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Summary of Results

e We consider the eigenvalue problem: Find x € CY, A € C such that Ax = Ax.
e Formulate as a root finding problemin v 4 1 unknowns: F(X) = 0.
e Apply Newton’s Method. Obtain formula for the Newton decrement: A = [0x,,, OA,,]

e Key facts: Application of Newton’s Method plus insight reveals the algorithmic structure:

F(X) = 0 = Newton’s method = Wielandt Inverse lteration =- Q-R algorithm
e More: If the target A is simple and known, next iteration determines x exactly
e Motivates getting the best possible estimate of the eigenvalue
e This leads us to consider Inverse Taylor Series Iteration of degree p
e Newton’s Method is the p = 1 special case of this family
e We will obtain the p = 2 Inverse Taylor Series update to x and A

e We will show that the Newton update to A,, has error O(A?) in the Hermitian case
This implies that the Q-R algorithm is cubically convergent in the Hermitian case

e Obtain all the terms of Inverse Taylor Series by reversion of series
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Heroes of our tale
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Root Finding Formulation of Eigenvalue Problem

e Given matrix A € CV*V, find x € CY, A € C such that Ax = Ax

e Formulate as a root finding problem in v 4 1 variables: F(X) = 0 where:

B X def | (M —A)X
S EECE ei
The choice of z is rather arbitrary.  We will change it every iteration
e Last condition is normalization: z*x = 1. The condition x*x = 1 would not work!

e It would lead to an F(X) that is not analyticin X.

e In fact we will renormalize x,, each iteration. Also we will set z = x,,.
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Application of Newton’s Method to Solving F(X) =0

0X,,,0M,] st X1 =X, —0X;,, Ayq=A,— O\

(Fx)y A = F(X,) = [ MZZA o ] [ gi‘; ] = [ Qz”*IX;f)lxn ]

e Apply Newton’s Method to find A =

e [he Newton decrement relation can be recast as

MI—A X, OX, —X, | 0
A 0 o\, o

e The inverse of the coefficient matrix is:
— YA —A)"!

M—A x, 17 [E/Y g v=1/(@0nI-4)"%), G
/A 0 I I A A w" = 72°G, g = GX,, E = G—gw'

e Using the matrix inverse formula we find

Sn_ n o
[ XB}LnX ] — [ 51 — Xn+1:Xn_6Xn:g:GX”7 S}L”:,Y
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Newton’s Method, Inverse lteration and the Q-R Algorithm

e We have obtained the Newton iterate x,,. | and eigenvalue decrement 0A,,

X1 =X, — 0X, = g = GX,, N, =7y = 1/ (Z*(KnI—A)_lxn) ; G = Y(knl—A)_l

e Focusing on X, 1, observe its relation to Wielandt Inverse lteration:
Xop1 = GX, = Ohy (Ml —A) 'x,,

— Gisthe Inverse lteration matrix. w* = z*G estimates a left eigenvector by inverse iteration

e The L-Q variant of the Q-R algorithm is based on the following setup:
— The matrix A has been reduced to lower Hessenberg form
— We obtain the L-Q factorization: A,/ —A = LQ, L lower triangular, Q unitary
— Qs consequently lower Hessenberg: Q= L™ ' (A, [ —A)
— X, = e, (last natural unit vector) and (z*), = 1. This leads to the following development
Xpi1 = Ap(Ad —A) 'x, = A,(LO) ey = SN, 0 L7 e,

— X:/l—l-l — QX,/H_I — SKnL_leV — (67\%/6\;,\,)6\,

— Absolutely crucial: x;_, is paralle/to ey: This is half the magic of Q-R!
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How the Q-R Algorithm Works

e We make the following observations:
— The vector x| | = Ox, is parallel to ey

— If we change basis using Q and renormalize, XZ+1 can be set equal to ey,
— In the new coordinate system, A’ = QAQ~'. Consequently:
A= QAQ' = QNI —(MI—A)Q ! = MI—-Q(LQ)O! = NI —OL

— Because Q is lower Hessenberg and L is lower triangular, A is again lower Hessenberg

o Key features: By changing basis using Q, we achieve these useful results:
— The matrix A’ (similar to A) remains lower Hessenberg (tridiagonal if Hermitian)
— The Newton update to the eigenvector, x;H = (0X,.1, remains parallel to ey

— Preservation of lower Hessenberg form reduces computational cost by factor of v.
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Condition of the lteration Matrix at Convergence

e At convergence to [x,,u| we expect that Ax,, = ux,, and z*A = uz*.
— Put u in the last position of the Jordan Normal form; assume it is simple

— This implies x,, = Ve, and z* = &}V !

