" + k2"!t − '" + k3ẋ!t − '" + k4"̇!t − '" ,

!11"

where it is assumed that the measurements all occur at the
same time. The approaches taken to choose the kj to stabilize
the pendulum depend on the magnitude of '.

026110-3 Time-delayed inverted pendula Chaos 19, 026110 !2009"

Downloaded 15 May 2010 to 142.103.92.48. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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called “labyrinthus” in the inner ear which helps in the self-balancing of the human body when 

our eyes are closed. 

2. MECHANICAL MODEL OF BALANCING 

Consider the simplest planar mechanical model of the inverted pendulum shown in Figure 1. 

Its lowest point slides smoothly along the horizontal line. This mechanical model is the simplest 

possible model describing the “man-machine” system when somebody places the end of the stick 

on his fingertip, and tries to move this lowest point of the stick in a way that the stick is balanced at 

its upper position. The system has two degrees of freedom described by the general coordinates cp 

and z. The angle cp is detected together with its derivatives and the horizontal control force Q is 

determined by them in a way that the upper cp s 0 position should be asymptotically stable. 

Figure 1. Mechanical model of stick balancing. 

The nonlinear equations of motion are derived by means of the Lagrangian equations of the 

second kind. They assume the form 

from which the “cyclic” coordinate z can easily be eliminated to be left with the single second- 

order equation 

(4-3cos2~)(ii+$2sin(2~)-$sinIp=- -$Qcosp. (1) 

In these equations, g stands for the gravitational acceleration. 

The control force Q is considered in the simplest form of a PD controller with constant gains P 

and D chosen by the operator appropriately 

Q(t) = D$(t -T) + Pp(t -T). (2) 

In this formula, the human reflex delay is also modelled by a constant time lag (or dead time) 7. 

Clearly, the trivial solution ‘p 3 0 in (l),(2) d escribes the equilibrium to be stabilized. 

3. STABILITY ANALYSIS 

A stability analysis of the cp 5 0 position is required to find suitable control parameters P, D 

in (2). The variational system of the motion equation (1) with (2) at the trivial solution assumes 

the form of a linear retarded differential difference equation (RDDE) 

g(t) - f+(t) + -$ (qb(t - T) + Pv(t - 7)) = 0. (3) 

T

θ

control

�

Stabilized on a cart
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Biological considerations: 

• Delay in the application of the control: neural 
transmission

• On-off control:  not active control all the time

• Noise:  Small random fluctuations can result in 
large changes in certain circumstances

F = aθ(t− τ) + bθ̇(t− τ)

θ̇ = φ

φ̇ = sin θ − F (θ, θ̇) cos θ F = aθ + bθ̇
Proportional Derivative

(P)      (D)

PD control

Reduced to essentials

Thursday, October 24, 2013



Balance model:

Stability diagram for PD 
control (w/delay), control 
always on

      = 0 is stable in shaded area,  D-shaped region
Pitchfork bifurcation: stability of non-zero fixed point
Hopf bifurcation, stability of oscillatory behavior

θ

 Pitchfork 
bifurcation

202 G. ST&PAN AND L. KOLL~ 

” 

mg 

Figure 2. Stability chart. 

can be proved by checking the limit condition Pmin = Pm=(w) for the existence of any stability 

domain for P in (6). 

The corresponding stability chart in the plane of the gain parameters P, D for constant delays 

71 < 72 < * ** is presented qualitatively in Figure 2. The encircled numbers show the number of 

the characteristic roots X having positive real parts. For example, if too great proportional gain P 

is applied by an untrained operator, two complex conjugate characteristic roots turn up in the 

right half of the complex plane. This refers to a Hopf bifurcation resulting periodic motion around 

the desired equilibrium. The recent experiments of [5] also show a strong periodic component in 

the angle signals produced by untrained operators when balancing an inverted pendulum. The 

stability chart in Figure 2 also shows that the shaded stability domain shrinks as the time delay 7 

increases, and at the above mentioned critical value, it disappears. 

4. EXPERIMENTAL OBSERVATIONS 

In spite of the fact, that the model is strongly simplified, and formula (2) of the control force 

describes only the basic components of the human operator’s behaviour, the above results are 

quite reliable even quantitatively. The delay of our reflexes is in the range of 0.1 seconds through 

our eyes and arms. Formula (7) means that after a short practice, everybody is able to balance 

a stick of length 1 = 1.2meters, when the critical delay is rCr w 0.2seconds. Anybody can 

experience that the longer the stick is, the easier it is to equilibrate it, since T,, becomes greater. 

It is impossible to balance short sticks like pencils, etc. The critical length of the stick is at about 

0.3meters. Finally, if one is a bit tipsy, the long stick cannot be equilibrated either, because the 

delay of the reflexes becomes too great. This may cause problems even in the self-balancing of 

the human body. 

The self-balancing of human beings is, of course, a very complicated phenomenon. The body 

is controlled by us to stabilize it in a position which is physically unstable with a lot of degrees 

of freedom. However, even a simple inverted pendulum cannot be balanced by means of a single 

position signal or a single velocity signal. As Figure 2 shows, there is no stability if either D = 0 

or P = 0 in (3). The human brain also has to use both signals, and the ear does provide them. 

Roughly speaking, the semicircular canals sense the angular velocity, while the attitude is sensed 

by means of the otolith organs as shown in Figure 3 (see also [B]). 

5. FUNCTIONING OF THE HUMAN BALANCING ORGAN 

The organ can be found in the inner ear. It consists of four general parts: utricle, saccule, 

cochlea, and three sets of semicircular canals oriented in nearly mutually orthogonal planes. The 

dynamic receptors found in the semicircular canals are the receptor hairs covered by a gelatinous 

dividing partition, the cupula. These canals are filled with a fluid called endolymph. It forms 

Hopf
 bifurcation:

oscillations for 
larger values 

of the control 
parameters a,b

θ̇ = φ

φ̇ = sin θ − F (θ, θ̇) cos θ

F = aθ(t− τ) + bθ̇(t− τ)

(a)

(b)

Thursday, October 24, 2013



Fully nonlinear model: w/ Hopf bifurcation

Hopf bifurcation: oscillatory 
solutions for certain delay

Smaller nonlinear oscillatory 
solutions unstable

Larger nonlinear oscillatory 
solutions bi-stable with x=0 
solution

Noise induced chatter

Bifurcation scenario: Near stability boundaries
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Noise provides a route to chatter: transitions to large nonlinear oscillations

Hopf bifurcation
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Mathematical Challenges: 

• Nonlinearity:  non-uniqueness, complex dynamics

• Delays:  Delay Differential Equations (DDEs) 

• Noise:  Stochastic DDEs (SDDEs),  minimal theory, 
limited computational methods

 Dynamical References:  Campbell, Milton, Ohira, Sieber,  Krauskopf, 
Stepan, K. others

Thursday, October 24, 2013



• Dynamics:  e.g. Mean Square Stability: Linear 
system w/ delays, Buckwar et al 2013

• Numerical methods

Milstein method (         strong convergence) for SDDE’s:  
Kloeden, Shardlow, 2012 (Taylor-like expansions)

O(h)

Euler-Maruyama, (       weak  convergence) for SDDE’s:O(h)

tame Ito formula on
 segments of solution

Anticipating (Malliavin) calculus:  
�

f (i)(Y (u− τ), Y (u)) . . . dW (u− τ)

� t2

t1

� t2

t1

Distributed delays: 
Buckwar, et al, 2005 (linear), Clement, et al 2006

Buckwar, K. , Mohammed, Shardlow, 2008

SDDE’s: dx = f(x(t), x(t− τ)dt+ g(x(t), x(t− τ)dW (t)
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State-dependent control 
in balance models:

PD control with delay

State-dependent on/off control:  
control is on in state drifting 
away from origin

Asai, etal, 2009, PLOS1

Ws Ws

OFF ON

ON OFF

θ̇ = φ

φ̇ = sin θ − F (θ, θ̇) cos θ

F = aθ(t− τ) + bθ̇(t− τ)

Phase plane for system 
with control off
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Zig-zags and spirals: PD control with delay

On/Off Control : 
Note delay in 
switching from on/off, 
system enters off 
region before control 
is switched off

always turned on. Moreover, the upright equilibrium is also
unstable of saddle type if the PD controller were always turned off.
Figure 3A shows a typical solution of Model 3 in the phase

plane. The initial state at t=0 is represented by the thick and
nearly horizontal curve segment (labelled ‘‘1’’ in Fig. 3A) located at
upper left of the first quadrant of the phase plane, representing a
slightly forward tilting posture with a velocity falling forward. The

right and left edges of the segment are h 0ð Þ, _hh 0ð Þ
h i

and

h {Dð Þ, _hh {Dð Þ
h i

, respectively. This segment moves in the phase

plane according to the DDE of eq. 3. A state of the system at time t
is represented by the corresponding curve segment whose leading

edge is h tð Þ, _hh tð Þ
h i

and the tail-end is h t{Dð Þ, _hh t{Dð Þ
h i

. The

condition separated by hD _hhD{ahD
! "

~0 in eq. 7 implies that the

PD controller is turned on and off, respectively, if the tail-end of
the segment is located in the on and off regions in the phase
plane. Because the tail-end at t=0 is in the on-region in
Fig. 3A, the time evolution of the system is governed by

I€hh~mgh h{ KhzB _hhzPhDzD _hhD
! "

for some time interval,
during which the state of the system spirals away from the
unstable upright equilibrium of focus type. After a period of time,
the leading edge reaches the boundary dh=dt~ah separating the
on and off regions (at a point referred to here as R1) leaving the
tail-end still in the on-region. Then after the time interval D, the
tail-end also reaches at the boundary dh=dt~ah as represented in
Fig. 3A by the nearly vertical thick segment (labeled ‘‘2’’)
overflying downward from the boundary dh=dt~ah in the off-
region, switching the PD controller off. In the off-region, the time

evolution of the system is governed by I€hh~mgh h{ KhzB _hh
! "

with no PD control for some time interval. Thus the state segment
moves upward in the phase plane along a hyperbolic curve

