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e Frequency Response Problem
e Work in collaboration with C. Farhat and R. Tezaur (Stanford U.)

e Coherent Transport using Green function

e Work in collaboration with M. P. Anantram and D. Ji (U.
Washington - EE)

e Incompressible flow simulations with varying viscosity
e Work in collaboration with Y. Wu (U. Washington)



Fluid-Structure Acoustic Vibrations Model

Discrete problems of the form
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Very large sparse matrices (> 10°).
Ms, Kg, My, and K¢ are usually real symmetric matrices.

D, and D¢ are damping matrices.

C is the coupling matrix between the structure and fluid.

These matrices typically depend on geometry, topology, and
material parameters.



Frequency Response Problems

Time-harmonic excitation
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The model becomes a frequency-dependent linear system
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Frequency Response Problems

Discrete problems of the form

(K- 0’M +S(0))x(0) = f(o)
Frequency response problems have to be solved for many
parameters.

e Very large sparse matrices (> 10°)

e Problem with multiple frequencies (1004+ ®) in an interval
[0)/,0),]

e Interested in the whole field x(®)

e Linear systems are increasingly difficult to solve when @ grows



Applications of Frequency Response Problems

e Structural vibrations and interior noise acoustics
Elastodynamics Interior Helmholtz

e Scattering
__Exterior Helmholtz




Frequency Response Computation

e Straightforward Algorithm

e Sample the interval of interest [w;, ®,]: @p,---,®Ds
e Solve the linear system

(K — 0*M + S(0))x(0) = f(o)

e CPU intensive

e Reduced-order model can speed up the simulation time.



Reduced Order Model Techniques

e Many techniques have been proposed with a similar goal.

e Reviews: Freund (2003), Bai-Dewilde-Freund (2005), Antoulas
(2005), ...

e Interpolatory Reduced Order Models (Padé approximation or
moment matching)
e Freund (2003), Bai-Su (2005), Beattie-Gugercin (2005),

Patera et al. (2006), Olsson-Ruhe (2006), Avery-Farhat-Reese
(2007), Meerbergen (2008), Tuck Lee-Pinsky (2008), ...



Galerkin Projection

Consider
x(0) = (K — ©®M+S(0)) ' f(0)

A Galerkin approximation in the subspace V is such that
VA [(K—0’M+S(0)) V&(0) —f(0)] =0
V7 (K - 0?M +S(0)) Vk(0) = Vf(0)
() = <VHKV — 0?VHMV + VHS(a))V> T VHE (o)

x(0) =~ VX(0) = V (VHKV — VMV + VHS(a))V> “VHF(0)



Interpolatory Approximation

A one-point matching approximation of x at @y is defined as a
function x(q,, ) satisfying

djx(a)o;J) B dix

) () = 2 (@), Vi<

X(ao:J)(@0) = x(ap)

The Taylor expansion of x4, ) around @ matches the first J
terms of the Taylor expansion of x around the same point,

X(@) = X(05.1)(@) + 0 (0~ @)

Local convergence around the expansion point @y.



Interpolatory Approximation

The derivatives of x are solutions of a system of linear equations
with the same left-hand side

(K- 0*M+S(w)) j;(a)) = j;(w) — (j{i(w) —2a)M> x(®)
and
(K—w2M+S(w))jja§(w)=jjafj(w)
dk di=kx
ZkI(J Bl do —— (K—0’M+S(0 ) Gk (@)



One-Point Matching via Galerkin Projection

Consider the matching frequency wy. If

dx d’/1x
span {x(a)o), %(a)o), N de_l(a)o)} C spanV

Then,

-1
x(®) =V (VHKV — 0?VIMV +v”5(w)v) VHf (o)

+ﬁ’((a)—a)0)J>

® Freund-Feldmann (1995), Beattie-Gugercin (2009), ..



Interpolatory Model Reduction in a Frequency Band

A Galerkin projection-based method for approximating
x(0) = (K- ©®M+S(0)) ' f(0)

in a frequency interval consists in

e Building V that satisfies the property

dx d’1x
span {x(a)o), %(a)o), ey da)“(wo)} C spanV

e Evaluating, in the frequency interval,
-1
() = (VHKV - wszMV+VHS(a))V> VH(o)

e Approximating x(®) with VX(w)



Towards Multi-Point Matching

e A single point approximation converges first around the
expansion point.

e To get a better approximation over an interval, multiple
expansion points can be used at the same time.