e Using V7!AV =J, we find that A,, = u, x, = Ve, and z* = e}V ! imply

[xnl—A x] _ [uvvl—wvl Vev] _ [v O”uI—J ev”v—1 o]

z' 0 e;V ! 0 0 1 e, 0 0 1

e For usimple, the matrix in the middle and its spectral condition number is given

,Ulv—lT_Jv—l 01 0y max<1, 7\,’7'1;?11 ’:u_}\'j‘)
0\%—1 0 1 Condp - zfm'n
0, ; 1 0 m|n<1, A # i Lu—?»ﬂ)
e Provided V is well conditioned we conclude these facts about E, g and w:
E= 0 g = O(1) w' = 0(1)

e Fory=0MA,~0 thisimplies G=gw"+E =gw"+ O(0A,) = G approximately rank 1;
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Convergence in One lteration if A, = u, a Simple Eigenvalue

e Recast the iteration relation as
{ A_Z*;L”I )8“ ] [ )glfl } = [ (1) } put A, = u and place in position v
n
e Recalling the Jordan Normal Transformation A = VJV ! we employ V to find
J—ul V7Ix, Vil | 10
A% 0 oA, 01

e Using the fact that (J)y.y = 1 = A, this implies

Joor—ph—1  Oyp  (V7Ix) 191 (V1% 1) 1v—1 0y
0y, 0 (V=% (V= 1x001)y = 0
(Z'V)1v-1 (z"V )y 0 o\, 1
e This implies that
eqn v (V1x,)y0A, =0 == 8L, =0  (no surprise here!)
eqns 1:(v—1) Jy—1 =ty 1) (VX 1) 1v—1 =01 = (VIXp1) 1v—1 = 0y
conclude: (V71x,41) = Bey = x,,1=60Ve,

e We find x,,. || Ve,, the last column of V, the eigenvector associated with u
e Observation: Getting A, as close as possible to u is crucial; corresponds to the shift in the Q-R algorithm
e This observation motivated study of the Inverse Taylor Series Method.

e lts stronger convergence enabled proof of cubic convergence for Hermitian problems
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The Inverse Taylor Series Method

e Consider determining X* such that F(X*) = 0.
— Let G denote the inverse function such that G(F (X)) = X. Clearly X* = G(0)

— Let X, be our current estimate of X* and let ¥,, = F(X,,); consider the series:

G(Y) = G(Y,)+Gy(Y-Y,) + %GYY(Y_YH)(Y—Yn) + éGYYY(Y_Yn)(Y_Yn)(Y_Yn) + o

e SetY =0to evaluate X*. Use X, = G(F(X,)) = G(Y,)

X* = G(0) = Xn—Gy(Yn)Jr%ny(Yn)(Yn)—ényy(Yn)(Yn)(Yn)Jr...
— The Inverse Taylor Series Method of order p retains the first p + 1 terms.
— Newton’s Method is the special case of p = 1. It retains just the first 2 terms.
— Convergence Analysis is easy: X1 —X* = O(X, —X*)P*!

— Trivially, for Newton’s Method: X, —X* = O(X, — X*)?

e Apply this to our F(X) for the eigenvalue problem:
F(x) [ (M —A)x ] (F)y — [ Ml —A x, ]

z'x — 1 Z 0

e The first order term is the Newton decrement:

GY(Yn) — Fx_lF(Xn):A: [ g;‘\z ] = [ X”g}:’l‘f’l ] — [ Xn_YGXn ]
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Computation of 2nd Order Inverse Taylor Series Term

e We focus on the 2nd order update term: (1/2)Gyy(Y,)(Y,). Consider the development

G(F(X))X — GyFx =1 — GyyFxFx +GyFxy = 0
Apply last identity to two copies of A Gyy (FxA)(FxA) + Gy (FxxAA) =0
Use Newton relation FxA =1Y,, and conclude GyyY,Y, = —Gy(FxxAA)

e Doing all the algebra, the second order update term is:
1 B 1| OAOX, | Edx,(0A,/Y)
EGYY(Yn)(Yn) — _FX |: 0 :| = — |: W*angkn

e Proof that Q-R is cubically convergent for Hermitian matrices
— Setting z = x,,, we will show that the quadratic update to A, is actually O(A%)
T, = —WOX,0A, = —2"GOx,,0A, = —Xx, GOx,, 0\,
— Focusing on x'GOx,:
x,Gox, = (G'x,)"0x, = (Gx,)*dx, = X, ,,0x, = (X, —0x,)"0x, = X,0x, — Ox,0x,
— But, provided z*x, = 1, the Newton update formula asserts x0x, = z*0x, = 0

— Conclude that x;Gox, = —0x,0x, — T) = |8x,[20), ... third order!
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Solving F(X) = 0 by series reversion: Setup

e We attack directly the problem of computing G(Y') defined implicity by G(F (X)) = X.
e Setting ¥, = F(X,), expand G(Y) in a series about ¥;;:
=1
G(Y) = G(Ya)+ ), FGYY...Y(Y —Y,)
r=1""

where the action of the derivative tensor Gyy. y on r copies of V is interpreted as:
v+1 v+1 v+1 arGi