(represented by the dashed curve in Fig. 3A) associated with the
saddle type upright equilibrium until the tail-end of the segment
reaches the boundary dh=dt~ah from the off-region side, at
which the PD controller is turned on again (the state segment
labeled ‘‘3’’). Then the leading edge of the segment 3 returns to
and gets across the boundary dh=dt~ah at a point referred to
here as R2. Similar processes may be repeated as we shall analyze
in detail in this study. It is important to note that the leading edge
of the state segment labeled ‘‘3’’ in Fig. 3A is located below the
orbit connecting the segments 1 and 2. Because of this the point R2

is closer to the equilibrium than the point R1. If the leading edge of
the state segment labeled ‘‘3’’ in Fig. 3A were above this orbit, a
subsequent orbit would have returned to the boundary dh=dt~ah
at a more distant point from the equilibrium than the point R1.
Figure 3B shows another typical solution of Model 3 when the

value of P is larger than that used for Fig. 3A. In this case the initial
state at t=0 is represented by the thick and nearly vertical curve
segment (labelled ‘‘1’’ in Fig. 3B) located at upper right of the first
quadrant of the phase plane, representing a forward tilting posture
with a velocity falling forward. The leading edge of the segment
when the tail-end reaches the boundary dh=dt~ah overflies
largely into the off-region of the fourth quadrant, due to the large
value of P, and it goes beyond the stable manifold (the dotted line
with arrow heads directing the equilibrium in Fig. 3B) of the saddle

equilibrium of the system governed by I€hh~mgh h{ KhzB _hh
! "

.
The leading edge when the tail-end reaches the boundary
dh=dt~ah (the curve segment labeled ‘‘2’’ in Fig. 3B) located
below the stable manifold moves along a hyperbolic upward-
convex curve (the dashed curve in Fig. 3B) directing to the third
quadrant of the phase plane to recover the tilting posture. The
third quadrant is the on-region, and thus similar but mirror-image
processes may be repeated in which the state segment moves from

Figure 3. Typical solutions of Model 3 in the phase plane. In each plane, the initial state at t=0 is represented by the thick curve segment
labeled ‘‘1’’. This state segment moves in the phase plane according to the DDE of eq. 3 in number order as labeled. A state of the system at time t is
represented by the corresponding curve segment whose leading edge is h tð Þ, _hh tð Þ

h i
and the tail-end is h t{Dð Þ, _hh t{Dð Þ

h i
. The PD controller is turned

on and off, respectively, if the tail-end of the segment is located in the on (white) and off (gray-shaded) regions in the phase plane. Dotted lines are
the stable manifold (arrow heads directing the equilibrium) and the unstable manifold (arrow heads departing away from the equilibrium). A: A
typical orbit of eq. 3 when the proportional gain P of the PD controller is small. B: A typical orbit of eq. 3 when the gain P is large.
doi:10.1371/journal.pone.0006169.g003
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on/off switch

OFF

ON ON

OFF

Larger delay/
Stronger control: 

yields spiral

Weaker control: zig-zag 
behavior

Asai, etal, 
2009, 

PLOS1

F = aθ(t− τ) + bθ̇(t− τ)
θ̈ − sin θ + F (θ, θ̇) cos θ = 0

Ws
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Periodic behavior:

PD control with delay
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Figure 6: The forward orbit, Γ, of a point on Σ1. The primary purpose of this figure
is to illustrate some labels used in expansions given the text. Unlike elsewhere in this
Note, t = 0 corresponds to a switching point instead of a point on Σ1.

and assuming, without loss of generality, that this point corresponds to t = 015. We let
Tint denote the smallest positive time at which Γ intersects Σ1. Then the next switching
will occur at the point

(θ1, φ1) =
(
θ(Tint + τ), φ(Tint + τ)

)
. (28)

The primary goal motivating our analysis is the determination of the change in the
Hamiltonian, (5), of Γ between t = 0 and t = Tint + τ ; this will indicate whether the
orbit is approaching or moving away from the origin.

At this point we make the following assumptions on a, b, s and θ0 and as we progress
through the analysis the role of each assumption should become clear:

0 < θ0 < π
2 , (29)

−
√

2
π < s ≤ 0 , (30)

F(θ0) < 0 . (31)

where the last inequality refers to (21) and ensures that the control is sufficiently strong.
Given that φ(−τ) = sθ(−τ) for the orbit Γ, the value φ0 is completely determined

by the value of θ0, so we first derive the relation between φ0 and θ0. From (4), it is
easily verified that for t ∈ [−τ, 0],

θ(t) = θ0 + φ0t +
1

2
sin(θ0)t

2 +
1

6
φ0 cos(θ0)t

3 + O(t4)16 . (32)

15Hopefully this isn’t too confusing in that we’ve been thinking of initial conditions as points on Σ1.
16Note that it is somewhat superfluous to also write φ(t) because φ(t) = θ̇(t).

13

Zig-zag orbits  - periodic solutions away from origin, 
                        moving back and forth from on/off

ON

OFF

θ̇

F = aθ(t− τ) + bθ̇(t− τ)
θ̈ − sin θ + F (θ, θ̇) cos θ = 0

Note: w/o delay:  PWS system is Filipov, solution slides along 
the switching manifold, can calculate analytically
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to the occurrence of purely imaginary stability multipliers. The periodic orbit does
not encircle the equilibrium, like for an Andronov-Hopf bifurcation. Furthermore, the

0.5 1 1.5 2 2.5
0
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a
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DIB

HC

SN
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0
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1

a
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DIB

sub
DIB
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A

B

Figure 4: Panel A is a bifurcation set of (4)-(6) when s = −0.01, b = 2 and G(θ) =
cos(θ). The solid black curves are the result of numerical computations. The dashed
green curves correspond to equations derived in §3.4 and §3.5. PF - pitchfork-like
bifurcation; SN - saddle-node bifurcation of periodic orbits; HC - homoclinic bifurcation;
DIB - discontinuity-induced bifurcation (super and sub are abbreviations for supercritical
and subcritical, respectively). Included are six representative sketches of trajectories in
the (θ, φ)-plane. Blue [red] dots and curves correspond to stable [unstable] equilibria
and periodic orbits. The sketches are exaggerated for clarity - in reality θ(t) changes
by an extremely small amount over each zigzag. Panel B is a bifurcation diagram
corresponding to the horizontal dash-dot line in panel A (i.e. for τ = 0.035). The solid
blue [red] curves denote stable [unstable] equilibria. The dashed curves correspond to
the maximum θ-values of periodic orbits, again with colour indicating stability.
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Balance model w/ noise: 

!0.5 !0.4 !0.3 !0.2 !0.1 0 0.1 0.2 0.3 0.4 0.5
!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

!

"

ON

OFF

OFF

ON

For larger control: 
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Figure 6: The forward orbit, Γ, of a point on Σ1. The primary purpose of this figure
is to illustrate some labels used in expansions given the text. Unlike elsewhere in this
Note, t = 0 corresponds to a switching point instead of a point on Σ1.

and assuming, without loss of generality, that this point corresponds to t = 015. We let
Tint denote the smallest positive time at which Γ intersects Σ1. Then the next switching
will occur at the point

(θ1, φ1) =
(
θ(Tint + τ), φ(Tint + τ)

)
. (28)

The primary goal motivating our analysis is the determination of the change in the
Hamiltonian, (5), of Γ between t = 0 and t = Tint + τ ; this will indicate whether the
orbit is approaching or moving away from the origin.

At this point we make the following assumptions on a, b, s and θ0 and as we progress
through the analysis the role of each assumption should become clear:

0 < θ0 < π
2 , (29)

−
√

2
π < s ≤ 0 , (30)

F(θ0) < 0 . (31)

where the last inequality refers to (21) and ensures that the control is sufficiently strong.
Given that φ(−τ) = sθ(−τ) for the orbit Γ, the value φ0 is completely determined

by the value of θ0, so we first derive the relation between φ0 and θ0. From (4), it is
easily verified that for t ∈ [−τ, 0],

θ(t) = θ0 + φ0t +
1

2
sin(θ0)t

2 +
1

6
φ0 cos(θ0)t

3 + O(t4)16 . (32)

15Hopefully this isn’t too confusing in that we’ve been thinking of initial conditions as points on Σ1.
16Note that it is somewhat superfluous to also write φ(t) because φ(t) = θ̇(t).
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Experimental observations

values of a with 1.161 < a < 1.208, the attracting set may be chaotic.
As the value of a is decreased from a = 1.18, the range of θ-values over which the

attracting set exists, increases, until at a ≈ 1.161 the unstable manifold of (θ∗cos, 0)
no longer intersects Σ1. Therefore a < 1.161 trajectories following the manifold limit
directly to the origin. It is interesting to note that for approximately 1.135 < a < 1.161,
the forward orbit of a point on Σ1 arbitrarily close to the origin zigzags slowly away
from the origin until at a θ value of order 1 the orbit becomes trapped in the ON region
and approaches the origin. Consequently over this range of a values the origin is not
Lyapunov stable, and hence not asymptotically stable [41], but appears to be quasi-
asymptotically stable in that all points in a neighbourhood of the origin tend to origin,
eventually.

The complicated attracting sets are born out of the stable zigzag periodic orbit in
a bifurcation at a ≈ 1.208, Fig. 8-A. At the bifurcation the amount of time spent by
the periodic orbit in the OFF region is exactly the delay time, τ . This discontinuity-
induced bifurcation was analyzed in [24] (see also [28, 29]) for a general time-delayed,
piecewise-smooth system comprised of ordinary differential equations on each side of
the switching manifold. In that paper it was proved that in a neighbourhood of the
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Figure 8: Panel A is a bifurcation diagram of (4)-(6) when τ = 0.3, s = −0.1, b = 2
and G(θ) = cos(θ). The meanings of the abbreviations and colours are the same as in
Fig. 4-B. Panel B shows a partial time series of an orbit with transients decayed when
a = 1.18 (corresponding to the dash-dot line in panel A). Panel C shows this orbit in
the (θ, φ)-plane. For values of a near 1.18, in panel A we have indicated θ-values at
which the orbit crosses Σ1 and then immediately enters the neighbouring ON region.
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Text

Bursting-like oscillations  

Also prominent in cart model with significant mass  
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spiral, along the dotted curve the orbit falls onto W s and limits upon the origin without
again crossing either of the switching manifolds. The dash-dot curve is a Hopf-like
bifurcation of (4) at which a symmetric spiral periodic orbit is born.

Note that one may choose the control parameters such that zigzag orbits approach
the origin and spiral orbits head away from the origin (as in Fig. 1) and vice-versa. We
have not been able to identify an intersection between the dashed and dotted curves
of Fig. 9 for any τ and s, nor have been able to show that such an intersection cannot
occur. Such an intersection could permit for the existence of an orbit that repeatedly
switches between zigzag and spiral motion.