2 — GPK(1) - 40,40,40 vectors
10 — GPK(3) - 40+40+40 vectors
0"
10°
10°
1500 2000 2500 3000 3500 4000

e Example for frequency sweep analysis of a thick spherical steel shell
submerged in water and excited by a point load on its inner surface.



Multi-Point Matching via Galerkin Projection

Consider the matching frequencies ay,---,0p_1. If

dx d’~1x
span {x(a)o), —dw(a)o), R P (a)o)} +...
d d1
span {X((D,Dl), ﬁ(a)p,l), e da)J);((Dpl)} C spanV

Then, formally,
-1
x(@) =V (vHKv PRVEIVY, +VHS(a))V) VHf ()

+0 <li:[1(a) — a)p)J>

p=0

e Gallivan-Grimme-van Dooren (1996), Beattie-Gugercin (2009), ...



Multi-Point Matching via Galerkin Projection

Consider

1

x(0) = (K- 0’M+S(0))  f(o)

e Loop on frequencies: @y, ,0p_1

Set x(@p) = (K~ @2M +5(,)) " f(@p)
Compute the derivatives of x at @, (systems with same matrix)
Augment V with these new derivatives

[ )
[ )
)
e Form an orthonormal basis

o Compute the projected matrices: VFKV, VMV, V"S(w)V

e Approximate the frequency response over [@y, @]

-1
x(@) ~ V (vHKv — VMV + vHS(w)v) VHE ()



Fluid-Structure Acoustic Vibration Analysis

Frequency sweep analysis of a thick spherical steel shell submerged
in water and excited by a point load on its inner surface.
FE model using isoparametric cubic elements incorporates a




Fluid-Structure Acoustic Vibration Analysis

e Frequency sweep analysis of a submerged thick spherical shell
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Fluid-Structure Acoustic Vibration Analysis

e Frequency sweep analysis of a submerged thick spherical shell
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Fluid-Structure Acoustic Vibration Analysis

e Frequency sweep analysis of a submerged thick spherical shell

T
——— GP - 8+8+8 vectors
A — GP - 16+16+16 vectors
I\ — GP - 24+24+24 vectors
/ GP - 32+32+32 vectors
— GP - 40+40+40 vectors

® 3-point GPK

e FETI-DPH with
tolerance 108




Solutions of Linear Systems

e lterative domain-decomposition algorithm for solving

(K—w’M)x=b

e K and M are complex symmetric matrices
e FETI-DPH
o GMRES on Lagrange multipliers

e Matching of 72 (= 24+ 24+ 24) values at 3 points on 16
nodes (with 8 cores)

e “Straightforward” sweep with FETI-DPH and 240 samples
= 240 x 20s = 4,800s

e Average of 41 iterations per right hand side (128 subdomains,
coarse grid size 30,039)

e CPU time for reduced order model and “reduced” sweep: 313s



Motivation for Adaptivity

e The quality of interpolatory reduced-order models depends on
the selection of interpolation points and on the number of
matched derivatives.

e This selection has mostly been heuristic, which remains the
main disadvantage of interpolatory model reduction.



1. Selecting Matching Points

e Starting from Py sampling frequencies, build a first model
matching J derivatives per point.

e Monitor the residual norms
| (K- 0?’M+S(w)) V&(0) - f(o)||,
 —
[f(@)]]

on every interval [@p, Wp11] C [0y, @]

e Add a new sampling frequency if one norm value is greater
than tolerance 7.

e Check values at a few points in [@p, Wp+1].

e Create a new interpolatory reduced order model (if needed).



2. Selecting Matching Points and Number of Derivatives

e Use the adaptive scheme for placing points described
previously and monitoring the residual norms

(K- 0?M+S(0)) V(o) — (o)
0 Ol *on (oo

e For every sampling frequency @,

o Compute Jnax derivatives
e Keep a number of derivatives between J,in and Jnax such that

e the residual norms decrease sufficiently with the new directions
e the residual norms are just below tolerance

(1 < Jmin < Jmax)



Example: Helmholtz Scattering Problem

(K—0*M)ps(0) = gr(w) o € [9,36]

e K and M are complex symmetric matrices of size 777,650
(cubic elements).

e A frozen perfectly matched layer is used.



Automatic Adaptivity

Relative error/residual
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e Jomin=16 and J,,.x = 64.



Automatic Adaptivity
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e Jomin=16 and J,,.x = 64.



Automatic Adaptivity
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e Jomin=16 and J,,.x = 64.



Cost and Accuracy

Table I. Acoustic scattering problem: performance of the adaptive DGP method in terms of CPU cost
and accuracy (t = 107", 33 CPU cores).