"~ JryJ Jr
Grra V) jZI jZ1ijI svioviavi VY
1=1 2= r—

e Similarly, the quadratic function F'(X) is expanded in a series about X,

|
F(X) = F(Xa)+Fx(X = X) + S Fex (X ~X,)*
e Make the substitutions G(Y) =X, G(Y,) =X,, F(X) =Y, F(X,) =Y, and obtain
= 1
X = X+, ﬁGYY...Y<Y —Y,)
r=1""
1
Vo= Yot Fr(X = X) + S Fxx (X —X,)?

e Introduce shifted variables U = X — X,,, V =Y —Y,, along with linear and multilinear operators
A1 = Fx, A2 = (1/2)FX)(, Br = (1/7!)ny.__y and find

U = Y B(V), V = AU +A(U)?
r=1
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Solving F(X) =0 by series reversion: Recursion

e Substitute the first of these equations into the second and obtain the identity

V.= A (iBr(V)r> +A; <i3r(\/)r> (iBS(V)S>
r=1 s=1

r=1

e Matching terms by their degree in V, we obtain the identities

V = ABV
0 = A1B,(V)"  + AYIZ{(BV?) (B,_V'™)

e Evaluation: We want U = X — X, correspondingtoY =0,i.e. V=0-Y, = —Y,

X=X, = U = Y(-1YB(%

e Define Z, = B,(Y,)" and obtain the recursions

Y, = AiZ 0=AZ + A (X 1ZZ—~) (r>2)

e Solve for Z, (A is the Newton decrement):

Zi= ATV, =F'FX,)=A  Z = -A7' (A Y ZZZ—) (r>2)
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Solving F(X) =0 by series reversion: Application

Partitioning Z, into vector and scalar parts: Z, = [z,,(,], we compute the sum in Z,’s definition

AQZ_Z’;ZSZ,,S — ZFXX{ ] [ Z :: ] _ lril[ CsZr—sngr_szs ] _ Z_Zil Cszo,,_s ]

s=1

Apply A7 = F; ! to this expression and obtain Z,
r— r—1
—1 Cszr—s L E/Y
B R Rl B A s
§=

Introduce cooefficients 6; = (;/7, obtain recursions

z, E r—1
][ g

Usually z, = O(A”) and 8, = O(A"™!). (note: 6, = 1)

But for Hermitian problems, 6, = O(A") (r >2) because xE =0 (superconvergence!)
Evaluation of eigenvector/eigenvalue pair: X =X,+ Y~ (—1)"Z,

Reversion of series not usually a good idea. It works here because deg(F) = 2.
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Conclusions

e Formulating the eigenvalue as a root finding problem provides several useful insights
— Application of Newton’s method produces Wielandt Inverse lteration
— Use of the LQ factorization to solve the system leads to the Q-R algorithm

— Quadratic convergence of the Q-R algorithm follows trivially

e Other important insights
— Exact eigenvalue = Convergence on next iteration
— Motivates getting best possible eigenvalue estimate: Inverse Taylor Series

— Cubic convergence of Q-R in the Hermitian case follows from quadratic Taylor Series

e Getting the best possible eigenvalue estimate is crucial!
— Originally developed Inverse Taylor Series Method up through p =4
— A web-search turned up notion of Series Reversion
— That worked well: All terms are easily computed by a recursion
— Consequently: Cost of solving dense eigenvalues problem can be minimized
— Also, superconvergence in the Hermitian case persists to all orders
— Result: Hermitian at ~ 1.45 iterations/eigenvalue; Non-hermitian at ~ 2.1
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Verification of Inversion Formula

e Form the product:
[ Ml —A X, ] {E/y g ] _ [ (Ad —A)E )y +x,Ww* (M —A)g — VX,

s 0 || wo oy Z'E/y z'g
~1
e y_l/( Ml —A)7'x,), G = y(hI—A)
with definitions: _ 'vG, s — Gx,, E = G—gw

e Check the terms of the RHS product. Start with (1,2), then do (1,1).

(1,2) term: A Jd—A)g—7%, = A=Ay A —-A) ', —7%, = 1%, —7%, = O

(1,1) term: (AMI—AE/y + x,Ww" = %{(XHI—A)[G—gW*]+yon*}

= [+4+- { (Al —A)g+7yx, W™ = T+-{0}w" = [

e By virtue of the Newton update formula, the (2,2) term is given by

2’g = 27GX, = 77X, = 1

e The (2,1) term can now be easily verified:
ZE/y = 2 (G—gw)/y = [w —(Zgw]/y = [w—w]/y =20
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