1 1.5 2 2.5 3 3.5

1

2

3

4

a

b

spiral to
zigzag out

spiral to
zigzag in

spiral in
or zigzag in

zigzag to
spiral in

zigzag to
spiral out

spiral out
or zigzag in

spiral in
or zigzag out

spiral out
or zigzag out

Figure 9: A bifurcation set of the linearization, (56), with (5)-(6), τ = 0.5 and s = 0.
The (a, b)-plane has been partitioned according to the fate of forward evolution of the
points (1, s) and (0, 1). By zigzag in [zigzag out] we mean that the forward orbit of (1, s)
zigzags into [away from] the origin. Similarly by spiral in [spiral out] we mean that the
forward orbit of (0, 1) spirals into [away from] the origin. By zigzag to spiral we mean
that the forward orbit of (1, s) undergoes spiral motion and behaves like the forward
orbit of (0, 1), and vice-versa for spiral to zigzag. For instance when (a, b) = (2, 3.5) both
forward orbits spiral away from the origin; when (a, b) = (1.5, 3.5), the forward orbit of
(1, s) zigzags in to the origin and the forward orbit of (0, 1) spirals away from the origin,
as in Fig. 1. For comparison we have also indicated, by the gray D-shaped region, the
region where the origin is a stable equilibrium of the ON system. Within this region the
countable set of eigenvalues associated with the equilibrium all have negative real part
[13, 17].
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D-shaped region:
stable vertical position 

with cts control

always turned on. Moreover, the upright equilibrium is also
unstable of saddle type if the PD controller were always turned off.
Figure 3A shows a typical solution of Model 3 in the phase

plane. The initial state at t=0 is represented by the thick and
nearly horizontal curve segment (labelled ‘‘1’’ in Fig. 3A) located at
upper left of the first quadrant of the phase plane, representing a
slightly forward tilting posture with a velocity falling forward. The

right and left edges of the segment are h 0ð Þ, _hh 0ð Þ
h i

and

h {Dð Þ, _hh {Dð Þ
h i

, respectively. This segment moves in the phase

plane according to the DDE of eq. 3. A state of the system at time t
is represented by the corresponding curve segment whose leading

edge is h tð Þ, _hh tð Þ
h i

and the tail-end is h t{Dð Þ, _hh t{Dð Þ
h i

. The

condition separated by hD _hhD{ahD
! "

~0 in eq. 7 implies that the

PD controller is turned on and off, respectively, if the tail-end of
the segment is located in the on and off regions in the phase
plane. Because the tail-end at t=0 is in the on-region in
Fig. 3A, the time evolution of the system is governed by

I€hh~mgh h{ KhzB _hhzPhDzD _hhD
! "

for some time interval,
during which the state of the system spirals away from the
unstable upright equilibrium of focus type. After a period of time,
the leading edge reaches the boundary dh=dt~ah separating the
on and off regions (at a point referred to here as R1) leaving the
tail-end still in the on-region. Then after the time interval D, the
tail-end also reaches at the boundary dh=dt~ah as represented in
Fig. 3A by the nearly vertical thick segment (labeled ‘‘2’’)
overflying downward from the boundary dh=dt~ah in the off-
region, switching the PD controller off. In the off-region, the time

evolution of the system is governed by I€hh~mgh h{ KhzB _hh
! "

with no PD control for some time interval. Thus the state segment
moves upward in the phase plane along a hyperbolic curve

(represented by the dashed curve in Fig. 3A) associated with the
saddle type upright equilibrium until the tail-end of the segment
reaches the boundary dh=dt~ah from the off-region side, at
which the PD controller is turned on again (the state segment
labeled ‘‘3’’). Then the leading edge of the segment 3 returns to
and gets across the boundary dh=dt~ah at a point referred to
here as R2. Similar processes may be repeated as we shall analyze
in detail in this study. It is important to note that the leading edge
of the state segment labeled ‘‘3’’ in Fig. 3A is located below the
orbit connecting the segments 1 and 2. Because of this the point R2

is closer to the equilibrium than the point R1. If the leading edge of
the state segment labeled ‘‘3’’ in Fig. 3A were above this orbit, a
subsequent orbit would have returned to the boundary dh=dt~ah
at a more distant point from the equilibrium than the point R1.
Figure 3B shows another typical solution of Model 3 when the

value of P is larger than that used for Fig. 3A. In this case the initial
state at t=0 is represented by the thick and nearly vertical curve
segment (labelled ‘‘1’’ in Fig. 3B) located at upper right of the first
quadrant of the phase plane, representing a forward tilting posture
with a velocity falling forward. The leading edge of the segment
when the tail-end reaches the boundary dh=dt~ah overflies
largely into the off-region of the fourth quadrant, due to the large
value of P, and it goes beyond the stable manifold (the dotted line
with arrow heads directing the equilibrium in Fig. 3B) of the saddle

equilibrium of the system governed by I€hh~mgh h{ KhzB _hh
! "

.
The leading edge when the tail-end reaches the boundary
dh=dt~ah (the curve segment labeled ‘‘2’’ in Fig. 3B) located
below the stable manifold moves along a hyperbolic upward-
convex curve (the dashed curve in Fig. 3B) directing to the third
quadrant of the phase plane to recover the tilting posture. The
third quadrant is the on-region, and thus similar but mirror-image
processes may be repeated in which the state segment moves from

Figure 3. Typical solutions of Model 3 in the phase plane. In each plane, the initial state at t=0 is represented by the thick curve segment
labeled ‘‘1’’. This state segment moves in the phase plane according to the DDE of eq. 3 in number order as labeled. A state of the system at time t is
represented by the corresponding curve segment whose leading edge is h tð Þ, _hh tð Þ

h i
and the tail-end is h t{Dð Þ, _hh t{Dð Þ

h i
. The PD controller is turned

on and off, respectively, if the tail-end of the segment is located in the on (white) and off (gray-shaded) regions in the phase plane. Dotted lines are
the stable manifold (arrow heads directing the equilibrium) and the unstable manifold (arrow heads departing away from the equilibrium). A: A
typical orbit of eq. 3 when the proportional gain P of the PD controller is small. B: A typical orbit of eq. 3 when the gain P is large.
doi:10.1371/journal.pone.0006169.g003
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(unstable)
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discts control 
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Transitions from zig-zag to spirals? 

Regions: analysis of 
linearized model
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Noise driven/amplified spirals, stabilized transients: 
complex dynamics expected for larger systems

unstable spiral, sustained by noise 
- similar to perturbed spiral

unstable ZZ sustained as 
spiral via noise

Transitions: sensitivity to noise
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 Results for stochastic + discontinuous dynamics

Discontinous noise sources :  Jump-diffusion: R-K 
methods: Mean square (strong) convergence and 
Lipschitz-type conditions for increment functions    
Buckwar, et al 2011

Stochastic Flows for SDE’s with singular coefficients:  Many 
results carry-over for non-smooth, measurable  drifts, as 
long as noise is “nice” (e.g. Brownian) Mohammed et al 2013

This result is counter-intuitive since the dominant `culture’ in 
stochastic (and deterministic) dynamical systems is that the 
flow `inherits’ its spatial regularity from the driving vector fields
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Smooth vs. Piecewise Linear (PWL) models: 
Complex dynamics in higher dimensions or noise driven?
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Figure 2: Bifurcation diagrams of (1) in the absence of noise (i.e. D = 0) with (2) in
panel A and with (3) in panel B. In each panel the solid curve for λ > 0 corresponds to
the maximum v-value of a stable periodic orbit; the remaining curves correspond to the
equilibrium which is unstable for λ > 0. In panel A a canard explosion occurs near the
canard point, λc; in panel B a canard explosion occurs near λ1 at which point the stable
periodic orbit has a maximum value of 1. The parameter values used are the same as
in Fig. 1, except here D = 0.

parameters used in Fig. 2, this periodic orbit is stable and its amplitude increases with λ.
Near λc the amplitude increases to order one over a parameter range that is exponentially
small in ε. This rapid growth is known as a canard explosion and is due to time-scale
separation and global dynamics [11, 12, 13, 14]. The value of the canard point, λc,
which is well-defined for smooth systems [15, 16], decreases to zero with ε, as shown in
Fig. 3-A. Over an order ε range of λ values, (1) with (2) may either settle to equilibrium,
exhibit small amplitude oscillations, or exhibit large amplitude oscillations (the latter
are also relaxation oscillations).

As in [17, 18], here we study a piecewise-linear (PWL) FHN model so that, in the
presence of noise, the system is amenable to a rigourous treatment without the need
for an asymptotic analysis in the time-scale separation parameter, ε. PWL models are
commonly used in circuit systems [19, 20, 21]. A PWL version of a driven van der Pol
oscillator is studied in [22] to explain the breakdown of canards in experiments. We
consider the continuous, PWL function

f(v) =















ηLv , v ≤ 0
η1v , 0 < v ≤ v1

η2(v − v1) + w1 , v1 < v ≤ 1
ηR(v − 1) + 1 , v > 1

, (3)

3

slow-fast system, and a subcritical Hopf bifurcation, refer to [4] and references within.
Alternatively MMOs may be noise-induced; we discuss some scenarios by which this
may occur below.

Oscillations are fundamental to the FitzHugh-Nagumo (FHN) model – dating from
the early 1960’s [5, 6] – that is used as a prototypical model of excitable dynamics in
a range of scientific fields [7, 8]. We study the following form of the FHN model with
small, additive, white noise:

dv = (f(v) − w) dt ,

dw = ε(αv − σw − λ) dt + D dW ,
(1)

where v represents a potential, w is a recovery variable and W is a standard Brownian
motion. Here α is a positive constant and λ ∈ R, which is regarded as the main
bifurcation parameter, controls the growth of oscillations, as seen below. The small
parameter ε # 1, represents the time-scale separation and D # 1 is the noise amplitude
(ε, D > 0). Values of ε and D used in, for instance [9, 10], are no larger than the values
considered here. By scaling we may assume σ = 1, except in the special case σ = 0
which corresponds, in the absence of noise, to the van der Pol model (and in this case
we may further assume α = 1). We assume that f : R → R is continuous and S-shaped
in that f has one local minimum and one local maximum. For simplicity, we assume
that the local minimum is at (0, 0) and the local maximum is at (1, 1), regardless of the
precise function chosen.