Tinins Trmazy 8T 8,8,0 | 16,16,0 | 32,32,0 | 48,48,0 | 64,64,0 | 16,64,4
# of interpolation points 7 5 4 4 4 4

Size of approximation subspace 56 80 128 192 256 112
Average relative residual 1.2e-T | 7.2e-B | 3.3e-T | 2.1e-8 | 9.1e-B | 5.2e-7
Maximum relative residual 1.9e-6 | 9.7e-7 | 4.9e-6 1.1e-7 | l.4e-6 | 7.6e-6
Maximum relative error 5.9e-7 | 4.7e-7 | 2.0e-7 | 2.6e-7 | L.Ge-7 | 8.5e-7
OPU Subspace construction | 712.7 | 534.9 471.0 509.8 573.6 448.1

time Projection setup 23.7 27.8 49.5 95.3 154.6 49.9

) Post-processing 38.0 48.6 68.6 97.0 125.4 62.1
Total 7743 | 611.3 589.1 774.4 853.6 560.1

e Brute force time with 541 samples: 49,339 s



Non-Equilibrium Green's Functions (NEGF)

The retarded Green's function G" is defined
(El—-H—-X )¢ (E))G"(E)=AG" = 1
The electron density at point g and energy E is
dE r r r r \H
”q(E):z/ G X1 (Gy ) + GirY R (GiR)
and the current from lead L to R is

Jior =" / dET,x (E) (. (E) — fr (E))

Tir (E) = |1 (E) Gr (E) ke (E) (G[r (E))"



Non-Equilibrium Green's Functions (NEGF)

The problem is to solve

o

|
(EI_H_ZIead(E))GZ(E) = |: ]

and

0
(EI*H*zlead(E))G.g?(E) = [0]

over a wide range of energy values.



e Build an interpolatory reduced-order model to approximate
columns of G" over [Emin, Emax]

e Select the matching energies adaptively.

e Select the columns to interpolate adaptively.



Figure: Potential for the rectangular nanodevice



Experiments
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Figure: Sampling Values



Experiments
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Figure: Absolute Error between FOM and ROM



] N, \ Size of FOM \ Time Brute Force \ Size of ROM \ Time ROM ‘

26 n=1014 23s s—=286 7s
50 n= 3750 182s s=113 39s
100 n= 15000 1828s s =156 252s

Table: Evolution of timings as the number of grid points N, is increased
(with evaluation of transmission at 768 energy points).

e Tolerance =102
e N, =3N,/2



Problem Formulation

Consider the incompressible Navier-Stokes equation in a bounded
domain Q € R?

?:+(U-V)u+Vp—vAu = f inQx(0,T]
Viu = 0 inQx(0,T]
u = b onlpx(0,T]
—pn+vVu-n = 0 onlyx(0,T]
u(0) = up

where u(x,t) and p(x,t) denote the velocity and pressure fileds. Q
is a bounded domain in R? whose boundary is denoted by

0Q =TpUTlpN. Vv denote the kinematic viscosity of the fluid, ug a
given initial velocity, and b a specified boundary velocity.



Adaptive Selection

@ Build the snapshot database for two viscosity values
S= U}Zl{xj(vl)}Uj"zl{xj(vP)}-

® Set the number of clusters Ny = 2.

© Construct the local ROBs ®; by partition S into N,
overlapping clusters

O Evaluate the residuals at all the check points using ROM
model

@ Find the viscosity value giving the largest residuals.

@ If the residuals are larger than a tolerance,

° Set 5 — 5 U {xl(vjmax)7x2(vjmax)’ Tt 7X"x(vjmax)}
e Ny +— Ny+1
e Go to Step 3



Numerical experiments

e Incompressible Navier-Stokes flow on a T-shaped domain

100(1 + 4sin(20xt))(1 —y)(y —0.5)

0 for

e Inlet velocity b =

0<t<0.05
e Full order model: 11,203 degrees of freedom



Solution at training configuration v =1

o S={¥(v=1)}, and n, =500

’ Approach Error ‘ Speedup ‘
ROM 2.5e-04 1.71
ROM + 2 Clusters 5.8e-05 1.61
ROM + 3 Clusters 2.6e-05 151
ROM + NL Reduction 3.0e-04 104
ROM + 2 Clusters + NL Reduction | 6.7e-05 106
ROM + 2 Clusters + NL Reduction | 3.3e-05 100

Table: Performance of ROM of dimension 15.




Predictive ROM simulation
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Figure: Parameter sweep for the T-shaped problem: POD size = 30



e We studied interpolatory reduced-order model.

e We designed adaptive schemes for selecting the matching
points.