If f is a cubic, as originally taken by FitzHugh [5] and Nagumo et. al. [6], then, by
the above requirements, the cubic must be

f(v) = 3v2 − 2v3 . (2)

Fig. 2-A illustrates the role of the parameter λ for (1) with (2) in the absence of noise.
A small amplitude periodic orbit is created in a Hopf bifurcation at λ = 0. For the
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Figure 1: A time series illustrating MMOs exhibited by (1) with (3). For this plot,
λ = 0.028, D = 0.0008, ε = 0.04, (α, σ) = (4, 1), (ηL, ηR) = (−2,−1) and (v1, w1) =
(0.1, 0.05).
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λ = 0.028, D = 0.0008, ε = 0.04, (α, σ) = (4, 1), (ηL, ηR) = (−2,−1) and (v1, w1) =
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Figure 4: A trajectory of (1) with (2) in panel A, and (1) with (3) in panel B. The
parameter values used are the same as in Fig. 1. For these parameter values both the
smooth and PWL models are tuned to near the canard explosion.

or single oscillation we declare that the orbit or oscillation is

small if 0 < vmax ≤ v1 ,

medium if v1 < vmax ≤ 1 ,

large if vmax > 1 .

(5)

Fig. 3-B illustrates typical dependence of λv1 and λ1 on ε. In particular we notice that
for a fixed choice of the slopes, ηj, in (3), the PWL version of the FHN model does
not exhibit small oscillations for arbitrarily small ε. This is because the two eigenvalues
associated with the equilibrium for small λ > 0 are real-valued for sufficiently small ε
negating the possibility of small oscillations, see §2. Values of ε that are relevant for the
FHN model include values sufficiently large that small oscillations are important in the
PWL model [5, 23].

The effect of noise in (1) has seen significant recent attention, see for instance [23, 24,
25]. Noise may induce regular oscillations in (1) when in the absence of noise there are
no oscillations. There is more than one mechanism that may cause this, most notably
stochastic resonance [26] (when a small periodic forcing term is present in addition
to noise), coherence resonance [25, 27] (usually when the system is quiescent in the
absence of noise), and self-induced stochastic resonance [28, 29, 30] (involving relatively
large noise that drives oscillations of periods different from that of the deterministic
system).

If λ is tuned to values near the canard explosion, in the presence of noise the system
may exhibit both small amplitude and large amplitude oscillations, i.e. MMOs, as shown

5

Neuro-dynamics: Typical structure
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MMO’s in PWL models w/ canard structure

Simpson, K.  Physica D, 2011
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Figure 8: Regions of MMOs defined by where at least 10% of oscillations are small and
at least 10% are large. In panel A the parameter values used are the same as in Fig. 2.
In panel B, w1 = 0.005; the remaining parameter values are unchanged. The region of
MMOs for the smooth FHN model, (1) with (2), is superimposed in panel A.

origin. For small values of the slope, η1, still respecting (10), the MMOs may include
small oscillations that do not enter RL, so that the exit distribution across Σ1 may
be bimodal, as shown in Fig. 7-B. Here large oscillations intersect Σ1 near (0, ŵL) (15)
whereas the majority of small oscillations intersect Σ1 on the v-nullcline. We considered
whether this type of bimodal exit distribution on Σ1 plays a role analogous to distance
between small and large oscillations in the smooth model, but we did not see any evidence
of this effect. Specifically the MMO region, Fig. 8-B, has a similar size and shape to
the region in Fig. 8-A for which the corresponding value of η1 is an order of magnitude
larger.

The boundaries of the MMO regions shown in Fig. 8 are relatively linear, hence we
perform an analytical calculation of the slopes at D = 0. Let ssmall [slarge] denote the
slope, dD

dλ
, at D = 0, of the curve along which 10% of oscillations are small [large].

Let us begin with the curve along which exactly 10% of oscillations are small. This
curve intersects D = 0 at λ = λv1 at which the attracting periodic orbit created at λ = 0
intersects w = η1v at v = v1. Here we can focus on small oscillations only, so it suffices
to consider the linear systems of RL and R1, i.e. (1) with

f(v) =

{

ηLv , v ≤ 0
η1v , v > 0

. (31)

As λ is increased, the maximum v-value of the deterministic periodic orbit increases at

16

Simpson, K.  2010
control parameter

noise

primarily 
small 

oscillations

primarily 
large limit 

cycles
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2 Properties of the deterministic system

Analytical results may be derived for (1) when f(v) is a PWL function. Arguably
the simplest continuous, PWL function that one can use for f(v) consists of three line
segments (one of them being the straight connection between (0, 0) and (1, 1)). The
FHN model with this function is well-studied [38, 39], refer to [40] for the van der Pol
system. However, with this three-piece PWL function, (1) does not exhibit a canard, as
shown in [41], and so we do not consider it further. Consequently, as in [22, 42], we use
two line segments between (0, 0) and (1, 1) denoting the intermediate point by (v1, w1)
and the slopes by ηj , specifically (3), as shown in Fig. 5. If instead f(v) contains multiple
line segments left of (0, 0) such that the slopes of the two lines meeting at (0, 0) are ±η1,
multiple coexisting attractors commonly exist for small λ which leads to complications
that we do not study here. For simplicity we do not consider f(v) comprised of more
than four line segments. For canards in PWL FHN models with many segments we refer
the reader to the recent work of Rotstein et. al. [42].
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Figure 5: The nullclines of (1) with (3) for small λ > 0. Potential equilibria, (v∗

j , w
∗

j ), lie
at the intersection of the nullclines. If ηj < α

σ
for every j, then the system has a unique

equilibrium for all values of λ.

In the absence of noise (i.e. when D = 0), (1) with (3) is a continuous, two-
dimensional, PWL, ordinary differential equation system:

v̇ = f(v) − w ,

ẇ = ε(αv − σw − λ) .
(6)

7

•Linear analysis on subregions
•Time dependent probabilities

Analysis of PWL FHN type models, w/ noise
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Oscillations are fundamental to the FitzHugh-Nagumo (FHN) model – dating from
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a range of scientific fields [7, 8]. We study the following form of the FHN model with
small, additive, white noise:

dv = (f(v) − w) dt ,

dw = ε(αv − σw − λ) dt + D dW ,
(1)

where v represents a potential, w is a recovery variable and W is a standard Brownian
motion. Here α is a positive constant and λ ∈ R, which is regarded as the main
bifurcation parameter, controls the growth of oscillations, as seen below. The small
parameter ε # 1, represents the time-scale separation and D # 1 is the noise amplitude
(ε, D > 0). Values of ε and D used in, for instance [9, 10], are no larger than the values
considered here. By scaling we may assume σ = 1, except in the special case σ = 0
which corresponds, in the absence of noise, to the van der Pol model (and in this case
we may further assume α = 1). We assume that f : R → R is continuous and S-shaped
in that f has one local minimum and one local maximum. For simplicity, we assume
that the local minimum is at (0, 0) and the local maximum is at (1, 1), regardless of the
precise function chosen.

If f is a cubic, as originally taken by FitzHugh [5] and Nagumo et. al. [6], then, by
the above requirements, the cubic must be

f(v) = 3v2 − 2v3 . (2)

Fig. 2-A illustrates the role of the parameter λ for (1) with (2) in the absence of noise.
A small amplitude periodic orbit is created in a Hopf bifurcation at λ = 0. For the
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Figure 1: A time series illustrating MMOs exhibited by (1) with (3). For this plot,
λ = 0.028, D = 0.0008, ε = 0.04, (α, σ) = (4, 1), (ηL, ηR) = (−2,−1) and (v1, w1) =
(0.1, 0.05).

2

Time dependent probability density with        linear
Solve PDE (Fokker Planck equation) with linear 
coefficients:  Gaussian probabilities
Time dependent Ornstein-Uhlenbeck processes

f(v)

In each for four regions, SDE:

Thursday, October 24, 2013



2 Properties of the deterministic system
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In the absence of noise (i.e. when D = 0), (1) with (3) is a continuous, two-
dimensional, PWL, ordinary differential equation system:

v̇ = f(v) − w ,

ẇ = ε(αv − σw − λ) .
(6)

7

as depicted in Fig. 6. We exclude the switching manifold, v = 1, from calculations
because large oscillations follow a sufficiently predictable path back to RL when D ! 1.

One method for computing a first exit distribution is to solve the Fokker-Planck
equation for the probability density of the process (1) with (3) and absorbing boundary
conditions [48, 49]. Integration of the solution to this boundary value problem at the
boundaries in an appropriate manner and over all positive time, may yield the desired
exit distribution. However we dismiss this approach as it necessitates extensive numeri-
cal computations, in part because drift dominates the diffusion which typically requires
extra attention [50, 51, 52]. Instead we utilize the fact that within each region, Rj , the
system is Ornstein-Uhlenbeck and, ignoring switching manifolds, has a known explicit
solution [49].

The transitional probability density, p
(1)
t , i.e. Pr

(

(v(t), w(t)) ∈ A
∣

∣ v(0) = v0, w(0) =

w0, (v0, w0) ∈ R1

)

=
∫∫

A

p
(1)
t (v, w|v0, w0) dv dw, for the solution to the Ornstein-Uhlenbeck

process of R1, i.e. (1) with f(v) = η1v, after a time t is the Gaussian

p
(1)
t (v, w|v0, w0) =

1

2π
√

det(Θ(t))
exp

(

−
1

2
∆zTΘ(t)−1∆z

)

, (17)

where

∆z(t; v0, w0) =

[

v − v(1)(t; v0, w0)
w − w(1)(t; v0, w0)

]

. (18)

The mean, (v(1), w(1)), is the solution to the system in absence of noise (12) and Θ(t) is

v

w

exit
distribution

v!nullcline
w!nullcline

!1
!2

!3
!4

(v1,w1)*     *

Figure 6: A sketch illustrating the exit distribution on Σ2 (16) for the forward evolution
of a point on Σ1. For clarity each Σj (16) is drawn with a different line type.

11

!0.006 !0.002 0
w

p(w)

0.01 0.02 0.03
v

p(v)

!0.006 !0.004 !0.002 0
w

p(w)

0.01 0.02 0.03
v

p(v)A

B

ŵL
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Figure 7: Stationary densities on the cross-section Σ1 (16) corresponding to where tra-
jectories of (1) with (3) intersect this cross-section. The left half of each plot corresponds
to Σ1 with v = 0; the right halves correspond to Σ1 with w = η1v. The solid curves
in panel B are computed using the iterative method based on analytical expressions for
the densities detailed in the text. The curves in panel A could also be calculated by this
iterative procedure, but instead it is more efficient to apply (22) to the flow on the slow
eigenvector of RL with stationary variance. This is because in panel A η1 is relatively
large and oscillations enter RL far from the origin and so are strongly attracted to the
slow eigenvector of RL. The histograms are calculated from a single trajectory of the
system that was computed by numerical simulation over a time period of 2 × 105. The
value of ŵL (15) is indicated in both panels. In panel A, w1 = 0.05 and λ = 0.028; in
panel B, w1 = 0.005 and λ = 0.19. The remaining parameter values are D = 0.0008,
ε = 0.04, v1 = 0.1, (α, σ) = (4, 1) and (ηL, ηR) = (−2,−1).

which permit MMOs increases with D. This matches our intuition, more noise allows
for a wider variety of oscillations. Note that D is not so large that oscillations are
incoherent: we assume D # ε so that drift dominates diffusion. We compute Fig. 8
using the iterative scheme described in §3; Monte-Carlo simulations give good agreement
as shown.

MMOs exist in a region bounded on the left by the curve along which large oscillations
occur 10% of the time and on the right by the curve along which small oscillations occur
10% of the time. When D = 0 the former curve has the value λ = λ1, and the latter
curve has the value λ = λv1 . This is because the periodic orbit of the system in the
absence of noise, (6), changes from small to medium at λ = λv1 , and from medium to
large at λ = λ1, §2.

From Fig. 8, we see that MMOs do not occur for arbitrarily small D even near the

15

Variability with    and critical values λ v1, w1

•Time dependent probabilities
•Semi-analytical approach:  iterate 
on transitions between regions
• Additional local analysis at 
crossings: first vs. last crossing 
time
• Parametric dependence

Time dependent densities:  transition distributions
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Sliding dynamics:  Relay control
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Figure 2: A stable periodic orbit of (4) with (5) and ζ = −0.06. Here x = (x1, x2, x3)T. The
periodic orbit exhibits sliding on the switching manifold, x1 = 0.

where F (L) and F (R) are, say, C1.
Suppose there exists a section of the switching manifold, call it Σ, for which eT

1 F (L)(x) > 0
and eT

1 F (R)(x) < 0, as in Fig. 1-A. In this scenario, forward orbits arrive at Σ from either side.
We use Filippov’s definition to define dynamics constrained to Σ [37, 30, 1]. Σ is known as an
attracting sliding region and evolution on Σ is referred to as sliding motion.

However, with additive noise, the system (7) seems to be too complex for us analyze to a
degree of detail that is useful. This is because both F (L) and F (R) depend on all components of
the vector x, and we have been unable to analytically solve the resulting N -dimensional stochastic
differential equation. Consequently, for this paper, which represents a first detailed analysis of
sliding motion with noise, we ignore the dependency of F (L) and F (R) on components of x parallel
to Σ as this enables us to reduce mathematical problems to one dimension but still capture what
seems to be the essence of stochastically perturbed sliding motion. Moreover, this provides a
useful approximation to the general case over short time-frames.

5

are commonly modelled by

ẋ = Ax + Bu ,

ϕ = CTx ,

u = −sgn(ϕ) ,

(4)

where x ∈ RN , ϕ is the signal measurement and u is the control response, [40, 5, 1]. The system
(4) is a Filippov system with a single switching manifold, {x | CTx = 0}, on which sliding
may occur. In this system sliding corresponds to the idealized scenario of discrete switching
events occurring continuously in time. Periodic orbits of (4) that involve sliding are described in
[41, 58, 59, 60].

As an example we consider the following canonical form, taken from [41] (also given in [1]),

A =





−20ζ − 1
20 1 0

−ζ − 100 0 1
−5 0 0



 , B =





1
−2
1



 , C =





1
0
0



 , (5)

where ζ ∈ R is a parameter. Fig. 2 illustrates a stable periodic orbit of (4) with (5) involving
sliding motion on the switching manifold. There are 12 separate sliding segments per period.
These correspond to time intervals for which x1 (the first component of the vector, x) is zero. The
stability of periodic orbits with sliding may be determined by analyzing the Jacobian of a return
map [41, 60, 61]. The robustness of periodic orbits with sliding has been briefly investigated by
studying the size of the basin of attraction of the periodic orbit [61], and imposing a short time
between consecutive switching events [62].

Fig. 3-A shows a typical orbit for the system when noise is added to the control signal as

dx =
(

Ax − B sgn
(

CTx
))

dt +
√

εB dW (t) . (6)

By comparing with Fig. 2-B, this shows that the noise may dampen the oscillations and induce
an increase in frequency. Fig. 3-B shows that the average length of time per oscillation of x3

decreases as the noise amplitude increases. We have observed similar behaviour for different
values of ζ . In §7 we use the results below to speculate on the reason for this behaviour.

3 A simple set of equations for stochastically perturbed

sliding motion

We are interested in the effects of noise on the dynamics of (1) near a switching manifold. In this
section we introduce a simple set of equations that approximates (1) near a switching manifold,
then formulate the inclusion of noise.

If a switching manifold of (1) is locally CK we can choose a coordinate system such that in
a neighbourhood of the origin, x = 0, the switching manifold is simply eT

1 x = O(K) [9]. In this
paper we are not concerned with effects due to nonsmoothness in the switching manifold and for
this reason suppose that the switching manifold is the coordinate plane, eT

1 x = 0. Two smooth
subsystems govern the nearby flow, thus, locally, we may write the deterministic system as

ẋ =

{

F (L)(x) , eT
1 x < 0

F (R)(x) , eT
1 x > 0

, (7)
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Figure 2: A stable periodic orbit of (4) with (5) and ζ = −0.06. Here x = (x1, x2, x3)T. The
periodic orbit exhibits sliding on the switching manifold, x1 = 0.

where F (L) and F (R) are, say, C1.
Suppose there exists a section of the switching manifold, call it Σ, for which eT

1 F (L)(x) > 0
and eT

1 F (R)(x) < 0, as in Fig. 1-A. In this scenario, forward orbits arrive at Σ from either side.
We use Filippov’s definition to define dynamics constrained to Σ [37, 30, 1]. Σ is known as an
attracting sliding region and evolution on Σ is referred to as sliding motion.

However, with additive noise, the system (7) seems to be too complex for us analyze to a
degree of detail that is useful. This is because both F (L) and F (R) depend on all components of
the vector x, and we have been unable to analytically solve the resulting N -dimensional stochastic
differential equation. Consequently, for this paper, which represents a first detailed analysis of
sliding motion with noise, we ignore the dependency of F (L) and F (R) on components of x parallel
to Σ as this enables us to reduce mathematical problems to one dimension but still capture what
seems to be the essence of stochastically perturbed sliding motion. Moreover, this provides a
useful approximation to the general case over short time-frames.
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Figure 1: Schematics of a Filippov system near a switching manifold that attracts orbits from
both sides in the absence of noise, panel A, and with small amplitude additive noise, panel B.

In this paper we derive an analogous result for sliding motion for which the above method
of expansion does not work because the vector field is discontinuous. Instead we analyze a
one-dimensional, discontinuous stochastic differential equation for a quantity representing the
distance from the switching manifold. We find that the mean solution differs from Filippov’s
deterministic sliding solution by O(ε), and deviations are O(

√
ε), matching the smooth case.

Moreover, the calculations suggest conditions necessary for the noise to induce a change in the
dynamics that is not dominated by randomness.

Here we outline the remainder of the paper. We motivate our work in §2 by illustrating
that noise may significantly reduce the amplitude and period of a solution to a prototypical
relay control model involving segments of sliding motion. In §3 we introduce a system of two-
dimensional stochastic differential equations, (8)-(11), that describes stochastically perturbed
sliding motion relating to a linear switching manifold in the case that system is the same in
directions tangent to the switching manifold. In this case, the equation for motion in the direction
orthogonal to the switching manifold, x, is independent of the variable representing displacement
tangent to the switching manifold, y, and for this reason is amenable to an exact analysis. We
leave a description of more general scenarios for subsequent work. In §4 we analyze the stochastic
differential equation for x(t) and derive its quasi-steady-state distribution. In §5 we analyze the
equation for y(t) and obtain expressions for the mean and variance of y(t). Derivations for this
section are given in §6 and Appendix A. Conclusions are presented in §7.

2 Periodic orbits with sliding and relay control

Periodic orbits involving sliding have recently been described in models of relay control systems.
Broadly speaking, a relay control system is a system that aims to control a variable using the
measurements of an input signal via a switching action [45, 46, 47, 48]. Relay control systems
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Figure 2: A stable periodic orbit of (4) with (5) and ζ = −0.06. Here x = (x1, x2, x3)T. The
periodic orbit exhibits sliding on the switching manifold, x1 = 0.

where F (L) and F (R) are, say, C1.
Suppose there exists a section of the switching manifold, call it Σ, for which eT

1 F (L)(x) > 0
and eT

1 F (R)(x) < 0, as in Fig. 1-A. In this scenario, forward orbits arrive at Σ from either side.
We use Filippov’s definition to define dynamics constrained to Σ [37, 30, 1]. Σ is known as an
attracting sliding region and evolution on Σ is referred to as sliding motion.

However, with additive noise, the system (7) seems to be too complex for us analyze to a
degree of detail that is useful. This is because both F (L) and F (R) depend on all components of
the vector x, and we have been unable to analytically solve the resulting N -dimensional stochastic
differential equation. Consequently, for this paper, which represents a first detailed analysis of
sliding motion with noise, we ignore the dependency of F (L) and F (R) on components of x parallel
to Σ as this enables us to reduce mathematical problems to one dimension but still capture what
seems to be the essence of stochastically perturbed sliding motion. Moreover, this provides a
useful approximation to the general case over short time-frames.
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Figure 3: Panel A shows a time series of (6) with ε = 0.001, using the same parameter values as
in Fig. 2. Panel B shows the median, upper quartile and lower quartile values of 1000 numerically
computed oscillation times, for several values of ε. To obtain each oscillation time, we computed
an orbit up to t = 100 and identified the last three instances at which the value of x3 changed sign
(discounting rapid sign changes over a handful of grid points near this value due to noise), then
subtracted the first time from the third time. Orbits were computed with the Euler-Maruyama
method of fixed step size, ∆t = 0.0001.

Given that F (L) and F (R) are functions of only eT
1 x, the remaining N − 1 components of x

may be treated identically and for this reason it suffices to study a two-dimensional system. We
let x = [x y]T and add small amplitude, white, Gaussian noise independent to the state of the
system. Assuming for simplicity that the noise in x is independent of the noise in y, the resulting
stochastic differential equation may be written as

[

dx
dy

]

=

[

φ(x)
ψ(x)

]

dt +
√

ε

[

dW1(t)√
κ dW2(t)

]

, (8)

where W1(t) and W2(t) are independent Brownian motions, 0 < ε # 1 and κ > 0 are constants,
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are commonly modelled by

ẋ = Ax + Bu ,

ϕ = CTx ,

u = −sgn(ϕ) ,

(4)

where x ∈ RN , ϕ is the signal measurement and u is the control response, [40, 5, 1]. The system
(4) is a Filippov system with a single switching manifold, {x | CTx = 0}, on which sliding
may occur. In this system sliding corresponds to the idealized scenario of discrete switching
events occurring continuously in time. Periodic orbits of (4) that involve sliding are described in
[41, 58, 59, 60].

As an example we consider the following canonical form, taken from [41] (also given in [1]),

A =





−20ζ − 1
20 1 0

−ζ − 100 0 1
−5 0 0



 , B =





1
−2
1



 , C =





1
0
0



 , (5)

where ζ ∈ R is a parameter. Fig. 2 illustrates a stable periodic orbit of (4) with (5) involving
sliding motion on the switching manifold. There are 12 separate sliding segments per period.
These correspond to time intervals for which x1 (the first component of the vector, x) is zero. The
stability of periodic orbits with sliding may be determined by analyzing the Jacobian of a return
map [41, 60, 61]. The robustness of periodic orbits with sliding has been briefly investigated by
studying the size of the basin of attraction of the periodic orbit [61], and imposing a short time
between consecutive switching events [62].

Fig. 3-A shows a typical orbit for the system when noise is added to the control signal as

dx =
(

Ax − B sgn
(

CTx
))

dt +
√

εB dW (t) . (6)

By comparing with Fig. 2-B, this shows that the noise may dampen the oscillations and induce
an increase in frequency. Fig. 3-B shows that the average length of time per oscillation of x3

decreases as the noise amplitude increases. We have observed similar behaviour for different
values of ζ . In §7 we use the results below to speculate on the reason for this behaviour.

3 A simple set of equations for stochastically perturbed

sliding motion

We are interested in the effects of noise on the dynamics of (1) near a switching manifold. In this
section we introduce a simple set of equations that approximates (1) near a switching manifold,
then formulate the inclusion of noise.

If a switching manifold of (1) is locally CK we can choose a coordinate system such that in
a neighbourhood of the origin, x = 0, the switching manifold is simply eT

1 x = O(K) [9]. In this
paper we are not concerned with effects due to nonsmoothness in the switching manifold and for
this reason suppose that the switching manifold is the coordinate plane, eT

1 x = 0. Two smooth
subsystems govern the nearby flow, thus, locally, we may write the deterministic system as

ẋ =

{

F (L)(x) , eT
1 x < 0

F (R)(x) , eT
1 x > 0

, (7)
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Figure 2: A stable periodic orbit of (4) with (5) and ζ = −0.06. Here x = (x1, x2, x3)T. The
periodic orbit exhibits sliding on the switching manifold, x1 = 0.

where F (L) and F (R) are, say, C1.
Suppose there exists a section of the switching manifold, call it Σ, for which eT

1 F (L)(x) > 0
and eT

1 F (R)(x) < 0, as in Fig. 1-A. In this scenario, forward orbits arrive at Σ from either side.
We use Filippov’s definition to define dynamics constrained to Σ [37, 30, 1]. Σ is known as an
attracting sliding region and evolution on Σ is referred to as sliding motion.

However, with additive noise, the system (7) seems to be too complex for us analyze to a
degree of detail that is useful. This is because both F (L) and F (R) depend on all components of
the vector x, and we have been unable to analytically solve the resulting N -dimensional stochastic
differential equation. Consequently, for this paper, which represents a first detailed analysis of
sliding motion with noise, we ignore the dependency of F (L) and F (R) on components of x parallel
to Σ as this enables us to reduce mathematical problems to one dimension but still capture what
seems to be the essence of stochastically perturbed sliding motion. Moreover, this provides a
useful approximation to the general case over short time-frames.

5

A B

Figure 1: Schematics of a Filippov system near a switching manifold that attracts orbits from
both sides in the absence of noise, panel A, and with small amplitude additive noise, panel B.

In this paper we derive an analogous result for sliding motion for which the above method
of expansion does not work because the vector field is discontinuous. Instead we analyze a
one-dimensional, discontinuous stochastic differential equation for a quantity representing the
distance from the switching manifold. We find that the mean solution differs from Filippov’s
deterministic sliding solution by O(ε), and deviations are O(

√
ε), matching the smooth case.

Moreover, the calculations suggest conditions necessary for the noise to induce a change in the
dynamics that is not dominated by randomness.

Here we outline the remainder of the paper. We motivate our work in §2 by illustrating
that noise may significantly reduce the amplitude and period of a solution to a prototypical
relay control model involving segments of sliding motion. In §3 we introduce a system of two-
dimensional stochastic differential equations, (8)-(11), that describes stochastically perturbed
sliding motion relating to a linear switching manifold in the case that system is the same in
directions tangent to the switching manifold. In this case, the equation for motion in the direction
orthogonal to the switching manifold, x, is independent of the variable representing displacement
tangent to the switching manifold, y, and for this reason is amenable to an exact analysis. We
leave a description of more general scenarios for subsequent work. In §4 we analyze the stochastic
differential equation for x(t) and derive its quasi-steady-state distribution. In §5 we analyze the
equation for y(t) and obtain expressions for the mean and variance of y(t). Derivations for this
section are given in §6 and Appendix A. Conclusions are presented in §7.

2 Periodic orbits with sliding and relay control

Periodic orbits involving sliding have recently been described in models of relay control systems.
Broadly speaking, a relay control system is a system that aims to control a variable using the
measurements of an input signal via a switching action [45, 46, 47, 48]. Relay control systems
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Figure 1: Schematics of a Filippov system near a switching manifold that attracts orbits from
both sides in the absence of noise, panel A, and with small amplitude additive noise, panel B.

In this paper we derive an analogous result for sliding motion for which the above method
of expansion does not work because the vector field is discontinuous. Instead we analyze a
one-dimensional, discontinuous stochastic differential equation for a quantity representing the
distance from the switching manifold. We find that the mean solution differs from Filippov’s
deterministic sliding solution by O(ε), and deviations are O(

√
ε), matching the smooth case.

Moreover, the calculations suggest conditions necessary for the noise to induce a change in the
dynamics that is not dominated by randomness.

Here we outline the remainder of the paper. We motivate our work in §2 by illustrating
that noise may significantly reduce the amplitude and period of a solution to a prototypical
relay control model involving segments of sliding motion. In §3 we introduce a system of two-
dimensional stochastic differential equations, (8)-(11), that describes stochastically perturbed
sliding motion relating to a linear switching manifold in the case that system is the same in
directions tangent to the switching manifold. In this case, the equation for motion in the direction
orthogonal to the switching manifold, x, is independent of the variable representing displacement
tangent to the switching manifold, y, and for this reason is amenable to an exact analysis. We
leave a description of more general scenarios for subsequent work. In §4 we analyze the stochastic
differential equation for x(t) and derive its quasi-steady-state distribution. In §5 we analyze the
equation for y(t) and obtain expressions for the mean and variance of y(t). Derivations for this
section are given in §6 and Appendix A. Conclusions are presented in §7.

2 Periodic orbits with sliding and relay control

Periodic orbits involving sliding have recently been described in models of relay control systems.
Broadly speaking, a relay control system is a system that aims to control a variable using the
measurements of an input signal via a switching action [45, 46, 47, 48]. Relay control systems

3

3D modelare commonly modelled by

ẋ = Ax + Bu ,

ϕ = CTx ,

u = −sgn(ϕ) ,

(4)

where x ∈ RN , ϕ is the signal measurement and u is the control response, [40, 5, 1]. The system
(4) is a Filippov system with a single switching manifold, {x | CTx = 0}, on which sliding
may occur. In this system sliding corresponds to the idealized scenario of discrete switching
events occurring continuously in time. Periodic orbits of (4) that involve sliding are described in
[41, 58, 59, 60].

As an example we consider the following canonical form, taken from [41] (also given in [1]),

A =





−20ζ − 1
20 1 0

−ζ − 100 0 1
−5 0 0



 , B =





1
−2
1



 , C =





1
0
0



 , (5)

where ζ ∈ R is a parameter. Fig. 2 illustrates a stable periodic orbit of (4) with (5) involving
sliding motion on the switching manifold. There are 12 separate sliding segments per period.
These correspond to time intervals for which x1 (the first component of the vector, x) is zero. The
stability of periodic orbits with sliding may be determined by analyzing the Jacobian of a return
map [41, 60, 61]. The robustness of periodic orbits with sliding has been briefly investigated by
studying the size of the basin of attraction of the periodic orbit [61], and imposing a short time
between consecutive switching events [62].

Fig. 3-A shows a typical orbit for the system when noise is added to the control signal as

dx =
(

Ax − B sgn
(

CTx
))

dt +
√

εB dW (t) . (6)

By comparing with Fig. 2-B, this shows that the noise may dampen the oscillations and induce
an increase in frequency. Fig. 3-B shows that the average length of time per oscillation of x3

decreases as the noise amplitude increases. We have observed similar behaviour for different
values of ζ . In §7 we use the results below to speculate on the reason for this behaviour.

3 A simple set of equations for stochastically perturbed

sliding motion

We are interested in the effects of noise on the dynamics of (1) near a switching manifold. In this
section we introduce a simple set of equations that approximates (1) near a switching manifold,
then formulate the inclusion of noise.

If a switching manifold of (1) is locally CK we can choose a coordinate system such that in
a neighbourhood of the origin, x = 0, the switching manifold is simply eT

1 x = O(K) [9]. In this
paper we are not concerned with effects due to nonsmoothness in the switching manifold and for
this reason suppose that the switching manifold is the coordinate plane, eT

1 x = 0. Two smooth
subsystems govern the nearby flow, thus, locally, we may write the deterministic system as

ẋ =

{

F (L)(x) , eT
1 x < 0

F (R)(x) , eT
1 x > 0

, (7)
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Figure 2: A stable periodic orbit of (4) with (5) and ζ = −0.06. Here x = (x1, x2, x3)T. The
periodic orbit exhibits sliding on the switching manifold, x1 = 0.

where F (L) and F (R) are, say, C1.
Suppose there exists a section of the switching manifold, call it Σ, for which eT

1 F (L)(x) > 0
and eT

1 F (R)(x) < 0, as in Fig. 1-A. In this scenario, forward orbits arrive at Σ from either side.
We use Filippov’s definition to define dynamics constrained to Σ [37, 30, 1]. Σ is known as an
attracting sliding region and evolution on Σ is referred to as sliding motion.

However, with additive noise, the system (7) seems to be too complex for us analyze to a
degree of detail that is useful. This is because both F (L) and F (R) depend on all components of
the vector x, and we have been unable to analytically solve the resulting N -dimensional stochastic
differential equation. Consequently, for this paper, which represents a first detailed analysis of
sliding motion with noise, we ignore the dependency of F (L) and F (R) on components of x parallel
to Σ as this enables us to reduce mathematical problems to one dimension but still capture what
seems to be the essence of stochastically perturbed sliding motion. Moreover, this provides a
useful approximation to the general case over short time-frames.
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Distributions, moments

however this requires knowledge of pε(x, t|x0), for which we have not been able to obtain a useful
expression in the case of general φ. We conjecture that the leading order terms of Var(y(t)) are
independent of non-constant terms in φ and ψ because x(t) = O(ε) with high probability. Indeed
this is consistent with numerical simulations, Fig. 4. In view of the result for the case that φ and
ψ are piecewise-constant (Theorem 2, given below), we propose the following result:

Conjecture 1. Consider (8) with (11). Suppose x(0) is random with PDF, pqss,ε, and y(0) = y0.
Then for any δ > 0, whenever ε1−δ ≤ t ≤ ε−M we have

V ar(y(t)) = εκt +
(bL − bR)2

(aL + aR)2
εt + O(ε2) . (39)

From here until the concluding section, §7, we study the case that φ and ψ are piecewise-
constant, i.e.

φ(x) =

{

aL , x < 0
−aR , x > 0

, (40)

ψ(x) =

{

bL , x < 0
bR , x > 0

. (41)

Theorem 2. Consider (8) with (11) and suppose φ and ψ are given by (40)-(41). Suppose x(0)
is random with PDF, pqss,ε, and y(0) = y0. Then for any δ > 0, whenever t ≥ ε1−δ we have

V ar(y(t)) = εκt +
(bL − bR)2

(aL + aR)2
εt + O(ε2) . (42)

We prove this result in the next section.

6 Two-valued drift and a proof of Theorem 2

The stochastic differential equation (12) with (40):

dx =

{

aL , x < 0
−aR , x > 0

}

dt +
√

ε dW1(t) , (43)

has been referred to as Brownian motion with two-valued drift. The transitional PDF of this
process was first derived by Karatzas and Shreve in [69]. In this section we state this PDF and
use it prove Theorem 2.

6.1 The transitional probability density function for x(t)

The transitional PDF for (43) is given by

pε(x, t|x0) =



















2
ε
e

2aLx

ε

∫ ∞
0 hε(t, b, aR) ∗ hε(t, b − x − x0, aL) db + Gabsorb,ε(x, t, aL|x0) , x0 ≤ 0, x ≤ 0

2
ε
e

−2aRx

ε

∫ ∞
0 hε(t, b + x, aR) ∗ hε(t, b − x0, aL) db , x0 ≤ 0, x ≥ 0

2
ε
e

2aLx

ε

∫ ∞
0 hε(t, b + x0, aR) ∗ hε(t, b − x, aL) db , x0 ≥ 0, x ≤ 0

2
ε
e

−2aRx

ε

∫ ∞
0 hε(t, b + x + x0, aR) ∗ hε(t, b, aL) db + Gabsorb,ε(x, t,−aR|x0) , x0 ≥ 0, x ≥ 0

,

(44)
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Then for any δ > 0, whenever ε1−δ ≤ t ≤ ε−M we have
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Theorem 2. Consider (8) with (11) and suppose φ and ψ are given by (40)-(41). Suppose x(0)
is random with PDF, pqss,ε, and y(0) = y0. Then for any δ > 0, whenever t ≥ ε1−δ we have
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use it prove Theorem 2.
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6.2 Proof of Theorem 2

In the case of two-valued drift (40), the quasi-steady-state density (23) is a true steady-state
defined for all x ∈ R:

pss,ε(x) =

{

K
ε
e

2aLx

ε , x < 0
K
ε
e

−2aRx

ε , x > 0
, K =

2aLaR

aL + aR

. (48)

With the notation
∂p±ε
∂x

(0, t|x0) ≡ lim
∆→0±

∂pε

∂x
(∆, t|x0) , (49)

we have the following expression for the probability that x(t) > 0, given x0 = 0.

Lemma 3. For any t > 0,
∫ ∞

0

pε(x, t|0) dx =
1

2
−

∫ t

0

aRpε(0, s|0) +
ε

2

∂p+
ε

∂x
(0, s|0) ds . (50)

Proof.

For x > 0, in the case of two-valued drift (40), the Fokker-Planck equation (13) is

∂pε

∂t
=

∂

∂x

(

aRpε +
ε

2

∂pε

∂x

)

. (51)

Integration over x ∈ [∆,∞) yields

∂

∂t

∫ ∞

∆

pε(x, t|0) dx = −
(

aRpε(∆, t|0) +
ε

2

∂pε

∂x
(∆, s|0)

)

, (52)

for any ∆ > 0. Then integrating with respect to t and taking ∆ → 0 produces (50) where we
also use

lim
t→0+

∫ ∞

0

pε(x, t|0) dx =
1

2
, (53)
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however this requires knowledge of pε(x, t|x0), for which we have not been able to obtain a useful
expression in the case of general φ. We conjecture that the leading order terms of Var(y(t)) are
independent of non-constant terms in φ and ψ because x(t) = O(ε) with high probability. Indeed
this is consistent with numerical simulations, Fig. 4. In view of the result for the case that φ and
ψ are piecewise-constant (Theorem 2, given below), we propose the following result:

Conjecture 1. Consider (8) with (11). Suppose x(0) is random with PDF, pqss,ε, and y(0) = y0.
Then for any δ > 0, whenever ε1−δ ≤ t ≤ ε−M we have

V ar(y(t)) = εκt +
(bL − bR)2

(aL + aR)2
εt + O(ε2) . (39)

From here until the concluding section, §7, we study the case that φ and ψ are piecewise-
constant, i.e.

φ(x) =

{

aL , x < 0
−aR , x > 0

, (40)

ψ(x) =

{

bL , x < 0
bR , x > 0

. (41)

Theorem 2. Consider (8) with (11) and suppose φ and ψ are given by (40)-(41). Suppose x(0)
is random with PDF, pqss,ε, and y(0) = y0. Then for any δ > 0, whenever t ≥ ε1−δ we have

V ar(y(t)) = εκt +
(bL − bR)2

(aL + aR)2
εt + O(ε2) . (42)

We prove this result in the next section.

6 Two-valued drift and a proof of Theorem 2

The stochastic differential equation (12) with (40):

dx =

{

aL , x < 0
−aR , x > 0

}

dt +
√

ε dW1(t) , (43)

has been referred to as Brownian motion with two-valued drift. The transitional PDF of this
process was first derived by Karatzas and Shreve in [69]. In this section we state this PDF and
use it prove Theorem 2.

6.1 The transitional probability density function for x(t)

The transitional PDF for (43) is given by

pε(x, t|x0) =



















2
ε
e

2aLx

ε

∫ ∞
0 hε(t, b, aR) ∗ hε(t, b − x − x0, aL) db + Gabsorb,ε(x, t, aL|x0) , x0 ≤ 0, x ≤ 0

2
ε
e

−2aRx

ε

∫ ∞
0 hε(t, b + x, aR) ∗ hε(t, b − x0, aL) db , x0 ≤ 0, x ≥ 0

2
ε
e

2aLx

ε

∫ ∞
0 hε(t, b + x0, aR) ∗ hε(t, b − x, aL) db , x0 ≥ 0, x ≤ 0

2
ε
e

−2aRx

ε

∫ ∞
0 hε(t, b + x + x0, aR) ∗ hε(t, b, aL) db + Gabsorb,ε(x, t,−aR|x0) , x0 ≥ 0, x ≥ 0

,

(44)
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Consequently, if (x(0), y(0)) = (0, y0), then xslide(t) ≡ 0 and

yslide(t) ≡ y0 +
aRbL + aLbR

aL + aR

t . (33)

5.2 The mean of y(t)

From (8) and (10) we have

dy =

(

bL + bR

2
−

bL − bR

2
sgn(x(t)) +

dL + dR

2
x(t) −

dL − dR

2
x(t) sgn(x(t)) + o(|x(t)|)

)

dt

+
√

εκ dW2(t) . (34)

Integration yields

y(t) = y0 +
bL + bR

2
t −

bL − bR

2

∫ t

0

sgn(x(s)) ds +
dL + dR

2

∫ t

0

x(s) ds (35)

−
dL − dR

2

∫ t

0

x(s) sgn(x(s)) ds +

∫ t

0

o(|x(s)|) ds +
√

εκW2(t) ,

and therefore

〈

y(t)
〉

= y0 +
bL + bR

2
t −

bL − bR

2

∫ t

0

〈

sgn(x(s))
〉

ds +
dL + dR

2

∫ t

0

〈

x(s)
〉

ds (36)

−
dL − dR

2

∫ t

0

〈

x(s) sgn(x(s))
〉

ds +

∫ t

0

〈

o(|x(s)|)
〉

ds .

If x ∼ pqss,ε, by substituting (27)-(29) we obtain

〈

y(t)
〉

= yslide(t) +
(a2

LdR − a2
RdL)(aL + aR) − (a2

LcR − a2
RcL)(bL − bR)

2aLaR(aL + aR)2
εt + o(ε) , (37)

where the ε-independent terms have combined to form yslide(t), (33).
Therefore as ε → 0, the mean of y(t) limits on Filippov’s sliding solution, yslide(t). This is

non-trivial because Filippov’s method, to obtain (33), and standard stochastic dynamical systems
definitions, to obtain (37), are not immediately related. Note that the perturbation of

〈

y(t)
〉

from yslide(t) is order ε, mirroring the result for smooth systems, see §1. The explicit expression
for the coefficient of the O(ε)-term in (37) is particularly useful. For instance, we can see that if
cL = cR and dL = dR, then we require the asymmetry aL &= aR in order for the O(ε)-term to be
nonzero.

5.3 The variance of y(t)

The variance of y(t) may be computed via

Var(y(t)) =
〈

y(t)2
〉

−
〈

y(t)
〉2

, (38)
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Figure 3: Panel A shows a time series of (6) with ε = 0.001, using the same parameter values as
in Fig. 2. Panel B shows the median, upper quartile and lower quartile values of 1000 numerically
computed oscillation times, for several values of ε. To obtain each oscillation time, we computed
an orbit up to t = 100 and identified the last three instances at which the value of x3 changed sign
(discounting rapid sign changes over a handful of grid points near this value due to noise), then
subtracted the first time from the third time. Orbits were computed with the Euler-Maruyama
method of fixed step size, ∆t = 0.0001.

Given that F (L) and F (R) are functions of only eT
1 x, the remaining N − 1 components of x

may be treated identically and for this reason it suffices to study a two-dimensional system. We
let x = [x y]T and add small amplitude, white, Gaussian noise independent to the state of the
system. Assuming for simplicity that the noise in x is independent of the noise in y, the resulting
stochastic differential equation may be written as

[

dx
dy

]

=

[

φ(x)
ψ(x)

]

dt +
√

ε

[

dW1(t)√
κ dW2(t)

]

, (8)

where W1(t) and W2(t) are independent Brownian motions, 0 < ε # 1 and κ > 0 are constants,
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Noise sensitivity:  grazing
 Grazing: vibro-impacts, friction, AFM, stick-slip

1 Introduction

Deterministic, piecewise-smooth systems are commonly used as mathematical models of vibro-
impacting systems [1, 2, 3, 4]. Specific examples include atomic force microscopy [5, 6], gear
assemblies [7, 8], metal cutters [9, 10], and vibrating heat-exchanger tubes [11, 12]. Piecewise-
smooth systems are characterized by the presence of codimension-one regions of phase space,
termed switching manifolds, across which the functional form of the system changes. In the
context of vibro-impacting systems, switching manifolds correspond to an impact or loss of con-
tact. Motion that involves recurring impacts is often born in the collision of an attracting
non-impacting periodic orbit with a switching manifold. This collision is known as a grazing
bifurcation, Fig. 1. Grazing bifurcations have been intensely analyzed and may be the cause of
complex dynamics including chaos, see [13] and references within. In this paper we study the
effect of noise on a common class of grazing bifurcations by analyzing a stochastic version of the
induced return map.

The effect of small noise on a well-understood deterministic system is often intuitive and
qualitatively predictable but in certain situations may produce interesting new dynamics. For
instance there are various mechanisms, such as coherence resonance, by which the addition of
noise to quiescent systems induces relatively regular oscillations [14, 15, 16], as well as more
complicated dynamics such as mixed-mode oscillations [17]. Alternatively noise may suppress
chaos [18]. Studies of stochastic versions of some prototypical models are found in [19, 20, 21,
22, 23].

In [24, 25], Griffin and Hogan study a one-dimensional piecewise-linear map with additive
noise. For uniformly distributed noise they calculate basins of attraction and widths of invariant
densities. With Gaussian noise the map resists such a precise analysis and instead numerical
results are presented revealing that the two types of noise produce qualitatively similar behaviour.
In a period-incrementing scenario, the invariant density of the stochastic map may undergo several
transitions (as distinguished by the number of peaks in the density) as the noise amplitude is
varied [26]. Numerical simulations of a two-dimensional ODE system with additive noise designed
such that the relevant Poincaré map is piecewise-linear, give essentially the same dynamics as the

µ < 0 µ = 0 µ > 0

Σ Σ Σ

Figure 1: Phase space schematics illustrating a grazing bifurcation. The vertical line, Σ, repre-
sents a switching manifold. The bifurcation occurs when a periodic orbit intersects the switching
manifold as a parameter, µ, is varied. Dynamics shortly after the bifurcation may be extremely
complex and depend on the stability multipliers of the non-impacting periodic orbit and the
precise nature of the grazing scenario [13].

2

of a single invariant density with peaks at the deterministic attractors, §4.4. Finally conclusions
are presented in §5.

2 Derivation of the stochastic Nordmark map

The purpose of this section is to justify the manner by which we have incorporated noise into the
Nordmark map, (1.4) with (1.5), and derive an explicit expression for Θ in terms of an underlying
stochastic differential equation. Certainly noise may enter a vibro-impacting system in a variety
of different ways. Noise in external forcing may be represented by a deterministic signal plus
a weak random component modelled by white or coloured noise. Model parameters may be
treated stochastically. Also impact events may be modelled randomly (indeed experiments reveal
impacts may induce high frequency oscillations that quickly decay and vanish [46]). The manner
by which randomness is modelled affects the nature of the induced Poincaré map. For simplicity
we consider additive, white Gaussian noise and derive (1.4).
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Figure 2: A bifurcation diagram of the stochastic Nordmark map, (1.4), with (τ, δ,χ) =
(0.5, 0.05, 1), ε = 0.00025, and Θ = I (the 2 × 2 identity matrix). The dots are numerically
computed iterates of (1.4) with transients omitted. The blue curves denote deterministic, admis-
sible, attracting periodic solutions, computed analytically in §3.1. The red curves approximate
one standard deviation of the invariant density from the blue curves, as obtained via linearization,
see §3.2.
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map. In [27], numerical simulations of a noisy piecewise-smooth map are shown to exhibit many
similarities to the output of a DC/DC converter. Noise-induced stabilization in one-dimensional
discontinuous maps is described in [28].

Impact oscillators subject to noise have been studied from the point of view of characterizing
small-amplitude, noise-induced oscillations. The early work of Dimentberg and Menyailov [29]
concerns an unforced, damped, linear oscillator experiencing noise and instantaneous impacts
with either one wall or two symmetrically placed walls. Zhuravlev’s transformation [30, 4] con-
verts the stochastic equation of motion with an impact rule into a single discontinuous stochastic
differential equation. To then determine the invariant density of the position and velocity of the
oscillator, in the case that impacts are slightly inelastic the system may be treated as a perturba-
tion from a Hamiltonian system. Here stochastic averaging [31, 32, 33] leads to a simple stochastic
differential equation for the energy. The work [29] has been extended to compliant impacts [34],
Hertzian contacts [35], and nonlinear oscillators [36]. The presence of forcing adds significant
difficulty to the problem but has recently been investigated numerically and via stochastic av-
eraging [35, 37] and analyzed with series expansions and mean Poincaré maps in the context of
gear rattling [38, 39].

The nature of noise is highly system-dependent. In this paper we consider additive white
noise independent to the state of the system because this is a simple formulation and can be
intepreted as random background fluctuations or randomness in forcing for a variety of physical
systems. Clearly more sophisticated implementations of noise, such as coloured noise, may be
more meaningful for certain applications. However, our aim here is to highlight general qualitative
features that noise may induce in a system near a grazing bifurcation. It remains for future work
to study grazing bifurcations with noise influencing only impacts, as indeed, for vibro-impacting
systems, impact events may represent the primary source of uncertainty.

Grazing bifurcations are typically studied by deriving and analyzing a Poincaré map that
is valid in a neighbourhood of the bifurcation. Different grazing scenarios yield fundamentally
different Poincaré maps. In two dimensions, a normal form of the Nordmark map is:

[

x′

y′

]

=















A

[

x
y

]

+

[

0
1

]

µ , x ≤ 0

A

[

x
y − χ

√
x

]

+

[

0
1

]

µ , x ≥ 0
, (1.1)

where

A =

[

τ 1
−δ 0

]

, χ = ±1 , (1.2)

and τ, δ ∈ R. This map applies to both regular grazing in three-dimensional, piecewise-smooth
systems [40], and grazing in vibro-impacting systems for which impacts are modelled as instan-
taneous events with velocity reversal and energy loss [41, 42]. The grazing bifurcation occurs at
the origin when µ = 0. Since (1.1) is a truncated series expansion centred about the bifurcation,
(1.1) is primarily of interest for small values of x, y and µ. The construction of (1.1) is described
in §2.1. Here we note that the fixed point of the left half-map of (1.1) is given by

[

x∗(L)

y∗(L)

]

=
1

1− τ + δ

[

1
1− τ

]

µ , (1.3)

3

Grazing normal form:
Nordmark map
Square root behavior

 Poincare map: a discontinuity map captures impact
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of a single invariant density with peaks at the deterministic attractors, §4.4. Finally conclusions
are presented in §5.

2 Derivation of the stochastic Nordmark map

The purpose of this section is to justify the manner by which we have incorporated noise into the
Nordmark map, (1.4) with (1.5), and derive an explicit expression for Θ in terms of an underlying
stochastic differential equation. Certainly noise may enter a vibro-impacting system in a variety
of different ways. Noise in external forcing may be represented by a deterministic signal plus
a weak random component modelled by white or coloured noise. Model parameters may be
treated stochastically. Also impact events may be modelled randomly (indeed experiments reveal
impacts may induce high frequency oscillations that quickly decay and vanish [46]). The manner
by which randomness is modelled affects the nature of the induced Poincaré map. For simplicity
we consider additive, white Gaussian noise and derive (1.4).
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Figure 2: A bifurcation diagram of the stochastic Nordmark map, (1.4), with (τ, δ,χ) =
(0.5, 0.05, 1), ε = 0.00025, and Θ = I (the 2 × 2 identity matrix). The dots are numerically
computed iterates of (1.4) with transients omitted. The blue curves denote deterministic, admis-
sible, attracting periodic solutions, computed analytically in §3.1. The red curves approximate
one standard deviation of the invariant density from the blue curves, as obtained via linearization,
see §3.2.
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Simpson, Hogan, K. SIADS, to appear

Stochastic Poincare map 
derived from cts model 
(vs. Poincare map + noise)

Gaussian densities: 
well separated branches

Non- Gaussian: 
branches overlap, square root 
“stretching” follows iterates 
near switching
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Different types of stochastic discontinuous 
dynamics: need a variety of ideas

• Mixed mode oscillations:  Semi-analytical iterations 
of time dependent probability density functions

• Discontinuity induced bifurcations - underlying 
sources of noise-sensitivity

• Positive occupation times: sliding

• Boundary layers and non-standard scaling limits: 
sliding transitions

• Grazing: Stochastic Poincare maps
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Lots of mathematical and modeling challenges:

• Nonlinear models with delay: complex behaviors

• Piecewise continuous nonlinear systems: recently 
receiving more attention

• Stochastic modeling for systems with delay and 
discontinuities: open problems analytically and 
computationally, new approaches needed

• Robustness of different on/off control strategies

• Recent work: extension of results for continuous 
cases to discontinuous drift cases with “nice” noise 
(Mohammed, et al, 2013 in progress)
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